A polygonal discontinuous Galerkin method with minus one stabilization
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 55 (2021), pp. S785-S810

We propose a discontinuous Galerkin method for the Poisson equation on polygonal tessellations in two dimensions, stabilized by penalizing, locally in each element K, a residual term involving the fluxes, measured in the norm of the dual of H1 (K). The scalar product corresponding to such a norm is numerically realized via the introduction of a (minimal) auxiliary space inspired by the Virtual Element Method. Stability and optimal error estimates in the broken H1 norm are proven under a weak shape regularity assumption allowing the presence of very small edges. The results of numerical tests confirm the theoretical estimates.

DOI : 10.1051/m2an/2020059
Classification : 65N12, 65N30
Keywords: Discontinuous Galerkin method, polygonal tessellation, minus one stabilization
@article{M2AN_2021__55_S1_S785_0,
     author = {Bertoluzza, Silvia and Prada, Daniele},
     title = {A polygonal discontinuous {Galerkin} method with minus one stabilization},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {S785--S810},
     year = {2021},
     publisher = {EDP-Sciences},
     volume = {55},
     number = {Suppl\'ement},
     doi = {10.1051/m2an/2020059},
     mrnumber = {4221311},
     zbl = {1491.65125},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/m2an/2020059/}
}
TY  - JOUR
AU  - Bertoluzza, Silvia
AU  - Prada, Daniele
TI  - A polygonal discontinuous Galerkin method with minus one stabilization
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2021
SP  - S785
EP  - S810
VL  - 55
IS  - Supplément
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/m2an/2020059/
DO  - 10.1051/m2an/2020059
LA  - en
ID  - M2AN_2021__55_S1_S785_0
ER  - 
%0 Journal Article
%A Bertoluzza, Silvia
%A Prada, Daniele
%T A polygonal discontinuous Galerkin method with minus one stabilization
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2021
%P S785-S810
%V 55
%N Supplément
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/m2an/2020059/
%R 10.1051/m2an/2020059
%G en
%F M2AN_2021__55_S1_S785_0
Bertoluzza, Silvia; Prada, Daniele. A polygonal discontinuous Galerkin method with minus one stabilization. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 55 (2021), pp. S785-S810. doi: 10.1051/m2an/2020059

[1] P. F. Antonietti, A. Cangiani, J. Collis, Z. Dong, E. H. Georgoulis, S. Giani and P. Houston, Review of discontinuous Galerkin finite element methods for partial differential equations on complicated domains. In: Vol.114 of Lecture notes in computational science and engineering, Building Bridges: Connections and Challenges in Modern Approaches to Numerical Partial Differential Equations, Springer, Cham (2016) 279–308.

[2] R. Araya, C. Harder, D. Paredes and F. Valentin, Multiscale hybrid-mixed method. SIAM J. Numer. Anal. 51 (2013) 3505–3531.

[3] M. Arioli and D. Loghin, Discrete interpolation norms with applications. SIAM J. Numer. Anal. 47 (2009) 2924–2951. | MR | Zbl

[4] B. Ayuso De Dios, K. Lipnikov and G. Manzini, The nonconforming virtual element method. ESAIM: M2AN 50 (2014) 879–904. | MR | Zbl | Numdam

[5] I. Babuška, C. E. Baumann and J. T. Oden, A discontinuous h p finite element method for diffusion problems: 1-D analysis. CAMWA 37 (1999) 103–122. | MR | Zbl

[6] C. Baiocchi and F. Brezzi, Stabilization of unstable numerical methods. In: Problemi attuali dell’Analisi e della Fisica Matematica (1993). | MR | Zbl

[7] J. Banasiak and G. F. Roach, On mixed boundary value problems of Dirichlet oblique-derivative type in plane domains with piecewise differentiable boundary. J. Differ. Equ. 79 (1989) 111–131. | MR | Zbl

[8] G. R. Barrenechea, F. Jaillet, D. Paredes and F. Valentin, The multiscale hybrid mixed method in general polygonal meshes. Numer. Math. 125 (2020) 197–237. | MR | Zbl

[9] F. Bassi, L. Botti, S. Colombo and A. Rebay, Agglomeration based discontinuous Galerkin discretization of the Euler and Navier-Stokes equation. Comput. Fluids 61 (2012) 77–85.

[10] L. Beirão Da Veiga, F. Brezzi, A. Cangiani, G. Manzini, L. D. Marini and A. Russo, Basic principles of the virtual element method. M3AS 23 (2013) 199–214.

[11] L. Beirão Da Veiga, C. Lovadina and A. Russo, Stability analysis for the virtual element method. M3AS 27 (2017) 2557–2594. | MR | Zbl

[12] S. Bertoluzza, Stabilization by multiscale decomposition. Appl. Math. Lett. 11 (1998) 129–134. | MR | Zbl

[13] S. Bertoluzza, Algebraic representation of dual scalar products and stabilization of saddle point problems. Preprint arXiv1906.01296(2019). | MR | Zbl

[14] S. Bertoluzza, C. Canuto and A. Tabacco, Stable discretizations of convection-diffusion problems via computable negative-order inner products. SIAM J. Numer. Anal. 38 (2000) 1034–1055. | MR | Zbl

[15] S. Bertoluzza, G. Manzini, M. Pennacchio and D. Prada, Stabilization of the nonconforming virtual element method. In preparation.

[16] S. Bertoluzza, I. Perugia and D. Prada, A p -robust polygonal discontinuous Galerkin method with minus one stabilization. In preparation. | Zbl

[17] D. Boffi, F. Brezzi and M. Fortin, Mixed Finite Element Methods and Applications. Vol. 44 of Springer Series in Computational Mathematics. Springer, Berlin-Heidelberg (2013). | MR | Zbl

[18] J. H. Bramble, J. E. Pasciak and P. S. Vassilevski, Computational scales of Sobolev norms with application to preconditioning. Math. Comput. 69 (2000) 463–480. | MR | Zbl

[19] S. C. Brenner and L. Y. Sung, Virtual element methods on meshes with small edges or faces. M3AS 28 (2018) 1291–1336. | MR | Zbl

[20] F. Brezzi, B. Cockburn, L. D. Marini and E. Süli, Stabilization mechanisms in discontinuous Galerkin finite element methods. MAME 195 (2006) 3293–3310. | MR | Zbl

[21] E. Burman and P. Hansbo, Edge stabilization for Galerkin approximations of convection–diffusion–reaction problems. CMAME 193 (2004) 1437–1453. | MR | Zbl

[22] A. Cangiani, Z. Dong, E. H. Georgoulis and P. Houston, hp-Version Discontinuous Galerkin Methods on Polygonal and Polyhedral Meshes. Springer Briefs in Mathematics. Springer, Cham (2017).

[23] L. Demkowicz and J. Gopalakrishnan, A class of discontinuous Petrov-Galerkin methods. Part II: optimal test functions. Numer. Methods Part. Differ. Equ. 27 (2011) 70–105. | MR | Zbl | DOI

[24] D. A. Di Pietro, A. Ern and S. Lemaire, An arbitrary-order and compact-stencil discretization of diffusion on general meshes based on local reconstruction operators. Comput. Methods Appl. Math. 14 (2014) 461–472. | MR | Zbl | DOI

[25] R. Ewing, J. Wang and Y. Wang, A stabilized discontinuous finite element method for elliptic problems. Numer. Linear Algebra Appl. 10 (2003) 83–104.

[26] P. Ghysels, X. Li, F. Rouet, S. Williams and A. Napov, An efficient multicore implementation of a novel HSS-structured multifrontal solver using randomized sampling. SIAM J. Sci. Comput. 38 (2016) S358–S384. | MR | Zbl | DOI

[27] J. Guzmán and B. Rivière, Sub-optimal convergence of non-symmetric discontinuous Galerkin methods for odd polynomial approximations. J. Sci. Comput. 40 (2009) 273–280. | MR | Zbl | DOI

[28] P. Houston, C. Schwab and E. Süli, Discontinuous hp-finite element methods for advection–diffusion–reaction problems. SIAM J. Numer. Anal. 39 (2002) 2133–2163.

[29] L. Mascotto, I. Perugia and A. Pichler, Non-conforming harmonic virtual element method: h - and p -versions. J. Sci. Comput. 77 (2018) 1874–1908. | MR | Zbl | DOI

[30] V. Maz’Ya, Sobolev Spaces with Applications to Elliptic Partial Differential Equations. In: Vol. 342 of Grundlehren der mathematischen Wissenschaften. Springer, Berlin-Heidelberg (2011).

[31] P. A. Raviart and J. M. Thomas, Primal hybrid finite element methods for 2nd order elliptic equations. Math. Comput. 31 (1977) 391–413.

[32] G. Rozza and K. Veroy, On the stability of reduced basis methods for Stokes equations in parametrized domains. CMAME 196 (2007) 1244–1260.

[33] V. Thomée, Galerkin Finite Element Methods for Parabolic Problems. In: Vol. 25 of Springer Series in Computational Mathematics, Springer, Berlin-Heidelberg (2006).

Cité par Sources :