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A POLYGONAL DISCONTINUOUS GALERKIN METHOD WITH MINUS ONE
STABILIZATION

Silvia Bertoluzza* and Daniele Prada

Abstract. We propose a discontinuous Galerkin method for the Poisson equation on polygonal tessel-
lations in two dimensions, stabilized by penalizing, locally in each element 𝐾, a residual term involving
the fluxes, measured in the norm of the dual of 𝐻1(𝐾). The scalar product corresponding to such a
norm is numerically realized via the introduction of a (minimal) auxiliary space inspired by the Virtual
Element Method. Stability and optimal error estimates in the broken 𝐻1 norm are proven under a
weak shape regularity assumption allowing the presence of very small edges. The results of numerical
tests confirm the theoretical estimates.
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1. Introduction

Methods for solving PDEs based on polyhedral meshes are attracting more and more attention, resulting in a
fast development. They provide greater flexibility in mesh generation, can be exploited as transitional elements
in finite element meshes, and are better suited than methods based on tetrahedral or hexahedral meshes for
many applications on complicated and/or moving domains [1]. Many different approaches exist, such as the
Agglomerated Finite Element method [9], the Virtual Element Method [10], the Hybrid High Order method
[24], just to quote the most recent ones.

A common ingredient to all of these methods is the presence of some stabilization term that penalizes a
residual in some mesh dependent norm [20]. Dealing with such terms in the analysis usually relies on the use
of some kind of inverse inequality, and results in suboptimal estimates when the factor stemming from such
inequality does not cancel out with some small factor coming from the approximation properties of the involved
space. This is the case when, for instance, the elements are not shape regular or when we want to obtain ℎ𝑝
estimates [22, 27]. This kind of problem naturally arises when a mesh dependent norm is used to mimic the
action of the norm of the space where the penalized residual naturally “lives”, usually a negative or fractionary
norm. On the other hand, it has been observed that, at least theoretically, it is possible to design stabilization
terms based on such a “natural” norm [6,12], for which the analysis does not require the validity of any inverse
inequality.
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In the following we propose a discontinuous Galerkin method for the Poisson equation on a polygonal tessel-
lation in two dimensions with an element by element stabilization similar to the one proposed by [21, 25], that
penalizes the residual on the flux, the main novelty being the norm in which such residual is penalized, namely,
the norm of the dual of 𝐻1. The numerical realization of the (𝐻1)′ norm has been the object of several papers
[3, 18], and we follow here the general approach proposed by [13]. While in this paper we start by addressing
the case of a mesh satisfying a weak shape regularity assumption, and we only perform the analysis of the
convergence in ℎ, we believe that this approach (which can, of course, be applied also to other formulations and
to other problems) has the potential to tackle more general cases.

The paper is organized as follows: in Section 2 we present and analyze the new method. More specifically, in
Section 2.1 we define some non standard form for the norms of some Sobolev space, which make it easier to deal
with the scaling of negative norms; in Section 2.2 we present the method, in Section 2.3 we define the global
broken norms that we will employ in the analysis, which we carry out in Section 2.4. A separate section, namely
Section 2.5, is dedicated to the proof of a key inf-sup condition (Lem. 2.7). Section 3 is devoted to the definition
of a computable scalar product for the dual space of 𝐻1. Finally, Section 4 presents an equivalent hybridized
version of the discrete problem, particularly well suited for efficient implementation, and Section 5 presents the
result of some numerical experiments, confirming the validity of the theoretical convergence estimate.

As we do not aim at tracking the dependence of the constants in the estimates that we are going to provide
on the polynomial degree 𝑘 but only on the different mesh size parameters, in order to avoid the proliferation
of constants, in the following we will write 𝐴 . 𝐵 (resp. 𝐴 & 𝐵) to indicate that the quantity 𝐴 is less or equal
(resp. greater or equal) than the quantity 𝐵 times a constant independent of the element diameters ℎ𝐾 , and of
the edge lengths ℎ𝑒, but possibly depending on the constant 𝜌⋆ involved in the shape regularity Assumption 2.1
and on the degree 𝑘 of the polynomial spaces considered.

2. The DG method with minus one stabilization

2.1. Scaled norms, seminorms and duals

In the following, for 𝜙 ∈ 𝑉 and 𝐹 ∈ 𝑉 ′ (depending on the context, 𝑉 and 𝑉 ′ will be different couples of dual
Sobolev spaces), we will indicate by ⟨𝐹,𝜙⟩ the action of 𝐹 on 𝜙. In the analysis that follows we will rely on non
standard forms for the norms of some Sobolev space. More precisely, let 𝐷 be a bounded Lipschitz domain in R𝑑,
𝑑 = 1, 2. We denote by ‖ · ‖0,𝐷 the 𝐿2(𝐷) norm and, for 0 < 𝑠 ≤ 1 we let | · |𝑠,𝐷 denote the𝐻𝑠(𝐷) semi norm:

‖𝜙‖20,𝐷 =
ˆ

𝐷

|𝜙|2, |𝜙|21,𝐷 =
ˆ

𝐷

|∇𝜙|2, (2.1)

|𝜙|2𝑠,𝐷 =
ˆ

𝐷

ˆ
𝐷

d𝑥d𝑦
|𝜙(𝑥)− 𝜙(𝑦)|2

|𝑥− 𝑦|2𝑠+𝑑
, 0 < 𝑠 < 1. (2.2)

Let 𝜎𝐷 and 𝜏𝐷 be two positive constants, whose choice will be specified later. Letting
ffl

𝐷
𝜙 ∈ R denote the

average of 𝜙 in 𝐷  
𝐷

𝜙 = |𝐷|−1

ˆ
𝐷

𝜙,

we let the norm for 𝐻𝑠(𝐷), 0 < 𝑠 ≤ 1, be defined as

‖𝜙‖2𝑠,𝐷 = 𝜎𝐷|
 

𝐷

𝜙|2 + |𝜙|2𝑠,𝐷.

On the dual space (𝐻𝑠(𝐷))′, we introduce a seminorm, defined as

|𝐹 |−𝑠,𝐷 = sup
𝜙∈𝐻𝑠(𝐷)´
𝐷 𝜙=0

⟨𝐹,𝜙⟩
‖𝜙‖𝑠,𝐷

= sup
𝜙∈𝐻𝑠(𝐷)´
𝐷 𝜙=0

⟨𝐹,𝜙⟩
|𝜙|𝑠,𝐷

, (2.3)
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and a norm
‖𝐹‖2−𝑠,𝐷 = 𝜏𝐷|⟨𝐹, 1⟩|2 + |𝐹 |2−𝑠,𝐷 (2.4)

(recall that for 𝑠 ≥ 0 the function assuming identically value 1 over 𝐷 is in 𝐻𝑠(𝐷), so that ⟨𝐹, 1⟩ is well defined).
We have the following duality result.

Lemma 2.1. Let 𝜎𝐷 and 𝜏𝐷 satisfy 𝜎𝐷𝜏𝐷 = 1. Then it holds

‖𝐹‖−𝑠,𝐷 = sup
𝜙∈𝐻𝑠(𝐷)

⟨𝐹,𝜙⟩
‖𝜙‖𝑠,𝐷

·

Proof. Let 𝐹 ∈ (𝐻𝑠(𝐷))′. We let 𝐹 (resp. 𝜙) denote, by abuse of notation, both the scalar 𝐹 = ⟨𝐹, 1⟩ (resp.
𝜙 =

ffl
𝐷
𝜙) and the 𝐿2(𝐷) function assuming identically the value 𝐹 (resp. 𝜙) on 𝐷. Observe that for all

𝜙 ∈ 𝐻𝑠(𝐷) we have the identity
⟨𝐹,𝜙⟩ = 𝐹𝜙+ ⟨𝐹 − 𝐹 ,𝜙− 𝜙⟩.

Then we have

sup
𝜙∈𝐻𝑠(𝐷)

⟨𝐹,𝜙⟩
‖𝜙‖𝑠,𝐷

≤ sup
𝜙∈𝐻𝑠(𝐷)

|𝐹 ||𝜙|+ |𝐹 − 𝐹 |−𝑠,𝐷|𝜙− 𝜙|𝑠,𝐷√︁
𝜎𝐷|𝜙|2 + |𝜙|2𝑠,𝐷

≤ sup
𝜙∈𝐻𝑠(𝐷)

√︁
𝜎−1

𝐷 |𝐹 |2 + |𝐹 |2−𝑠,𝐷

√︁
𝜎𝐷|𝜙|2 + |𝜙|2𝑠,𝐷√︁

𝜎𝐷|𝜙|2 + |𝜙|2𝑠,𝐷

=
√︁
𝜏𝐷|𝐹 |2 + |𝐹 |2−𝑠,𝐷.

On the other hand, setting 𝐹 0 = 𝐹 − |𝐷|−1𝐹 we observe that, by the definition of | · |−𝑠,𝐷, for each 𝜀 > 0 there
exists 𝜙0

𝜀 ∈ 𝐻𝑠(𝐷), with
´

𝐷
𝜙0

𝜀 = 0 and with |𝜙0
𝜀|𝑠,𝐷 = |𝐹 0|−𝑠,𝐷, such that

⟨𝐹 0, 𝜙0
𝜀⟩ ≥ (1− 𝜀)|𝐹 0|2−𝑠,𝐷.

Letting 𝜙𝜀 = 𝜎−1
𝐷 𝐹 + 𝜙0

𝜀 we have

‖𝜙𝜀‖2𝑠,𝐷 = 𝜎−1
𝐷 |𝐹 |2 + |𝜙0

𝜀|2𝑠,𝐷 = 𝜏𝐷|𝐹 |2 + |𝐹 |2−𝑠,𝐷 = ‖𝐹‖2−𝑠,𝐷

and
⟨𝐹,𝜙𝜀⟩ = 𝜏𝐷|𝐹 |2 + ⟨𝐹 0, 𝜙𝜀⟩ ≥ (1− 𝜀)‖𝐹‖2−𝑠,𝐷 = (1− 𝜀)‖𝐹‖−𝑠,𝐷‖𝜙𝜀‖𝑠,𝐷.

The arbitrariness of 𝜀 yields the thesis. �

Let now 𝐾 ⊂ R2 denote a polygon of diameter ℎ𝐾 . More precisely, we make the following assumption, which
is quite standard in the framework of polygonal discretizations.

Assumption 2.1. Shape regularity: there exists a constant 𝜌⋆ > 0 such that 𝐾 is star shaped with respect to
all the points in a disc of diameter ≥ 𝜌⋆ℎ𝐾 .

For the precise definition of domain star shaped with respect to a disc see [30]. Observe that polygons for
which this assumption holds satisfy (see [19])

|𝜕𝐾| ≃ ℎ𝐾 , and |𝐾| ≃ ℎ2
𝐾 , (2.5)

the hidden constants depending on 𝐾 only through 𝜌⋆.



S788 S. BERTOLUZZA AND D. PRADA

Remark that we do not make any assumption on the length of the edges of 𝐾 (which is not assumed to be
larger than a constant times ℎ𝐾 , but is allowed to be arbitrarily small), or on their number (which, at least for
now, we allow to be arbitrarily large), so that our assumption is weaker than what is usually assumed when
dealing with the analysis of polytopal methods. Only later on (see Sect. 3) we will need to assume that the
number of edges of the elements 𝐾 of the tessellation is bounded by a constant 𝑁⋆.

Assumption 2.1 is sufficient to have some classical bounds with constants depending on 𝐾 only through 𝜌⋆

(see [11,19]). More precisely we have the following bounds.

Trace theorems

For functions 𝑢 ∈ 𝐻𝑠(𝐾), 1/2 < 𝑠 ≤ 1 we have

|𝑢|2𝑠−1/2,𝜕𝐾 . |𝑢|
2
𝑠,𝐾 , ‖𝑢‖20,𝜕𝐾 . ℎ

−1
𝐾 ‖𝑢‖20,𝐾 + ℎ2𝑠−1

𝐾 |𝑢|2𝑠,𝐾 , (2.6)

the constant in the inequality depending on 𝑠. This bound is proven in [11, 19] for 𝑠 = 1, but the argument
therein, based on the existence of a Lipschitz isomorphism Φ : 𝐵1 → 𝐾, 𝐵1 denoting the unit ball, with
‖Φ‖𝑊 1,∞(𝐵1) ≃ ℎ𝐾 , ‖Φ−1‖𝑊 1,∞(𝐾) ≃ ℎ−1

𝐾 , applies unchanged also for 𝑠 ∈ (1/2, 1), thanks to the boundedness,
for 𝑠 > 1/2, of the trace operator from 𝐻𝑠(𝐵1) to 𝐻𝑠−1/2(𝜕𝐵1). For 𝑢 ∈ 𝐻1+𝑠(𝐾), 1/2 < 𝑠 ≤ 1 this implies
that, letting 𝜈𝐾 denote the outer unit normal to 𝐾,⃦⃦⃦⃦

𝜕𝑢

𝜕𝜈𝐾

⃦⃦⃦⃦2

0,𝜕𝐾

. ℎ−1
𝐾 ‖∇𝑢‖20,𝐾 + ℎ2𝑠−1

𝐾 |∇𝑢|2𝑠,𝐾 = ℎ−1
𝐾 |𝑢|21,𝐾 + ℎ2𝑠−1

𝐾 |∇𝑢|2𝑠,𝐾 . (2.7)

On the other hand, for 𝑢 ∈ 𝐻1(𝐾) satisfying −∆𝑢 = 0 in 𝐾, we have that

|𝑢|1/2,𝜕𝐾 & |𝑢|1,𝐾 . (2.8)

Poincaré–Wirtinger inequality

For 𝑢 ∈ 𝐻1(𝐾) we have

‖𝑢−
 

𝐾

𝑢‖0,𝐾 . ℎ𝐾 |𝑢|1,𝐾 , ‖𝑢−
 

𝜕𝐾

𝑢‖0,𝐾 . ℎ𝐾 |𝑢|1,𝐾 . (2.9)

In view of Lemma 2.1, on 𝐻𝑠(𝐷) and (𝐻𝑠(𝐷))′ we consider the following couple of dual norms:

‖𝜙‖2𝑠,𝐷 = |
 

𝐷

𝜙|2 + |𝜙|2𝑠,𝐷, ‖𝐹‖2−𝑠,𝐷 = |⟨𝐹, 1⟩|2 + |𝐹 |2−𝑠,𝐷. (2.10)

With these definitions, a trace theorem holds with constants only depending on the shape regularity parameter𝜌⋆.

Theorem 2.2. It holds that
‖𝜙‖1/2,𝜕𝐾 ≃ inf

𝑢∈𝐻1(𝐾)
𝑢=𝜙 on 𝜕𝐾

‖𝑢‖1,𝐾 .

Proof. Letting 𝑢̄ =
ffl

𝐾
𝑢 and 𝑢̄𝜕𝐾 =

ffl
𝜕𝐾

𝑢 denote the average of 𝑢 ∈ 𝐻1(𝐾) respectively on 𝐾 and on 𝜕𝐾, we
can write, thanks to (2.6),

‖𝑢‖21/2,𝜕𝐾 = |𝑢̄𝜕𝐾 |2 + |𝑢|21/2,𝜕𝐾 . |𝑢̄
𝜕𝐾 |2 + |𝑢|21,𝐾 .

We now observe that, as 𝑢̄ coincides with the 𝐿2(𝐾) projection of 𝑢 on the constants, using the boundedness
of said 𝐿2 projection and (2.9) we can write

|𝑢̄𝜕𝐾 |2 . |𝑢̄|2 + |𝑢̄𝜕𝐾 − 𝑢̄|2 . |𝑢̄|2 + ℎ−2
𝐾 ‖𝑢− 𝑢̄𝜕𝐾‖20,𝐾 . |𝑢̄|2 + |𝑢|21,𝐾 , (2.11)
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which yields the first half of the thesis. As far as the second half of the thesis is concerned, letting 𝜙 ∈ 𝐻1/2(𝜕𝐾),
we let 𝑢 be the harmonic lifting of 𝜙. Letting 𝜙 =

ffl
𝜕𝐾

𝜙, and using (2.8) and (2.11), we have

‖𝑢‖21,𝐾 = |𝑢̄|2 + |𝑢|21,𝐾 . |𝜙|2 + |𝑢̄− 𝜙|2 + |𝑢|21,𝐾 . |𝜙|2 + |𝑢|21,𝐾 . ‖𝜙‖21/2,𝜕𝐾 ,

which gives us the second half of the thesis. �

Remark that for 𝐹 ∈ (𝐻1(𝐾))′ with ⟨𝐹, 1⟩ = 0, the seminorm | · |−1,𝐾 can indifferently be defined by taking
the supremum over all 𝜙 with zero average on 𝐾 or on 𝜕𝐾:

⟨𝐹, 1⟩ = 0 implies sup
𝜙∈𝐻1(𝐾)´
𝜕𝐾 𝜙=0

⟨𝐹,𝜙⟩
|𝜙|1,𝐾

= sup
𝜙∈𝐻1(𝐾)´
𝐾 𝜙=0

⟨𝐹,𝜙⟩
|𝜙|1,𝐾

·

Then, letting 𝛾𝐾 : 𝐻1(𝐾) → 𝐻1/2(𝜕𝐾) denote the trace operator, and letting 𝛾*𝐾 denote its adjoint, if for
𝜆 ∈ 𝐻−1/2(𝜕𝐾) we have ⟨𝜆, 1⟩ = 0, then it holds that

|𝛾*𝐾𝜆|−1,𝐾 = sup
𝜙∈𝐻1(𝐾)´
𝐾 𝜙=0

⟨𝛾*𝐾𝜆, 𝜙⟩
|𝜙|1,𝐾

= sup
𝜙∈𝐻1(𝐾)´
𝜕𝐾 𝜙=0

⟨𝜆, 𝛾𝐾𝜙⟩
|𝜙|1,𝐾

≃ |𝜆|−1/2,𝜕𝐾 , (2.12)

(where, ⟨𝜆, 1⟩ and ⟨𝜆, 𝛾𝐾𝜙⟩ stand for the duality pairing between 𝐻−1/2(𝜕𝐾) and 𝐻1/2(𝜕𝐾), while ⟨𝛾*𝐾𝜆, 𝜙⟩
stands for the duality pairing between 𝐻−1(𝐾) and 𝐻1(𝐾)).

2.2. The model problem and its discretization

Letting Ω denote a polygonal domain, in the following we consider the simplest model problem, namely

Problem 2.1. Given 𝑓 ∈ 𝐿2(Ω) and 𝑔 ∈ 𝐻1/2(𝜕Ω), find 𝑤 solution to

−∆𝑤 = 𝑓 in Ω, 𝑤 = 𝑔 on 𝜕Ω.

We assume that 𝑔 satisfies suitable regularity and compatibility conditions sufficient for the existence of an
𝐻2(Ω) function with trace equals to 𝑔 on 𝜕Ω (such assumptions are quite technical, and we refer to [7], Thm. 2.1
for more details).

We look for a solution to Problem 2.1 by a discontinuous Galerkin method on a polygonal tessellation. More
precisely, let 𝒯ℎ denote a tessellation of Ω into polygons satisfying the shape regularity Assumption 2.1. We
let ℰ𝐾 denote the set of edges of the element 𝐾 ∈ 𝒯ℎ, ℰℎ denote the set of all edges of the tessellation, and
Σ = ∪𝑒∈ℰℎ𝑒 denote the skeleton of the decomposition.

Letting ℎ𝐾 denote the diameter of the element 𝐾, to each edge 𝑒 ∈ ℰℎ we associate two different mesh size
parameters:

ℎ𝑒 = |𝑒|, and 𝐻𝑒 = max
𝐾:𝑒⊂𝜕𝐾

ℎ𝐾 , (2.13)

denoting, respectively, the length of 𝑒, and the diameter of the largest element having 𝑒 as an edge. Observe
that, by the definition of 𝐻𝑒

𝐻−1
𝑒 ≤ ℎ−1

𝐾 for all 𝑒 ∈ ℰ𝐾 , and 𝐻𝑒 ≤ ℎ𝐾+ + ℎ𝐾− for 𝑒 ⊂ 𝜕𝐾+ ∩ 𝜕𝐾−. (2.14)

We remark that neither do we assume that, for 𝑒 ∈ ℰ𝐾 , it holds that ℎ𝑒 & ℎ𝐾 , nor that, for 𝐾+ and 𝐾− sharing
an edge, it holds that ℎ𝐾+ ≃ ℎ𝐾− , so that our framework allows non uniform meshes with very small edges,
and adjacent elements are not constrained to have comparable diameters.

On Σ we choose a unit normal 𝜈, taking care that, on 𝜕Ω, 𝜈 points outwards. We define the jump [[𝑢]] of
𝑢 = (𝑢𝐾)𝐾 ∈

∏︀
𝐾 𝐻1(𝐾) by setting, for all interior edges 𝑒 common to two elements 𝐾+ and 𝐾−,

[[𝑢]] = 𝑢𝐾+
𝜈𝐾+ + 𝑢𝐾−𝜈𝐾− , (2.15)
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whereas, for 𝑒 ⊂ 𝜕𝐾 ∩ 𝜕Ω, we set
[[𝑢]] = 𝑢𝐾𝜈𝐾 = 𝑢𝐾𝜈. (2.16)

Observe that the definitions (2.15) and (2.16) can be summarized in the unified expression (valid for both
interior and boundary edges)

[[𝑢]]|𝑒 =
∑︁

𝐾:𝑒⊂𝜕𝐾

𝑢𝐾𝜈𝐾 . (2.17)

We underline that the cardinality of the set {𝐾 : 𝑒 ⊂ 𝜕𝐾} is always less than or equal to two, a property that,
later on, we will implicitly use at several instances.

We now let 𝒟𝐾 : 𝐻1(𝐾) → (𝐻1(𝐾))′ be defined as

⟨𝒟𝐾𝑢, 𝑣⟩ =
ˆ

𝐾

∇𝑢 · ∇𝑣,

and, by abuse of notation, we let 𝛾*𝐾 denote not only the adjoint of the trace operator 𝛾𝐾 : 𝐻1(𝐾) → 𝐻1/2(𝜕𝐾),
but also the functional 𝛾*𝐾 : 𝐿2(Σ) → (𝐻1(𝐾))′, defined as

⟨𝛾*𝐾𝜆, 𝑣⟩ =
ˆ

𝜕𝐾

𝜆(𝜈 · 𝜈𝐾)𝑣, for all 𝑣 ∈ 𝐻1(𝐾). (2.18)

Observe that, if, for some 𝑤 ∈ 𝐻2(Ω), 𝜃 ∈ 𝐿2(Σ) is the single valued trace on Σ of ∇𝑤 · 𝜈, then 𝛾*𝐾 defined
by (2.18) verifies ⟨𝛾*𝐾𝜃, 𝑣⟩ = ⟨𝜕𝑤/𝜕𝜈𝐾 , 𝛾𝐾𝑣⟩, justifying the abuse of notation. We have the following lemma.

Lemma 2.3. For all 𝜆 ∈ 𝐿2(Σ) we have

‖𝛾*𝐾𝜆‖−1,𝐾 . ℎ
1/2
𝐾 ‖𝜆‖0,𝜕𝐾 .

Proof. We have

|𝛾*𝐾𝜆|−1,𝐾 = sup
𝜙∈𝐻1(𝐾)´
𝐾 𝜙=0

´
𝜕𝐾

𝜆(𝜈 · 𝜈𝐾)𝜙
|𝜙|1,𝐾

≤ ‖𝜆(𝜈 · 𝜈𝐾)‖0,𝜕𝐾 sup
𝜙∈𝐻1(𝐾)´
𝐾 𝜙=0

‖𝜙‖0,𝜕𝐾

|𝜙|1,𝐾

. ‖𝜆‖0,𝜕𝐾 sup
𝜙∈𝐻1(𝐾)´
𝐾 𝜙=0

√︁
ℎ−1

𝐾 ‖𝜙‖20,𝐾 + ℎ𝐾 |𝜙|21,𝐾

|𝜙|1,𝐾
. ℎ1/2

𝐾 ‖𝜆‖0,𝜕𝐾 ,

where we used (2.6) and (2.9). Moreover, using a Cauchy–Schwarz inequality, thanks to (2.5) we can write

|⟨𝛾*𝐾𝜆, 1⟩| =
⃒⃒⃒⃒ˆ

𝜕𝐾

𝜆(𝜈 · 𝜈𝐾)
⃒⃒⃒⃒
≤ ‖𝜆‖0,𝜕𝐾‖1‖0,𝜕𝐾 . ℎ

1/2
𝐾 ‖𝜆‖0,𝜕𝐾 ,

which concludes the proof. �

We now set, for 𝑘 ≥ 1, and 𝑘′ ∈ {𝑘, 𝑘 − 1},

𝑉ℎ =
∏︁
𝐾

P𝑘(𝐾), Λℎ = {𝜆 ∈ 𝐿2(Σ) : 𝜆|𝑒 ∈ P𝑘′(𝑒) for all 𝑒 ∈ ℰℎ},

where, for any one- or two-dimensional domain 𝐷, P𝑛(𝐷) denotes the space of uni- or bi- variate polynomials
on 𝐷 of total degree less than or equal to 𝑛.

In order to define our discrete problem, we introduce, for all𝐾, a bilinear form 𝑠𝐾 : (𝐻1(𝐾))′×(𝐻1(𝐾))′ → R,
satisfying the following assumption.
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Assumption 2.2. For all 𝐹,𝐺 ∈ (𝐻1(𝐾))′ we have

𝑠𝐾(𝐹,𝐺) . |𝐹 |−1,𝐾 |𝐺|−1,𝐾 . (2.19)

Moreover, for all 𝜆 ∈ Λℎ

𝑠𝐾(𝛾*𝐾𝜆, 𝛾
*
𝐾𝜆) & |𝛾*𝐾𝜆|2−1,𝐾 . (2.20)

We then consider the following discrete problem, where 𝛼 > 0 and 𝑡 ∈ R are two parameters independent of
the tessellation (and, more specifically, independent of the ℎ𝐾 ’s and ℎ𝑒’s), and where

´
Ω
𝑓𝑣 naturally stands for∑︀

𝐾

´
𝐾
𝑓𝑣𝐾 .

Problem 2.2. Find 𝑢 = (𝑢𝐾)𝐾 ∈ 𝑉ℎ, 𝜆 ∈ Λℎ such that, for all 𝑣 = (𝑣𝐾)𝐾 ∈ 𝑉ℎ, 𝜇 ∈ Λℎ, it holds that

∑︁
𝐾

ˆ
𝐾

∇𝑢𝐾 · ∇𝑣𝐾 −
ˆ

Σ

𝜆[[𝑣]] · 𝜈 + 𝑡𝛼
∑︁
𝐾

𝑠𝐾(𝒟𝐾𝑢
𝐾 − 𝛾*𝐾𝜆,𝒟𝐾𝑣

𝐾) =
ˆ

Ω

𝑓𝑣 + 𝑡𝛼
∑︁
𝐾

𝑠𝐾(𝑓,𝒟𝐾𝑣
𝐾), (2.21)

ˆ
Σ

𝜇[[𝑢]] · 𝜈 − 𝛼
∑︁
𝐾

𝑠𝐾(𝒟𝐾𝑢
𝐾 − 𝛾*𝐾𝜆, 𝛾

*
𝐾𝜇) =

ˆ
𝜕Ω

𝑔𝜇− 𝛼
∑︁
𝐾

𝑠𝐾(𝑓, 𝛾*𝐾𝜇). (2.22)

We easily see that Problem 2.2 yields a consistent discretization of 2.1. Indeed, under our assumptions, the
solution 𝑤 to Problem 2.1 satisfies 𝑤 ∈ 𝐻3/2+𝑠(Ω) for all 𝑠, 0 ≤ 𝑠 < 𝑠0, 𝑠0 > 0 depending on the geometry
of Ω (see [33], Chap. 19). This implies ∇𝑤 ∈ 𝐻1/2+𝑠(Ω) which, in turn, implies the continuity of the normal
derivative across the skeleton. We can then set 𝜃 = 𝜕𝑤/𝜕𝜈, and, thanks to the trace inequality (2.7) we easily
see that 𝜃 ∈ 𝐿2(Σ). Multiplying the identity −∆𝑤 = 𝑓 by 𝑣 = (𝑣𝐾)𝐾 ∈

∏︀
𝐾 𝐻1(𝐾) and integrating by parts

elementwise we obtain
ˆ

Ω

𝑓𝑣 =
∑︁
𝐾

ˆ
𝐾

∇𝑤𝐾 · ∇𝑣𝐾 −
∑︁
𝐾

ˆ
𝜕𝐾

𝜕𝑤𝐾

𝜕𝜈𝐾
𝑣𝐾 =

∑︁
𝐾

ˆ
𝐾

∇𝑤𝐾 · ∇𝑣𝐾 −
∑︁
𝐾

ˆ
𝜕𝐾

𝜃(𝜈 · 𝜈𝐾)𝑣𝐾

=
∑︁
𝐾

ˆ
𝐾

∇𝑤𝐾 · ∇𝑣𝐾 −
ˆ

Σ

𝜃[[𝑣]] · 𝜈. (2.23)

Moreover we easily see that 𝒟𝐾𝑤
𝐾 − 𝛾*𝐾𝜃 = 𝑓 |𝐾 in (𝐻1(𝐾))′. It is then not difficult to check that replacing 𝑢

with (𝑤𝐾)𝐾 (𝑤𝐾 = 𝑤|𝐾) and 𝜆 with 𝜃 in (2.21) and (2.22) yields two identities.

Remark 2.4. The role of the parameter 𝑡 is to allow our formulation to encompass different stabilization
variants in the same unified framework. While the theory presented below allows to take any 𝑡 ∈ R, the relevant
values of 𝑡 are 𝑡 = 0 (for which the stabilization is, in a certain sense, minimal, as it only affects Eq. (2.22)),
𝑡 = 1 (for which the stabilization term is symmetric positive semidefinite) and 𝑡 = −1, for which we have some
cancellation that can contribute to improve the inf-sup constants on which the forthcoming analysis relies on.

Remark 2.5. For 𝛼 = 0, Problem 2.2 is the standard hybrid formulation at the basis of the primal hybrid
method [31], which, in [25], has already been combined with a stabilization term penalizing the residual on the
fluxes. The main difference between Problem 2.2 and the method proposed in such a paper lies in the design of
the stabilization term, which, in the present paper, is based on a scalar product for the space (𝐻1(𝐾))′, whose
numerical realization will be detailed later on. Observe that the idea of measuring the residual in an (𝐻1)′ norm
is not new in the context of discontinuous Galerkin method. In particular, it is one of the ingredients of the
ultra weak formulation considered in the discontinuous Petrov–Galerkin approach (see, for instance, [23]), with
which the present method has certainly a number of commonalities.
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2.3. Global norms and spaces

We now define the global norms which we will use in our analysis. On 𝐿2(Σ) we define the norm

‖𝜆‖2−1/2,* =
∑︁
𝐾

‖𝛾*𝐾𝜆‖2−1,𝐾 ,

and we let Λ denote the closure of 𝐿2(Σ) with respect to such a norm. Observe that this can be identified as a
closed subspace of

∏︀
𝐾(𝐻1(𝐾))′.

On 𝑉 =
∏︀

𝐾 𝐻1(𝐾) we consider the following norm

‖𝑢‖21,* =
∑︁
𝐾

|𝑢𝐾 |21,𝐾 +
∑︁
𝑒∈ℰℎ

ℎ𝑒

𝐻𝑒
|[[𝑢̄]]|2, (2.24)

where, for 𝑢 = (𝑢𝐾)𝐾 ∈
∏︀

𝐾 𝐻1(𝐾), we, once again, let 𝑢̄ = (𝑢̄𝐾)𝐾 denote the piecewise constant function
defined on each 𝐾 as the average 𝑢̄𝐾 =

ffl
𝐾
𝑢𝐾 of 𝑢𝐾 . The following lemma states that ‖ · ‖1,* is indeed a norm

on
∏︀

𝐾 𝐻1(𝐾).

Lemma 2.6. For all 𝑢 ∈
∏︀

𝐾 𝐻1(𝐾), letting 𝑢̄ = (𝑢̄𝐾)𝐾 denote the piecewise constant function assuming in
𝐾 the value 𝑢̄𝐾 =

ffl
𝐾
𝑢𝐾 , it holds that

‖𝑢‖20,Ω .
∑︁
𝐾

ℎ2
𝐾 |𝑢𝐾 |21,𝐾 +

∑︁
𝑒∈ℰℎ

ℎ𝑒

𝐻𝑒
|[[𝑢̄]]|2.

Proof. Using (2.9), as 𝑢̄ is the 𝐿2(Ω) projection of 𝑢 onto
∏︀

𝐾 P0(𝐾), we have

‖𝑢‖20,Ω = ‖𝑢− 𝑢̄‖20,Ω + ‖𝑢̄‖20,Ω .
∑︁
𝐾

ℎ2
𝐾 |𝑢𝐾 |21,𝐾 + ‖𝑢̄‖20,Ω. (2.25)

We then only need to bound the last term on the right hand side. Let 𝑧 be the solution of

−∆𝑧 = 𝑢̄, in Ω, 𝑧 = 0, on 𝜕Ω. (2.26)

Once again, we have that 𝑧 ∈ 𝐻3/2+𝑠(Ω) for all 𝑠 with 0 ≤ 𝑠 < 𝑠0, which implies the continuity of the normal
derivative across the skeleton. We can then define

𝜇̄𝑒 =
 

𝑒

𝜕𝑧

𝜕𝜈
·

Then, multiplying (2.26) by 𝑢̄ and integrating by parts element by element, we can write

‖𝑢̄‖20,Ω = −
∑︁
𝐾

ˆ
𝜕𝐾

𝜕𝑧

𝜕𝜈𝐾
𝑢̄𝐾 =

∑︁
𝑒∈ℰℎ

ˆ
𝑒

𝜇̄𝑒𝜈 · [[𝑢̄]] ≤
∑︁
𝑒∈ℰℎ

ℎ𝑒|𝜇̄𝑒||[[𝑢̄]]|

.

(︃∑︁
𝑒∈ℰℎ

ℎ𝑒𝐻𝑒|𝜇̄𝑒|2
)︃1/2(︃∑︁

𝑒∈ℰℎ

ℎ𝑒

𝐻𝑒
|[[𝑢̄]]|2

)︃1/2

.

It only remains to bound the first factor in the product on the right hand side. Thanks to (2.14), we have

∑︁
𝑒∈ℰℎ

ℎ𝑒𝐻𝑒|𝜇̄𝑒|2 =
∑︁
𝑒∈ℰℎ

𝐻𝑒

ˆ
𝑒

|𝜇̄𝑒|2 ≤
∑︁
𝑒∈ℰℎ

𝐻𝑒

ˆ
𝑒

⃒⃒⃒⃒
𝜕𝑧

𝜕𝜈

⃒⃒⃒⃒2
≤
∑︁
𝑒∈ℰℎ

(︃ ∑︁
𝐾:𝑒⊂𝜕𝐾

ℎ𝐾

)︃ ˆ
𝑒

⃒⃒⃒⃒
𝜕𝑧

𝜕𝜈

⃒⃒⃒⃒2

.
∑︁
𝑒∈ℰℎ

(︃ ∑︁
𝐾:𝑒⊂𝜕𝐾

ℎ𝐾

ˆ
𝑒

⃒⃒⃒⃒
𝜕𝑧

𝜕𝜈𝐾

⃒⃒⃒⃒2)︃
.
∑︁
𝐾

ℎ𝐾

ˆ
𝜕𝐾

⃒⃒⃒⃒
𝜕𝑧

𝜕𝜈𝐾

⃒⃒⃒⃒2
,
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where, for the last bound, we could switch the sum on 𝑒 ∈ ℰℎ with the sum on 𝐾, since the cardinality of the
set {𝐾 : 𝑒 ⊂ 𝜕𝐾} is at most two. Using (2.7) and the regularity theory for the solution of the Poisson problem
(2.26) on polygonal domains ([33], Chap. 19), we obtain (without loss of generality we can assume that, for all 𝐾,
ℎ𝐾 . 1) ∑︁

𝑒∈ℰℎ

ℎ𝑒𝐻𝑒|𝜇̄𝑒|2 .
∑︁
𝐾

|𝑧|21,𝐾 +
∑︁
𝐾

|∇𝑧|2𝑠+1/2,𝐾 . |𝑧|
2
1,Ω + |∇𝑧|2𝑠+1/2,Ω . ‖𝑢̄‖

2
0,Ω,

which yields

‖𝑢̄‖20,Ω . ‖𝑢̄‖0,Ω

(︃∑︁
𝑒∈ℰℎ

ℎ𝑒

𝐻𝑒
|[[𝑢̄]]|2

)︃1/2

.

Dividing both sides by ‖𝑢̄‖0,Ω and combining with (2.25) we get the thesis. �

Lemma 2.6 implies that for all 𝑢 ∈
∏︀

𝐾 𝐻1(𝐾), we have

‖𝑢‖20,Ω +
∑︁
𝐾

|𝑢|21,𝐾 . ‖𝑢‖21,*.

2.4. Stability and error estimate

In order to analyze Problem 2.2, let us rewrite it in compact form: find u = (𝑢, 𝜆) ∈ Vℎ = 𝑉ℎ×Λℎ, such that
for all v = (𝑣, 𝜇) ∈ Vℎ, it holds that

𝑎(u,v) = 𝐹 (v), (2.27)

with

𝑎(u,v) = 𝑎(𝑢, 𝜆; 𝑣, 𝜇) =
∑︁
𝐾

ˆ
𝐾

∇𝑢𝐾 · ∇𝑣𝐾 −
ˆ

Σ

𝜆[[𝑣]] · 𝜈 +
ˆ

Σ

𝜇[[𝑢]] · 𝜈

+ 𝛼
∑︁
𝐾

𝑠𝐾(𝒟𝐾𝑢
𝐾 − 𝛾*𝐾𝜆, 𝑡𝒟𝐾𝑣

𝐾 − 𝛾*𝐾𝜇), (2.28)

and
𝐹 (v) = 𝐹 (𝑣, 𝜇) =

∑︁
𝐾

ˆ
𝐾

𝑓𝑣𝐾 +
ˆ

𝜕Ω

𝑔𝜇+ 𝛼
∑︁
𝐾

𝑠𝐾(𝑓, 𝑡𝒟𝐾𝑣
𝐾 − 𝛾*𝐾𝜇). (2.29)

It is not difficult to check that 𝑎 satisfies the following continuity bound: for all 𝑢, 𝑣 ∈
∏︀

𝐾 𝐻1(𝐾), 𝜆, 𝜇 ∈ Λ,

𝑎(𝑢, 𝜆; 𝑣, 𝜇) .

(︃∑︁
𝐾

‖𝑢𝐾‖21,𝐾 +
∑︁
𝐾

‖𝛾*𝐾𝜆‖2−1,𝐾

)︃1/2(︃∑︁
𝐾

‖𝑣𝐾‖21,𝐾 +
∑︁
𝐾

‖𝛾*𝐾𝜇‖2−1,𝐾

)︃1/2

.

Moreover, letting
‖𝑢, 𝜆‖2V = ‖𝑢‖21,* + ‖𝜆‖2−1/2,*

denote the norm on V = 𝑉 × Λ, we have the following lemma.

Lemma 2.7. The bilinear form 𝑎 satisfies the following properties:

(1) Inf-sup condition: for all 𝑡 ∈ R there exists 𝛼0 > 0 depending on 𝑡 such that, for all 𝛼, 0 < 𝛼 < 𝛼0, it holds
that

inf
(𝑢,𝜆)∈Vℎ

sup
(𝑣,𝜇)∈Vℎ

𝑎(𝑢, 𝜆; 𝑣, 𝜇)
‖𝑢, 𝜆‖V‖𝑣, 𝜇‖V

≥ 𝑐𝛼,

the constant 𝑐𝛼 depending on 𝑡 and 𝛼 but independent of the mesh size parameters ℎ𝐾 and ℎ𝑒.
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(2) Conditional continuity: for all 𝑢, 𝑣 ∈
∏︀

𝐾 𝐻1(𝐾), 𝜆, 𝜇 ∈ 𝐿2(Σ), if, for all 𝐾,
´

𝐾
𝑢𝐾 = ⟨𝛾*𝐾𝜆, 1⟩ = 0, then

we have
𝑎(𝑢, 𝜆; 𝑣, 𝜇) . ‖𝑢, 𝜆‖V‖𝑣, 𝜇‖V.

The proof of Lemma 2.7 is quite long and technical, and we postpone it to Section 2.5.
Lemma 2.7(1) implies uniqueness of the solution to Problem 2.2. As such a problem is finite dimensional,

uniqueness, in turn, implies existence of the solution.
Let now 𝑤 be the solution of Problem 2.1, and let 𝜃 = 𝜕𝑤/𝜕𝜈 denote its derivative in the normal direction

𝜈 on Σ. We have the following lemma.

Lemma 2.8. Assume that 𝑢 ∈ 𝐻1(Ω) and 𝜃 ∈ 𝐿2(Σ). Then it holds that

‖𝑤 − 𝑢, 𝜃 − 𝜆‖2V .
∑︁
𝐾

inf
𝑣∈P𝑘(𝐾)

|𝑤 − 𝑣|21,𝐾 +
∑︁
𝑒∈ℰℎ

ℎ𝑒 inf
𝜇∈P𝑘′ (𝑒)

‖𝜃 − 𝜇‖20,𝑒. (2.30)

Moreover, if 𝑢 ∈ 𝐻2(Ω) then we have

‖𝑤 − 𝑢, 𝜃 − 𝜆‖2V .
∑︁
𝐾

inf
𝑣∈P𝑘(𝐾)

(︀
|𝑤 − 𝑣|21,𝐾 + ℎ𝐾 |𝑤 − 𝑣|22,𝐾

)︀
. (2.31)

If, in addition, we have that 𝑢 ∈ 𝐻𝑘+1(Ω), then it holds that

‖𝑤 − 𝑢, 𝜃 − 𝜆‖2V .
∑︁
𝐾

ℎ2𝑘
𝐾 |𝑤|2𝑘+1,𝐾 . (2.32)

Proof. Let (𝑤𝐼 , 𝜃𝐼) ∈ Vℎ be approximations to 𝑤 and 𝜃 satisfying
ˆ

𝐾

𝑤𝐾
𝐼 =

ˆ
𝐾

𝑤, for all 𝐾 ∈ 𝒯ℎ,

ˆ
𝑒

𝜃𝐼 =
ˆ

𝑒

𝜃 for all 𝑒 ∈ ℰℎ. (2.33)

Thanks to Lemma 2.7, for 𝑢 ∈ 𝑉ℎ, 𝜆 ∈ Λℎ solution to Problem 2.2, we can write

‖𝑢− 𝑤𝐼 , 𝜆− 𝜃𝐼‖V . 𝑎(𝑢− 𝑤𝐼 , 𝜆− 𝜃𝐼 ; 𝑧, 𝜁)

for some element (𝑧, 𝜁) ∈ Vℎ with ‖𝑧, 𝜁‖V = 1. As observed in Section 2.2, we have

𝑎(𝑤, 𝜃; 𝑧, 𝜁) = 𝑎(𝑢, 𝜆; 𝑧, 𝜁),

yielding, by Lemma 2.3(2),

‖𝑢− 𝑤𝐼 , 𝜆− 𝜃𝐼‖V . 𝑎(𝑤 − 𝑤𝐼 , 𝜃 − 𝜃𝐼 ; 𝑧, 𝜁) . ‖𝑤 − 𝑤𝐼 , 𝜃 − 𝜃𝐼‖V,

and, by triangular inequality,
‖𝑤 − 𝑢, 𝜃 − 𝜆‖V . ‖𝑤 − 𝑤𝐼 , 𝜃 − 𝜃𝐼‖V. (2.34)

It only remains to choose suitable approximants 𝑤𝐼 and 𝜃𝐼 for which we can provide a bound on the right-hand
side of expression (2.34). Let then, for each 𝐾, 𝑤𝐾

𝐼 ∈ P𝑘(𝐾) denote the solution to
ˆ

𝐾

(𝑤𝐾
𝐼 − 𝑤) = 0,

ˆ
𝐾

∇(𝑤𝐾
𝐼 − 𝑤) · ∇𝑧 = 0, for all 𝑧 ∈ P𝑘(𝐾).

On the other hand on each edge 𝑒 of Σ, let 𝜃𝐼 |𝑒 ∈ P𝑘′(𝑒) be defined as the 𝐿2(𝑒) projection of 𝜃. It is easy to
see that the 𝑤𝐾

𝐼 ’s and 𝜃𝐼 thus defined satisfy (2.33), so that (2.34) holds. We observe that, letting 𝑤̄ = (𝑤̄𝐾)𝐾

(resp. 𝑤̄𝐼 = (𝑤̄𝐾
𝐼 )𝐾) with 𝑤̄𝐾 =

ffl
𝐾
𝑤 (resp. 𝑤̄𝐾

𝐼 =
ffl

𝐾
𝑤𝐾

𝐼 ), thanks to (2.33) we have

‖𝑤 − 𝑤𝐼‖21,* =
∑︁
𝐾

|𝑤 − 𝑤𝐾
𝐼 |21,𝐾 +

∑︁
𝑒∈ℰℎ

ℎ𝑒

𝐻𝑒
|[[𝑤̄ − 𝑤̄𝐼 ]]|2 =

∑︁
𝐾

|𝑤 − 𝑤𝐾
𝐼 |21,𝐾 .
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Furthermore, thanks to (2.12) and (2.33), we have

‖𝜃 − 𝜃𝐼‖2−1/2,* =
∑︁
𝐾

|𝛾*𝐾(𝜃 − 𝜃𝐼)|2−1,𝐾 .
∑︁
𝐾

|(𝜃 − 𝜃𝐼)(𝜈 · 𝜈𝐾)|2−1/2,𝜕𝐾 .

Since 𝜈 · 𝜈𝐾 is constant on each edge, 𝜃𝐼(𝜈 · 𝜈𝐾)|𝑒 coincides with the 𝐿2(𝑒) projection of 𝜃(𝜈 · 𝜈𝐾)|𝑒 on P𝑘′(𝑒).
By a duality argument we can then bound (𝜓𝜋 ∈ P𝑘′(𝑒) denoting the 𝐿2(𝑒) projection of 𝜓)

|(𝜃 − 𝜃𝐼)(𝜈 · 𝜈𝐾)|−1/2,𝜕𝐾 = sup
𝜓∈𝐻1/2(𝜕𝐾)´

𝜕𝐾 𝜓=0

´
𝜕𝐾

(𝜃 − 𝜃𝐼)(𝜈 · 𝜈𝐾)𝜓
|𝜓|1/2,𝜕𝐾

= sup
𝜓∈𝐻1/2(𝜕𝐾)´

𝜕𝐾 𝜓=0

∑︀
𝑒∈ℰ𝐾

´
𝑒
(𝜃 − 𝜃𝐼)(𝜈 · 𝜈𝐾)(𝜓 − 𝜓𝜋)
|𝜓|1/2,𝜕𝐾

≤ sup
𝜓∈𝐻1/2(𝜕𝐾)´

𝜕𝐾 𝜓=0

∑︀
𝑒∈ℰ𝐾‖𝜃 − 𝜃𝐼‖0,𝑒‖𝜓 − 𝜓𝜋‖0,𝑒

|𝜓|1/2,𝜕𝐾

. sup
𝜓∈𝐻1/2(𝜕𝐾)´

𝜕𝐾 𝜓=0

∑︀
𝑒∈ℰ𝐾ℎ

1/2
𝑒 ‖𝜃 − 𝜃𝐼‖0,𝑒|𝜓|1/2,𝑒

|𝜓|1/2,𝜕𝐾
.
√︃∑︁

𝑒∈ℰ𝐾
ℎ𝑒‖𝜃 − 𝜃𝐼‖20,𝑒,

where we bounded ‖𝜓 − 𝜓𝜋‖0,𝑒 by a standard result on polynomial approximation, and used the fact that the
squared piecewise 𝐻1/2 seminorm

∑︀
𝑒∈ℰ𝐾 | · |21/2,𝑒 can be bound by the squared 𝐻1/2(𝜕𝐾) seminorm. Observing

that, in view of the definition of 𝜃𝐼 and 𝑤𝐼 , we have

‖𝜃 − 𝜃𝐼‖0,𝑒 = inf
𝜇∈P𝑘′ (𝑒)

‖𝜃 − 𝜇‖0,𝑒, and |𝑤 − 𝑤𝐾
𝐼 |1,𝐾 = inf

𝑣∈P𝑘(𝐾)
|𝑤 − 𝑣|1,𝐾 ,

we finally obtain (2.30) for 𝑤 ∈ 𝐻1(Ω) and 𝜃 ∈ 𝐿2(Σ).
Setting Λ𝐾

ℎ = {𝜇 ∈ 𝐿2(𝜕𝐾) : 𝜇|𝑒 ∈ P𝑘′(𝑒) for all 𝑒 ∈ ℰ𝐾}, we can further bound the second term on the
right hand side as follows:∑︁

𝑒∈ℰℎ

ℎ𝑒 inf
𝜇∈P𝑘′ (𝑒)

‖𝜃 − 𝜇‖20,𝑒 ≤
∑︁
𝐾

∑︁
𝑒∈ℰ𝐾

ℎ𝑒 inf
𝜇∈P𝑘′ (𝑒)

‖𝜃 − 𝜇‖20,𝑒 ≤
∑︁
𝐾

ℎ𝐾 inf
𝜇∈Λ𝐾ℎ

‖𝜃 − 𝜇‖20,𝜕𝐾 .

Then, since for both possible choices of 𝑘′ (namely 𝑘′ = 𝑘 and 𝑘′ = 𝑘 − 1) it holds that ∇P𝑘(𝐾) · 𝜈 ⊆ Λ𝐾
ℎ ,

we can take 𝜇 = 𝜕𝑣/𝜕𝜈𝐾 , which yields

‖𝑤 − 𝑢, 𝜃 − 𝜆‖2V .
∑︁
𝐾

(︃
inf

𝑣∈P𝑘(𝐾)
|𝑤 − 𝑣|21,𝐾 + ℎ𝐾 inf

𝜇∈Λ𝐾ℎ

‖𝜃 − 𝜇‖20,𝜕𝐾

)︃

.
∑︁
𝐾

inf
𝑣∈P𝑘(𝐾)

(︃
|𝑤 − 𝑣|21,𝐾 + ℎ𝐾

⃦⃦⃦⃦
𝜃 − 𝜕𝑣

𝜕𝜈

⃦⃦⃦⃦2

0,𝜕𝐾

)︃
,

and, using (2.7), if 𝑤 ∈ 𝐻2(Ω) we obtain (2.31). Assuming now that 𝑤 ∈ 𝐻𝑘+1(Ω), standard estimates on
polynomial approximation yield (2.32). �

Thanks to Lemma 2.6 we easily obtain a bound on the error in the standard broken 𝐻1 norm. More precisely,
we have the following corollary.

Corollary 2.9. Assume that 𝑢 ∈ 𝐻𝑘+1(Ω). Then we have

‖𝑤 − 𝑢‖20,Ω +
∑︁
𝐾

|𝑤 − 𝑢𝐾 |21,𝐾 .
∑︁
𝐾

ℎ2𝑘
𝐾 |𝑤|2𝑘+1,𝐾 .
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Remark 2.10. While (2.30) provides a sharper bound on the error, valid also when 𝑤 has minimal regularity, if
𝑤 is sufficiently smooth, (2.31) has the advantage of completely decoupling the different elements, thus allowing
to choose, independently in each element 𝐾, 𝜇 = ∇𝑣 · 𝜈, thus bypassing the difficulty posed by the presence of
possibly many small edges, and allowing for an error bound of the form (2.32) with hidden constant independent
of the number of edges of the element 𝐾.

Remark 2.11. The inf-sup constant 𝑐𝛼 tends to 0 linearly as 𝛼 tends both to 0 and to 𝛼0(𝑡). In turn, for 𝑡
going to ±∞, 𝛼0(𝑡) tends to 0 as |1 + 𝑡|−2. Remark, however, that while the theoretical estimates given by
Lemmas 2.7 and 2.8 hold for any 𝑡 ∈ R, as already observed, the relevant values of 𝑡 are 𝑡 ∈ {−1, 0, 1}, so that,
in practice, 𝛼0(𝑡) behaves as a constant whose size depends on Ω and on the shape regularity of the tessellation.
On the other hand, in carrying out the proof of Lemma 2.7, it can be checked (see also [16]), that 𝛼0(𝑡) depends
on the polynomial order 𝑘 of the method only through the possible dependence on 𝑘 of the implicit constants
in Assumption 2.2.

2.5. Proof of Lemma 2.7

Let (𝑢, 𝜆) ∈ Vℎ, and let

𝑣 = 𝑢− ̂︀𝑣 with ̂︀𝑣 = (̂︀𝑣𝐾)𝐾 , where ̂︀𝑣𝐾 = ⟨𝛾*𝐾𝜆, 1⟩,

and
𝜇 = 𝜆+ 𝛽̂︀𝜇 with, on 𝑒 ∈ ℰℎ, ̂︀𝜇 = 𝐻−1

𝑒 [[𝑢̄]] · 𝜈,

where 𝑢̄ denotes one more time the piecewise constant function assuming on each 𝐾 the value 𝑢̄𝐾 =
ffl

𝐾
𝑢𝐾 .

Remark that we have ̂︀𝑣 ∈∏︀𝐾 P0(𝐾) ⊂ 𝑉ℎ as well as ̂︀𝜇 ∈ {𝜇 ∈ 𝐿2(Σ) : 𝜇|𝑒 ∈ P0(𝑒) for all 𝑒 ∈ ℰℎ} ⊆ Λℎ.
We can bound the V norm of (̂︀𝑣, ̂︀𝜇) as follows. Using (2.14) and (2.5) we can write

‖̂︀𝑣‖21,* =
∑︁
𝑒∈ℰℎ

ℎ𝑒

𝐻𝑒
|[[̂︀𝑣]]|2 =

∑︁
𝑒∈ℰℎ

ℎ𝑒

𝐻𝑒

⃒⃒⃒⃒ ∑︁
𝐾:𝑒⊂𝜕𝐾

⟨𝛾*𝐾𝜆, 1⟩𝜈𝐾

⃒⃒⃒⃒2
.
∑︁
𝑒∈ℰℎ

ℎ𝑒

𝐻𝑒

∑︁
𝐾:𝑒⊂𝜕𝐾

|⟨𝛾*𝐾𝜆, 1⟩𝜈𝐾 |2

.
∑︁
𝐾

1
ℎ𝐾

(︃∑︁
𝑒∈ℰ𝐾

ℎ𝑒

)︃
|⟨𝛾*𝐾𝜆, 1⟩|

2 .
∑︁
𝐾

|⟨𝛾*𝐾𝜆, 1⟩|
2
. (2.35)

Moreover, using Lemma 2.3 and (2.14) we can write

‖𝛾*𝐾̂︀𝜇‖2−1,𝐾 . ℎ𝐾‖̂︀𝜇‖20,𝜕𝐾 = ℎ𝐾

∑︁
𝑒∈ℰ𝐾

ˆ
𝑒

𝐻−2
𝑒 |[[𝑢̄]]|2 .

∑︁
𝑒∈ℰ𝐾

ℎ𝑒

𝐻𝑒
|[[𝑢̄]]|2,

which, adding over 𝐾 and recalling that each edge is counted at most twice, yields∑︁
𝐾

‖𝛾*𝐾̂︀𝜇‖2−1,𝐾 .
∑︁
𝑒∈ℰℎ

ℎ𝑒

𝐻𝑒
|[[𝑢̄]]|2. (2.36)

Combining (2.35) and (2.36) we obtain

‖̂︀𝑣, ̂︀𝜇‖V . ‖𝑢, 𝜆‖V. (2.37)

Now we have

𝑎(𝑢, 𝜆; 𝑣, 𝜇) =
∑︁
𝐾

|𝑢𝐾 |21,𝐾 + 𝛽

ˆ
Σ

̂︀𝜇 [[𝑢]] · 𝜈 +
ˆ

Σ

𝜆 [[̂︀𝑣]] · 𝜈 + 𝛼
∑︁
𝐾

𝑠𝐾(𝒟𝐾𝑢
𝐾 − 𝛾*𝐾𝜆, 𝑡𝒟𝐾𝑢

𝐾 − 𝛾*𝐾(𝜆+ 𝛽̂︀𝜇))

=
∑︁
𝐾

|𝑢𝐾 |21,𝐾 + 𝛽 I + II + 𝛼 III.
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Let us bound from below the terms I through III. Thanks to the definition of ̂︀𝜇, as we easily see that for all
𝑣 ∈ V it holds that ([[𝑣]] · 𝜈)𝜈 = [[𝑣]], we have

I =
ˆ

Σ

̂︀𝜇 [[𝑢]] · 𝜈 =
∑︁
𝑒∈ℰℎ

𝐻−1
𝑒

ˆ
𝑒

[[𝑢]] · [[𝑢̄]].

By adding and subtracting [[𝑢̄]] and using a Young inequality we can write
ˆ

𝑒

[[𝑢]] · [[𝑢̄]] = ℎ𝑒|[[𝑢̄]]|2 + ℎ𝑒([[𝑢̄𝑒]]− [[𝑢̄]]) · [[𝑢̄]] ≥ ℎ𝑒|[[𝑢̄]]|2 − ℎ𝑒|[[𝑢̄𝑒]]− [[𝑢̄]]||[[𝑢̄]]|

≥ 1
2
ℎ𝑒|[[𝑢̄]]|2 − 1

2
ℎ𝑒|[[𝑢̄𝑒]]− [[𝑢̄]]|2,

where, conventionally, we denote by [[𝑢̄𝑒]] =
ffl

𝑒
[[𝑢]] the average on 𝑒 of [[𝑢]]. Using a Cauchy–Schwarz inequality

and (2.17) we can bound the last term as follows:

|[[𝑢̄𝑒]]− [[𝑢̄]]|2 =
⃒⃒⃒⃒
ℎ−1

𝑒

ˆ
𝑒

[[𝑢− 𝑢̄]]
⃒⃒⃒⃒2
≤ ℎ−1

𝑒

ˆ
𝑒

|[[𝑢− 𝑢̄]]|2 = ℎ−1
𝑒

ˆ
𝑒

⃒⃒⃒⃒
⃒ ∑︁
𝐾:𝑒⊂𝜕𝐾

(𝑢𝐾 − 𝑢̄𝐾)𝜈𝐾

⃒⃒⃒⃒
⃒
2

. ℎ−1
𝑒

∑︁
𝐾:𝑒⊂𝜕𝐾

ˆ
𝑒

|𝑢𝐾 − 𝑢̄𝐾 |2,

so that, using (2.14), and, once again, (2.17) we get∑︁
𝑒∈ℰℎ

ℎ𝑒

𝐻𝑒
|[[𝑢̄𝑒]]− [[𝑢̄]]|2 .

∑︁
𝑒∈ℰℎ

1
𝐻𝑒

∑︁
𝐾:𝑒⊂𝜕𝐾

ˆ
𝑒

|𝑢𝐾 − 𝑢̄𝐾 |2 .
∑︁
𝐾

ℎ−1
𝐾 ‖𝑢𝐾 − 𝑢̄𝐾‖20,𝜕𝐾 .

Now, using (2.6) and (2.9) we have that

‖𝑢𝐾 − 𝑢̄𝐾‖20,𝜕𝐾 . ℎ
−1
𝐾 ‖𝑢𝐾 − 𝑢̄𝐾‖20,𝐾 + ℎ𝐾 |𝑢𝐾 − 𝑢̄𝐾 |21,𝐾 . ℎ𝐾 |𝑢𝐾 |21,𝐾 ,

finally yielding, for some positive constant 𝑐′,

I ≥ 1
2

∑︁
𝑒∈ℰℎ

ℎ𝑒

𝐻𝑒
|[[𝑢̄]]|2 − 𝑐′

∑︁
𝐾

|𝑢𝐾 |21,𝐾 . (2.38)

We also observe that

II =
ˆ

Σ

𝜆 [[̂︀𝑣]] · 𝜈 =
∑︁
𝐾

ˆ
𝜕𝐾

𝜆(𝜈 · 𝜈𝑘)̂︀𝑣𝐾 =
∑︁
𝐾

|⟨𝛾*𝐾𝜆, 1⟩|2. (2.39)

Finally we can write

III =
∑︁
𝐾

𝑠𝐾(𝛾*𝐾𝜆, 𝛾
*
𝐾𝜆) + 𝑡

∑︁
𝐾

𝑠𝐾(𝒟𝐾𝑢
𝐾 ,𝒟𝐾𝑢

𝐾) + 𝛽
∑︁
𝐾

𝑠𝐾(𝛾*𝐾𝜆, 𝛾
*
𝐾̂︀𝜇)

− 𝛽
∑︁
𝐾

𝑠𝐾(𝒟𝐾𝑢
𝐾 , 𝛾*𝐾̂︀𝜇)− (1 + 𝑡)

∑︁
𝐾

𝑠𝐾(𝒟𝐾𝑢
𝐾 , 𝛾*𝐾𝜆) = IV + V + VI + VII + VIII.

We separately bound the five terms on the right hand side. By Assumption 2.2, we have

IV =
∑︁
𝐾

𝑠𝐾(𝛾*𝐾𝜆, 𝛾
*
𝐾𝜆) ≥ 𝑐1

∑︁
𝐾

|𝛾*𝐾𝜆|2−1,𝐾 .
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Remarking that

|𝒟𝐾𝑢|−1,𝐾 = sup
𝑣∈𝐻1(𝐾)´
𝐾 𝑣=0

´
𝐾
∇𝑢 · ∇𝑣
|𝑣|1,𝐾

≤ |𝑢|1,𝐾 , (2.40)

and letting 𝑡− > 0, 𝑡− = max{−𝑡, 0}, denote the negative part of 𝑡, thanks to (2.19) we can write

V = 𝑡
∑︁
𝐾

𝑠𝐾(𝒟𝐾𝑢
𝐾 ,𝒟𝐾𝑢

𝐾) ≥ −𝐶*𝑡−
∑︁
𝐾

|𝑢𝐾 |21,𝐾 .

Using Assumption 2.2, as well as (2.36), and applying a Cauchy–Schwarz and a Young inequality, we also
have, for some positive constant 𝑐,

|VI| ≤ 𝛽
∑︁
𝐾

|𝑠𝐾(𝛾*𝐾𝜆, 𝛾
*
𝐾̂︀𝜇)| ≤ 𝛽𝑐

∑︁
𝐾

|𝛾*𝐾𝜆|−1,𝐾 |𝛾*𝐾̂︀𝜇|−1,𝐾

≤ 𝛽𝑐

(︃∑︁
𝐾

|𝛾*𝐾𝜆|2−1,𝐾

)︃1/2(︃∑︁
𝐾

|𝛾*𝐾̂︀𝜇|2−1,𝐾

)︃1/2

≤ 𝛽𝜀
∑︁
𝐾

|𝛾*𝐾𝜆|2−1,𝐾 + 𝛽𝑐3(𝜀)
∑︁
𝑒∈ℰℎ

ℎ𝑒

𝐻𝑒
|[[𝑢̄]]|2,

and, analogously,

|VII| ≤ 𝛽
∑︁
𝐾

|𝑠𝐾(𝒟𝐾𝑢
𝐾 , 𝛾*𝐾̂︀𝜇)| ≤ 𝑐𝛽

∑︁
𝐾

|𝑢𝐾 |1,𝐾 |𝛾*𝐾̂︀𝜇|−1,𝐾 ≤ 𝑐4𝛽

(︃∑︁
𝐾

|𝑢𝐾 |21,𝐾 +
∑︁
𝑒∈ℰℎ

ℎ𝑒

𝐻𝑒
|[[𝑢̄]]|2

)︃
,

whereas, thanks to (2.40), we have

|VIII| ≤ |1 + 𝑡|
∑︁
𝐾

|𝑠𝐾(𝒟𝐾𝑢
𝐾 , 𝛾*𝐾𝜆)| ≤ |1 + 𝑡|𝑐

∑︁
𝐾

|𝑢𝐾 |1,𝐾 |𝛾*𝐾𝜆|−1,𝐾 ≤ 𝜀
∑︁
𝐾

|𝛾*𝐾𝜆|2−1,𝐾 + 𝑐5(𝜀, 𝑡)
∑︁
𝐾

|𝑢𝐾 |21,𝐾 ,

finally yielding

III ≥ (𝑐1 − (𝛽 + 1)𝜀)
∑︁
𝐾

|𝛾*𝐾𝜆|2−1,𝐾 − (𝐶*𝑡− + 𝑐5(𝜀, 𝑡))
∑︁
𝐾

|𝑢𝐾 |21,𝐾 − 𝛽(𝑐3(𝜀) + 𝑐4)
∑︁
𝑒∈ℰℎ

ℎ𝑒

𝐻𝑒
|[[𝑢̄]]|2. (2.41)

The parameter 𝜀 is an arbitrary positive constant and 𝑐3(𝜀) and 𝑐5(𝜀, 𝑡) are positive constants depending,
respectively, on 𝜀, and on 𝜀 and 𝑡, and both behaving as 𝜀−1 as 𝜀 tends to 0. Combining the previous bounds,
we obtain

𝑎(𝑢, 𝜆; 𝑣, 𝜇) ≥
(︂

1− 𝑐′𝛽 − 𝛼(𝐶*𝑡− + 𝛽𝑐4 + 𝑐5(𝜀, 𝑡))
)︂∑︁

𝐾

|𝑢𝐾 |21,𝐾 +
∑︁
𝐾

|⟨𝛾*𝐾𝜆, 1⟩|2

+ 𝛽

(︂
1
2
− 𝛼(𝑐3(𝜀) + 𝑐4)

)︂∑︁
𝑒∈ℰℎ

ℎ𝑒

𝐻𝑒
|[[𝑢̄]]|2 + 𝛼

(︂
𝑐1 − (𝛽 + 1)𝜀

)︂∑︁
𝐾

|𝛾*𝐾𝜆|2−1,𝐾 .

We now set 𝛽 = 1/(2𝑐′), and we choose 𝜀 in such a way that (𝛽 + 1)𝜀 = 𝑐1/2. With this choice, it is not
difficult to see that, setting

𝛼0(𝑡) =
1
2

min
{︂(︀
𝑐3(𝜀) + 𝑐4

)︀−1
,
(︁ 𝑐4

2𝑐′
+ 𝑐5(𝜀, 𝑡) + 𝐶*𝑡−

)︁−1
}︂
,
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if 𝛼 < 𝛼0(𝑡), then
(𝑢, 𝜆; 𝑣, 𝜇) & ‖𝑢, 𝜆‖2V,

the implicit constant in the inequality depending on 𝛼 and 𝑡. Observe that neither 𝛽 nor 𝛼 depend on the mesh
size parameters ℎ𝐾 and ℎ𝑒. Using (2.37), we then get that

sup
(𝑣,𝜇)∈Vℎ

𝑎(𝑢, 𝜆; 𝑣, 𝜇)
‖𝑣, 𝜇‖V

≥ 𝑎(𝑢, 𝜆;𝑢− 𝜅̂︀𝑣, 𝜆+ 𝛽̂︀𝜇)
‖𝑢− 𝜅̂︀𝑣, 𝜆+ 𝛽̂︀𝜇‖V

&
‖𝑢, 𝜆‖2V
‖𝑢, 𝜆‖V

,

which concludes the proof of point (1).
Let us now consider the continuity bound (point (2)). We observe that if ⟨𝛾*𝐾𝜆, 1⟩ = 0 we have

ˆ
Σ

𝜆[[𝑣]] · 𝜈 =
∑︁
𝐾

⟨𝛾*𝐾𝜆, 𝑣𝐾⟩ =
∑︁
𝐾

⟨𝛾*𝐾𝜆, 𝑣𝐾 −
 

𝐾

𝑣𝐾⟩ ≤
∑︁
𝐾

|𝛾*𝐾𝜆|−1,𝐾 |𝑣𝐾 |1,𝐾 ,

while, if
ffl

𝐾
𝑢 = 0 we can write, for all 𝜇 ∈ 𝐿2(Σ)

ˆ
Σ

𝜇[[𝑢]] · 𝜈 =
∑︁
𝐾

⟨𝛾*𝐾𝜇, 𝑢𝐾⟩ ≤
∑︁
𝐾

|𝛾*𝐾𝜇|−1,𝐾 |𝑢𝐾 |1,𝐾 .
∑︁
𝐾

|𝛾*𝐾𝜇|−1,𝐾 |𝑢𝐾 |1,𝐾 .

Thanks to these inequalities, in view of Assumption 2.2, the continuity bound of point (2) is easily proven, by
a Cauchy–Schwarz inequality.

Remark 2.12. It is not difficult to realize that the inf-sup bound holds for all subspace Vℎ = 𝑉ℎ × Λℎ ⊆ V,
provided 𝑉ℎ ⊇

∏︀
𝐾 P0(𝐾) and Λℎ ⊇ {𝜇 ∈ 𝐿2(Σ) : 𝜇|𝑒 ∈ P0(𝐾) ∀𝑒 ∈ ℰℎ}.

3. Realizing a computable stabilizing term

In order for the proposed method to be practically feasible, we need to construct a computable bilinear
form 𝑠𝐾 satisfying (2.19) and (2.20). The numerical realization of scalar products for negative Sobolev spaces
has been the object of several papers [3, 14, 18]. In particular, following the approach of [13], we introduce an
auxiliary space 𝑌𝐾 ⊆ 𝐻1

ø (𝐾) = {𝑣 ∈ 𝐻1(𝐾),
ffl

𝐾
𝑣 = 0}, satisfying

inf
𝜆∈Λ𝐾ℎ

sup
𝑦∈𝑌𝐾

´
𝐾
𝜆𝑦

|𝛾*𝐾𝜆|−1,𝐾 |𝑦|1,𝐾
& 1, where Λ𝐾

ℎ = {𝜇 ∈ 𝐿2(𝜕𝐾) : 𝜇|𝑒 ∈ P𝑘′(𝑒), ∀𝑒 ∈ ℰ𝐾}. (3.1)

We let 𝜙𝑖, 𝑖 = 1, . . . , 𝑁 denote a basis for 𝑌𝐾 , and we let ̃︀𝑎𝐾 : 𝑌𝐾 × 𝑌𝐾 → R denote a continuous, symmetric
bilinear form satisfying, for all 𝑥, 𝑦 ∈ 𝑌𝐾 ,

̃︀𝑎𝐾(𝑥, 𝑦) . |𝑥|1,𝐾 |𝑦|1,𝐾 , and ̃︀𝑎𝐾(𝑥, 𝑥) & |𝑥|21,𝐾 . (3.2)

Letting ̃︀𝐴𝐾 denote the corresponding stiffness matrix

̃︀𝐴𝐾 = (̃︀𝑎𝐾
𝑖𝑗 ), with ̃︀𝑎𝐾

𝑖𝑗 = ̃︀𝑎𝐾(𝜙𝑗 , 𝜙𝑖),

which, thanks to the Poincaré inequality, is invertible, we can now introduce the bilinear form 𝑠𝐾 : (𝐻1(𝐾))′×
(𝐻1(𝐾))′ → R defined as follows:

𝑠𝐾(𝐹,𝐺) = 𝑓𝑇 ̃︀𝐴−1
𝐾 𝑔⃗, with 𝑓 = (⟨𝐹,𝜙𝑖⟩)𝑁

𝑖=1, 𝑔⃗ = (⟨𝐺,𝜙𝑖⟩)𝑁
𝑖=1. (3.3)

Observe that for 𝑢, 𝑣 ∈ 𝐻1(𝐾), 𝜆, 𝜇 ∈ 𝐿2(Σ) and 𝑓 ∈ 𝐿2(𝐾) we have

𝑠𝐾(𝒟𝐾𝑢− 𝛾*𝐾𝜆, 𝑡𝒟𝐾𝑣 − 𝛾*𝐾𝜇) = 𝜂⃗𝑇 ̃︀𝐴−1
𝐾 𝜁, 𝑠𝐾(𝑓, 𝑡𝒟𝐾𝑣 − 𝛾*𝐾𝜇) = 𝑓𝑇 ̃︀𝐴−1

𝐾 𝜁,
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with 𝜂⃗ = (𝜂𝑖)𝑁
𝑖=1, 𝜁 = (𝜁𝑖)𝑁

𝑖=1, 𝑓 = (𝑓𝑖)𝑁
𝑖=1 given by

𝜂𝑖 =
ˆ

𝐾

∇𝑢 · ∇𝜙𝑖 −
ˆ

𝜕𝐾

𝜆(𝜈 · 𝜈𝐾)𝜙𝑖, 𝜁𝑖 = 𝑡

ˆ
𝐾

∇𝑣 · ∇𝜙𝑖 −
ˆ

𝜕𝐾

𝜇(𝜈 · 𝜈𝐾)𝜙𝑖, 𝑓𝑖 =
ˆ

𝐾

𝑓𝜙𝑖. (3.4)

The bilinear form 𝑠𝐾 satisfies (2.19). Indeed, since 𝑠𝐾 is symmetric positive definite, we have a Cauchy–
Schwarz inequality:

𝑠𝐾(𝐹,𝐺) .
√︀
𝑠𝐾(𝐹, 𝐹 )

√︀
𝑠𝐾(𝐺,𝐺). (3.5)

Now, given 𝐹 ∈ (𝐻1
ø (𝐾))′, and letting 𝑥𝐹 =

∑︀𝑁
𝑖=1 𝑥

𝐹
𝑖 𝜙𝑖 ∈ 𝑌𝐾 be the solution to

̃︀𝑎𝐾(𝑥𝐹 , 𝑦) = ⟨𝐹, 𝑦⟩, for all 𝑦 ∈ 𝑌𝐾 ,

a standard argument yields,

|𝑥𝐹 |21,𝐾 . ̃︀𝑎𝐾(𝑥𝐹 , 𝑥𝐹 ) = ⟨𝐹, 𝑥𝐹 ⟩ . |𝐹 |−1,𝐾 |𝑥𝐹 |1,𝐾 .

Dividing both sides by |𝑥𝐹 |1,𝐾 we obtain that |𝑥𝐹 |1,𝐾 . |𝐹 |−1,𝐾 . We now observe that, letting 𝑥⃗𝐹 = (𝑥𝐹
𝑖 )𝑁

𝑖=1

denote the vector of coefficients of 𝑥𝐹 (which is easily seen to satisfy the identity 𝑥⃗𝐹 = ̃︀𝐴−1
𝐾 𝑓 , with 𝑓 given

by (3.3)) we have

𝑠𝐾(𝐹, 𝐹 ) = 𝑓𝑇 ̃︀𝐴−1
𝐾 𝑓 = 𝑓𝑇 𝑥⃗𝐹 =

𝑁∑︁
𝑖=0

⟨𝐹,𝜙𝑖⟩𝑥𝐹
𝑖 = ⟨𝐹, 𝑥𝐹 ⟩ . |𝐹 |−1,𝐾 |𝑥𝐹 |1,𝐾 . |𝐹 |2−1,𝐾 .

A similar bound holds for 𝐺, which, combined with (3.5) yields (2.19).
On the other hand, let 𝜆 ∈ Λℎ, and let now 𝑥𝜆 =

∑︀𝑁
𝑖=1 𝑥

𝜆
𝑖 𝜙𝑖 ∈ 𝑌𝐾 denote the solution to

̃︀𝑎𝐾(𝑥𝜆, 𝑦) = ⟨𝛾*𝐾𝜆, 𝑦⟩, for all 𝑦 ∈ 𝑌𝐾 .

Assuming that (3.1) holds, and using (3.2), we can write, for some element 𝑦𝜆 ∈ 𝑌𝐾 ,

|𝛾*𝐾𝜆|−1,𝐾 .
⟨𝛾*𝐾𝜆, 𝑦𝜆⟩
|𝑦𝜆|1,𝐾

=
̃︀𝑎(𝑥𝜆, 𝑦𝜆)
|𝑦𝜆|1,𝐾

.

√︁̃︀𝑎𝐾(𝑥𝜆, 𝑥𝜆)
√︁̃︀𝑎𝐾(𝑦𝜆, 𝑦𝜆)

|𝑦𝜆|1,𝐾
.
√︁̃︀𝑎𝐾(𝑥𝜆, 𝑥𝜆). (3.6)

It is now easy to check that, setting 𝑥⃗𝜆 = (𝑥𝜆
𝑖 )𝑁

𝑖=1 and 𝜆⃗ = (𝜆𝑖)𝑁
𝑖=1, with 𝜆𝑖 = ⟨𝛾*𝐾𝜆, 𝜙𝑖⟩, we have that 𝑥⃗𝜆 = ̃︀𝐴−1

𝐾 𝜆⃗
and ̃︀𝑎𝐾(𝑥𝜆, 𝑥𝜆) = ( ̃︀𝐴−1

𝐾 𝜆⃗)𝑇 ̃︀𝐴𝐾( ̃︀𝐴−1
𝐾 𝜆⃗) = 𝜆⃗𝑇 ̃︀𝐴−1

𝐾 𝜆⃗ = 𝑠𝐾(𝛾*𝐾𝜆, 𝛾
*
𝐾𝜆). (3.7)

Combining (3.6) and (3.7) we easily obtain (2.20) (actually, a stronger result holds, namely, under our assump-
tions on ̃︀𝑎, it is possible to prove (see [13]) that (3.1) is a necessary and sufficient condition for (2.20) to
hold).

We then only need to choose a (small) space 𝑌𝐾 satisfying (3.1) (remark that 𝑌𝐾 is not required to satisfy
any approximation property). We choose a suitable subspace of the local non conforming Virtual Element space
of order 𝑘′ + 1 (see [4]). More precisely we set

𝑌𝐾 =
{︂
𝑦 ∈ 𝐻1

ø (𝐾) :
𝜕𝑦

𝜕𝜈𝐾
|𝑒 ∈ P𝑘′(𝑒), −∆𝑦 ∈ P𝑘′−1(𝐾),

ˆ
𝐾

𝑦𝑝 = 0 ∀𝑝 ∈ P𝑘′−1(𝐾)
}︂
.

In order to be able to work with average free functions also for 𝑘′ = 0, we use the convention that P−1(𝐾) = P0(𝐾),
that is, we consider what, in the virtual element framework, is referred to as an enhanced space.

It is not difficult to check that 𝑌𝐾 satisfies condition (3.1). This is a consequence of the following lemma.
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Lemma 3.1. For all 𝑦 ∈ 𝑌𝐾 it holds

|𝑦|1,𝐾 .

⃒⃒⃒⃒
𝛾*𝐾

(︂
𝜕𝑦

𝜕𝜈𝐾

)︂⃒⃒⃒⃒
−1,𝐾

. |𝑦|1,𝐾 .

Proof. Let 𝑦 ∈ 𝑌𝐾 . Integrating by part and using the definition of 𝑌𝐾 we have

|𝑦|21,𝐾 =
ˆ

𝐾

|∇𝑦|2 = −
ˆ

𝐾

𝑦∆𝑦 +
ˆ

𝜕𝐾

𝜕𝑦

𝜕𝜈𝐾
𝑦 =

ˆ
𝜕𝐾

𝜕𝑦

𝜕𝜈𝐾
𝑦 . |𝛾*𝐾

(︂
𝜕𝑦

𝜕𝜈𝐾

)︂
|−1,𝐾 |𝑦|1,𝐾 .

Dividing both sides by |𝑦|1,𝐾 we get the first of the two bounds. On the other hand we have⃒⃒⃒⃒
𝛾*𝐾

(︂
𝜕𝑦

𝜕𝜈𝐾

)︂⃒⃒⃒⃒
−1,𝐾

= sup
𝜙∈𝐻1(𝐾)´
𝐾 𝜙=0

´
𝜕𝐾

𝜕𝑦
𝜕𝜈𝐾

𝜙

|𝜙|1,𝐾
= sup

𝜙∈𝐻1(𝐾)´
𝐾 𝜙=0

´
𝐾

∆𝑦𝜙+
´

𝐾
∇𝑦 · ∇𝜙

|𝜙|1,𝐾

. sup
𝜙∈𝐻1(𝐾)´
𝐾 𝜙=0

‖∆𝑦‖0,𝐾‖𝜙‖0,𝐾 + |𝑦|1,𝐾 |𝜙|1,𝐾

|𝜙|1,𝐾
. |𝑦|1,𝐾 ,

where we used a Poincaré–Wirtinger inequality (2.9), and an inverse inequality of the form ‖∆𝑦‖0,𝐾 . ℎ
−1
𝐾 |𝑦|1,𝐾

which holds for all functions such that ∆𝑦 ∈ P𝑘′−1(𝐾), provided Assumption 2.1 holds (see [11] for a proof).
�

In view of the previous lemma, the inf-sup condition (3.1) is then easily proven. Indeed, given 𝜆 ∈ Λ𝐾
ℎ , we

let 𝑦𝜆 ∈ 𝐻1
ø (𝐾) denote the (unique, as the problem is well posed as shown in [4]) function with

−∆𝑦𝜆 ∈ P𝑘′−1(𝐾),
𝜕𝑦𝜆

𝜕𝜈𝐾
= 𝜆 on 𝜕𝐾,

ˆ
𝐾

𝑦𝜆𝑝 = 0 for all 𝑝 ∈ P𝑘′−1(𝐾).

We have 𝑦𝜆 ∈ 𝑌𝐾 and

sup
𝑦∈𝑌 𝐾

´
𝜕𝐾

𝜆𝑦

|𝑦|1,𝐾
≥

´
𝜕𝐾

𝜆𝑦𝜆

|𝑦𝜆|1,𝐾
=

´
𝜕𝐾

𝜕𝑦𝜆

𝜕𝜈𝐾
𝑦𝜆

|𝑦𝜆|1,𝐾
=

´
𝐾
𝑦𝜆∆𝑦𝜆 +

´
𝐾
|∇𝑦𝜆|2

|𝑦𝜆|1,𝐾
= |𝑦𝜆|1,𝐾 & |𝛾*𝐾𝜆|−1,𝐾 ,

where we used the fact that, by the definition of 𝑌𝐾 , 𝑦𝜆 is 𝐿2(𝐾) orthogonal to ∆𝑦𝜆, as the latter is a polynomial
in P𝑘′−1(𝐾).

For 𝑘′ ≥ 1, a function 𝑦 ∈ 𝑌𝐾 is uniquely determined by the value of its moments up to order 𝑘′ on each
edge. In fact, the remaining degrees of freedom for the full non conforming VEM space of order 𝑘′ + 1 are
the interior moments up to order 𝑘′ − 1 (see again [4]), which we fixed to be zero in the definition of 𝑌𝐾 .
Moreover, using the same arguments as in Lemma 3.1 of [4] it is easy to see that, also for 𝑘′ = 0, a function
in 𝑌𝐾 is uniquely determined by the value of its zero order moments on each edge. In both cases, equivalently,
a function 𝑦 ∈ 𝑌𝐾 is uniquely determined by the value of the 𝐿2(𝜕𝐾) scalar products with the elements of a
basis {𝑒𝑖, 𝑖 = 1, . . . , (𝑘 + 1)𝑁𝐾} of the space Λ𝐾

ℎ (𝑁𝐾 denotes here the number of edges of 𝐾).
We let 𝜙𝑖 denote the unique function in 𝑌𝐾 for which, for all 𝑗 ∈ {1, . . . , (𝑘+ 1)𝑁𝐾},

´
𝜕𝐾

𝜙𝑖𝑒𝑗 = 𝛿𝑖𝑗 , so that
a function 𝑦 ∈ 𝑌𝐾 can be expressed as

𝑦 =
(𝑘+1)𝑁𝐾∑︁

𝑖=1

𝑐𝑖𝜙𝑖 with 𝑐𝑖 =
ˆ

𝜕𝐾

𝑦𝑒𝑖.

As customary in the Virtual Element framework, the basis functions 𝜙𝑖 are not explicitly known, but the
knowledge of the degrees of freedom 𝑐𝑖, 𝑖 = 1, . . . , (𝑘 + 1)𝑁𝐾 is sufficient to compute the vectors 𝜂⃗ and 𝜁. In
fact, for 𝑢 ∈ P𝑘(𝐾) and 𝜆 ∈ Λℎ we have

𝜂𝑖 =
ˆ

𝐾

∇𝑢 · ∇𝜙𝑖 −
ˆ

𝜕𝐾

𝜆(𝜈 · 𝜈𝐾)𝜙𝑖 = −
ˆ

𝐾

∆𝑢𝜙𝑖 +
ˆ

𝜕𝐾

(︂
𝜕𝑢

𝜕𝜈𝐾
− 𝜆(𝜈 · 𝜈𝐾)

)︂
𝜙𝑖 =

ˆ
𝜕𝐾

(︂
𝜕𝑢

𝜕𝜈𝐾
− 𝜆(𝜈 · 𝜈𝐾)

)︂
𝜙𝑖,
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where we once again used that 𝜙𝑖 is orthogonal to all polynomials in P𝑘′−1(𝐾) ⊇ P𝑘−2(𝐾), and hence to ∆𝑢.
As both 𝜆(𝜈 · 𝜈𝐾) and 𝜕𝑢/𝜕𝜈𝐾 belong to Λ𝐾

ℎ , it is possible to write them as a linear combination of the basis
functions 𝑒𝑖:

𝜆(𝜈 · 𝜈𝐾) =
∑︁

𝑖

𝑥𝑖𝑒𝑖,
𝜕𝑢

𝜕𝜈𝐾
=
∑︁

𝑖

𝑦𝑖𝑒𝑖.

Then

𝜂𝑖 =
ˆ

𝜕𝐾

(︂
𝜕𝑢

𝜕𝜈𝐾
− 𝜆(𝜈 · 𝜈𝐾)

)︂
𝜙𝑖 = 𝑦𝑖 − 𝑥𝑖.

Moreover, the fact that 𝜙𝑖 is orthogonal to polynomials in P𝑘′−1(𝐾) also allows us to approximate 𝑓𝑖 ≈ 0 (which
corresponds to approximating 𝑓 in 𝐾 with a polynomial in P𝑘′−1(𝐾)).

We choose ̃︀𝑎𝐾 as the non conforming Virtual Element approximation of the bilinear form
´

𝐾
∇𝑦 · ∇𝑥. More

precisely, letting Π∇𝐾 : 𝐻1(𝐾) → P𝑘′+1(𝐾) denote the projection operator defined by the conditions
ˆ

𝐾

∇(Π∇𝐾𝑦) · ∇𝑞 =
ˆ

𝐾

∇𝑦 · ∇𝑞, ∀𝑞 ∈ P𝑘′+1(𝐾), and
ˆ

𝐾

Π∇𝐾𝑦 = 0,

we set ̃︀𝑎𝐾(𝑥, 𝑦) =
ˆ

𝐾

∇Π∇𝐾𝑥 · ∇Π∇𝐾𝑦 + 𝜎𝐾(𝑥−Π∇𝐾𝑥, 𝑦 −Π∇𝐾𝑦), (3.8)

where, for all 𝑥 with Π∇𝐾𝑥 = 0, the bilinear form 𝜎𝐾 satisfies

𝜎𝐾(𝑥, 𝑥) ≃ |𝑥|21,𝐾 , 𝜎𝐾(𝑥, 𝑦) . |𝑥|1,𝐾 |𝑦|1,𝐾 . (3.9)

We recall (see [4]) that Π∇𝐾𝑦 is directly computable for all 𝑦 ∈ 𝑌 𝐾 as a function of the degrees of freedom 𝑐𝑖.
We are then left with the problem of choosing a computable bilinear form 𝜎𝐾 satisfying (3.9). A possible choice
for 𝜎𝐾 is the following

𝜎𝐾(𝑥, 𝑦) =
∑︁

𝑒∈ℰ𝐾
ℎ−1

𝑒

ˆ
𝑒

Π𝜕
𝐾(𝛾𝐾𝑥)Π𝜕

𝐾(𝛾𝐾𝑦), (3.10)

where Π𝜕
𝐾 : 𝐿2(𝜕𝐾) → Λ𝐾

ℎ denotes the 𝐿2(𝜕𝐾) orthogonal projection. For such a bilinear form, condition (3.9)
is proven in [29] for all 𝑦 with

𝜕𝑦

𝜕𝜈𝐾
∈ Λ𝐾

ℎ , −∆𝑦 = 0,

under a stronger shape regularity assumption, namely that ℎ𝑒 ≃ ℎ𝐾 for all 𝑒 ∈ ℰ𝐾 . In the more general case
that we consider here, condition (3.9) holds with constants only weakly depending on the ratio ℎ𝐾/ℎ𝑒, provided
that the tessellation satisfies the following additional shape regularity assumption.

Assumption 3.1. There exists a constant 𝑁⋆ such that all the elements of the tessellations 𝒯ℎ have at most
𝑁⋆ edges.

Under such an assumption, see [15], it can be proven that

𝜎𝐾(𝑥, 𝑥) & log
(︂

ℎ𝐾

min𝑒⊆𝜕𝐾 ℎ𝑒

)︂−1

|𝑥|21,𝐾 , 𝜎𝐾(𝑥, 𝑦) . |𝑥|1,𝐾 |𝑦|1,𝐾 .

Of course, Assumption 3.1 is always satisfied with 𝑁⋆ = max𝐾 𝑁𝐾 , however, for ̃︀𝑎 defined by (3.8), with 𝜎𝐾

given by (3.10), such a value will affect the constants in (3.2).
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Remark 3.2. A necessary condition for an inf-sup bound of the form (3.1) to hold is that dim𝑌𝐾 ≥ dim Λ𝐾
ℎ .

As in our case the dimension of 𝑌𝐾 verifies dim𝑌𝐾 = dim Λ𝐾
ℎ , such a space is of the minimal dimension needed

for such a condition to hold. Of course, other choices are possible for the space 𝑌𝐾 . A possibility is to choose a
space of supremizers (see [32]), which, in our case, would be

𝑌𝐾 =
{︂
𝑦 ∈ 𝐻1

ø (𝐾) :
𝜕𝑦

𝜕𝜈𝐾
|𝑒 ∈ P𝑘′(𝑒), −∆𝑦 = 0

}︂
.

This is also a subspace of the local non conforming VEM space of order 𝑘′ + 1, so that one can build the
corresponding bilinear form 𝑠𝐾 starting from the same bilinear form ̃︀𝑎𝐾 defined by (3.8). However, though
such a choice would also lead to a bilinear form 𝑠𝐾 satisfying (3.1), it would not be possible to compute the
contribution of the right hand side to the stabilization term, as, for such a choice, we do not have access to
the values of the moments of the basis functions 𝜙𝑖. Another possible choice, which however leads to a larger
auxiliary space 𝑌𝐾 , is to resort to a finite element space of order 𝑘 on a sufficiently fine sub-triangulation of the
polygon 𝐾, as it is done, though in a different spirit, in [8].

4. A hybridized version of the method

By introducing an independent approximation of the trace of 𝑤 on Σ, and by replacing the single valued
approximation 𝜆 of 𝜕𝑤/𝜕𝜈 with independent approximations ̂︀𝜆𝐾 of 𝜕𝑤/𝜕𝜈𝑘, we obtain an equivalent formulation
of our problem which is better suited for efficient implementation. More precisely, we set

̂︀Λℎ =
∏︁
𝐾

Λ𝐾
ℎ , with Λ𝐾

ℎ = {̂︀𝜆 ∈ 𝐿2(𝜕𝐾) : ̂︀𝜆|𝑒 ∈ P𝑘′(𝑒) for all 𝑒 ∈ ℰ𝐾},

as well as
Φℎ = {𝜙 ∈ 𝐿2(Σ) : 𝜙|𝑒 ∈ P𝑘′(𝑒) for all 𝑒 ∈ ℰℎ, 𝜙|𝜕Ω = 0}. (4.1)

We then consider the following discrete problem.

Problem 4.1. Find 𝑢 = (𝑢𝐾)𝐾 ∈ 𝑉ℎ, ̂︀𝜆 = (̂︀𝜆𝐾)𝐾 ∈ ̂︀Λℎ, 𝜙 ∈ Φℎ such that, for all 𝐾 ∈ 𝒯ℎ, for all 𝑣𝐾 ∈ P𝑘(𝐾),̂︀𝜇𝐾 ∈ Λ𝐾
ℎ , it holds that

ˆ
𝐾

∇𝑢𝐾 · ∇𝑣𝐾 −
ˆ

𝜕𝐾

̂︀𝜆𝐾𝑣𝐾 + 𝑡𝛼𝑠𝐾(𝒟𝐾𝑢
𝐾 − 𝛾*𝐾

̂︀𝜆𝐾 ,𝒟𝐾𝑣
𝐾) =

ˆ
𝐾

𝑓𝑣𝐾 + 𝑡𝛼𝑠𝐾(𝑓,𝒟𝐾𝑣
𝐾), (4.2)

ˆ
𝜕𝐾

𝑢𝐾̂︀𝜇𝐾 − 𝛼𝑠𝐾(𝒟𝐾𝑢
𝐾 − 𝛾*𝐾

̂︀𝜆𝐾 , 𝛾*𝐾̂︀𝜇𝐾)−
ˆ

𝜕𝐾

𝜙̂︀𝜇𝐾 =
ˆ

𝜕𝐾∩𝜕Ω

𝑔̂︀𝜇𝐾 − 𝛼𝑠𝐾(𝑓, 𝛾*𝐾̂︀𝜇𝐾), (4.3)

and for all 𝜓 ∈ Φℎ ∑︁
𝐾

ˆ
𝜕𝐾

̂︀𝜆𝐾𝜓 = 0. (4.4)

Observe that, for each 𝐾, (4.2) and (4.3) yield a local discrete problem with Dirichlet boundary conditions
imposed by Lagrange multipliers, and with a non standard stabilization term, while (4.4) imposes continuity of
the fluxes ̂︀𝜆 across Σ. The coupling between the different local problems stems from the common Dirichlet data 𝜙,
which is single valued on the interface, as well as from equation (4.4).

Problem 4.1 is well posed. Indeed, letting ̂︀Vℎ = 𝑉ℎ × ̂︀Λℎ, and setting

̂︀𝑎(𝑢, ̂︀𝜆; 𝑣, ̂︀𝜇) =
∑︁
𝐾

̂︀𝑎𝐾(𝑢𝐾 , ̂︀𝜆𝐾 ; 𝑣𝐾 , ̂︀𝜇𝐾), 𝑏(𝑣, ̂︀𝜇;𝜙) =
∑︁
𝐾

𝑏𝐾(𝑣𝐾 , ̂︀𝜇𝐾 ;𝜙), ̂︀𝐹 (𝑣, ̂︀𝜇) =
∑︁
𝐾

̂︀𝐹𝐾(𝑣𝐾 , ̂︀𝜇𝐾),
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where the local bilinear forms ̂︀𝑎𝐾 and 𝑏𝐾 , and the linear operator ̂︀𝐹𝐾 are respectively defined as

̂︀𝑎𝐾(𝑢𝐾 , ̂︀𝜆𝐾 ; 𝑣𝐾 , ̂︀𝜇𝐾) =
ˆ

𝐾

∇𝑢𝐾 · ∇𝑣𝐾 −
ˆ

𝜕𝐾

̂︀𝜆𝐾𝑣𝐾

+
ˆ

𝜕𝐾

𝑢𝐾̂︀𝜇𝐾 + 𝛼𝑠𝐾(𝒟𝐾𝑢
𝐾 − 𝛾*𝐾

̂︀𝜆𝐾 , 𝑡𝒟𝐾𝑣
𝐾 − 𝛾*𝐾̂︀𝜇𝐾), (4.5)

and

𝑏𝐾(𝑣𝐾 , ̂︀𝜇𝐾 ;𝜙) =
ˆ

𝜕𝐾

̂︀𝜇𝐾𝜙, ̂︀𝐹𝐾(𝑣𝐾 , ̂︀𝜇𝐾) =
ˆ

𝐾

𝑓𝑣𝐾 +
ˆ

𝜕𝐾∩𝜕Ω

𝑔̂︀𝜇𝐾 + 𝛼𝑠𝐾(𝑓, 𝑡𝒟𝐾𝑣
𝐾 − 𝛾*𝐾̂︀𝜇𝐾), (4.6)

Problem 4.1 rewrites as: find (𝑢, ̂︀𝜆) ∈ ̂︀Vℎ, 𝜙 ∈ Φℎ such that for all (𝑣, ̂︀𝜇) ∈ ̂︀Vℎ, 𝜓 ∈ Φℎ it holds that

𝑎(𝑢, ̂︀𝜆; 𝑣, ̂︀𝜇)− 𝑏(𝑣, ̂︀𝜇;𝜙) = ̂︀𝐹 (𝑣, ̂︀𝜇), 𝑏(𝑢, ̂︀𝜆;𝜓) = 0. (4.7)

The bilinear forms ̂︀𝑎𝐾 and 𝑏𝐾 are easily seen to satisfy, for all 𝑢𝐾 , 𝑣𝐾 ∈ 𝐻1(𝐾), ̂︀𝜇𝐾 , ̂︀𝜆𝐾 ∈ 𝐿2(𝜕𝐾), 𝜙 ∈ 𝐿2(Σ),
the continuity bounds

̂︀𝑎𝐾

(︁
𝑢𝐾 , ̂︀𝜆𝐾 ; 𝑣𝐾 , ̂︀𝜇𝐾

)︁
.
(︁
‖𝑢𝐾‖1,𝐾 + ‖𝛾*𝐾̂︀𝜆𝐾‖−1,𝐾

)︁ (︀
‖𝑣𝐾‖1,𝐾 + ‖𝛾*𝐾̂︀𝜇𝐾‖−1,𝐾

)︀
, (4.8)

and
𝑏𝐾(𝑣𝐾 , ̂︀𝜇𝐾 ;𝜙) . ‖̂︀𝜇𝐾‖0,𝜕𝐾‖𝜙‖0,𝜕𝐾 . (4.9)

Setting ker 𝑏 = {(𝑣, ̂︀𝜇) ∈ ̂︀Vℎ : 𝑏(𝑣, ̂︀𝜇;𝜓) = 0 ∀𝜓 ∈ Φℎ}, we now observe that, with our choice of the space Φℎ,
we have that (𝑣, ̂︀𝜇) ∈ ker 𝑏 if and only if for some 𝜇 ∈ Λℎ (Λℎ as defined in Sect. 2.2) it holds that

̂︀𝜇𝐾 = 𝜇(𝜈 · 𝜈𝐾). (4.10)

Observe that, for (𝑢, ̂︀𝜆), (𝑣, ̂︀𝜇) ∈ ker 𝑏, letting 𝜆 and 𝜇 denote the corresponding elements of Λℎ given by (4.10),
it holds that ̂︀𝑎(𝑢, ̂︀𝜆; 𝑣, ̂︀𝜇) = 𝑎(𝑢, 𝜆; 𝑣, 𝜇), ̂︀𝐹 (𝑣, ̂︀𝜇) = 𝐹 (𝑣, 𝜇). (4.11)

Then, Lemma 2.7 states an inf-sup condition for ̂︀𝑎 on ker 𝑏. Moreover it is not difficult to prove that

inf
𝜙∈Φℎ

sup
(𝑣,̂︀𝜇)∈̂︀Vℎ

𝑏(𝑣, ̂︀𝜇;𝜙)
‖𝜙‖0,Σ‖𝑣, ̂︀𝜇‖V

> 0. (4.12)

As we are dealing with finite dimensional spaces, for which all norms are equivalent, this is an immediate
consequence of the local inf-sup condition

inf
𝜙∈P𝑘′ (𝑒)

sup
̂︀𝜆∈P𝑘′ (𝑒)

´
𝑒
𝜙̂︀𝜆

‖𝜙‖0,𝑒‖̂︀𝜆‖0,𝑒

& 1.

As ̂︀𝑉ℎ and Φℎ are finite dimensional spaces, the inf-sup condition for ̂︀𝑎 on ker 𝑏, and the inf-sup condition (4.12),
together with (4.8) and (4.9) (as we are in finite dimension these imply continuity with respect to the V and 𝐿2(Σ)
norms, though with constants depending on the tessellation), are sufficient to have existence and uniqueness of
the solution to Problem 4.1 (see [17], Thm. 3.2.1).

It is easy to realize that Problem 2.2 and Problem 4.1 are equivalent, and that the solution of the former can
be retrieved by actually computing a solution of the latter. Indeed, if 𝑢, ̂︀𝜆, 𝜙 is a solution to Problem 4.1, then
(𝑢, ̂︀𝜆) ∈ ker 𝑏 and, for the corresponding 𝜆 given by the relation (4.10), thanks to (4.11) it is easy to check that
(𝑢, 𝜆) is a solution to Problem 2.2.
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It is interesting to give an interpretation of the local stabilization term as the result of a suitable definition
of the numerical trace. In the ideal case where 𝑠𝐾 is the scalar product for the space (𝐻1

ø (𝐾))′ (we recall
that 𝐻1

ø (𝐾) = {𝑢 ∈ 𝐻1(𝐾) :
ffl

𝜕𝐾
𝑢 = 0}), endowed with the norm | · |1,𝐾 , it is easy to check that letting

ℛ𝐾 : (𝐻1
ø (𝐾))′ → 𝐻1

ø (𝐾) denote the Riesz’s isomorphism, which, we recall, is defined in such a way that

𝑠𝐾(𝐹,𝐺) =
ˆ

𝐾

∇ℛ𝐾𝐹 · ∇ℛ𝐾𝐺 = ⟨𝐹,ℛ𝐾𝐺⟩ = ⟨𝐺,ℛ𝐾𝐹 ⟩,

we have ℛ𝐾 = 𝒟−1
𝐾 . Considering, for simplicity, the case 𝑡 = 0, we then have

𝑠𝐾(𝒟𝐾𝑢
𝐾 − 𝛾*𝐾

̂︀𝜆𝐾 , 𝛾*𝐾̂︀𝜇𝐾) = ⟨𝛾*𝐾̂︀𝜇𝐾 ,ℛ𝐾(𝒟𝐾𝑢
𝐾 − 𝛾*𝐾

̂︀𝜆𝐾)⟩

= ⟨𝛾*𝐾̂︀𝜇𝐾 , 𝑢𝐾 −ℛ𝐾𝛾
*
𝐾
̂︀𝜆𝐾⟩ =

ˆ
𝜕𝐾

(𝑢𝐾 −ℛ𝐾𝛾
*
𝐾
̂︀𝜆𝐾)̂︀𝜇𝐾 .

The stabilized discrete local problem ((4.2) and (4.3)) would then rewrite as
ˆ

𝐾

∇𝑢𝐾 · ∇𝑣𝐾 −
ˆ

𝜕𝐾

̂︀𝜆𝐾𝑣𝐾 =
ˆ

𝐾

𝑓𝑣𝐾 ,

ˆ
𝜕𝐾

̂︀𝑢𝐾̂︀𝜇𝐾 =
ˆ

𝜕𝐾

̂︀𝜙𝐾̂︀𝜇𝐾

with ̂︀𝑢𝐾 = (1− 𝛼)𝑢𝐾 + 𝛼𝛾𝐾ℛ𝐾(𝛾*𝐾̂︀𝜆𝐾), and ̂︀𝜙𝐾 = 𝜙𝐾 − 𝛼𝛾𝐾ℛ𝐾(𝑓).

It is not difficult to check that, if, instead, we define 𝑠𝐾 as in (3.3), and we set ̃︀𝐴𝐾 = (̃︀𝑎𝐾
𝑖𝑗 ), with̃︀𝑎𝐾

𝑖𝑗 =
´

𝐾
∇𝜙𝑖·∇𝜙𝑗 ,

then the vector 𝑥⃗ = (𝑥𝑖)𝑁
𝑖=1 = ̃︀𝐴−1

𝐾 𝜂⃗ would be the vector of coefficient of the function 𝑥 =
∑︀𝑁

𝑖=1 𝑥𝑖𝜙𝑖 ∈ 𝑌𝐾

verifying for all 𝑦 ∈ 𝑌𝐾 ˆ
𝐾

∇𝑥 · ∇𝑦 =
ˆ

𝐾

∇𝑢𝐾 · ∇𝑦 −
ˆ

𝜕𝐾

̂︀𝜆𝐾𝑦.

Considering again the case 𝑡 = 0 and letting ̂︀Π𝐾 : 𝐻1
ø (𝐾) → 𝑌𝐾 denote the Galerkin projection onto 𝑌𝐾 , we

would then be able to rewrite the stabilized problem as
ˆ

𝐾

∇𝑢𝐾 · ∇𝑣𝐾 −
ˆ

𝜕𝐾

̂︀𝜆𝐾𝑣𝐾 =
ˆ

𝐾

𝑓𝑣𝐾 , (4.13)
ˆ

𝜕𝐾

̂︀𝑢𝐾̂︀𝜇𝐾 =
ˆ

𝜕𝐾

̂︀𝜙𝐾̂︀𝜇𝐾 , (4.14)

this time with ̂︀𝑢𝐾 = 𝑢𝐾 − 𝛼̂︀Π𝐾ℛ𝐾(𝒟𝐾𝑢
𝐾 − 𝛾*𝐾

̂︀𝜆𝐾), and ̂︀𝜙𝐾 = 𝜙− 𝛼̂︀Π𝐾ℛ𝐾𝑓.

Replacing the stiffness matrix ̃︀𝐴𝐾 with an approximation (as it is done in the Virtual Element Method, when
computing ̃︀𝐴𝐾 as the stiffness matrix relative to the operator ̃︀𝑎𝐾 defined by (3.8)), results in replacing the
Galerkin projection operator ̂︀Π𝐾 with a spectrally equivalent operator ̃︀Π𝐾 and setting, in (4.14),

̂︀𝑢𝐾 = 𝑢𝐾 − 𝛼̃︀Π𝐾ℛ𝐾(𝒟𝐾𝑢
𝐾 − 𝛾*𝐾

̂︀𝜆𝐾), and ̂︀𝜙𝐾 = 𝜙− 𝛼̃︀Π𝐾ℛ𝐾𝑓. (4.15)

More precisely, if ̃︀𝑎𝐾 is defined by equation (3.8), it is not difficult to see that, letting ̃︀Π𝐾 : 𝐻1
ø (𝐾) → 𝑌𝐾 be

defined by

̃︀𝑎𝐾(̃︀Π𝐾𝑣, 𝑦) =
ˆ

𝐾

∇Π∇𝐾(̃︀Π𝐾𝑣) · ∇Π∇𝐾𝑦 + 𝜎𝐾(̃︀Π𝐾𝑣 −Π∇𝐾(̃︀Π𝐾𝑣), 𝑦 −Π∇𝐾𝑦) =
ˆ

𝐾

∇𝑣 · ∇𝑦,
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Figure 1. (From left to right) meshes made of deformed hexagons, random Voronoi cells, and
random polygons.

then the local stabilized problem can be rewritten in the form (4.13) to (4.14) with ̂︀𝑢𝐾 and ̂︀𝜙𝐾 given by (4.15).
Observe that, unlike what would happen if we used a mesh dependent stabilization, such as the one proposed

in [25] – that could be interpreted as resulting from defining the numerical trace as a linear combination of the
actual trace plus some weighted residual on the fluxes (see [20]) – the stabilization proposed here results in a
numerical trace ̂︀𝑢𝐾

ℎ which is indeed the trace of an 𝐻1(𝐾) function.

5. Numerical results

We take the domain Ω to be the unit square [0, 1] × [0, 1]. We solve Problem 2.1 with Dirichlet boundary
data 𝑔, and load term 𝑓 chosen in such a way that

𝑢 =
1

128𝜋2
cos(8𝜋𝑥) cos(8𝜋𝑦)

is the exact solution. The stabilization parameters are chosen to be 𝛼 = 𝑡 = 1. We test our method on three
sequences of meshes with increasingly degrading shape regularity: deformed hexagonal meshes (test case 1,
Fig. 1a), random Voronoi meshes (test case 2, Fig. 1b), and meshes made of random polygons (test case 3,
Fig. 1c) generated as follows: (i) throw random points inside Ω; (ii) partition them into a given number of
clusters; (iii) join the points of each cluster with the shortest closed tour, i.e. solve the Traveling Salesman
Problem; (iv) mesh the complement of the polygons obtained at step (iii) with triangles and agglomerate them.
Geometrical data for these meshes are shown in Tables 1–3, respectively. For each mesh, we provide: 𝑁el, the
number of elements of 𝒯ℎ; 𝑁ed, the number of edges of 𝒯ℎ; ℎmax = max𝐾∈Ωℎ ℎ𝐾 , the maximum element diameter;
ℎmin = min𝐾∈𝒯ℎ ℎmin,𝐾 , where ℎmin,𝐾 is the minimum distance between any two vertices of 𝐾; ℎav = 𝑁

−1/2
el ,

an estimate of the average mesh-size; 𝛾0 = max𝐾∈𝒯ℎ
ℎ𝐾
𝜌𝐾

, where 𝜌𝐾 is the radius of the largest circle that is
contained inside 𝐾; 𝛾1 = max𝐾∈𝒯ℎ

ℎ𝐾
ℎmin,𝐾

; 𝑁⋆ = max𝐾 𝑁𝐾 , the maximum of the number of edges in each
element.

In order to compute 𝑢 and 𝜆 we solve the equivalent hybridized Problem 4.1. Since, for each 𝐾,
(2.21) and (2.22) yield a local discrete Dirichlet problem, we can resort to a static condensation procedure,
allowing to reduce the size of the resulting algebraic equation by expressing 𝑢𝐾 , ̂︀𝜆𝐾 as a function of the sole
variable 𝜙|𝜕𝐾 . At this point, we can use (4.4), which imposes continuity of the fluxes 𝜆, to glue all the local prob-
lems together and obtain a global system of equations where only 𝜙 appears as unknown. In the present tests
the global system is solved with the direct solver STRUMPACK [26]. Reconstruction of 𝑢, ̂︀𝜆 is done by solving
local problems in parallel. Remark that other approaches yielding efficient implementation can be consideres
(see, for instance [2]).
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Table 1. Meshes of deformed hexagons.

Mesh 𝑁el 𝑁ed ℎmax ℎmin ℎav 𝛾0 𝛾1 𝑁⋆

d-hexa1 822 2467 7.113742e-02 8.794092e-03 2.01e-02 1.209727e+01 5.052029 6
d-hexa2 1415 4246 5.424294e-02 6.819149e-03 1.53e-02 1.225613e+01 4.934710 6
d-hexa3 2270 6811 4.233760e-02 5.124184e-03 1.21e-02 1.240315e+01 5.163088 6
d-hexa4 3203 9610 3.566680e-02 4.397059e-03 1.02e-02 1.223047e+01 5.052014 6
d-hexa5 4296 12 889 3.082316e-02 3.827593e-03 8.81e-03 1.230091e+01 5.002315 6
d-hexa6 5711 17 134 2.659539e-02 3.232217e-03 7.64e-03 1.247704e+01 5.130111 6

Table 2. Meshes of random Voronoi cells.

Mesh 𝑁el 𝑁ed ℎmax ℎmin ℎav 𝛾0 𝛾1 𝑁⋆

voro1 2500 7505 6.384666e-02 6.192528e-06 1.15e-02 1.422215e+01 5.852731e+03 11
voro2 5000 15 007 4.344562e-02 5.845179e-07 8.17e-03 1.456663e+01 3.404522e+04 14
voro3 10 000 30 006 3.470002e-02 1.732139e-07 5.77e-03 2.525383e+01 9.493668e+04 12
voro4 20 000 60 010 2.405393e-02 2.138871e-07 4.08e-03 2.087832e+01 7.246942e+04 13
voro5 40 000 120 006 1.726980e-02 8.256465e-08 2.89e-03 2.675024e+01 7.178744e+04 13
voro6 80 000 240 027 1.140086e-02 5.998477e-09 2.04e-03 2.881822e+01 1.100228e+06 13

Table 3. Meshes of random polygons. For this class of meshes, 𝛾0 is not computed.

Mesh 𝑁el 𝑁ed ℎmax ℎmin ℎav 𝛾1 𝑁⋆

tsp1 1000 7367 1.206953e-01 8.610327e-05 1.83e-02 5.607546e+02 36
tsp2 2000 14 197 7.574066e-02 4.323479e-05 1.29e-02 1.335083e+03 41
tsp3 4000 28 003 5.090225e-02 1.338424e-05 9.13e-03 1.614139e+03 41
tsp4 8000 54 668 4.118779e-02 7.039107e-06 6.46e-03 8.729327e+02 40
tsp5 16 000 107 550 2.654308e-02 1.681474e-06 4.56e-03 3.542747e+03 46
tsp6 32 000 213 570 1.998982e-02 5.452284e-07 3.23e-03 1.564320e+03 65

For the three test cases, Figures 2–4 respectively show the relative errors

𝑒𝑢
1 =

‖𝑢− 𝑢ℎ‖0,Ω + |𝑢− 𝑢ℎ|1,*

‖𝑢‖0,Ω + |𝑢|1,Ω
, 𝑒𝑢

0 =
‖𝑢− 𝑢ℎ‖0,Ω

‖𝑢‖0,Ω

(where | · |1,* denotes the broken 𝐻1 seminorm), for 𝑘 = 𝑘′ = 1, . . . , 6 (dotted lines with circular markers)
and 𝑘 = 𝑘′ + 1 = 2, . . . , 6 (dashed line with asterisks markers) (for technical reasons, related to the actual
implementation of the stabilization term, we did not test the case 𝑘 = 1, 𝑘′ = 0). The errors are plotted, in
logarithmic scale, against ℎav = 1/

√
𝑁el (which ideally behaves as an average element size). The slope of the

gray triangles in the pictures shows the optimal convergence rate attainable by the best approximation (equals
to 𝑘 for 𝑒𝑢

1 and 𝑘 + 1 for 𝑒𝑢
0 ).

We observe that the results confirm the theoretical estimate, with the correct order of convergence for the
broken 𝐻1 norm of the error, i.e. 𝒪(ℎ𝑘), as ℎ tends to zero. Observe also that, as far as the choice of 𝑘′ is
concerned, when considering the 𝐻1 norm, there is very little difference between 𝑘′ = 𝑘 and 𝑘′ = 𝑘 − 1.

As far as the convergence in the 𝐿2 norm is concerned, observe that, for the first two test cases we get the
optimal convergence rate only for the even values of 𝑘. This is consistent with results obtained for non symmetric
interior penalty approximations of linear elliptic problems [5,28]. Surprisingly, for the third test case it appears
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Figure 2. Test case 1. ‖ · ‖1,* (left) and ‖ · ‖0,Ω (right) errors for 𝑘 = 𝑘′ = 1, . . . , 6 and
𝑘 = 𝑘′ + 1 = 2, . . . , 6.

Figure 3. Test case 2. ‖ · ‖1,* (left) and ‖ · ‖0,Ω (right) errors for 𝑘 = 𝑘′ = 1, . . . , 6 and
𝑘 = 𝑘′ + 1 = 2, . . . , 6.

Figure 4. Test case 3. ‖ · ‖1,* (left) and ‖ · ‖0,Ω (right) errors for 𝑘 = 𝑘′ = 1, . . . , 6 and
𝑘 = 𝑘′ + 1 = 2, . . . , 6.
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that the method gets very close to the optimal order of convergence also for the odd values of 𝑘. Also to be
remarked is the fact that, when considering the error in the 𝐿2 norm, the discretization with 𝑘′ = 𝑘 behaves
sensibly better than the one with 𝑘′ = 𝑘 − 1, at least for low values of 𝑘. In particular, for the first two test
cases, the curve relative to the discretization with 𝑘 = 𝑘′ = 1 is superposed to the one relative to 𝑘 = 2, 𝑘′ = 1.
If, for these two cases, we compare the number of degrees of freedom, we realize that the discretization with
𝑘′ = 𝑘 = 1 allows to attain the same 𝐿2 error as the one with 𝑘 = 2, 𝑘′ = 1, with 4×𝑁el less degrees of freedom.
In general, for a fixed 𝑘 using 𝑘′ = 𝑘 yields an error 3 to 4 times smaller than the one obtained with 𝑘′ = 𝑘− 1,
with 1 extra degree of freedom per edge.

6. Conclusions

We presented and analyzed a hybrid discontinuous Galerkin method on a polygonal tessellation for the Poisson
problem in two dimensions, with a new design for the stabilization term, based on an algebraic representation for
the scalar product of the duals of the spaces 𝐻1(𝐾) for 𝐾 element of the tessellation. Following the general recipe
provided in [13], such scalar products can, in fact, be numerically realized, via the introduction of a (minimal)
auxiliary space, for which no approximation properties are required but which has to satisfy an inf-sup condition.
Under quite weak shape regularity assumptions, allowing for the presence of elements with very small edges,
we proved optimal error estimates (confirmed by the results of the numerical tests), thus demonstrating the
feasibility and the potential of a stabilization approach where some residual term is penalized in the norm of the
dual space where it naturally lives. We believe that such an approach can potentially be applied to replace the
mesh dependent stabilization terms appearing also in other discontinuous Galerkin formulations, and, possibly,
also beyond the framework of discontinuous Galerkin methods.
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funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation
programme (grant agreement no. 694515).
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