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A POLYGONAL DISCONTINUOUS GALERKIN METHOD WITH MINUS ONE
STABILIZATION

SILVIA BERTOLUZZA* AND DANIELE PRADA

Abstract. We propose a discontinuous Galerkin method for the Poisson equation on polygonal tessel-
lations in two dimensions, stabilized by penalizing, locally in each element K, a residual term involving
the fluxes, measured in the norm of the dual of H*(K). The scalar product corresponding to such a
norm is numerically realized via the introduction of a (minimal) auxiliary space inspired by the Virtual
Element Method. Stability and optimal error estimates in the broken H' norm are proven under a
weak shape regularity assumption allowing the presence of very small edges. The results of numerical
tests confirm the theoretical estimates.
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1. INTRODUCTION

Methods for solving PDEs based on polyhedral meshes are attracting more and more attention, resulting in a
fast development. They provide greater flexibility in mesh generation, can be exploited as transitional elements
in finite element meshes, and are better suited than methods based on tetrahedral or hexahedral meshes for
many applications on complicated and/or moving domains [1]. Many different approaches exist, such as the
Agglomerated Finite Element method [9], the Virtual Element Method [10], the Hybrid High Order method
[24], just to quote the most recent ones.

A common ingredient to all of these methods is the presence of some stabilization term that penalizes a
residual in some mesh dependent norm [20]. Dealing with such terms in the analysis usually relies on the use
of some kind of inverse inequality, and results in suboptimal estimates when the factor stemming from such
inequality does not cancel out with some small factor coming from the approximation properties of the involved
space. This is the case when, for instance, the elements are not shape regular or when we want to obtain hp
estimates [22,27]. This kind of problem naturally arises when a mesh dependent norm is used to mimic the
action of the norm of the space where the penalized residual naturally “lives”, usually a negative or fractionary
norm. On the other hand, it has been observed that, at least theoretically, it is possible to design stabilization
terms based on such a “natural” norm [6,12], for which the analysis does not require the validity of any inverse
inequality.
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In the following we propose a discontinuous Galerkin method for the Poisson equation on a polygonal tessel-
lation in two dimensions with an element by element stabilization similar to the one proposed by [21,25], that
penalizes the residual on the flux, the main novelty being the norm in which such residual is penalized, namely,
the norm of the dual of H!. The numerical realization of the (H')’ norm has been the object of several papers
[3,18], and we follow here the general approach proposed by [13]. While in this paper we start by addressing
the case of a mesh satisfying a weak shape regularity assumption, and we only perform the analysis of the
convergence in h, we believe that this approach (which can, of course, be applied also to other formulations and
to other problems) has the potential to tackle more general cases.

The paper is organized as follows: in Section 2 we present and analyze the new method. More specifically, in
Section 2.1 we define some non standard form for the norms of some Sobolev space, which make it easier to deal
with the scaling of negative norms; in Section 2.2 we present the method, in Section 2.3 we define the global
broken norms that we will employ in the analysis, which we carry out in Section 2.4. A separate section, namely
Section 2.5, is dedicated to the proof of a key inf-sup condition (Lem. 2.7). Section 3 is devoted to the definition
of a computable scalar product for the dual space of H!. Finally, Section 4 presents an equivalent hybridized
version of the discrete problem, particularly well suited for efficient implementation, and Section 5 presents the
result of some numerical experiments, confirming the validity of the theoretical convergence estimate.

As we do not aim at tracking the dependence of the constants in the estimates that we are going to provide
on the polynomial degree k but only on the different mesh size parameters, in order to avoid the proliferation
of constants, in the following we will write A < B (resp. A 2 B) to indicate that the quantity A is less or equal
(resp. greater or equal) than the quantity B times a constant independent of the element diameters hg, and of
the edge lengths h., but possibly depending on the constant p* involved in the shape regularity Assumption 2.1
and on the degree k of the polynomial spaces considered.

2. THE DG METHOD WITH MINUS ONE STABILIZATION

2.1. Scaled norms, seminorms and duals

In the following, for ¢ € V and F' € V' (depending on the context, V and V' will be different couples of dual
Sobolev spaces), we will indicate by (F, ¢) the action of F on ¢. In the analysis that follows we will rely on non
standard forms for the norms of some Sobolev space. More precisely, let D be a bounded Lipschitz domain in R?,
d = 1,2. We denote by || - [|o,p the L?(D) norm and, for 0 < s < 1 welet | - |5, p denote the H*(D) semi norm:

It = [ 1o mbz/Wwf, 2.)
2
‘P
lest// dr dy- |29(+3| , 0<s<L (2.2)

Let op and 7p be two positive constants, whose choice will be specified later. Letting fD p € R denote the

average of ¢ in D
][ o= IDI‘I/ @,
D D

we let the norm for H*(D), 0 < s < 1, be defined as

o120 = ool § ol + 162
D
On the dual space (H*(D))’, we introduce a seminorm, defined as

F F
Floop— sup (Fo) o B

verso) |l@lls,p wemo) |¢ls,p’
Ip ¢=0 Ip ¢=0

(2.3)
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and a norm
IFI%sp = (F,)> +|F1%, p (2.4)

(recall that for s > 0 the function assuming identically value 1 over D is in H®(D), so that (F, 1) is well defined).
We have the following duality result.

Lemma 2.1. Let op and 1p satisfy opTp = 1. Then it holds

F
VPl = sup 2P
per(p) l¢lls,p

Proof. Let F € (H*(D))’. We let F (resp. ¢) denote, by abuse of notation, both the scalar F' = (F,1) (resp.
¢ = {, ) and the L*(D) function assuming identically the value F' (resp. ¢) on D. Observe that for all
© € H*(D) we have the identity

<F,(p> :F@+<F_F7@_@>~

Then we have

s,D

IN

(F, o) |F|lgl + |F — F|_s.ple — @
sup

sup
per=(p) |¢lls,0 ~ per:(p) oplel? + el p

OB IER + F2, pyJonleP +1el2
sup

peH*(D) oplel? + el p

Vol F2+(F2, b

IN

On the other hand, setting FO = F — |D|~1F we observe that, by the definition of |- |_s p, for each & > 0 there
exists 2 € H*(D), with [, ¢? =0 and with |¢%]s p = |F°|_s p, such that

(FO.02) > (1=e)|F°12, p.
Letting . = 05113’ + Y we have
leellip = op' [FI* + 1022 p = 7ol FI* + |F 2, p = |IF|%4 p

and
(Fye) = 1ol FI> + (F°,0:) > (1= ¢)||F|%, p = (1 = &)IF||—s.plleels.0-

The arbitrariness of € yields the thesis. (]

Let now K C R? denote a polygon of diameter hg. More precisely, we make the following assumption, which
is quite standard in the framework of polygonal discretizations.

Assumption 2.1. Shape regularity: there exists a constant p* > 0 such that K is star shaped with respect to
all the points in a disc of diameter > p*hy .

For the precise definition of domain star shaped with respect to a disc see [30]. Observe that polygons for
which this assumption holds satisfy (see [19])

|OK| ~ hg, and |K|~h%, (2.5)

the hidden constants depending on K only through p*.
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Remark that we do not make any assumption on the length of the edges of K (which is not assumed to be
larger than a constant times hg, but is allowed to be arbitrarily small), or on their number (which, at least for
now, we allow to be arbitrarily large), so that our assumption is weaker than what is usually assumed when
dealing with the analysis of polytopal methods. Only later on (see Sect. 3) we will need to assume that the
number of edges of the elements K of the tessellation is bounded by a constant N*.

Assumption 2.1 is sufficient to have some classical bounds with constants depending on K only through p*
(see [11,19]). More precisely we have the following bounds.

Trace theorems
For functions v € H*(K), 1/2 < s <1 we have

uli 1 ponc S Jul2 ko Mulld o S A lullf  + R ul? & (2.6)

the constant in the inequality depending on s. This bound is proven in [11,19] for s = 1, but the argument
therein, based on the existence of a Lipschitz isomorphism ® : By — K, B; denoting the unit ball, with
@l w1 (1) = hic, || @7 lwre () = hi', applies unchanged also for s € (1/2,1), thanks to the boundedness,
for s > 1/2, of the trace operator from H*(B;) to H*"'/2(9B;). For u € H'**(K), 1/2 < s < 1 this implies
that, letting vx denote the outer unit normal to K,

2
S R IVullg i+ hETHVUIL k= hig lulf  + BTVl k. (2.7)

H ou
0,0K

6VK

On the other hand, for u € H'(K) satisfying —Au = 0 in K, we have that

|u|1/2,6K 2 |U|1,K~ (2.8)

Poincaré—Wirtinger inequality
For u € H'(K) we have

u— f dllo < hiclulge, lu— f "
K oK

In view of Lemma 2.1, on H*(D) and (H*(D))’ we consider the following couple of dual norms:

0K S hiluli k. (2.9)

lellz p = I]i o* +lelip:  IFI2sp = KE P +IF2, p. (2.10)

With these definitions, a trace theorem holds with constants only depending on the shape regularity parameter p*.

Theorem 2.2. It holds that

el 2,0k = inf lull1, k-
uweH! (K)
u=¢ on 9K

Proof. Letting u = fK w and @K = faK u denote the average of u € H'(K) respectively on K and on 0K, we
can write, thanks to (2.6),

—9 -9
B+ ul} pox S @75 + |u

HUH%/z,aK = |u

2
1,K-

We now observe that, as 4 coincides with the L?(K) projection of u on the constants, using the boundedness
of said L? projection and (2.9) we can write

@ < Jal? + [@® —al® < Jal? + hillu — a1« < Jal? + fuli (2.11)
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which yields the first half of the thesis. As far as the second half of the thesis is concerned, letting p € H'/?(9K),
we let u be the harmonic lifting of ¢. Letting ¢ = £, ¢, and using (2.8) and (2.11), we have

lullf = 1al* + ul? ¢ S 16° +1a— @ + ulf x S 16+ [ulf k S llelli 20k
which gives us the second half of the thesis. O

Remark that for F' € (H'(K))’ with (F,1) = 0, the seminorm | - |_; g can indifferently be defined by taking
the supremum over all ¢ with zero average on K or on 0K:

F F
(F,1) =0 implies  sup (Fe) _ (F.e),
pemio [Pl ventao lelLk
Jor #=0 K #=0

Then, letting v : H'(K) — HY?(0K) denote the trace operator, and letting v} denote its adjoint, if for
A€ H™Y2(OK) we have (), 1) = 0, then it holds that

* ’Y* )‘7 )‘7’7K

Yk Al-1,6 = sup Diche) sup LSRN [Al-1/2,05 (2.12)
et |Pl1K peH!(K) lol1,x
Jx ©=0 Jak »=0

(where, (X, 1) and (\,vx ) stand for the duality pairing between H~1/2(0K) and H'/2(0K), while (vi\, )
stands for the duality pairing between H~!(K) and H!(K)).

2.2. The model problem and its discretization

Letting 2 denote a polygonal domain, in the following we consider the simplest model problem, namely
Problem 2.1. Given f € L%(Q2) and g € HY/?(99), find w solution to
—Aw=f in Q w=g on 0N

We assume that g satisfies suitable regularity and compatibility conditions sufficient for the existence of an
H?(Q) function with trace equals to g on 9 (such assumptions are quite technical, and we refer to [7], Thm. 2.1
for more details).

We look for a solution to Problem 2.1 by a discontinuous Galerkin method on a polygonal tessellation. More
precisely, let 7;, denote a tessellation of €2 into polygons satisfying the shape regularity Assumption 2.1. We
let £K denote the set of edges of the element K € 7y, £, denote the set of all edges of the tessellation, and
Y = Ueeg, € denote the skeleton of the decomposition.

Letting hx denote the diameter of the element K, to each edge e € &, we associate two different mesh size
parameters:

he=1lel, and H.= max hg, (2.13)
K:eCOK

denoting, respectively, the length of e, and the diameter of the largest element having e as an edge. Observe
that, by the definition of H,

H7'<hy' forall ec&X, and H,<hgs+hg for eCIKTNIOK™. (2.14)

We remark that neither do we assume that, for e € £ it holds that h, > hg, nor that, for K and K~ sharing
an edge, it holds that hx+ =~ hx—, so that our framework allows non uniform meshes with very small edges,
and adjacent elements are not constrained to have comparable diameters.

On ¥ we choose a unit normal v, taking care that, on 99, v points outwards. We define the jump [u] of
u= (uf)g € [[x H'(K) by setting, for all interior edges e common to two elements K+ and K,

K

[u] = u" vges +u" vk, (2.15)
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whereas, for e C K N 052, we set
[u] = w* vk = uv. (2.16)

Observe that the definitions (2.15) and (2.16) can be summarized in the unified expression (valid for both
interior and boundary edges)

[ulle = Z u vk, (2.17)

K:eCOK

We underline that the cardinality of the set {K : e C 9K} is always less than or equal to two, a property that,
later on, we will implicitly use at several instances.
We now let Dy : HY(K) — (H*(K))" be defined as

(D, v) :/ Vu- Vo,
K

and, by abuse of notation, we let v} denote not only the adjoint of the trace operator vy : H(K) — H'?(0K),
but also the functional v} : L*(X) — (H'(K))', defined as

(YA, v) = / Av-vi)v, foral ve HY(K). (2.18)
oK

Observe that, if, for some w € H?(Q), § € L*(X) is the single valued trace on ¥ of Vw - v, then ~} defined
by (2.18) verifies (v} 0,v) = (Ow/0vi,vkv), justifying the abuse of notation. We have the following lemma.

Lemma 2.3. For all A € L*(X) we have
IicM—sse < iMoo

Proof. We have

Av-vi)e -

|’Y;()\|71’K = sup jé[(— S H)\(V . VK)HO,BK sup M
pEH! (K) el ke pemico Pl K
Ik ©=0 e

VR g+ haclol? i

1,K

1/2
< Moo sup < B2 M loox¢s
peH1(K) |

[ =0

where we used (2.6) and (2.9). Moreover, using a Cauchy—Schwarz inequality, thanks to (2.5) we can write

1/2
.ok S hil* Mo,

A 1) = \/ A(u-um‘ < Mot
oK

which concludes the proof. O
We now set, for k > 1, and &' € {k,k — 1},

Vi = [[Pe(K), Aw={A€L*(%): A €Pr(e) forall ec &},
K

where, for any one- or two-dimensional domain D, P,,(D) denotes the space of uni- or bi- variate polynomials
on D of total degree less than or equal to n.

In order to define our discrete problem, we introduce, for all K, a bilinear form sy : (H'(K))'x(H'(K))" — R,
satisfying the following assumption.
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Assumption 2.2. For all F,G € (H'(K))' we have
k(F,G) S |F|-1,k|G|-1,k- (2.19)

Moreover, for all A € Ay,
sk (VA Vi) 2 A 1 k- (2.20)

We then consider the following discrete problem, where a@ > 0 and ¢t € R are two parameters independent of
the tessellation (and, more specifically, independent of the hx’s and h.’s), and where fQ fv naturally stands for

S Jx foR

Problem 2.2. Find u = (uf) g € V},, A € Ay, such that, for all v = (vE)x € Vi, p € Ay, it holds that
Z/ Vuf - Vo —/ Alv] - u—i—taZsK(DKuK — i\, D) = / fv—l—taZsK(f,’DKvK), (2.21)
K > % Q %

[l v = a X sw(Dueu ~vidvien) = [ gu—aX sxlforvin. 222
p) % 99

K

We easily see that Problem 2.2 yields a consistent discretization of 2.1. Indeed, under our assumptions, the
solution w to Problem 2.1 satisfies w € H3/2T5(Q) for all s, 0 < s < s, 5o > 0 depending on the geometry
of Q (see [33], Chap. 19). This implies Vw € H'/?*5(Q) which, in turn, implies the continuity of the normal
derivative across the skeleton. We can then set § = dw/0v, and, thanks to the trace inequality (2.7) we easily
see that 6 € L?(X). Multiplying the identity —Aw = f by v = (v¥)x € [[x H*(K) and integrating by parts
elementwise we obtain

/fv— /Vw Vo ZaKaVK /Vw v Z euuKK
ZZK: /K Yk . vk — /Z 0[] - v. (2.23)

Moreover we easily see that Dxw® — 450 = f|x in (H'(K))'. It is then not difficult to check that replacing u
with (W) g (WX = w|x) and A with 6 in (2.21) and (2.22) yields two identities.

Remark 2.4. The role of the parameter ¢ is to allow our formulation to encompass different stabilization
variants in the same unified framework. While the theory presented below allows to take any t € R, the relevant
values of ¢ are t = 0 (for which the stabilization is, in a certain sense, minimal, as it only affects Eq. (2.22)),
t = 1 (for which the stabilization term is symmetric positive semidefinite) and ¢ = —1, for which we have some
cancellation that can contribute to improve the inf-sup constants on which the forthcoming analysis relies on.

Remark 2.5. For « = 0, Problem 2.2 is the standard hybrid formulation at the basis of the primal hybrid
method [31], which, in [25], has already been combined with a stabilization term penalizing the residual on the
fluxes. The main difference between Problem 2.2 and the method proposed in such a paper lies in the design of
the stabilization term, which, in the present paper, is based on a scalar product for the space (H!(K))’, whose
numerical realization will be detailed later on. Observe that the idea of measuring the residual in an (H')’ norm
is not new in the context of discontinuous Galerkin method. In particular, it is one of the ingredients of the
ultra weak formulation considered in the discontinuous Petrov—Galerkin approach (see, for instance, [23]), with
which the present method has certainly a number of commonalities.
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2.3. Global norms and spaces

We now define the global norms which we will use in our analysis. On L?(X) we define the norm

H)‘H%uz,* = Z H’V;()‘”%LIO
K

and we let A denote the closure of L?(X) with respect to such a norm. Observe that this can be identified as a
closed subspace of [, (H'(K))'.
On V = [[x H'(K) we consider the following norm

lullf . = Z|U Lkt Z*\[[ (2.24)
e€éy, e

where, for u = (uf) g € [[x H'(K), we, once again, let & = (a®)x denote the piecewise constant function
defined on each K as the average a™ = f, u” of u*. The following lemma states that | - ||1. is indeed a norm
on [, H(K).

Lemma 2.6. For all u € [[, H'(K), letting u = (a®)x denote the piecewise constant function assuming in
K the value u** = f, u’*, it holds that

Il S D nich R + > 2l

ecé

Proof. Using (2.9), as @ is the L?(Q) projection of u onto [], Po(K), we have

lulld. = Ilu— x Flal o (2.25)

We then only need to bound the last term on the right hand side. Let z be the solution of
—Az=a, in Q z=0, on 0. (2.26)

Once again, we have that z € H?/2*5(Q) for all s with 0 < s < s, which implies the continuity of the normal
derivative across the skeleton. We can then define

0z
. OV

€

ﬂ:

Then, multiplying (2.26) by @ and integrating by parts element by element, we can write

=3 [ gt = 3 [rv-til < S nalial

ecEp ecéy,

1/2 A 1/2
< (Zheﬂew?) (ZHZ W) .
eelp ec&p

It only remains to bound the first factor in the product on the right hand side. Thanks to (2.14), we have

A ZH/W so [ x (5 )

ecéy, ecfy, eely, ecEn, \K:eCOK

S| ) <o, Jo

e€ly

2

2

3V
K:eCOK K
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where, for the last bound, we could switch the sum on e € &, with the sum on K, since the cardinality of the
set {K : e C 0K} is at most two. Using (2.7) and the regularity theory for the solution of the Poisson problem
(2.26) on polygonal domains ([33], Chap. 19), we obtain (without loss of generality we can assume that, for all K,
hr $1)

Z he Help|* S Z 213 i + Z |VZ|§+1/2,K S lzliq + |VZ‘§+1/2,Q S llall o
ecly K K
which yields
" 1/2
1130 % Il (Z I;MW) .
ec&y €
Dividing both sides by ||@||o,o and combining with (2.25) we get the thesis. O

Lemma 2.6 implies that for all u € [, H'(K), we have
lallg.o + D lulf xS llulf ..
K

2.4. Stability and error estimate

In order to analyze Problem 2.2, let us rewrite it in compact form: find u = (u, A) € Vi, =V, x A, such that
for all v = (v, ) € Vj, it holds that

a(u,v) = F(v), (2.27)

with

a V) =alu U = UK' ’UKf v -V ujl - vV
(,v) = a(u, X0, ) ;/Kv Vol = [ Al v+ [ )
+ ozz sk (Drgu® — i\ tDv™ — i), (2.28)
K

and

F) = Flo) = 3 /K oK+ /8 St o sl D™ =i (2.29)

It is not difficult to check that a satisfies the following continuity bound: for all u,v € [[, H'(K), A\, u € A,

1/2

1/2
e N p) < (z [ S nmnzl,K) (z o+ Y IIW}MIIQ_LK>
K K K K

Moreover, letting
llu, MG = Nl + I 2.4

denote the norm on V=V x A, we have the following lemma.

Lemma 2.7. The bilinear form a satisfies the following properties:

(1) Inf-sup condition: for allt € R there exists ag > 0 depending on t such that, for all o, 0 < a < «y, it holds

that \
mf s AU
WNEVn (v m)ev, U Allvlv, pllv

the constant c, depending on t and o but independent of the mesh size parameters hx and he.
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(2) Conditional continuity: for all u,v € [] HY(K), A\, € L2(X), if, for all K, [, u' = (viA, 1) =0, then
we have
a(u, A0, ) S s Mllv o, pllv

The proof of Lemma 2.7 is quite long and technical, and we postpone it to Section 2.5.

Lemma 2.7(1) implies uniqueness of the solution to Problem 2.2. As such a problem is finite dimensional,
uniqueness, in turn, implies existence of the solution.

Let now w be the solution of Problem 2.1, and let § = dw/dv denote its derivative in the normal direction
v on X. We have the following lemma.

Lemma 2.8. Assume that u € H*(Q) and 6 € L*(X). Then it holds that

w—u,0—\E < inf |w—v|? .+ he inf || — pll? .. 2.30
|| 1553 it o= olt e+ 3 e, dnt 10—l (2.30)

Moreover, if u € H*(Q) then we have

=6~ AF S inf (- ol e + o = ol ). (2.31)
K

If, in addition, we have that uw € H**1(Q), then it holds that

lw = u,0 = X <> A lwlE k- (2.32)
K

Proof. Let (wyr,07) € V}, be approximations to w and 6 satisfying

/wf:/w, for all K € Ty, /912/9 for all e € & (2.33)
K K € ¢

Thanks to Lemma 2.7, for u € Vj, A € A} solution to Problem 2.2, we can write
llu—wr, A= 0rllv S alu—wr,\—0r;2,¢)
for some element (z,() € Vy, with ||z,{||ly = 1. As observed in Section 2.2, we have
a(w,8; z,¢) = a(u, \; 2, (),
yielding, by Lemma 2.3(2),
lu—wr, A= 0rllv S a(w —wr, 0 = 01;2,0) S |lw—wr, 0 —01lv,

and, by triangular inequality,
|lw—u,0 —Aly < ||lw—wr, 0 —0;]y. (2.34)

It only remains to choose suitable approximants w; and 6; for which we can provide a bound on the right-hand
side of expression (2.34). Let then, for each K, wX € Py (K) denote the solution to

/(w?—w)zo7 -/V(wf{—w)~v,z:07 for all =z € Py(K).
K K

On the other hand on each edge e of 3, let 0|, € P/ (e) be defined as the L?(e) projection of 6. It is easy to
see that the w¥’s and ; thus defined satisfy (2.33), so that (2.34) holds. We observe that, letting w = (0%)
(resp. w; = (wf) k) with wx = f, w (vesp. Wi = f, wi*), thanks to (2.33) we have

he v _
Tt Y ﬁpH[w — ol =) Jw—wi &
ec&, ¢ K

lo —wrlf. =) lw—wf
K
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Furthermore, thanks to (2.12) and (2.33), we have

16 = 611212 = D i (0 = 6021 1 S D10 =00 vie) 21 2,0
K K

Since v - vk is constant on each edge, 07(v - vk )| coincides with the L2(e) projection of (v - vk )|. on Py (e).
By a duality argument we can then bound (¢, € Py (e) denoting the L?(e) projection of 1)

faK(e —0r)(v - vk)y

(0 —0r)(v-vK)|-1/206 =  sup
weH/2(8K) |¢|1/2,{‘)K
Jorc ¥=0
— sup Deeer JL(0 =01 (v - vi) (¥ — ¥r)
peH/2(8K) lel/Q,{)K
Jor ¥=0
< sup ZeegKHQ_eIHO,enl/J_ww”Oﬂ
T pen!/2(oK) V|1 2,0k
Jor #=0
he!?16 — 6
5 sup ZeegK e ” I| O,e|w|1/2,e /S Z heHa - 91“3_.37
YeHL/2(0K) |¢|1/2,8K ecEK ’
ok ¥=0

where we bounded ||t/ — ¥x||o,. by a standard result on polynomial approximation, and used the fact that the
squared piecewise H'/? seminorm Y, g |- |%/2 . can be bound by the squared H'/2(0K) seminorm. Observing
that, in view of the definition of ; and w;, we have

10 = 01llo.e = inf |0 —plloe, and |w—wF|ix = inf |w—wv

1,K>
neP,/ (e) vEPL (K)

we finally obtain (2.30) for w € H}(Q2) and 0 € L*(X).
Setting AK = {u € L2(0K) : ple € Pir(e) for all e € EE}, we can further bound the second term on the
right hand side as follows:

Z he inf ||0_M|

= nePL/ (e)

oS b 10—l < Y b 10 o
K h

K ecek nEP/ (e)

Then, since for both possible choices of k' (namely k' = k and k¥’ = k — 1) it holds that VP (K) - v C AK,
we can take u = 0v/0vg, which yields

w—u,0— N2 < inf |w—v|? .+ hg inf ||0—pl?
H ”V ~ EK: (veIP’k(K) | |1,K K JEAK [ N”o,aK

ov

2
)
Vllo,ok

< inf — 2 hi ||0 — —
N;uexlpr;:(m (lw Vi + KH F)

and, using (2.7), if w € H?(Q) we obtain (2.31). Assuming now that w € H¥T!(Q), standard estimates on
polynomial approximation yield (2.32). |

Thanks to Lemma 2.6 we easily obtain a bound on the error in the standard broken H' norm. More precisely,
we have the following corollary.

Corollary 2.9. Assume that u € H*1(Q). Then we have

k
lw—ulgo+ D lw—u"[ S hE i k-
K K



S796 S. BERTOLUZZA AND D. PRADA

Remark 2.10. While (2.30) provides a sharper bound on the error, valid also when w has minimal regularity, if
w is sufficiently smooth, (2.31) has the advantage of completely decoupling the different elements, thus allowing
to choose, independently in each element K, p = Vv - v, thus bypassing the difficulty posed by the presence of
possibly many small edges, and allowing for an error bound of the form (2.32) with hidden constant independent
of the number of edges of the element K.

Remark 2.11. The inf-sup constant ¢, tends to 0 linearly as « tends both to 0 and to ag(t). In turn, for ¢
going to 400, ag(t) tends to 0 as |1 + ¢t|~2. Remark, however, that while the theoretical estimates given by
Lemmas 2.7 and 2.8 hold for any t € R, as already observed, the relevant values of ¢ are t € {—1,0, 1}, so that,
in practice, ag(t) behaves as a constant whose size depends on €2 and on the shape regularity of the tessellation.
On the other hand, in carrying out the proof of Lemma 2.7, it can be checked (see also [16]), that ag(t) depends
on the polynomial order k of the method only through the possible dependence on k of the implicit constants
in Assumption 2.2.

2.5. Proof of Lemma 2.7
Let (u,A) € Vp, and let
v=u—7 with 0= 0%)g, where 75 = (v, 1),
and
p=A+pBia with, on ec&,, pa=H'[u]-v,

where @ denotes one more time the piecewise constant function assuming on each K the value @/ = fK uf
Remark that we have ¥ € [, Po(K) C Vj, as well as i € {p € L*(X) : ple € Py(e) for all e € £} C Ay
We can bound the V norm of (v, i) as follows. Using (2.14) and (2.5) we can write

he he
WfZFM%ZFZNWMKEj S lkh

ec&, € e€y €l K:eCOK e€ly € K:eCOK

S i ( > he> (A DS Y A D (2.35)
K K

ecEK

Moreover, using Lemma 2.3 and (2.14) we can write

he o
il S il o = b [ H2IP S Y FEllal,

ecEK eeEK

which, adding over K and recalling that each edge is counted at most twice, yields

Z il S D2 5 7| (2.36)

Pegh

Combining (2.35) and (2.36) we obtain

12, 6llv < s Allv- (2.37)

Now we have
a(u, A;v, o) ZIuKI +ﬂ/ﬁ[[u]]'v+/A[[ﬁﬂ'v+aZsK(DKuK—v}%A,tDKuK—v;Q(Hﬁﬁ))
by b I%

:Zm Tk +BI+1I1+alll
K
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Let us bound from below the terms I through III. Thanks to the definition of [i, as we easily see that for all
v € V it holds that ([v] - v)v = [v], we have

1= (A=Y m -l

ecly,

By adding and subtracting [@] and using a Young inequality we can write
/[[U]] -[al = hella]® + he([a] — [a]) - [a] > hella]l® — hel[a] - [a]l|[a]|
> Shellall? - shello] - [al?

where, conventionally, we denote by [a¢] = £, [u] the average on e of [u]. Using a Cauchy-Schwarz inequality
and (2.17) we can bound the last term as follows:

/[[u—u < hZ /|u—u =h_ /e

w3 [

K:eCOK

2

Z (UK _,L—LK)VK

K:eCOK

[a] -

so that, using (2.14), and, once again, (2.17) we get

> IH—ﬂuﬂl2<Z Yoo W= RS> ht e -

eESh pesh ¢ K:eCOK "’ ® K

Now, using (2.6) and (2.9) we have that

[[u” — HOBK<h X _UK||0K+hK|u —UK?KNhKW \11{’

finally yielding, for some positive constant ¢/,

I> Z Ifa]|? — ¢ Z|u (2.38)

eESh

‘We also observe that

H:/;A[[ﬂ]'l/:Z/aK)\(y-yk)ﬁK = ZK’Y?{/\, 1>|2' (2.39)
K

K

Finally we can write
1 = ZSK(’}/;()\,’)/}}/\) —l—tZsK(DKuK,DKuK) + ﬁZsK('y}})\,’y}}ﬁ)
K K K
=B sx(Dru yieh) = (1+1) > sx(Dru’, 75 M) =1V + V + VI 4 VII + VIIL
K

We separately bound the five terms on the right hand side. By Assumption 2.2, we have

IV = Z sk(YEkAYEA) = a Z VRAZ L k-
K K
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Remarking that

Vu - Vv
|Dru|—1,xk = sup fKi (2.40)
veHL(K) |U|1,K
)‘Kv:()

and letting ¢t~ > 0, t~ = max{—t, 0}, denote the negative part of ¢, thanks to (2.19) we can write

V= tZsK(DKuK,DKuK) > _C*"t™ Z |uK 2
K K

Using Assumption 2.2, as well as (2.36), and applying a Cauchy—Schwarz and a Young inequality, we also
have, for some positive constant c,

VI < B lsk (Vi A vie)| < Be D il 1.k Vil -1,
K K

1/2 1/2
< Bc (Z |’Y?<)‘|2—1,K> <Z |7;(ﬁ|2—1,K>
K K
< 552 ViAZ 1k + Bes(e) Z 7”[ 1%,
K

eefh

and, analogously,

(Zu 3k + Z—I )

e€ly,

[VII| < ﬁz sk (Dru®,vich)| < Cﬁz u’
K

whereas, thanks to (2.40), we have

VI < \1+t\Z|SK (Dru™, 75N < |1+t|CZ|uK\1 K[Vl -1x < 5Z|7KA| 1k T es(et) Z\u LK

finally yielding

I > (1 = (B+1)e Z AP Lk = (C71 +es(e, 1) D [uf[F i — Bles(e) +ea) Y %l[[ﬂ]]IQ- (2.41)

ec&, €

The parameter ¢ is an arbitrary positive constant and c3(e) and c¢5(e,t) are positive constants depending,
respectively, on €, and on € and ¢, and both behaving as e~! as € tends to 0. Combining the previous bounds,

we obtain

a(u,/\;v,u)>( —dB—a(Ct +ﬂ04+056t>ZIUK K+ D 1RADP
K

+ﬁ<;—a(03(5)+04)>2|[[u]]|2+a<cl (B+1) )ZWKM .

ec&y

We now set 8 = 1/(2¢'), and we choose ¢ in such a way that (8 + 1)e = ¢;/2. With this choice, it is not
difficult to see that, setting

ag(t) = ;min{(%(e) +C4)71, (; +c5(e,t) + Ot >_1},
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if o < ap(t), then
(u, v, 1) 2 [lu, A,

the implicit constant in the inequality depending on « and t. Observe that neither 8 nor o depend on the mesh
size parameters hy and h.. Using (2.37), we then get that

sup a(u, \;v, ) > a(u,/\;U:F«'ﬁ,/\ﬂ:ﬂﬁ) > ||u,/\||§z7
wmev, v pllv |lu — KU, A + By [, Alv

which concludes the proof of point (1).
Let us now consider the continuity bound (point (2)). We observe that if {(yj; A, 1) = 0 we have

/ Aol v =Y (i d o) = D (iAo *]L o) <Y ALk,
by K %

K K

while, if f,, u =0 we can write, for all y € L*(X)

/ pluf -v = Z(W’?{%UK) < Z |7f<ﬂ|—1,K|uK|1,K < Z W?(M\A,K\uKlLK
z K K K

Thanks to these inequalities, in view of Assumption 2.2, the continuity bound of point (2) is easily proven, by

a Cauchy—Schwarz inequality.

Remark 2.12. It is not difficult to realize that the inf-sup bound holds for all subspace V, = V), x A, C V,
provided Vi, D []; Po(K) and Ay, D {p € L3(2) : ple € Po(K) Ve € &}

3. REALIZING A COMPUTABLE STABILIZING TERM

In order for the proposed method to be practically feasible, we need to construct a computable bilinear
form sg satisfying (2.19) and (2.20). The numerical realization of scalar products for negative Sobolev spaces
has been the object of several papers [3,14,18]. In particular, following the approach of [13], we introduce an
auxiliary space Yx C H)(K) = {v € H'(K), f;- v = 0}, satisfying

A
inf  sup *fK—y >1, where A ={uecL*0K): ul. €Pr(e), Vee X} (3.1)
AeAlS yevie [VieAl-1 kYl K

We let @;, i = 1,..., N denote a basis for Y, and we let a¥ : Y x Y — R denote a continuous, symmetric
bilinear form satisfying, for all z,y € Yk,

a*(z,y) S |zl klylk, and @

Kz, 2) 2 |alf k- (3.2)
Letting Ay denote the corresponding stiffness matrix
Ax = (55), with Zif; =a"(pj, 1),

which, thanks to the Poincaré inequality, is invertible, we can now introduce the bilinear form sx : (H'(K))’ x
(HY(K)) — R defined as follows:

k(F.G) = fTAlg, with f=(Fe))l, 7=(G )i (3.3)
Observe that for u,v € H'(K), \,u € L*(X) and f € L*(K) we have

sk (Dru — VA tDkv — vien) = i1 A, sk (f,tDxv — viep) = FTALC,
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with 77 = ()X, ¢ = (G)I, f= (fi)X, given by
=/ VU'V%—/ A - vi)pi, Cizt/ VU'V%'—/ (v - Vi), fi:/ foi (3.4)
K oK K oK K

The bilinear form sk satisfies (2.19). Indeed, since sk is symmetric positive definite, we have a Cauchy—
Schwarz inequality:

sk (F,G) S Vsk(F,F)\/sk(G,G). (3.5)
Now, given F' € (H}(K))', and letting 2" = Zi\il x¥p; € Yi be the solution to

’d’K(xF’y) = <F7 y>7 for all Yy e YK;

a standard argument yields,
2"}k S (@, 2") = (F,2") SIF|l-1kla” |1k
Dividing both sides by |z'|; x we obtain that |2%|; x < |F|-1,x. We now observe that, letting 7' = (zf" )N,

3
denote the vector of coefficients of 2" (which is easily seen to satisfy the identity 7 = A}l f, with f given
by (3.3)) we have

N

k(F,F) = fTAL =" =3 (Pl = (Fa") S|Pl ke’ ok S IF12 k-
=0

A similar bound holds for G, which, combined with (3.5) yields (2.19).
On the other hand, let A € Ay, and let now z* = Zf\]:1 xg\goi € Yx denote the solution to

a* (2 y) = (vicAy), forall ye Vi.

Assuming that (3.1) holds, and using (3.2), we can write, for some element y* € Yy,

K (X pA
<’YK)\ Y > a(x?, ) \/a (X, )\/ (yA,y,\) ~

A = : N a¥ (x>, ). 3.6
|7K | 1KN | )\| LK |y>\|1,K ~ |y>\|1,K f\./ ( ) ( )

~ —

It is now easy to check that, setting 2 = (z))¥, and X = (A\)N,, with \; = (i), ¢;), we have that Z* = AN
and

(@, 2) = (AN T A (AN) = XTAX = s (Vieh, Vi ). (3.7)
Combining (3.6) and (3.7) we easily obtain (2.20) (actually, a stronger result holds, namely, under our assump-
tions on @, it is possible to prove (see [13]) that (3.1) is a necessary and sufficient condition for (2.20) to
hold).

We then only need to choose a (small) space Yx satisfying (3.1) (remark that Yk is not required to satisfy
any approximation property). We choose a suitable subspace of the local non conforming Virtual Element space
of order k' 4+ 1 (see [4]). More precisely we set

0
YK{yGH;(K)IaVyK@GPk/(e), 7Ay€IPk/_1(K), / ypOVpG]P’kz_l(K)}
K

In order to be able to work with average free functions also for k' = 0, we use the convention that P_; (K) = Py (K),
that is, we consider what, in the virtual element framework, is referred to as an enhanced space.
It is not difficult to check that Y satisfies condition (3.1). This is a consequence of the following lemma.
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. ( 9y
TK 8VK

Proof. Let y € Y. Integrating by part and using the definition of Yx we have

dy dy Y
2 2 . (0
= Y = Ay + = —Z ¢y < — )| .
\Z/|1,K / IVy| / yay /8 o Y ok OV y < Ik (91/ -1yl K

Dividing both sides by |y|1,x we get the first of the two bounds. On the other hand we have

Lemma 3.1. For all y € Yk it holds

Syl
1K

lylix S

p)
. ( dy ) _ g oo o JeBuet e Ve Ve
K Ovg ~1,K peHL(K) |<P|1,K PEHL(K) |<P|1,K
Jrc #=0 [k #=0
< sup 1Ayllo.xllllo.x + lylrxlohx Wl
peHL(K) lel1,x ~ ”
K =0

where we used a Poincaré-Wirtinger inequality (2.9), and an inverse inequality of the form || Ayllo x < hi' |yl K
which holds for all functions such that Ay € Py _1(K), provided Assumption 2.1 holds (see [11] for a proof).
O

In view of the previous lemma, the inf-sup condition (3.1) is then easily proven. Indeed, given \ € Af , we
let y* € H}(K) denote the (unique, as the problem is well posed as shown in [4]) function with
oy

—Ay* € Pr_1(K), Tor =)\ on 0K, / yY*p=0 forall pePp_(K).
K

We have y>‘ € Y and

8 A
Joc M o Jorc M Jox av ¥ Sk VA L IV
sup e = = 5y = vk 2 VA -1k,
yeY K \y|1,K |y |1,K \?J |1,K |y |1,K

where we used the fact that, by the definition of Yz, * is L?(K) orthogonal to Ay?, as the latter is a polynomial
in Pk'—l (K)

For k' > 1, a function y € Yk is uniquely determined by the value of its moments up to order &’ on each
edge. In fact, the remaining degrees of freedom for the full non conforming VEM space of order k’ + 1 are
the interior moments up to order &' — 1 (see again [4]), which we fixed to be zero in the definition of Y.
Moreover, using the same arguments as in Lemma 3.1 of [4] it is easy to see that, also for ¥/ = 0, a function
in Yk is uniquely determined by the value of its zero order moments on each edge. In both cases, equivalently,
a function y € Yx is uniquely determined by the value of the L?(0K) scalar products with the elements of a
basis {e;,i =1,...,(k+ 1)Ng} of the space AKX (Nx denotes here the number of edges of K).

We let @; denote the unique function in Y for which, for all j € {1,...,(k+1)Ng}, [, wie; = dij, so that
a function y € Yx can be expressed as

(k+1)NK

Y= Z cip; with ci:/aKyei.

i=1
As customary in the Virtual Element framework, the basis functions ¢; are not explicitly known, but the
knowledge of the degrees of freedom ¢;, i = 1,...,(k + 1) Nk is sufficient to compute the vectors 77 and ¢. In
fact, for u € Pi(K) and A € Aj, we have

0 0
m:/ Vu'Vgpi—/ )\(V'VK)%':—/ Augpi—i—/ (u—)\(V~VK)> goi:/ (u—)\(u~1/K)) i,
K oK K ox \OVK ox \OVK



S802 S. BERTOLUZZA AND D. PRADA

where we once again used that ¢; is orthogonal to all polynomials in Py/—1(K) 2 Pr_o(K), and hence to Auw.
As both A(v - vi) and Ou/Jvk belong to A , it is possible to write them as a linear combination of the basis

functions e;:
V VK § Ti€i, 6 E Yi€i.
VK

0
771‘:/ (8:;_)\(V VK)) Oi = Yi — T4

Moreover, the fact that ¢; is orthogonal to polynomials in P/ 1 (K') also allows us to approximate f; & 0 (which
corresponds to approximating f in K with a polynomial in Py (K)).

We choose @ as the non conforming Virtual Element approximation of the bilinear form [  Vy - Vz. More
precisely, letting IIY. : H'(K) — Py41(K) denote the projection operator defined by the conditions

Then

| V) Vo= [ Vy-ve Ve P, md /H y=0,
K K

we set
K(m, y) = / VHX@‘ . Vﬂzy + O'K(J? — HXm, Yy — HXy)7 (3.8)
K

where, for all x with II},z = 0, the bilinear form o satisfies

Br,x) = |2l e, o™ (2,9) S |2l x|yl K- (3.9)
We recall (see [4]) that IT}.y is directly computable for all y € Y as a function of the degrees of freedom c;.
We are then left with the problem of choosing a computable bilinear form o satisfying (3.9). A possible choice

for 0% is the following

= > h /H8 (vr@) Mg (7xY): (3.10)

ecEK

where 119, : L?(0K) — AK denotes the L?(0K) orthogonal projection. For such a bilinear form, condition (3.9)
is proven in [29] for all y with

e A, —Ay=0,

under a stronger shape regularity assumption, namely that h. ~ hg for all e € £X. In the more general case
that we consider here, condition (3.9) holds with constants only weakly depending on the ratio hg /h., provided
that the tessellation satisfies the following additional shape regularity assumption.

Assumption 3.1. There exists a constant N* such that all the elements of the tessellations Ty, have at most
N* edges.

Under such an assumption, see [15], it can be proven that

hi

-1
2 K <
) el o) S ekl

o (x,x) > log (

Of course, Assumption 3.1 is always satisfied with N* = max N, however, for a defined by (3.8), with o
given by (3.10), such a value will affect the constants in (3.2).
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Remark 3.2. A necessary condition for an inf-sup bound of the form (3.1) to hold is that dim Y > dim AK.
As in our case the dimension of Yy verifies dim Y = dim AhK , such a space is of the minimal dimension needed
for such a condition to hold. Of course, other choices are possible for the space Yi. A possibility is to choose a
space of supremizers (see [32]), which, in our case, would be

YK:{yGHé(K): y|e€Pk/(e), —Ay:O}.

0
81/K
This is also a subspace of the local non conforming VEM space of order k' + 1, so that one can build the
corresponding bilinear form s¥ starting from the same bilinear form @¥ defined by (3.8). However, though
such a choice would also lead to a bilinear form sk satisfying (3.1), it would not be possible to compute the
contribution of the right hand side to the stabilization term, as, for such a choice, we do not have access to
the values of the moments of the basis functions ;. Another possible choice, which however leads to a larger
auxiliary space Yk, is to resort to a finite element space of order k£ on a sufficiently fine sub-triangulation of the
polygon K, as it is done, though in a different spirit, in [8].

4. A HYBRIDIZED VERSION OF THE METHOD

By introducing an independent approximation of the trace of w on X, and by replacing the single valued
approximation \ of Ow/dv with independent approximations AX of dw/dvy,, we obtain an equivalent formulation
of our problem which is better suited for efficient implementation. More precisely, we set

A = HAh . with AF ={Ne L?(0K): N, € Pw(e) forall ec&XY,
as well as

O ={pc L*(X): ¢lc €Pr(e) forall ec&, ¢log=0}. (4.1)

We then consider the following discrete problem.

Problem 4.1. Find u = (uf)x € Vj, A= (XK)K € K;“ ¢ € @y, such that, for all K € Ty, for all v& € Pp(K),
pf € AK it holds that

/ vuf . vk —/ NE K + tasg (Dgu™ —7}XK7DKUK) :/ o5 + tas (f, Dgv™), (4.2)
K K
J T R R (Nl e N ()
oK 0K OKNON

and for all ¢ € Oy,

-
;/@KA ¢ =0. (4.4)

Observe that, for each K, (4.2) and (4.3) yield a local discrete problem with Dirichlet boundary conditions
imposed by Lagrange multipliers, and with a non standard stabilization term, while (4.4) imposes continuity of
the fluxes A across ¥. The coupling between the different local problems stems from the common Dirichlet data ¢,
which is single valued on the interface, as well as from equatlon (4.4).

Problem 4.1 is well posed. Indeed, letting Vh =Vp X Ah, and setting

U7ﬁ>:ZaK(uK7)‘K;UK7ﬁK) ’U /’L (P ZbK 7/’6 ) F(U7ﬁ):ZFK(UKaﬁK)a
K
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where the local bilinear forms ax and bg, and the linear operator ﬁ;{ are respectively defined as

aK(uK,:\\K;vK,ﬁK):/VuK~VvK—/ NEYE
K oK

+ /8 ; WEIE 4 asp(DruX — v NS tDgo™ — i i5), (4.5)
and
e, i50) = [ @ FeX i) = [ foe [ g b ask(f Dok i), (40)
oK K OKNON
Problem 4.1 rewrites as: find (u, X) € @;L, € @y, such that for all (v, i) € @;L, 1 € @y, it holds that
a(u, X v, i) = b(v, i 9) = F(v, 1), blu, X)) = 0. (4.7)

The bilinear forms ax and by are easily seen to satisfy, for all u®,v% € HY(K), i¥ , AKX € L2(0K), ¢ € L2(%),
the continuity bounds

O e T B (e T o s N (o

i+ VeS| -1k) (4.8)

and
b (0", 15 0) < 1% Mo,k lpllo.ox- (4.9)

Setting kerb = {(v, i) € Vi : b(v, i;9) = 0 Vb € &}, we now observe that, with our choice of the space @},
we have that (v, i) € kerb if and only if for some p € Ap, (Ap, as defined in Sect. 2.2) it holds that

i = u(v-vi). (4.10)

Observe that, for (u, X), (v, 1) € kerb, letting A and p denote the corresponding elements of Aj given by (4.10),
it holds that

~

a(u, 3 0,1) = a(w, v, ), F(o,fi) = F(v, ). (4.11)

Then, Lemma 2.7 states an inf-sup condition for @ on ker b. Moreover it is not difficult to prove that

b .
inf sup R (4.12)
ecen (, e, Nellosllv, Allv

As we are dealing with finite dimensional spaces, for which all norms are equivalent, this is an immediate
consequence of the local inf-sup condition

A
in sup ‘[67% 21
#€Pw () Repyi (o) #ll0.ell Ao,

As Vj, and @), are finite dimensional spaces, the inf-sup condition for @ on ker b, and the inf-sup condition (4.12),
together with (4.8) and (4.9) (as we are in finite dimension these imply continuity with respect to the V and L?(3)
norms, though with constants depending on the tessellation), are sufficient to have existence and uniqueness of
the solution to Problem 4.1 (see [17], Thm. 3.2.1).

It is easy to realize that Problem 2.2 and Problem 4.1 are equivalent, and that the solution of the former can
be retrieved by actually computing a solution of the latter. Indeed, if u, A, ¢ is a solution to Problem 4.1, then
(u, A) € kerb and, for the corresponding A given by the relation (4.10), thanks to (4.11) it is easy to check that
(u, \) is a solution to Problem 2.2.
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It is interesting to give an interpretation of the local stabilization term as the result of a suitable definition
of the numerical trace. In the ideal case where sk is the scalar product for the space (H_(K)) (we recall

that H}(K) = {u € H'(K) : f,;u = 0}), endowed with the norm |- |1 k, it is easy to check that letting
Rk : (HY(K))' — H}(K) denote the Riesz’s isomorphism, which, we recall, is defined in such a way that

SK(F, G) = / VRKF . VRKG = <F,RKG> = <G,RKF>,
K
we have R = Dgl. Considering, for simplicity, the case ¢t = 0, we then have

sk (Dru®™ — i N vie ™) = (Vi ™, R (Dru™ — 45 A%))

(i = Ry 3 = /6 (WK — Ry i NN
K

The stabilized discrete local problem ((4.2) and (4.3)) would then rewrite as

/ VuK-VvK—/ XKvK:/ folt,
K 0K K
/ Q/L\K//J:K :/ @KﬁK
oK oK

% = (1 - )uf + oy Re(ViAF), and  §% = o — avg R (f).

with

It isnot difficult to check that, if, instead, we define s asin (3.3), and we set Ag = (Zifg), withag = [ ViV,

then the vector 7 = (z;)Y, = zzlvl}lﬁ would be the vector of coefficient of the function z = Zf\;l zipi € Yk

verifying for all y € Y
/Vm-Vyz/VuK-Vy— XKy.
K K oK

Considering again the case ¢ = 0 and letting K . HQ} (K) — Yk denote the Galerkin projection onto Y, we
would then be able to rewrite the stabilized problem as

/ VuK~V’uK7/ XKUK:/ fo'<, (4.13)
K oK K

| oakae= [ gk, (4.14)
oK 0K

o =X — aﬁKRK(DKuK — fy}‘(:\\K), and 3K = o — oll*" R f.

this time with

Replacing the stiffness matrix A Kk with an approximation (as it is done in the Virtual Element Method, when
computing Ax as the stiffness matrix relative to the operator a® defined by (3.8)), results in replacing the
Galerkin projection operator I with a spectrally equivalent operator I and setting, in (4.14),

o = uX — all* Ry (DgulS — ’y}‘(xK), and 3% = p — all" Rk . (4.15)

More precisely, if @X is defined by equation (3.8), it is not difficult to see that, letting II¥X : H}(K) — Yk be
defined by

K ([0, y) = / VITY (iT5 ) - VIIy + oK (K0 — T (K 0),y — TMy) = / V- vy,
K K
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FIGURE 1. (From left to right) meshes made of deformed hexagons, random Voronoi cells, and
random polygons.

then the local stabilized problem can be rewritten in the form (4.13) to (4.14) with @¥ and $¥ given by (4.15).

Observe that, unlike what would happen if we used a mesh dependent stabilization, such as the one proposed
in [25] — that could be interpreted as resulting from defining the numerical trace as a linear combination of the
actual trace plus some weighted residual on the fluxes (see [20]) — the stabilization proposed here results in a
numerical trace @ which is indeed the trace of an H'(K) function.

5. NUMERICAL RESULTS

We take the domain € to be the unit square [0,1] x [0,1]. We solve Problem 2.1 with Dirichlet boundary
data g, and load term f chosen in such a way that

U= Togn2 cos(8mx) cos(8my)

is the exact solution. The stabilization parameters are chosen to be @ = ¢t = 1. We test our method on three
sequences of meshes with increasingly degrading shape regularity: deformed hexagonal meshes (test case 1,
Fig. 1a), random Voronoi meshes (test case 2, Fig. 1b), and meshes made of random polygons (test case 3,
Fig. 1c) generated as follows: (i) throw random points inside €; (ii) partition them into a given number of
clusters; (iii) join the points of each cluster with the shortest closed tour, i.e. solve the Traveling Salesman
Problem; (iv) mesh the complement of the polygons obtained at step (iii) with triangles and agglomerate them.
Geometrical data for these meshes are shown in Tables 1-3, respectively. For each mesh, we provide: Ng), the

number of elements of 7},; Neq, the number of edges of 7j,; hmax = Mmaxkeq, hx, the maximum element diameter;
1/2

Rmin = Minge7;, Amin,x, Where Amiy x is the minimum distance between any two vertices of K; hay = N
an estimate of the average mesh-size; v9 = maxge7, Z—ﬁ, where pg is the radius of the largest circle that is

contained inside K; v = maxger;, th P N* = maxg Nk, the maximum of the number of edges in each
element. Y

In order to compute u and A we solve the equivalent hybridized Problem 4.1. Since, for each K,
(2.21) and (2.22) yield a local discrete Dirichlet problem, we can resort to a static condensation procedure,
allowing to reduce the size of the resulting algebraic equation by expressing u’< ,XK as a function of the sole
variable ¢|gx . At this point, we can use (4.4), which imposes continuity of the fluxes A, to glue all the local prob-
lems together and obtain a global system of equations where only ¢ appears as unknown. In the present tests
the global system is solved with the direct solver STRUMPACK [26]. Reconstruction of u, A is done by solving
local problems in parallel. Remark that other approaches yielding efficient implementation can be consideres
(see, for instance [2]).
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TABLE 1. Meshes of deformed hexagons.
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Mesh Nel Ned hmax hmin hav Yo Y1 N*
d-hexa; 822 2467 7.113742e-02  8.794092e-03  2.01e-02  1.209727e+01 5.052029 6
d-hexap 1415 4246 5.424294e-02  6.819149e-03 1.53e-02  1.225613e+01 4.934710 6
d-hexas 2270 6811 4.233760e-02  5.124184e-03 1.21e-02 1.240315e+01 5.163088 6
d-hexas 3203 9610 3.566680e-02  4.397059e-03  1.02¢-02  1.223047e+01 5.052014 6
d-hexas 4296 12889 3.082316e-02 3.827593e-03 8.81e-03 1.230091e+01 5.002315 6
d-hexag 5711 17134  2.659539e-02  3.232217e-03  7.64e-03  1.247704e+01 5.130111 6
TABLE 2. Meshes of random Voronoi cells.
Mesh Nel Ned hmax hmin hav Yo e! N*
voroy 2500 7505 6.384666e-02  6.192528e-06 1.15e-02  1.422215e+01 5.852731e+03 11
voroz 5000 15007 4.344562e-02  5.845179e-07 8.17e-03 1.456663e+01  3.404522e+04 14
voroz 10000 30006 3.470002e-02  1.732139e-07 5.77e-03  2.525383e+4-01  9.493668e+04 12
vorog 20000 60010 2.405393e-02  2.138871e-07 4.08e-03 2.087832e+401 7.246942e+04 13
voros 40000 120006 1.726980e-02 8.256465e-08 2.89e-03  2.675024e+01 7.178744e+04 13
vorog 80000 240027 1.140086e-02 5.998477e-09 2.04e-03 2.881822e+401 1.100228e406 13
TABLE 3. Meshes of random polygons. For this class of meshes, vy is not computed.
Mesh Nel Ned hmax hmin hav Y1 N*
tsp1 1000 7367 1.206953e-01  8.610327e-05 1.83e-02 5.607546e+02 36
tsp2 2000 14197 7.574066e-02  4.323479e-05  1.29e-02  1.335083e+03 41
tsps 4000 28003 5.090225e-02  1.338424e-05 9.13e-03 1.614139e+03 41
tspa 8000 54668 4.118779e-02  7.039107e-06 6.46e-03  8.729327e+02 40
tsps 16000 107550 2.654308e-02 1.681474e-06 4.56e-03  3.542747e+03 46
tspe 32000 213570 1.998982e-02 5.452284e-07 3.23e-03  1.564320e+03 65
For the three test cases, Figures 2—4 respectively show the relative errors
e = lu — unllo,0 + [u — un|1x - [ — unllo.0
l[ullo + [ul1,0 ’ l[ulloe
(where | - |1 denotes the broken H! seminorm), for k = k' = 1,...,6 (dotted lines with circular markers)
and k = k' +1 = 2,...,6 (dashed line with asterisks markers) (for technical reasons, related to the actual

implementation of the stabilization term, we did not test the case k = 1, k' = 0). The errors are plotted, in
logarithmic scale, against hay = 1/v/Ng (which ideally behaves as an average element size). The slope of the
gray triangles in the pictures shows the optimal convergence rate attainable by the best approximation (equals
to k for e} and k + 1 for ef).

We observe that the results confirm the theoretical estimate, with the correct order of convergence for the
broken H' norm of the error, i.e. O(h¥), as h tends to zero. Observe also that, as far as the choice of k' is
concerned, when considering the H' norm, there is very little difference between k' = k and k' = k — 1.

As far as the convergence in the L? norm is concerned, observe that, for the first two test cases we get the
optimal convergence rate only for the even values of k. This is consistent with results obtained for non symmetric
interior penalty approximations of linear elliptic problems [5,28]. Surprisingly, for the third test case it appears
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that the method gets very close to the optimal order of convergence also for the odd values of k. Also to be
remarked is the fact that, when considering the error in the L? norm, the discretization with &’ = k behaves
sensibly better than the one with ¥/ = k — 1, at least for low values of k. In particular, for the first two test
cases, the curve relative to the discretization with k = k&’ = 1 is superposed to the one relative to k = 2, k' = 1.
If, for these two cases, we compare the number of degrees of freedom, we realize that the discretization with
k' = k = 1 allows to attain the same L? error as the one with k = 2, k¥’ = 1, with 4 x N, less degrees of freedom.
In general, for a fixed k using k' = k yields an error 3 to 4 times smaller than the one obtained with k' = k —1,
with 1 extra degree of freedom per edge.

6. CONCLUSIONS

We presented and analyzed a hybrid discontinuous Galerkin method on a polygonal tessellation for the Poisson
problem in two dimensions, with a new design for the stabilization term, based on an algebraic representation for
the scalar product of the duals of the spaces H!(K) for K element of the tessellation. Following the general recipe
provided in [13], such scalar products can, in fact, be numerically realized, via the introduction of a (minimal)
auxiliary space, for which no approximation properties are required but which has to satisfy an inf-sup condition.
Under quite weak shape regularity assumptions, allowing for the presence of elements with very small edges,
we proved optimal error estimates (confirmed by the results of the numerical tests), thus demonstrating the
feasibility and the potential of a stabilization approach where some residual term is penalized in the norm of the
dual space where it naturally lives. We believe that such an approach can potentially be applied to replace the
mesh dependent stabilization terms appearing also in other discontinuous Galerkin formulations, and, possibly,
also beyond the framework of discontinuous Galerkin methods.
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