Nonlinear methods for model reduction
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 55 (2021) no. 2, pp. 507-531

Typical model reduction methods for parametric partial differential equations construct a linear space V$$ which approximates well the solution manifold M consisting of all solutions u(y) with y the vector of parameters. In many problems of numerical computation, nonlinear methods such as adaptive approximation, n-term approximation, and certain tree-based methods may provide improved numerical efficiency over linear methods. Nonlinear model reduction methods replace the linear space V$$ by a nonlinear space Σ$$. Little is known in terms of their performance guarantees, and most existing numerical experiments use a parameter dimension of at most two. In this work, we make a step towards a more cohesive theory for nonlinear model reduction. Framing these methods in the general setting of library approximation, we give a first comparison of their performance with the performance of standard linear approximation for any compact set. We then study these methods for solution manifolds of parametrized elliptic PDEs. We study a specific example of library approximation where the parameter domain is split into a finite number N of rectangular cells, with affine spaces of dimension m assigned to each cell, and give performance guarantees with respect to accuracy of approximation versus m and N.

DOI : 10.1051/m2an/2020057
Classification : 41A10, 41A58, 41A63, 65N15
Keywords: Parametric PDEs, reduced modeling, piecewise polynomials
@article{M2AN_2021__55_2_507_0,
     author = {Bonito, Andrea and Cohen, Albert and Devore, Ronald and Guignard, Diane and Jantsch, Peter and Petrova, Guergana},
     title = {Nonlinear methods for model reduction},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {507--531},
     year = {2021},
     publisher = {EDP-Sciences},
     volume = {55},
     number = {2},
     doi = {10.1051/m2an/2020057},
     mrnumber = {4230422},
     zbl = {1476.41004},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/m2an/2020057/}
}
TY  - JOUR
AU  - Bonito, Andrea
AU  - Cohen, Albert
AU  - Devore, Ronald
AU  - Guignard, Diane
AU  - Jantsch, Peter
AU  - Petrova, Guergana
TI  - Nonlinear methods for model reduction
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2021
SP  - 507
EP  - 531
VL  - 55
IS  - 2
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/m2an/2020057/
DO  - 10.1051/m2an/2020057
LA  - en
ID  - M2AN_2021__55_2_507_0
ER  - 
%0 Journal Article
%A Bonito, Andrea
%A Cohen, Albert
%A Devore, Ronald
%A Guignard, Diane
%A Jantsch, Peter
%A Petrova, Guergana
%T Nonlinear methods for model reduction
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2021
%P 507-531
%V 55
%N 2
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/m2an/2020057/
%R 10.1051/m2an/2020057
%G en
%F M2AN_2021__55_2_507_0
Bonito, Andrea; Cohen, Albert; Devore, Ronald; Guignard, Diane; Jantsch, Peter; Petrova, Guergana. Nonlinear methods for model reduction. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 55 (2021) no. 2, pp. 507-531. doi: 10.1051/m2an/2020057

[1] M. Bachmayr, A. Cohen and G. Migliorati, Sparse polynomial approximation of parametric elliptic PDEs. Part I: affine coefficients. ESAIM:M2AN 51 (2017) 321–339. | MR | Zbl | Numdam | DOI

[2] P. Binev, A. Cohen, W. Dahmen, R. Devore, G. Petrova and P. Wojtaszczyk, Convergence rates for greedy algorithms in reduced basis methods. SIAM J. Math. Anal. 43 (2011) 1457–1472. | MR | Zbl | DOI

[3] P. Binev, A. Cohen, W. Dahmen, R. Devore, G. Petrova and P. Wojtaszczyk, Data assimilation in reduced modeling. SIAM/ASA J. Uncertainty Quantification 5 (2017) 1–29. | MR | Zbl | DOI

[4] A. Bonito, R. Devore, D. Guignard, P. Jantsch and G. Petrova, Polynomial approximation of anisotropic analytic functions of several variables. Constructive Approximation (2020) 1–30. | MR | Zbl

[5] A. Chkifa, A. Cohen, R. Devore and C. Schwab, Sparse adaptive Taylor approximation algorithms for parametric and stochastic elliptic PDEs. ESAIM: M2AN 47 (2013) 253–280. | MR | Numdam | Zbl | DOI

[6] A. Cohen and R. Devore, Approximation of high-dimensional parametric PDEs. Acta Numer. 24 (2015) 1–159. | MR | Zbl | DOI

[7] A. Cohen and G. Migliorati, Multivariate approximation in downward closed polynomial spaces. In: Contemporary Computational Mathematics – A Celebration of the 80th Birthday of Ian Sloan. Springer (2018) 233–282. | MR | Zbl | DOI

[8] A. Cohen, W. Dahmnen, R. Devore and J. Nichols, Reduced basis greedy selection using random training sets. ESAIM:M2AN 54 (2020) 1509–1524. | MR | Zbl | Numdam | DOI

[9] R. Devore, Nonlinear approximation. Acta Numer. 7 (1998) 51–150. | MR | Zbl | DOI

[10] R. Devore, G. Petrova and P. Wojtaszczyk, Greedy algorithms for reduced bases in Banach spaces. Constr. Approximation 37 (2013) 455–466. | MR | Zbl | DOI

[11] J. L. Eftang, A. T. Patera and E. M. Rønquist, An " h p " certified reduced basis method for parametrized elliptic partial differential equations. SIAM J. Sci. Comput. 32 (2010) 3170–3200. | MR | Zbl | DOI

[12] Y. Maday and B. Stamm, Locally adaptive greedy approximations for anisotropic parameter reduced basis spaces. SIAM J. Sci. Comput. 35 (2013) A2417–A2441. | MR | Zbl | DOI

[13] Y. Maday, A. T. Patera, J. Penn and M. Yano, A parameterized-background data-weak approach to variational data assimilation: formulation, analysis, and application to acoustics. Int. J. Numer. Meth. Eng. 102 (2014) 933–965. | MR | Zbl | DOI

[14] G. Pisier, The Volume of Convex Bodies and Banach Space Geometry. Cambridge University Press 94 (1999). | Zbl | MR

[15] V. Temlykov, Nonlinear Kolmogorov widths. Math. Notes 63 (1998) 785–795. | Zbl | MR | DOI

[16] Z. Zou, D. Kouri and W. Aquino, An adaptive local reduced basis method for solving PDEs with uncertain inputs and evaluating risk. Comput. Methods Appl. Mech. Eng. 345 (2019) 302–322. | MR | Zbl | DOI

Cité par Sources :