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NONLINEAR METHODS FOR MODEL REDUCTION

Andrea Bonito1, Albert Cohen2, Ronald DeVore1, Diane Guignard1,
Peter Jantsch1,* and Guergana Petrova1

Abstract. Typical model reduction methods for parametric partial differential equations construct a
linear space 𝑉𝑛 which approximates well the solution manifoldℳ consisting of all solutions 𝑢(𝑦) with
𝑦 the vector of parameters. In many problems of numerical computation, nonlinear methods such as
adaptive approximation, 𝑛-term approximation, and certain tree-based methods may provide improved
numerical efficiency over linear methods. Nonlinear model reduction methods replace the linear space
𝑉𝑛 by a nonlinear space Σ𝑛. Little is known in terms of their performance guarantees, and most existing
numerical experiments use a parameter dimension of at most two. In this work, we make a step towards
a more cohesive theory for nonlinear model reduction. Framing these methods in the general setting of
library approximation, we give a first comparison of their performance with the performance of standard
linear approximation for any compact set. We then study these methods for solution manifolds of
parametrized elliptic PDEs. We study a specific example of library approximation where the parameter
domain is split into a finite number 𝑁 of rectangular cells, with affine spaces of dimension 𝑚 assigned
to each cell, and give performance guarantees with respect to accuracy of approximation versus 𝑚 and
𝑁 .
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1. Introduction

Complex systems are frequently described by parametric partial differential equations (PDEs) that take the
general form

𝒫(𝑢, 𝑦) = 0, (1.1)

where 𝑦 ranges over some parameter domain 𝑌 , and 𝑢 = 𝑢(𝑦) is the corresponding solution which is assumed
to be uniquely defined in some Hilbert space 𝑉 for every 𝑦 ∈ 𝑌 . We denote by ‖ · ‖ = ‖ · ‖𝑉 and ⟨·, ·⟩ the norm
and inner product of 𝑉 , respectively. In what follows, we assume that the parameters are countably infinite and
have been rescaled so that 𝑌 = [−1, 1]N. The case of a finite dimensional parameter 𝑦 = (𝑦1, . . . , 𝑦𝐽) can always
be recast in this setting by considering that 𝑢(𝑦) does not depend of the variable 𝑦𝑗 for 𝑗 > 𝐽 .

There are three main problem areas associated with parametric PDEs:
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*Corresponding author: pjantsch@tamu.edu

Article published by EDP Sciences c○ EDP Sciences, SMAI 2021

https://doi.org/10.1051/m2an/2020057
https://www.esaim-m2an.org
mailto:pjantsch@tamu.edu
https://www.edpsciences.org


508 A. BONITO ET AL.

(i) building forward solvers to efficiently compute approximations to 𝑢(𝑦) for any given 𝑦 ∈ 𝑌 ;
(ii) estimating the state 𝑢(𝑦) from data observation when the parameter 𝑦 is unknown;

(iii) estimating the parameter 𝑦 that can give rise to an observed state 𝑢.

One commonly used approach to tackle these three ranges of problems in a numerically efficient way is
reduced modeling. In its most usual form, it is based on introducing a linear space 𝑉𝑛 of low dimension 𝑛 which
is tailored to provide an accurate approximation to all solutions 𝑢(𝑦) as 𝑦 varies in 𝑌 , or equivalently, to the
solution manifold,

ℳ := {𝑢(𝑦) : 𝑦 ∈ 𝑌 }. (1.2)

1.1. Linear reduced models

There are two common approaches to finding a reduced model 𝑉𝑛. The first one is to establish that the
forward map 𝑦 ↦→ 𝑢(𝑦) has a certain analyticity in 𝑦, and thereby admits a Taylor series representation

𝑢(𝑦) =
∑︁
𝜈∈ℱ

𝑡𝜈𝑦
𝜈 , 𝑡𝜈 ∈ 𝑉. (1.3)

Here ℱ denotes the set of 𝜈 = (𝜈1, 𝜈2, . . . ) which have finite support and whose entries are nonnegative integers.
Quantitative bounds for the size of the Taylor coefficients 𝑡𝜈 allow one to prove that for each 𝜀, there is a finite
set Λ = Λ(𝜀) ⊂ ℱ such that

sup
𝑦∈𝑌

‖𝑢(𝑦)−
∑︁
𝜈∈Λ

𝑡𝜈𝑦
𝜈‖𝑉 ≤ 𝜀. (1.4)

The space 𝑉𝑛 := span{𝑡𝜈 : 𝜈 ∈ Λ} provides the reduced model with 𝑛 = #(Λ). In this case, an approximation
of 𝑢(𝑦) in 𝑉𝑛 is readily provided by the function

𝑢̂(𝑦) :=
∑︁
𝜈∈Λ

𝑡𝜈𝑦
𝜈 , (1.5)

that is, using the 𝑦𝜈 as the coefficients of 𝑢̂ in the basis 𝑡𝜈 . Quantitative bounds on the cardinality of Λ(𝜀) are
known under various assumptions on the coefficients of the PDE [6].

The second approach to finding a reduced model is to judiciously select certain snapshots 𝑢(𝑦1), . . . , 𝑢(𝑦𝑛) of
𝑢 via a greedy procedure, and use the space 𝑉𝑛 := span{𝑢(𝑦1), . . . , 𝑢(𝑦𝑛)} as the reduced model. In this case,
the approximation of 𝑢(𝑦) in 𝑉𝑛 requires a projection step.

Recent results show that there can be a numerical advantage to finding a reduced basis by the Taylor
coefficient approach. In the case of elliptic and certain parabolic PDEs, it is sometimes possible to find the
set Λ a priori by exploiting the parametric form of the diffusion coefficients [1]. This avoids computationally
expensive search algorithms that are a component of greedy reduced basis selections. On the other hand, greedy
procedures have the advantage that they are provably near-optimal for finding a linear space to approximate
𝑢, in the sense that their convergence rates are similar to those of the optimal linear spaces for approximating
ℳ [2]. Moreover, as we illustrate further in this paper, numerical experiments show that for a prescribed target
accuracy, the greedy generated spaces that meet this accuracy are of significantly lower dimension than their
polynomial counterparts.

There is a rigorous theory that quantifies the approximation performance of both of these reduced models;
see [6] for a summary of known results. The theory is most fully developed in the case of elliptic PDEs of the
form

− div (𝑎∇𝑢) = 𝑓, (1.6)

set on a physical domain 𝐷 ⊂ R𝑑, say with Dirichlet boundary conditions 𝑢|𝜕𝐷 = 0, and where the diffusion
function 𝑎 has an affine parametrization

𝑎(𝑦) = 𝑎̄+
∑︁
𝑗≥1

𝑦𝑗𝜓𝑗 , (1.7)
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for some given functions 𝑎̄ and (𝜓𝑗)𝑗≥1 in 𝐿∞(𝐷). These functions are assumed to satisfy the condition⃦⃦⃦⃦∑︀
𝑗≥1 |𝜓𝑗 |
𝑎̄

⃦⃦⃦⃦
𝐿∞(𝐷)

< 1, (1.8)

which is equivalent to the following assumption.

Uniform Ellipticity Assumption (UEA): there exist 0 < 𝑎min ≤ 𝑎max <∞ such that

0 < 𝑎min ≤ 𝑎(𝑦) ≤ 𝑎max <∞, 𝑦 ∈ 𝑌. (1.9)

Lax–Milgram theory then ensures that whenever 𝑓 ∈ 𝑉 ′ = 𝐻−1(𝐷), for each 𝑦 ∈ 𝑌 , the corresponding solution
𝑢(𝑦) is uniquely defined in the Hilbert space 𝑉 := 𝐻1

0 (𝐷) endowed with the norm ‖ · ‖𝑉 := ‖∇ · ‖𝐿2(𝐷).

1.2. Nonlinear reduced models

It is known that in many contexts, numerical methods based on nonlinear approximation outperform linear
methods, in the sense of requiring a much reduced computational cost to achieve a prescribed error tolerance [9].
This motivates us to consider replacing the linear space 𝑉𝑛 by a nonlinear space Σ𝑛 depending on 𝑛 parameters.
We call such a space Σ𝑛 a nonlinear reduced model. This idea has already been suggested and studied in certain
settings; see e.g. [11,12,16]. However, up till now, there has not been a unified study of nonlinear model reduction.
The purpose of the present paper is to provide a formal theory for such methods of nonlinear model reduction
and to prove some first results that quantify their performance.

The nonlinear reduced models studied in this paper can be placed into the form of what is sometimes
called library approximation. Given a Banach space 𝑋, a library ℒ is a finite collection of affine spaces 𝐿𝑗 :=
𝑥𝑗 +𝑋𝑗 , 𝑗 = 1, . . . , 𝑁 , where each 𝑋𝑗 is a linear space of dimension at most 𝑚, and each 𝑥𝑗 ∈ 𝑋, 𝑗 = 1, . . . , 𝑁 .
We set each 𝑋𝑗 = {0} in the case 𝑚 = 0. For an element 𝑥 ∈ 𝑋, the error of approximation of 𝑥 by the library
ℒ is

𝐸(𝑥,ℒ) := inf
𝐿∈ℒ

dist(𝑥, 𝐿)𝑋 . (1.10)

In other words, given 𝑥, we choose the best of the affine spaces 𝐿𝑗 = 𝑥𝑗 +𝑋𝑗 , 𝑗 = 1, . . . , 𝑁 , to approximate 𝑥.
Given a library ℒ and a compact set 𝐾 ⊂ 𝑋, we define

𝐸ℒ(𝐾) := sup
𝑥∈𝐾

𝐸(𝑥,ℒ). (1.11)

Here, in the context of reduced models for parametric PDEs, the idea is to keep 𝑚 small when compared to the
dimension 𝑛 used in linear models 𝑉𝑛, while retaining the same accuracy of the reduced model.

For parametric PDEs, we take 𝑋 = 𝑉 and 𝐾 = ℳ := {𝑢(𝑦) : 𝑦 ∈ 𝑌 } to be the solution manifold of the
PDE. A library ℒ would then consist of affine spaces

𝐿𝑗 := 𝑢𝑗 + 𝑉𝑗 , (1.12)

where each 𝑢𝑗 ∈ 𝑉 and each 𝑉𝑗 ⊂ 𝑉 has dimension at most 𝑚. Then, the best approximation to 𝑢(𝑦) from 𝐿𝑗
is

𝑢𝑗 + 𝑃𝑉𝑗 (𝑢(𝑦)− 𝑢𝑗), (1.13)

where 𝑃𝑉𝑗
is the 𝑉 -orthogonal projection onto 𝑉𝑗 . In this context, when presented with a parameter 𝑦 for which

we wish to compute an online approximation to 𝑢(𝑦), the choice of which space 𝐿𝑗 to use from a given library
ℒ could be decided in several ways, among which we mention:

(i) searching for a computable bound for dist(𝑢(𝑦), 𝐿𝑗)𝑉 = ‖𝑢−𝑢𝑗−𝑃𝑉𝑗
(𝑢(𝑦)−𝑢𝑗)‖𝑉 , and choosing the value

of 𝑗 that minimizes this surrogate quantity;
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(ii) building an a priori partition of the parameter domain 𝑌 into cells 𝑄𝑗 and construct an 𝐿𝑗 for each cell.
Then the choice of 𝐿𝑗 for approximating 𝑢(𝑦) is determined by the cell 𝑄𝑗 containing 𝑦.

Only the latter procedure is considered in this paper.
Returning back to the case of a general Banach space 𝑋, we denote by  L𝑚,𝑁 =  L𝑚,𝑁 (𝑋) the collection of

all libraries ℒ = {𝐿1, . . . , 𝐿𝑁} containing 𝑁 affine spaces of dimension at most 𝑚. If we fix the values of 𝑚 and
𝑁 , then the best performance of a library with these fixed values is

𝑑𝑚,𝑁 (𝐾) := inf
ℒ∈  L𝑚,𝑁

𝐸ℒ(𝐾). (1.14)

We call 𝑑𝑚,𝑁 the library width of 𝐾. This definition slightly differs from that introduced in [15] in which the
spaces 𝐿𝑗 are taken to be linear instead of affine.

Library widths include the two standard approximation concepts of widths and entropy. Recall that if 𝐾 is
a compact set in a Banach space 𝑋 then its Kolmogorov 𝑚 width is

𝑑𝑚(𝐾) := 𝑑𝑚(𝐾)𝑋 := inf
dim(𝑌 )=𝑚

dist(𝐾,𝑌 )𝑋 , (1.15)

where the infimum is taken over all linear spaces 𝑌 of dimension 𝑚. Thus the Kolmogorov 𝑚 width of 𝐾 is the
smallest error that can be obtained by approximation by linear spaces of dimension 𝑚. It follows that we can
sandwich the library width 𝑑𝑚,1(𝐾)𝑋 between Kolmogorov widths by

𝑑𝑚+1(𝐾) ≤ 𝑑𝑚(𝐾0) = 𝑑𝑚,1(𝐾) ≤ 𝑑𝑚(𝐾), (1.16)

where 𝐾0 = 𝐾 − 𝑥0 for some suitable 𝑥0 ∈ 𝑋. At the other extreme,

𝑑0,2𝑛(𝐾) = 𝜀𝑛(𝐾), (1.17)

where 𝜀𝑛(𝐾) is the 𝑛-th entropy number of 𝐾, that is, the smallest number 𝜀 such that 𝐾 can be covered by
2𝑛 balls in 𝑋 of radius 𝜀.

The construction of linear reduced models via greedy algorithms has offline cost that increases exponentially
as the dimension of the reduced space increases. This is due to the fact that the greedy algorithm needs to
search for the reduced basis elements through a large training set, which should in principle resolve the solution
manifold ℳ to the same accuracy 𝜀 that is targeted for the reduced basis space 𝑉𝑛. This is one of the motivations
for using library approximation with a small value of 𝑚 in the context of parametric PDEs. For example, it
is known that if the Kolmogorov 𝑛 width of the solution manifold 𝑑𝑛(ℳ) decays like 𝒪(𝑛−𝑠) for some 𝑠 > 0,
then taking 𝜀 = 𝑛−𝑠, the training set needed to achieve accuracy 𝜀 should have cardinality 𝒪(𝑒𝐶𝜀

−1/𝑠

), or
equivalently 𝒪(𝑒𝑐𝑛), for some fixed constants 𝐶, 𝑐 > 0. The resulting offline cost becomes prohibitive as 𝜀 is
getting small (or 𝑛 is getting large). The reader can find a detailed analysis of this cost of greedy constructions
in [6] or [8]. We should note that it was recently shown in [8] that the offline cost of greedy constructions (under
certain model assumptions on the parametric coefficients) can be reduced to polynomial growth in 𝜀 by using
a random training set, provided we are now willing to accept results that hold with high probability. In order
not to confuse various issues, we put this aside when going further in this paper.

Because of the offline cost, it may be impossible to build a linear model using a greedy algorithm when the
user prescribed error is too small. On the other hand, by choosing 𝑚 small and an appropriate partitioning
(𝑄𝑗)𝑗=1,...,𝑁 for 𝑌 , the offline cost is moderate and a nonlinear reduced model may be constructed provided 𝑁
is not too large. Keeping 𝑚 small may also be useful in other contexts, such as reducing the online cost for the
forward problem and numerical savings for state and parameter estimation. In fact the latter is one of our main
motivations for nonlinear reduced models, and we discuss it in more detail in Section 4.
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1.3. Outline of the paper

We begin in Section 2 by giving some general remarks on library approximation for a general compact set
𝐾 in a Banach space 𝑋 whose Kolmogorov 𝑛 widths decay like 𝒪(𝑛−𝑟) for some 𝑟 > 0. Then given any target
accuracy 𝜀 and writing 𝜀 = 𝑛−𝑟 for a suitable integer 𝑛, we show that 𝑑𝑚,𝑁 (𝐾) ≤ 𝜀 provided 𝑁 ≥ 2𝑐(𝑛−𝑚),
with 𝑐 depending only on 𝑟. This result gives a bound on how many spaces would be needed in the library if we
restrict the dimension of the component spaces 𝑋𝑗 to be at most 𝑚. This provides a first quantitative bound for
general compact sets. However, it is well known that nonlinear methods are not beneficial for certain compact
sets, and thus this estimate is very pessimistic.

From Section 3, our paper is directed at using library approximation for reduced models for parametric PDEs.
We take 𝐾 = ℳ where ℳ is the solution manifold of a parametric elliptic PDE with affine coefficients (1.7).
As already indicated, the library approximation studied in this paper can be viewed as first partitioning the
parameter set into 𝑁 cells 𝑄𝑗 and assigning an affine space 𝐿𝑗 = 𝑢𝑗 + 𝑉𝑗 with 𝑉𝑗 of dimension at most 𝑚
on each cell. The main issues therefore are how to choose the cells and how to design the spaces 𝑉𝑗 . Given a
target accuracy 𝜀 and a prescribed target 𝑚 for the dimension of the spaces in the library, we are interested in
strategies for generating a good partition of 𝑌 into 𝑁 cells with a bound on the number 𝑁 of cells needed to
guarantee the prescribed accuracy.

In light of these issues, we consider a tensor product strategy for subdividing the parameter domain into
hyperrectangles 𝑄𝑗 , and find a polynomial space of dimension 𝑚+ 1 associated with each rectangle. Thus, the
reduced model can be viewed as a piecewise polynomial (in 𝑦) approximation to 𝑢(𝑦). We then give bounds on
𝑁 which are a significant improvement over those in Section 2 and show how these results can be used to give
concrete bounds when specific assumptions are made on the affine representation (1.7).

In Section 4, we present the results of various numerical tests that confirm our theoretical results. First,
we compare the performance (on the entire parameter domain 𝑌 ) of the two primary linear reduced models,
namely polynomial and greedy. These results show a dramatic gain in using greedy algorithms in our examples.
We implement our numerical methods for partitioning in the case of piecewise polynomial nonlinear models,
where our examples show that suitable error can be achieved with a reasonable number of cells provided 𝑚 is
not too small. We then provide a discussion and numerical experiments of nonlinear models based on piecewise
polynomials in the setting of data assimilation.

Finally in Section 5, we conclude with remarks on the possible advantages and disadvantages of library based
reduced models for applications such as online solvers, data assimilation, and parameter estimation. This section
also gives us an opportunity to mention several areas where further research is needed for a better understanding
of nonlinear model reduction.

2. General remarks on library approximation

We begin by making some general remarks on library approximation. The central issue we address in this
section is the size of the library needed to achieve a given target accuracy when we require dimension 𝑚 of the
spaces in the library. The following theorem gives a first, very pessimistic, bound for the size of the library,
which we denote by 𝑁 .

Theorem 2.1. Let 𝐾 be a compact set in a Banach space 𝑋. If for some 𝑥0 ∈ 𝑋 the Kolmogorov widths of
𝐾0 = 𝐾 − 𝑥0 satisfy

𝑑𝑘(𝐾0)𝑋 ≤𝑀𝑘−𝑟, 𝑘 ≥ 1, (2.1)

for some 𝑀 > 0, then for any 0 ≤ 𝑚 ≤ 𝑛, one has

𝑑𝑚,𝑁 (𝐾) ≤ (1 + 22𝑟)𝑀𝑛−𝑟, (2.2)

provided 𝑁 ≥ 𝐵𝑛−𝑚𝑟 with 𝐵𝑟 depending only on 𝑟. In other words, we can obtain the same accuracy as in (2.1)
by using spaces of the lower dimension 𝑚, provided we take 𝑁 of them.
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Proof. Since 𝐾 = 𝐾0 + 𝑥0 and since the definition 𝑑𝑚,𝑁 (𝐾) uses libraries of affine spaces, it is sufficient to
prove the theorem for 𝑥0 = 0 and thus 𝐾0 = 𝐾.

Let us first note that there is a nested sequence of spaces 𝑋𝑘 ⊂ 𝑋𝑘+1 with dim(𝑋𝑘) = 𝑘 and

dist(𝐾,𝑋𝑘)𝑋 ≤ 22𝑟𝑀𝑘−𝑟, 𝑘 ≥ 1. (2.3)

Indeed, from (2.1), there are linear spaces 𝐿𝑗 , 𝑗 ≥ 0, of dimension 2𝑗 , and

dist(𝐾,𝐿𝑗)𝑋 ≤𝑀2−𝑗𝑟.

The spaces 𝑌𝑗 := 𝐿0 + · · ·+ 𝐿𝑗 have dimension 𝑛𝑗 with 2𝑗 ≤ 𝑛𝑗 ≤ 2𝑗+1, and satisfy

dist(𝐾,𝑌𝑗)𝑋 ≤𝑀2−𝑗𝑟 = 22𝑟𝑀2−(𝑗+2)𝑟 ≤ 22𝑟𝑀𝑛−𝑟𝑗+1, 𝑗 ≥ 0. (2.4)

Since the spaces 𝑌𝑗 are nested, and 𝑛0 ≤ . . . ≤ 𝑛𝑗 ≤ . . ., we can find functions 𝜑1, 𝜑2, . . . , such that for each 𝑗,
the functions 𝜑1, . . . , 𝜑𝑛𝑗 are a basis for 𝑌𝑗 . The spaces

𝑋0 := {0}, 𝑋𝑘 := span{𝜑1, . . . , 𝜑𝑘}, 𝑘 ≥ 1,

provide such a nested sequence, since for 𝑛𝑗 ≤ 𝑘 ≤ 𝑛𝑗+1 we have 𝑌𝑗 ⊂ 𝑋𝑘 ⊂ 𝑌𝑗+1 and

dist(𝐾,𝑋𝑘)𝑋 ≤ dist(𝐾,𝑌𝑗)𝑋 ≤ 22𝑟𝑀𝑛−𝑟𝑗+1 ≤ 22𝑟𝑀𝑘−𝑟, 𝑘 ≥ 1.

Case 1. We fix 𝑚 and first consider the case when 𝑛 = 𝑚 + 2𝑗 with 𝑗 = −1, 0, 1, . . . , where for the purposes
of this proof we replace 2−1 by 0 when 𝑗 = −1. We proceed by induction on 𝑗 and use the nested spaces 𝑋𝑘

defined above. We define 𝑊 := 𝑋𝑚, which is a space of dimension 𝑚, and for each 𝑗 ≥ 0, we further define

𝑍𝑗 := span{𝜑𝑚+1, . . . , 𝜑𝑚+2𝑗}, dim(𝑍𝑗) = 2𝑗 , and thus 𝑊 + 𝑍𝑗 = 𝑋𝑚+2𝑗 .

We show by induction that for each 𝑗 ≥ −1, there is a set 𝑆𝑗 ⊂ 𝑍𝑗 such that:
(i) the library ℒ𝑗 := {𝑠+𝑊, 𝑠 ∈ 𝑆𝑗} provides the approximation error

𝐸ℒ𝑗
(𝐾) ≤ (1 + 22𝑟)𝑀 [𝑚+ 2𝑗 ]−𝑟, 𝑗 ≥ −1; (2.5)

(ii) for each 𝑗 ≥ −1, the cardinality of 𝑆𝑗 is

#(𝑆𝑗) =: 𝑁𝑗 ≤ (1 + 2𝑟+1𝑅)2
𝑗+1
, 𝑅 := 1 + 22𝑟+1. (2.6)

When 𝑗 = −1, we can take the set 𝑆−1 = {0}. We obtain the desired error bound (i) because of (2.3), and
(ii) is clear since 𝑁−1 = #(𝑆−1) = 1.
Suppose now that we have established (i) and (ii) for some value of 𝑗. To advance the induction to 𝑗 + 1
we do the following. Let 𝑋̂ := 𝑋/𝑊 denote the quotient space of 𝑋 modulo 𝑊 with elements [𝑥] = 𝑥+𝑊 ,
𝑥 ∈ 𝑋. We equip this space with its usual norm

‖[𝑥]‖𝑋̂ := dist(𝑥,𝑊 )𝑋 . (2.7)

We then have the finite dimensional spaces 𝑍𝑗 := {[𝑧] : 𝑧 ∈ 𝑍𝑗}, 𝑗 = 0, 1, . . . . For each 𝑧ℓ ∈ 𝑆𝑗 ⊂ 𝑍𝑗 , we
define

𝐵ℓ = 𝐵([𝑧ℓ], 𝑅0) := {[𝑧] ∈ 𝑍𝑗+1 : ‖[𝑧]− [𝑧ℓ]‖𝑋̂ ≤ 𝑅0}, 𝑅0 := 𝑅𝑀 [𝑚+ 2𝑗 ]−𝑟,

the ball in 𝑍𝑗+1 with center [𝑧ℓ] and radius 𝑅0. It is known [14, p.63] that for any 𝜀 > 0, the covering number
𝑁𝜀(𝑈) for the unit ball 𝑈 in 𝑍𝑗+1 satisfies

𝑁𝜀(𝑈) ≤ (1 + 2/𝜀)2
𝑗+1
.
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We next set 𝜀 := 𝑀 [𝑚+ 2𝑗+1]−𝑟. It follows that the covering number of 𝐵ℓ satisfies

𝑁𝜀(𝐵ℓ) ≤ (1 + 2𝑅𝑀 [𝑚+ 2𝑗 ]−𝑟/𝜀)2
𝑗+1

≤ (1 + 2𝑟+1𝑅)2
𝑗+1
, ℓ = 1, . . . , 𝑁𝑗 . (2.8)

Consider now the union of all the 𝜀 coverings of the balls 𝐵ℓ, ℓ = 1, . . . , 𝑁𝑗 , and define 𝑆𝑗+1 ⊂ 𝑍𝑗+1 to be
the collection {𝑠} of representatives of the centers [𝑠] of these balls, that is

𝑁𝑗⋃︁
ℓ=1

𝐵ℓ ⊂
⋃︁

𝑠∈𝑆𝑗+1

𝐵([𝑠], 𝜀).

Clearly,
#(𝑆𝑗+1) ≤ 𝑁𝑗(1 + 2𝑟+1𝑅)2

𝑗+1
≤ (1 + 2𝑟+1𝑅)2

𝑗+2
, (2.9)

where we have used the induction hypothesis (ii) in the first inequality. This advances the induction assump-
tion for the bound on #(𝑆𝑗).
We now check that the library ℒ𝑗+1 := {𝑠+𝑊, 𝑠 ∈ 𝑆𝑗+1} provides the desired approximation error bound.
Let 𝑥 ∈ 𝐾. Then, it follows from (2.3) that there is a 𝑧 ∈ 𝑍𝑗+1 such that

‖[𝑥]− [𝑧]‖𝑋̂ ≤ 22𝑟𝑀 [𝑚+ 2𝑗+1]−𝑟. (2.10)

We also know from our induction hypothesis (i) that there is a 𝑧ℓ ∈ 𝑆𝑗 , such that

‖[𝑥]− [𝑧ℓ]‖𝑋̂ ≤ (1 + 22𝑟)𝑀 [𝑚+ 2𝑗 ]−𝑟.

Hence,
‖[𝑧]− [𝑧ℓ]‖𝑋̂ ≤ ‖[𝑥]− [𝑧]‖𝑋̂ + ‖[𝑥]− [𝑧ℓ]‖𝑋̂ ≤ (1 + 22𝑟+1)𝑀 [𝑚+ 2𝑗 ]−𝑟,

and so [𝑧] is in the ball 𝐵ℓ. Therefore, there is an 𝑠 ∈ 𝑆𝑗+1 such that

‖[𝑧]− [𝑠]‖𝑋̂ ≤𝑀 [𝑚+ 2𝑗+1]−𝑟.

Combining this with (2.10), we obtain

‖[𝑥]− [𝑠]‖𝑋̂ ≤ (1 + 22𝑟)𝑀 [𝑚+ 2𝑗+1]−𝑟. (2.11)

This advances our induction hypothesis on the error bound.

Case 2. We consider any 𝑛, not necessarily of the form 𝑚 + 2𝑗 . For any 𝑗 such that 𝑚 + 2𝑗 ≥ 𝑛, the library
ℒ𝑗 will provide the error (1 + 22𝑟)𝑀𝑛−𝑟 because of (2.5). So, we choose 𝑗 as the smallest integer such that
2𝑗 ≥ 𝑛−𝑚. For this value of 𝑗, we have 2𝑗−1 ≤ 𝑛−𝑚, and from (2.6) we obtain the bound

𝑁𝑗 ≤ (1 + 2𝑟+1𝑅)2
𝑗+1

= 𝐵2𝑗−1

𝑟 ≤ 𝐵𝑛−𝑚𝑟 , (2.12)

with 𝐵𝑟 := (1 + 2𝑟+1𝑅)4.

�

Remark 2.2. We may restate Theorem 2.1 as follows. If

𝑑𝑘(𝐾0) ≤𝑀𝑘−𝑟, 𝑘 ≥ 1,

then for any 𝜀 > 0 and 𝑚 ≥ 0, there exists a library ℒ of 𝑚 dimensional affine spaces, which approximates 𝐾
to accuracy 𝜀 and has cardinality

𝑁 = #(ℒ) ≤ exp(𝛼𝜀−1/𝑟 − 𝛽𝑚),

with 𝛽 = ln(𝐵𝑟) and 𝛼 = ln(𝐵𝑟)
[︀
𝑀(1 + 22𝑟)

]︀1/𝑟. In particular, the library widths of 𝐾 satisfy

𝑑𝑚,𝑁 (𝐾) ≤ 𝜀, whenever 𝑁 ≥ exp(𝛼𝜀−1/𝑟 − 𝛽𝑚).
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Theorem 2.1 is very pessimistic since it holds for all compact sets 𝐾 and general Banach spaces 𝑋. As we
know in other settings, some compact model classes do not benefit from nonlinear approximation. Also, note
that in the proof of the theorem, we use the same space 𝑊 of dimension 𝑚 for each of the affine spaces 𝐿𝑗 ,
thereby never taking advantage of any local behavior of the set 𝐾. In the following sections of this paper, we
study library approximation for the purpose of creating a nonlinear model reduction for parametric elliptic
PDEs. We exploit known theorems on the smoothness of the mapping 𝑦 ↦→ 𝑢(𝑦) to give explicit non-uniform
and anisotropic tensor product partitions of the parameter domain 𝑌 into 𝑁 cells, and create a library of affine
spaces that achieves a prescribed target error and whose size obeys much better bounds than those given in
this section.

3. Piecewise polynomial approximation for parametric PDEs

Before beginning our analysis, we first remark on what we can expect as quantitative results. Nonlinear
methods are most effective when the target function, in our case 𝑢, is not smooth; for example when it has
point singularities or singularities on lower dimensional sets, or it is piecewise smooth. For the parameter to
solution map 𝑦 ↦→ 𝑢(𝑦) associated to the elliptic equation (1.6) with affine parametrization (1.7), singularities
occur when the function 𝑎(𝑦) is not strictly positive. The uniform ellipticity assumption (1.9) ensures that the
singularities of 𝑢 are located outside the parameter domain 𝑌 . However, as 𝑎min/𝑎max becomes small, they get
closer to the boundary of 𝑌 , and the use of nonlinear methods becomes more relevant in those cases.

We shall see that the necessary number of cells for a partition generated by the nonlinear method remains
modest when a reasonable number of terms 𝑚 in the polynomial approximation are used on each cell; see
Table 1. In the final section of this paper, we discuss the advantages this fact provides for online solvers and
problems of state estimation.

3.1. Polynomial approximation error

If Λ ⊂ ℱ is a finite set of indices, we denote by 𝒫Λ the linear space of all 𝑉 valued polynomials

𝑃 (𝑦) =
∑︁
𝜈∈Λ

𝑐𝜈𝑦
𝜈 , (3.1)

where the coefficients 𝑐𝜈 are in 𝑉 . Here and later we use standard multivariate notation, for example, 𝑦𝜈 = 𝑦𝜈11 · · ·
when 𝜈 has finite support. We always assume that the set Λ is a downward closed (or lower) set, that is,

𝜈 ∈ Λ and 𝜇 ≤ 𝜈 =⇒ 𝜇 ∈ Λ, (3.2)

where 𝜇 ≤ 𝜈 means that 𝜇𝑗 ≤ 𝜈𝑗 for all 𝑗. In particular, the null multi-index is contained in Λ. Once the
coefficients 𝑐𝜈 are fixed, each 𝑃 (𝑦) is in the affine space

𝑐0 + span{𝑐𝜈 ∈ 𝑉 : 𝜈 ∈ Λ*}, Λ* := Λ ∖ {0}, (3.3)

which has dimension no more than #(Λ*) = #(Λ)− 1. A typical choice for the 𝑐𝜈 are the Taylor coefficients in
the expansion (1.3).

When proving results on polynomial approximation to 𝑢, there are two types of commonly employed assump-
tions on the diffusion coefficient. The first type of assumption is to assume a decay rate for the sequence
(‖𝜓𝑗‖𝐿∞(𝐷))𝑗≥1. The second is to assume a local interaction bound on how the supports of the 𝜓𝑗 overlap. This
latter type is described in [1], and is the assumption we employ here. One could derive bounds similar to those
given below in the first setting as well.

We assume throughout this section that 𝑢(𝑦) is the solution to (1.6) with diffusion coefficient 𝑎(𝑦) given by
(1.7) and that there is a positive sequence (𝜌𝑗)𝑗≥1 such that

𝜅 := min
𝑗≥1

𝜌𝑗 > 1, (3.4)
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and

𝛿 :=
⃦⃦⃦⃦∑︀

𝑗≥1 𝜌𝑗 |𝜓𝑗 |
𝑎̄

⃦⃦⃦⃦
𝐿∞(𝐷)

< 1. (3.5)

The following theorem gives a bound for the error of approximation of 𝑢 by polynomials from 𝑃Λ.

Theorem 3.1. Assume that (3.4) and (3.5) hold with (𝜌−1
𝑗 )𝑗≥1 ∈ ℓ𝑞(N) for 0 < 𝑞 < 2. For each 𝑚 ≥ 1, there

is a set Λ with #(Λ) = 𝑚 such that the 𝑉 valued polynomial 𝑃 (𝑦) :=
∑︀
𝜈∈Λ 𝑡𝜈𝑦

𝜈 , 𝑦 ∈ 𝑌 , satisfies

sup
𝑦∈𝑌

‖𝑢(𝑦)− 𝑃 (𝑦)‖𝑉 ≤ 𝐶(𝛿, 𝜌, 𝑞)‖(𝜌−1
𝑗 )𝑗≥1‖ℓ𝑞𝑚−𝑟, 𝑟 = 1/𝑞 − 1/2, (3.6)

where 𝐶(𝛿, 𝜌, 𝑞) := 𝐶(𝜌, 𝑞)𝐶𝛿 with

𝐶(𝜌, 𝑞) := 𝛽
1
𝑞 exp

(︂
𝛽

𝑞
‖(𝜌−1

𝑗 )𝑗≥1‖𝑞ℓ𝑞

)︂
, 𝛽 := − ln(1− 𝜅−𝑞)𝜅𝑞, 𝐶2

𝛿 :=
(2− 𝛿)𝑎max

(2− 2𝛿)𝑎3
min

‖𝑓‖2𝑉 ′ . (3.7)

The set Λ can be chosen to be a lower set and is derived explicitly in the proof.

Proof. The proof follows from a general summability result established in [1] together with concrete estimates
for the constants given in [4]. For the completeness and clarity of the present paper, we provide the details.
We first choose Λ to be the set of indices in ℱ that correspond to the 𝑚 largest of the numbers 𝜌−𝜈 . Ties are
handled in such a way that Λ is a lower set, see [4]. Then, for 𝑃 (𝑦) :=

∑︀
𝜈∈Λ 𝑡𝜈𝑦

𝜈 we have by Hölder’s inequality
that for any 𝑦 ∈ 𝑌 ,

‖𝑢(𝑦)− 𝑃 (𝑦)‖𝑉 ≤
∑︁
𝜈 /∈Λ

‖𝑡𝜈‖𝑉 ≤

(︃∑︁
𝜈∈ℱ

𝜌2𝜈‖𝑡𝜈‖2𝑉

)︃ 1
2
(︃∑︁
𝜈 /∈Λ

𝜌−2𝜈

)︃ 1
2

. (3.8)

From the proof of Theorem 2.2 in [1], we know also that

∑︁
𝜈∈ℱ

𝜌2𝜈‖𝑡𝜈‖2𝑉 ≤
(2− 𝛿)‖𝑎̄‖𝐿∞(𝐷)

(2− 2𝛿) inf𝑥∈𝐷 𝑎̄(𝑥)3
‖𝑓‖2𝑉 ′ ≤ 𝐶2

𝛿 , (3.9)

where 𝐶𝛿 is defined in (3.7).
Moreover, we have ∑︁

𝜈 /∈Λ

𝜌−2𝜈 =
∑︁
𝜈 /∈Λ

𝜌−𝜈(2−𝑞)𝜌−𝜈𝑞 ≤
(︂

sup
𝜈 /∈Λ

𝜌−𝜈(2−𝑞)
)︂∑︁
𝜈 /∈Λ

𝜌−𝜈𝑞. (3.10)

We now let (𝛾𝑘)𝑘≥1 be a non-increasing rearrangement of the sequence (𝜌−𝜈)𝜈∈ℱ . We note that 𝛾1 = 𝜌−0 = 1
due to the fact that 𝜌1 > 1 and (𝜌𝑗)𝑗≥1 is non-decreasing. Then we have

sup
𝜈 /∈Λ

𝜌−𝜈𝑞 = 𝛾𝑞𝑚+1 ≤ 𝑚−1
𝑚+1∑︁
𝑘=2

𝛾𝑞𝑘 ≤ 𝑚−1
∑︁
𝑘≥2

𝛾𝑞𝑘 = 𝑚−1
∑︁
𝜈 ̸=0

𝜌−𝑞𝜈 , (3.11)

and hence

sup
𝜈 /∈Λ

𝜌−𝜈(2−𝑞) ≤

⎛⎝𝑚−1
∑︁
𝜈 ̸=0

𝜌−𝑞𝜈

⎞⎠
2−𝑞

𝑞

. (3.12)
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Using (3.9) and (3.12) with (3.10) in (3.8), we get

‖𝑢(𝑦)− 𝑃 (𝑦)‖𝑉 ≤ 𝐶𝛿

⎛⎝𝑚−1
∑︁
𝜈 ̸=0

𝜌−𝑞𝜈

⎞⎠
2−𝑞
2𝑞 (︃∑︁

𝜈 /∈Λ

𝜌−𝜈𝑞

)︃ 1
2

≤ 𝐶𝛿𝑚
− 1

𝑞 + 1
2

⎛⎝∑︁
𝜈 ̸=0

𝜌−𝜈𝑞

⎞⎠ 1
𝑞

. (3.13)

The final step of the proof is giving an upper bound of the term
∑︀
𝜈 ̸=0 𝜌

−𝑞𝜈 . For this, let 𝛼 := 𝜅−𝑞 < 1, so that
𝜌−𝑞𝑗 ≤ 𝛼 for all 𝑗 ≥ 1. Now define 𝛽 ≥ 1 so that 1 − 𝛼 = 𝑒−𝛽𝛼, i.e., 𝛽 is the same as defined in (3.7). Then, 𝛽
depends only on 𝜅, and 𝑞, and by the convexity of 𝑒−𝛽𝑥, we have 1 − 𝑥 ≥ 𝑒−𝛽𝑥 for 0 ≤ 𝑥 ≤ 𝛼. It follows that
(1− 𝜌−𝑞𝑗 )−1 ≤ 𝑒𝛽𝜌

−𝑞
𝑗 , and therefore

∑︁
𝜈 ̸=0

𝜌−𝑞𝜈 =
∞∏︁
𝑗=1

(1− 𝜌−𝑞𝑗 )−1 − 1 ≤ 𝑒𝛽𝑏 − 1 ≤ 𝛽𝑏𝑒𝛽𝑏, 𝑏 := ‖(𝜌−1
𝑗 )𝑗≥1‖𝑞ℓ𝑞 . (3.14)

Taking the 𝑞th root in (3.14) and inserting into (3.13) gives (3.6). �

Remark 3.2. Note that the lower set Λ guaranteed in the above theorem can be described a priori by choosing
the indices corresponding to the 𝑛 largest of the numbers 𝜌−𝜈 with ties handled properly; see also [4, 7].

We next want to derive a local version of the last theorem, namely we want to derive an estimate for how
well the Taylor series centered at a general point 𝑦 ∈ 𝑌 approximates 𝑢 near 𝑦. Suppose that 𝑄𝜆(𝑦) ⊂ 𝑌 is a
hyperrectangle centered at some 𝑦 ∈ 𝑌 with sidelength 2𝜆𝑗 in direction 𝑗, i.e.,

𝑄𝜆(𝑦) := {𝑦 ∈ RN : |𝑦𝑗 − 𝑦𝑗 | ≤ 𝜆𝑗 , 𝑗 ≥ 1}. (3.15)

We refer to the sequence 𝜆 := (𝜆𝑗)𝑗≥1 as the sidelength vector for this set.
A first local error estimate for the Taylor series at 𝑦 is given in the following corollary. In preparation for the

proof of that corollary, let us note that for 𝑦 ∈ 𝑄𝜆(𝑦), we have

𝑎(𝑦) = 𝑎(𝑦) +
∞∑︁
𝑗=1

(𝑦𝑗 − 𝑦𝑗)
𝜆𝑗

(𝜆𝑗𝜓𝑗) = 𝑎(𝑦) +
∞∑︁
𝑗=1

𝑦𝑗𝜓𝑗 =: 𝑎̃(𝑦), (3.16)

where 𝑦𝑗 := 𝑦𝑗−𝑦𝑗

𝜆𝑗
∈ [−1, 1] and 𝜓𝑗 := 𝜆𝑗𝜓𝑗 . Therefore,

𝑢(𝑦) = 𝑢̃(𝑦), 𝑦 ∈ 𝑄𝜆(𝑦),

with 𝑢̃(𝑦) the solution to
−div (𝑎̃(𝑦)∇𝑢̃(𝑦)) = 𝑓, 𝑦 ∈ 𝑌, (3.17)

in 𝐷 with Dirichlet homogeneous boundary conditions.
We can now apply Theorem 3.1 to this new problem (3.17) as long as the assumptions of that theorem hold

for this new problem.

Corollary 3.3. Suppose the assumptions of Theorem 3.1 hold for 𝜅 and 𝛿 as in (3.4) and (3.5). Consider any
hyperrectangle 𝑄 := 𝑄𝜆(𝑦) ⊂ 𝑌 as in (3.15) with center 𝑦 ∈ 𝑌 and sidelength vector 𝜆. If there is a sequence
(𝜌𝑗)𝑗≥1 (depending on 𝑄) for which

(i) 𝜌𝑗 ≥ 𝜅 for 𝑗 ≥ 1;
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(ii) ‖(𝜌−1
𝑗 )𝑗≥1‖ℓ𝑞 ≤ ‖(𝜌−1

𝑗 )𝑗≥1‖ℓ𝑞 ;

(iii)
⃦⃦⃦⃦∑︀

𝑗≥1 𝜌𝑗 |𝜓𝑗 |
𝑎(𝑦)

⃦⃦⃦⃦
𝐿∞(𝐷)

≤ 𝛿,

then for each 𝑚 ≥ 1, there is a polynomial 𝑃 (depending on 𝑄) with 𝑚 terms (whose indices are given by a
lower set) such that

sup
𝑦∈𝑄

‖𝑢(𝑦)− 𝑃 (𝑦)‖𝑉 ≤ 𝐶(𝛿, 𝜌, 𝑞)‖(𝜌−1
𝑗 )𝑗≥1‖ℓ𝑞𝑚−𝑟, 𝑟 = 1/𝑞 − 1/2, (3.18)

where 𝐶(𝛿, 𝜌, 𝑞) is the constant from Theorem 3.1.

Proof. This follows from Theorem 3.1 applied to the new problem (3.17). We obtain the same constant because
of the assumptions (i)–(iii) placed on the sequence (𝜌𝑗)𝑗≥1. �

3.2. A general upper bound on the library size

We now turn to the central issue: given 𝑚, and a desired accuracy 𝜀, how can we partition the parameter
domain 𝑌 into a finite number of cells such that 𝑢 can be approximated to this accuracy by a piecewise
polynomial on this partition, where each polynomial has 𝑚+ 1 terms? Deriving such a partition and bounding
its size requires some preparatory work. Let 𝐶 := 𝐶(𝛿, 𝜌, 𝑞) be the constant of Theorem 3.1. We assume without
loss of generality that

𝐶‖(𝜌−1
𝑗 )𝑗≥1‖ℓ𝑞 (𝑚+ 1)−𝑟 > 𝜀, (3.19)

since otherwise the parameter domain 𝑌 does not need to be partitioned. Namely, from Theorem 3.1, there is
a polynomial with 𝑚 + 1 terms which approximates 𝑢 on 𝑌 to accuracy 𝜀. Since (𝜌−1

𝑗 )𝑗≥1 ∈ ℓ𝑞(N), we define
𝐽 := 𝐽(𝜀,𝑚) ≥ 1 to be the smallest integer such that∑︁

𝑗≥𝐽+1

𝜌−𝑞𝑗 ≤ 1
2
𝐶−𝑞(𝑚+ 1)𝑞𝑟𝜀𝑞. (3.20)

We will see that the directions 𝐽 + 1, 𝐽 + 2, 𝐽 + 3, . . . , contribute at most 𝜀/2 to the total error, and we will not
need to subdivide in these directions. For the first 𝐽 directions, we use a strategy that distributes the remaining
error equally. To that purpose, we define the quantity

𝜎𝑞 :=
1

2𝐽
𝐶−𝑞(𝑚+ 1)𝑞𝑟𝜀𝑞. (3.21)

With this notation, we can rewrite (3.19) and (3.20), respectively, as

‖(𝜌−1
𝑗 )𝑗≥1‖𝑞ℓ𝑞 > 2𝐽𝜎𝑞, and

∑︁
𝑗≥𝐽+1

𝜌−𝑞𝑗 ≤ 𝐽𝜎𝑞. (3.22)

We begin with the following lemma.

Lemma 3.4. Suppose 𝑄 ⊂ 𝑌 is a hyperrectangle with center 𝑧 = (𝑧1, . . . , 𝑧𝐽 , 0, 0, . . . ) and sidelength vector
𝜆 = (𝜆1, . . . , 𝜆𝐽 , 1, 1, . . . ). If

𝜆𝑗 ≤ 𝜎(𝜌𝑗 − |𝑧𝑗 |) 𝑗 = 1, . . . , 𝐽, (3.23)

then there exists a 𝑉 valued polynomial 𝑃𝑄 with 𝑚+ 1 terms such that

‖𝑢(𝑦)− 𝑃𝑄(𝑦)‖𝑉 ≤ 𝜀, 𝑦 ∈ 𝑄. (3.24)
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Proof. We define

𝜌𝑗 :=

{︃
𝜎−1, if 1 ≤ 𝑗 ≤ 𝐽,

𝜌𝑗 , otherwise,
(3.25)

and verify that (𝜌𝑗)𝑗≥1 satisfies the assumptions (i)–(iii) of Corollary 3.3 for 𝑄, beginning with (i). It follows
from the definition (3.4) of 𝜅 and from (3.22) that

𝜎𝑞 <
1

2𝐽
‖(𝜌−1

𝑗 )𝑗≥1‖𝑞ℓ𝑞 =
1

2𝐽

⎛⎝ 𝐽∑︁
𝑗=1

𝜌−𝑞𝑗 +
∑︁

𝑗≥𝐽+1

𝜌−𝑞𝑗

⎞⎠ ≤ 1
2
𝜅−𝑞 +

1
2
𝜎𝑞,

and so 𝜎−1 > 𝜅. Since we already assume that 𝜌𝑗 ≥ 𝜅 for all 𝑗, this verifies condition (i).
To prove (ii), we set 𝜂 := 𝐶−1𝜀(𝑚+ 1)𝑟 and use the choice of 𝐽 in (3.20) to write

‖(𝜌−1
𝑗 )𝑗≥1‖𝑞ℓ𝑞 = 𝐽𝜎𝑞 +

∑︁
𝑗≥𝐽+1

𝜌−𝑞𝑗 ≤ 𝐽𝜎𝑞 +
1
2
𝜂𝑞 = 𝜂𝑞. (3.26)

Moreover, if we combine (3.26) with (3.22), we obtain

‖(𝜌−1
𝑗 )𝑗≥1‖𝑞ℓ𝑞 ≤ 𝜂𝑞 < ‖(𝜌−1

𝑗 )𝑗≥1‖𝑞ℓ𝑞 ,

and so (ii) holds.
Finally, to prove (iii), recall that 𝜓𝑗 = 𝜆𝑗𝜓𝑗 and therefore from the inequalities (3.25) and (3.23) we have

𝜌𝑗 |𝜓𝑗 | = 𝜌𝑗𝜆𝑗 |𝜓𝑗 | ≤ (𝜌𝑗 − |𝑧𝑗 |)|𝜓𝑗 |.

This gives ⃦⃦⃦⃦
⃦
∑︀
𝑗≥1 𝜌𝑗 |𝜓𝑗 |
𝑎(𝑧)

⃦⃦⃦⃦
⃦
𝐿∞(𝐷)

≤

⃦⃦⃦⃦
⃦
∑︀
𝑗≥1 𝜌𝑗 |𝜓𝑗 | −

∑︀
𝑗≥1 |𝑧𝑗 ||𝜓𝑗 |

𝑎̄−
∑︀
𝑗≥1 |𝑧𝑗 ||𝜓𝑗 |

⃦⃦⃦⃦
⃦
𝐿∞(𝐷)

≤ 𝛿. (3.27)

In view of the definition of 𝛿 in (3.5), the last inequality follows from

0 ≤
∑︁
𝑗≥1

|𝑧𝑗 ||𝜓𝑗(𝑥)| <
∑︁
𝑗≥1

𝜌𝑗 |𝜓𝑗(𝑥)| ≤ 𝑎̄(𝑥), 𝑥 ∈ 𝐷,

and the inequality
⃒⃒⃒
𝛼−𝛽
𝛾−𝛽

⃒⃒⃒
≤
⃒⃒⃒
𝛼
𝛾

⃒⃒⃒
, which is valid for any 0 ≤ 𝛽 < 𝛼 ≤ 𝛾. Thus, (iii) has been established.

We can now use Corollary 3.3 to guarantee the existence of the polynomial 𝑃𝑄 to complete the proof. �

We are now in position to state the main theorem of this section.

Theorem 3.5. Let 0 < 𝑞 < 2, and let (𝜌−1
𝑗 )𝑗≥1 ∈ ℓ𝑞(N) be a nondecreasing sequence which satisfies (3.4) and

(3.5). Let 𝜀 > 0, 𝑚 ≥ 0 and assume that (3.19) holds. Then, there exists a tensor product partition of 𝑌 into a
collection ℛ of 𝑁 hyperrectangles such that on each 𝑄 ∈ ℛ there is a 𝑉 valued polynomial 𝑃𝑄 with 𝑚+ 1 terms
such that

‖𝑢(𝑦)− 𝑃𝑄(𝑦)‖𝑉 ≤ 𝜀, 𝑦 ∈ 𝑄. (3.28)

Furthermore, if 𝐽 := 𝐽(𝜀,𝑚) is as in (3.20), then the partition is obtained by only subdividing in the first 𝐽
directions, and the number of cells 𝑁 in this partition satisfies

𝑁 ≤
𝐽∏︁
𝑗=1

(︀
𝜎−1| ln(1− 𝜌−1

𝑗 )|+ 𝐶(𝜎)
)︀

for some 𝐶(𝜎) ∈ (1, 2). (3.29)
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Proof. To define our tensor product grid, for each coordinate direction 𝑦𝑗 , 𝑗 = 1, . . . , 𝐽 , we first define how we
subdivide the interval [−1, 1] into (2𝑘𝑗 + 1) subintervals

𝐼𝑖𝑗 , −𝑘𝑗 ≤ 𝑖 ≤ 𝑘𝑗 .

Recall that we do not subdivide any of the coordinate axis when 𝑗 > 𝐽 , i.e., 𝑘𝑗 = 0 and 𝐼0
𝑗 = [−1, 1] when

𝑗 > 𝐽 . Also, our partition is symmetric and so 𝐼−𝑖𝑗 = −𝐼𝑖𝑗 , 𝑖 = 1, . . . , 𝑘𝑗 .
We fix 𝑗 ∈ {1, . . . , 𝐽} and describe our partition of [−1, 1] into intervals corresponding to the 𝑗-th coordinate.

Our first interval 𝐼0
𝑗 is centered at 𝑧0

𝑗 = 0 and has sidelength 𝜆0
𝑗 := 𝜎𝜌𝑗 provided this number is less than one.

Otherwise, when 𝜎𝜌𝑗 ≥ 1, we define 𝜆0
𝑗 := 1, and so 𝑘𝑗 = 0 and our partition consists only of the one interval

𝐼0
𝑗 = [−1, 1]. Note that since (𝜌𝑗)𝑗≥1 is nondecreasing, when this occurs it also happens for all larger values of 𝑗.

Our partition is symmetric with respect to the origin and so we only describe the intervals to the right of the
origin. The next interval 𝐼1

𝑗 has left endpoint the same as the right endpoint of 𝐼0
𝑗 , has center 𝑧1

𝑗 and sidelength
𝜆1
𝑗 , where these numbers are defined by the relationship

𝜆1
𝑗 = 𝜎(𝜌𝑗 − 𝑧1

𝑗 ). (3.30)

The only exception to this definition is when the right endpoint of this interval is larger than 1. Then we recenter
the interval so its left endpoint is as before and its right endpoint is 1. In this case, we would stop the process
and 𝑘𝑗 would be 1.

We continue in this same way moving to the right. In general, the interval 𝐼𝑖𝑗 will have its left endpoint equal
to the right endpoint of 𝐼𝑖−1

𝑗 , with center 𝑧𝑖𝑗 and sidelength 𝜆𝑖𝑗 which satisfy

𝜆𝑖𝑗 = 𝜎(𝜌𝑗 − 𝑧𝑖𝑗). (3.31)

As before, we rescale in the case that such a choice would give a right endpoint larger than 1 and terminate the
partitioning process. It follows that the interval 𝐼𝑖𝑗 always satisfies

𝜆𝑖𝑗 ≤ 𝜎(𝜌𝑗 − 𝑧𝑖𝑗), 𝑖 = 0, 1, . . . , 𝑘𝑗 , (3.32)

with equality except for possibly the last interval 𝐼𝑘𝑗

𝑗 . We give below a bound for 𝑘𝑗 that shows this process is
finite.

This partitioning gives a tensor product set ℛ of hyperrectangles 𝑄. In view of the property (3.32), each of
the hyperrectangles satisfies the conditions of Lemma 3.4 and therefore the existence of the polynomials 𝑃𝑄,
𝑄 ∈ ℛ satisfying the approximation estimate is guaranteed.

We next derive a bound for the number of elements ℛ by bounding 𝑛𝑗 = 2𝑘𝑗 + 1, 1 ≤ 𝑗 ≤ 𝐽 , when 𝑘𝑗 ̸= 0.
To do that, we monitor the points

𝑅𝑖 = 𝑧𝑖𝑗 + 𝜆𝑖𝑗 , 𝑖 = 0, 1, . . . , 𝑘𝑗 .

Each 𝑅𝑖 is the right endpoint of 𝐼𝑖𝑗 as long as 0 ≤ 𝑖 < 𝑘𝑗 , and we know that 𝑅𝑘𝑗 ≥ 1. Relation (3.31) implies
that 𝜆𝑖𝑗 is chosen according to

𝜆𝑖𝑗
𝜌𝑗 −𝑅𝑖 + 𝜆𝑖𝑗

= 𝜎.

This gives that (1− 𝜎)𝜆𝑖𝑗 = 𝜎(𝜌𝑗 −𝑅𝑖), and since 𝑅𝑖 = 𝑅𝑖−1 + 2𝜆𝑖𝑗 , we have

(1− 𝜎)(𝑅𝑖 −𝑅𝑖−1) = 2𝜎(𝜌𝑗 −𝑅𝑖).

We therefore obtain the recursive formula

𝑅𝑖 =
1− 𝜎

1 + 𝜎
𝑅𝑖−1 +

2𝜎
1 + 𝜎

𝜌𝑗 =: 𝛼𝑅𝑖−1 + 𝑏, 𝑖 = 1, 2, . . . ,
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where 𝑅0 = 𝜌𝑗𝜎, 𝛼 := 1−𝜎
1+𝜎 , 𝑏 := 2𝜎

1+𝜎𝜌𝑗 . Therefore, we find

𝑅𝑖 = 𝛼𝑖𝑅0 + (1 + 𝛼+ . . .+ 𝛼𝑖−1)𝑏 = 𝛼𝑖𝑅0 +
1− 𝛼𝑖

1− 𝛼
𝑏

= 𝛼𝑖𝜌𝑗𝜎 + (1− 𝛼𝑖)𝜌𝑗 = 𝜌𝑗(1− 𝛼𝑖(1− 𝜎)). (3.33)

The iteration will stop at the smallest integer 𝑘 = 𝑘𝑗 with the property 𝑅𝑘 ≥ 1. Since 𝜎−1 ≥ 𝜅 > 1, we have
𝜎 < 1 and the iteration will stop at the smallest integer 𝑘 such that

𝛼𝑘 ≤
1− 𝜌−1

𝑗

1− 𝜎
·

Note that
1−𝜌−1

𝑗

1−𝜎 < 1 because 𝜎𝜌𝑗 < 1 (otherwise 𝑘𝑗 = 0 and 𝐼0
𝑗 = [−1, 1]). We are looking for the smallest

integer 𝑘 for which

𝑘 ≥
ln
(︀
1− 𝜌−1

𝑗

)︀
− ln (1− 𝜎)

ln𝛼
,

which is given by

𝑘𝑗 =

⌈︃
ln(1− 𝜌−1

𝑗 )− ln (1− 𝜎)
ln𝛼

⌉︃
<

ln(1− 𝜌−1
𝑗 )− ln (1− 𝜎)

ln𝛼
+ 1, 𝑗 = 1, . . . , 𝐽.

Therefore, we have the bound

𝑛𝑗 := 2𝑘𝑗 + 1 ≤ 2
ln
(︀
1− 𝜌−1

𝑗

)︀
− ln (1− 𝜎)

ln
(︁

1−𝜎
1+𝜎

)︁ + 3 = 2
ln
(︀
1− 𝜌−1

𝑗

)︀
ln
(︁

1−𝜎
1+𝜎

)︁ + 𝐶(𝜎),

where

𝐶(𝜎) := −2
ln (1− 𝜎)

ln
(︁

1−𝜎
1+𝜎

)︁ + 3 =
ln
(︁

(1−𝜎)
(1+𝜎)3

)︁
ln
(︁

1−𝜎
1+𝜎

)︁ ∈ (1, 2). (3.34)

Since ln(1 + 𝑥) ≥ 2𝑥
2+𝑥 for 𝑥 ≥ 0, we obtain

ln
(︂

1 + 𝜎

1− 𝜎

)︂
= ln

(︂
1 +

2𝜎
1− 𝜎

)︂
≥ 2𝜎,

and thus 𝑛𝑗 ≤ 𝜎−1| ln
(︀
1− 𝜌−1

𝑗

)︀
|+ 𝐶(𝜎), which brings us to the final calculation

𝑁 =
𝐽∏︁
𝑗=1

𝑛𝑗 ≤
𝐽∏︁
𝑗=1

(︀
𝜎−1| ln

(︀
1− 𝜌−1

𝑗

)︀
|+ 𝐶(𝜎)

)︀
, (3.35)

which completes the proof. �

Remark 3.6. It follows from the proof of Theorem 3.5 that a more precise estimate for the number of cells is

𝑁 ≤
𝐽0∏︁
𝑗=1

(︀
𝜎−1| ln

(︀
1− 𝜌−1

𝑗

)︀
|+ 𝐶(𝜎)

)︀
,

where 1 ≤ 𝐽0 ≤ 𝐽 is the largest integer such that 𝜎𝜌𝐽0 < 1. This comes from the fact that 𝑘𝑗 = 0 for 𝐽0 < 𝑗 ≤ 𝐽 ,
i.e., we do not subdivide in the directions 𝐽0 + 1. . . . , 𝐽 .
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Let us reformulate the above result in terms of library widths. As we have remarked earlier (see (3.3)), a
polynomial approximation with 𝑚 + 1 terms is naturally associated with an affine space of dimension at most
𝑚. We then obtain a library ℒ = ∪𝑁𝑖=1𝐿𝑖 of affine spaces 𝐿𝑖 = 𝐿𝑖(𝑃𝑖, 𝑄𝑖),

𝐿𝑖 = 𝑐𝑖0 + span{𝑐𝑖𝜈 ∈ 𝑉 : 𝜈 ∈ Λ𝑖, #(Λ𝑖) ≤ 𝑚}, 𝑖 = 1, . . . , 𝑁,

each associated with the polynomial 𝑃𝑖 over a hyperrectangle 𝑄𝑖 ⊂ 𝑌 ,

𝑃𝑖(𝑦) = 𝑐𝑖0 +
∑︁
𝜈∈Λ𝑖

𝑐𝑖𝜈𝑦
𝜈 , 𝑦 ∈ 𝑄𝑖,

and cardinality

𝑁 ≤
𝐽∏︁
𝑗=1

(︀
𝜎−1| ln

(︀
1− 𝜌−1

𝑗

)︀
|+ 𝐶(𝜎)

)︀
, 𝐶(𝜎) ∈ (1, 2).

Moreover, since sup𝑦∈𝑄𝑖
‖𝑢(𝑦)− 𝑃𝑖(𝑦)‖𝑉 ≤ 𝜀 for 𝑖 = 1, . . . , 𝑁 , we have

𝐸ℒ(ℳ) = max
𝑦∈𝑌

min
𝐿∈ℒ

dist(𝑢(𝑦), 𝐿)𝑉 ≤ 𝜀,

and therefore

𝑑𝑚,𝑘(ℳ) ≤ 𝜀, whenever 𝑘 ≥
𝐽∏︁
𝑗=1

(︀
𝜎−1| ln

(︀
1− 𝜌−1

𝑗

)︀
|+ 𝐶(𝜎)

)︀
.

3.3. An upper bound on the library size for some specific examples

To see how how the bounds for 𝑁 grow with decreasing 𝜀 in Theorem 3.5, we consider the following standard
example:

𝜌𝑗 = 𝑀𝑗𝑠, 𝑗 ≥ 1, (3.36)

where 𝑠 > 1/2 is fixed. From our assumption that 𝜅 = 𝜌1 > 1, it follows that 𝑀 > 1. We note at the outset
that a similar analysis can be done for other growth assumptions on the sequence (𝜌𝑗)𝑗≥1, e.g., 𝜌𝑗 = 1 + 𝑀𝑗𝑠

with 𝑀 > 0.
Before beginning our analysis, we wish to orient the reader to what type of results we can expect by reflecting

on the corresponding results for polynomial approximation. In that case, we know that for each 𝑟 < 𝑠− 1/2 we
can find 𝑉 valued polynomials 𝑃𝑛 with 𝑛 terms that satisfy

max
𝑦∈𝑌

‖𝑢(𝑦)− 𝑃𝑛(𝑦)‖𝑉 ≤ 𝐶𝑟𝑛
−𝑟, 𝑛 = 1, 2, . . . . (3.37)

This follows from Theorem 3.1 by choosing a value of 𝑞 ∈ (1/𝑠, 2) with 𝑟 = 1/𝑞− 1/2. However, we cannot take
𝑟 = 𝑠 − 1/2 since the constants 𝐶𝑟 tend to infinity as 𝑞 → 1/𝑠. If we are given a target accuracy 𝜀 then we
would find the minimal number of terms 𝑛 to reach this accuracy by optimizing over the choice of 𝑞. This type
of analysis is subtle and done in [4].

We shall obtain similar results for piecewise polynomial approximation where now the main new ingredient is
to bound the number of cells that are needed. We fix the desired target accuracy 𝜀 > 0 and the value 𝑚 and use
the a priori bound of Theorem 3.5 to see how many hyperrectangles 𝑁 are needed to guarantee the accuracy 𝜀
using piecewise polynomials with 𝑚+ 1 terms to approximate 𝑢 on each rectangle. We can apply Theorem 3.5
for any 𝑞 that satisfies 1/𝑠 < 𝑞 < 2, and for the moment we fix any such 𝑞. Throughout the derivation, we let 𝐶
denote a constant that depends only on 𝑞 and may change from line to line. Note that 𝐶0 := 𝐶(𝛿, 𝜌, 𝑞) depends
only on 𝑞 since 𝜌 and 𝛿 are fixed.

Since we have ∑︁
𝑗≥𝐽+1

𝜌−𝑞𝑗 = 𝑀−𝑞
∑︁

𝑗≥𝐽+1

𝑗−𝑠𝑞 ≤ 𝐶𝐽1−𝑠𝑞,
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the condition (3.20) is satisfied if
𝐽 = 𝐶 (𝜀(𝑚+ 1)𝑟)

𝑞
1−𝑠𝑞 = 𝐶𝜆

𝑞
1−𝑠𝑞 , (3.38)

where
𝜆 := 𝜀(𝑚+ 1)𝑟, 𝑟 = 𝑟(𝑞) :=

1
𝑞
− 1

2
·

Defining 𝐽 by (3.38) gives that the value of 𝜎 in the theorem is

𝜎 = 2−1/𝑞𝐶−1
0 𝐽−1/𝑞𝜆 = 𝐶𝐽−𝑠. (3.39)

Theorem 3.5 says that we obtain a partition into 𝑁 hyperrectangular cells such that there is a polynomial with
𝑚+1 terms on each cell which achieves the desired accuracy 𝜀. It also gives that the number 𝑁 = 𝑁(𝑞) of these
cells can be bounded by

𝑁 ≤
𝐽∏︁
𝑗=1

(︀
𝜎−1| ln

(︀
1− 𝜌−1

𝑗

)︀
|+ 𝐶(𝜎)

)︀
<

𝐽∏︁
𝑗=1

(︀
𝜎−1| ln

(︀
1− 𝜌−1

𝑗

)︀
|+ 2

)︀
. (3.40)

Since each 𝜌𝑗 ≥𝑀 > 1, and | ln(1− 𝑥)| ≤ 𝑥
1−𝑥 , for 0 < 𝑥 < 1, we have

| ln(1− 𝜌−1
𝑗 )| ≤ (𝑀𝑗𝑠 − 1)−1 ≤ (𝑀 − 1)−1𝑗−𝑠, 𝑗 = 1, 2, . . . . (3.41)

Placing this into (3.40) gives

𝑁 ≤
𝐽∏︁
𝑗=1

(︀
(𝑀 − 1)−1𝜎−1𝑗−𝑠 + 2

)︀
=

𝐽∏︁
𝑗=1

(︀
𝐶𝐽𝑠𝑗−𝑠 + 2

)︀
≤ 𝐶𝐽𝐽𝑠𝐽 [𝐽 !]−𝑠 ≤ 𝑒(𝐶+𝑠)𝐽 = 𝑒𝐶𝜆

𝑞
1−𝑠𝑞

, (3.42)

where the last inequality uses Stirling’s formula.
We examine what this bound guarantees for different values of 𝑚:

Case 𝑚 = 0. In this case, since 𝜆 = 𝜀, we are providing the solution manifold ℳ with an 𝜀 approximation net
of 𝑁 elements, with

𝑁 ≤ exp
{︁
𝐶𝜀−

1
𝑠−1/𝑞

}︁
,

for any 𝑞 ∈ (1/𝑠, 2). The best choice of 𝑞 in this case is to choose 𝑞 as close to 2 as possible thereby getting
𝑁 ≤ 𝑒𝐶𝜀

−1/𝛼

for any 0 < 𝛼 < 𝑠− 1/2. Notice that this is in complete agreement with what we know about
the entropy of the solution manifold ℳ. Indeed, from Theorem 3.1, we know the Kolmogorov 𝑛 width of ℳ
satisfies

𝑑𝑛(ℳ) ≤ 𝐶𝑟𝑀𝑛−𝑟, 0 < 𝑟 < 𝑠− 1/2, (3.43)

where the constants 𝐶𝑟 tend to infinity as 𝑟 gets closer to 𝑠 − 1/2. From Carl’s inequality we obtain that
the 𝜀 covering number of ℳ is bounded by 𝑒𝐶𝜀

−1/𝑟

provided that 𝑟 < 𝑠 − 1/2, which is exactly what the
above bound on 𝑁 gives.

Case of general 𝑚. In this case, the partitioning gives a library of 𝑁 affine spaces of dimension 𝑚 that
approximate ℳ to accuracy 𝜀. In order to compare our results on piecewise polynomial approximation with
those for polynomial approximation, we suppose a value of 𝑞 ∈ (1/𝑠, 2) has been chosen which gives the
polynomial approximation accuracy 𝐶𝑟𝑛−𝑟, with 𝑟 = 𝑟(𝑞) = 1/𝑞 − 1/2. As described as in Theorem 3.5, we
obtain the same accuracy 𝜀 := 𝐶𝑟𝑛

−𝑟 using a piecewise polynomial defined over

𝑁 ≤ exp

{︃
𝐶

(︂
𝑛

𝑚+ 1

)︂ 𝑟
𝑠−1/𝑞

}︃
= exp

{︂
𝐶

(︂
𝑛

𝑚+ 1

)︂𝛼}︂
, 𝛼 :=

1/𝑞 − 1/2
𝑠− 1/𝑞

,
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cells, with 𝑚 + 1 polynomial terms on each cell. Notice that rather than the bound 𝑒𝐶(𝑛−𝑚) derived in
Section 2 for general libraries, we now have the bound 𝑒𝐶(𝑛/𝑚)𝛼

, which gets more favorable as 𝑚 gets large.
We can always get 𝛼 = 1 by taking 𝑞 = 4

2𝑠+1 , which belongs to the prescribed range (1/𝑠, 2), since 𝑠 > 1/2
by assumption. Moreover, 𝛼 tends to infinity as 𝑞 → 1/𝑠 and to 0 as 𝑞 → 2.

4. Numerical examples

In this section, we present numerical examples to illustrate the performance of nonlinear reduced models.
Our strategy is based on a partitioning of the parameter domain 𝑌 and using piecewise 𝑉 valued polynomials
subordinate to the chosen partition. For our numerical tests, we consider the elliptic equations (1.6) on the
domain 𝐷 = [0, 1]2 with right-hand side 𝑓 = 1 and an affine diffusion of the form

𝑎(𝑥, 𝑦) := 1 +
64∑︁
𝑗=1

𝑦𝑗𝑐𝑗𝜒𝐷𝑗 (𝑥), 𝑥 ∈ 𝐷, 𝑦 ∈ 𝑌 = [−1, 1]64, (4.1)

where (𝐷𝑗)64𝑗=1 is a partition of 𝐷 into 64 square cells of equal size. The indexing is assigned randomly and has
little effect on the numerical results.

We carry out numerical experiments for different sequences (𝑐𝑗)64𝑗=1 that depend on the parameters 𝑎min and
𝑠, namely

𝑐𝑗 = (1− 𝑎min)𝑗−𝑠, 𝑗 = 1, 2, . . . , 64, (4.2)

where 𝑠 ∈ {2, 3, 4} and 𝑎min ∈ {0.1, 0.05, 0.01}. Each numerical experiment corresponds to an assignment of
𝑎min and 𝑠. Given this sequence (𝑐𝑗)64𝑗=1, we can take

𝜌𝑗 :=
1− 𝑎min/2
1− 𝑎min

𝑗𝑠, 𝑗 = 1, 2, . . . , 64, (4.3)

which determines the value of 𝛿 = 1− 𝑎min
2 in (3.5). Notice that 𝑎min is the true minimum of 𝑎 on 𝐷 × 𝑌 , and

a small value for 𝑎min corresponds to a reduction in the domain of analyticity of 𝑢(𝑦) near the face 𝑦1 = −1.

4.1. Linear reduced models

We begin this section by considering linear reduced models with the goal of understanding how large the
dimension of the linear space has to be in order to guarantee a prescribed error 𝜀. We are also interested to see
the effect of different choices for the linear space. In all of our numerical experiments we take the target error
to be

𝜀 := 10−4.

We consider two choices of linear reduced models: (1) Taylor polynomial spaces, and (2) reduced basis spaces
based on greedily selected snapshots. We compare the approximations obtained using a Taylor polynomial with
𝑛 terms and a reduced basis space of dimension 𝑛. In particular, we want to see how large 𝑛 has to be to achieve
the target accuracy 𝜀 for these two choices.

In the case of a Taylor polynomial space, the approximation 𝑢̄𝑛 is given by

𝑢̄𝑛(𝑦) := 𝑡0 +
∑︁
𝜈∈Λ*𝑛

𝑡𝜈𝑦
𝜈 ∈ 𝑡0 + 𝑉𝑛−1(𝑇 ), 𝑉𝑛−1(𝑇 ) := span{𝑡𝜈 : 𝜈 ∈ Λ*𝑛}, (4.4)

where 𝑡𝜈 is the approximation of 𝑡𝜈 obtained using a finite element solver of high accuracy (much higher accuracy
than the target accuracy 𝜀). We consider two methods to generate the lower set Λ*𝑛 of cardinality 𝑛− 1 which
gives the indices 𝜈 in (4.4).

The first method, which we refer to as the a priori method, orders the 𝜌−𝜈 , 𝜈 ∈ ℱ , in decreasing order
according to their size. So 𝜈0 := 0 is the index giving the largest of these numbers, and 𝜈1, 𝜈2, . . . denote the
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Figure 1. Error between 𝑢̄ and the Taylor polynomial approximation 𝑢̄𝑛 versus the number of
terms 𝑛 for both the a priori method and the adaptive method for constructing Λ*𝑛. Left: 𝑠 = 2,
𝑎min = 0.1; middle: 𝑠 = 4, 𝑎min = 0.1; right: 𝑠 = 4, 𝑎min = 0.01.

indices corresponding to the next largest of the 𝜌−𝜈 . Ties are handled in such a way that Λ𝑛 := {𝜈0, 𝜈1, . . . , 𝜈𝑛−1}
is a lower set, see [4]. We then take Λ*𝑛 := Λ𝑛 ∖ {𝜈0}.

In the second method, here referred to as the adaptive method, we use the so-called Algorithm LN (largest
neighbor) described in [5] to generate an index set Λ̃𝑛. It begins with 𝜈0 := 0 and Λ̃0 := {𝜈0}. Then, for
𝑘 = 0, 1, . . . , 𝑛− 1,

Λ̃𝑘+1 := Λ̃𝑘 ∪ {𝜈𝑘}, where 𝜈𝑘 ∈ argmax𝜈∈ℛΛ̃𝑘

‖𝑡𝜈‖𝑉 . (4.5)

Here, ℛΛ̃𝑘
denotes the reduced margin of the current lower set Λ̃𝑘, namely

ℛΛ̃𝑘
:= {𝜈 ∈ ℱ ∖ Λ̃𝑘 : 𝜈 − 𝑒𝑗 ∈ Λ̃𝑘 for all 𝑗 with 𝜈𝑗 > 0}.

We then take Λ*𝑛 := Λ̃𝑛 ∖ {𝜈0}.
We compute the error 𝜖𝑛 for each of these choices by taking a large number of uniform random choices1 of

parameters 𝑦 ∈ 𝑌 , as follows. For each choice 𝑦, we take an accurate finite element approximation 𝑢̄(𝑦) of 𝑢(𝑦)
as truth. Note that because Λ*𝑛 ∪ {0} is a lower set, the Taylor coefficients 𝑡𝜈 , 𝜈 ∈ Λ*𝑛 ∪ {0}, can be found
recursively, see equations (3.1) and (3.2) in [5]. We calculate ‖𝑢̄(𝑦)− 𝑢̄𝑛(𝑦)‖𝑉 and the error 𝜖𝑛 is then computed
by maximizing ‖𝑢̄(𝑦)− 𝑢̄𝑛(𝑦)‖𝑉 over the random choices of 𝑦.

Figure 1 shows a comparison of the errors obtained using the adaptive and the a priori methods to compute
the set Λ*𝑛 as 𝑛 grows for different values of 𝑠 and 𝑎min. We see that the adaptive method to generate Λ*𝑛
outperforms the a a priori method, in that the corresponding approximation error is smaller for the adaptive
method. This is caused by the fact that ‖𝑡𝜈‖𝑉 could be much smaller than 𝜌−𝜈 . On the other hand, the
computational cost to find Λ*𝑛 is greater for the adaptive method. In going further in this section, we always
compute the set Λ*𝑛 for Taylor polynomial indices by using the adaptive method.

We next discuss greedy basis constructions. In this case, the reduced linear space 𝑉𝑛(𝐺) is constructed by
starting with the function 𝜙0 := 𝑢(0) and then using a particular random weak greedy algorithm2 to generate
the reduced basis functions 𝜙1, . . . , 𝜙𝑛−1. Each 𝜙𝑗 is a snapshot 𝜙𝑗 = 𝑢(𝑦(𝑗)) of the solution at a judiciously
chosen point 𝑦(𝑗) ∈ 𝑌 . We denote by 𝜙𝑗 an accurate finite element approximation of 𝜙𝑗 , 𝑗 = 0, 1, . . . , 𝑛− 1, and
we define 𝑉𝑛(𝐺) := span{𝜙0, 𝜙1, . . . , 𝜙𝑛−1}. The reduced model is now

𝑢̄𝑛(𝑦) := 𝑃𝑉𝑛
(𝑢(𝑦)), (4.6)

1In the experiments the number of random selections of 𝑦 was 103, using the Mersenne Twister pseudo random generator with
seed value 515.

2We use a version of the probabilistic weak greedy algorithm given in [8].
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Figure 2. Error between 𝑢̄ and 𝑢̄𝑛 versus 𝑛 for both the (adaptive) Taylor and greedy reduced
models. Left: 𝑠 = 2, 𝑎min = 0.1; middle: 𝑠 = 4, 𝑎min = 0.1; right: 𝑠 = 4, 𝑎min = 0.01.

where 𝑃𝑉𝑛 is the Galerkin projection onto 𝑉𝑛(G). Namely, for a given 𝑦 ∈ 𝑌 , 𝑢̄𝑛(𝑦) ∈ 𝑉𝑛(𝐺) is the solution of∫︁
𝐷

𝑎(·, 𝑦)∇𝑢̄𝑛(𝑦) · ∇𝑣𝑛 =
∫︁
𝐷

𝑓𝑣𝑛, 𝑣𝑛 ∈ 𝑉𝑛(𝐺).

We compute the error for approximating 𝑢(𝑦) using random samples of the parameter 𝑦 in a similar manner to
the Taylor case already discussed.

Figure 2 gives a comparison of the performance of the greedy basis and the (adaptive) Taylor for different
values of 𝑠 and 𝑎min. This graph shows that the greedy basis produces a much more accurate reduced model
than the Taylor basis given the same allocation 𝑛 for the dimension of the reduced space.

4.2. Nonlinear models based on piecewise polynomials

The next set of experiments numerically implements a strategy for generating a nonlinear reduced model based
on piecewise polynomials similar to that described in Section 3. We consider the same diffusion coefficients as
above and the same values of 𝑠 and 𝑎min.

We again fix a target accuracy 𝜀 = 10−4, and a target value of 𝑚 for the dimension of the polynomial space on
each cell of the partition. We will see that it is not always possible to achieve a partition of reasonable size if 𝑚 is
chosen to be too small. This is heuristically clear from the entropy considerations provided in Sections 2 and 3.3.

Our strategy for generating the partitioning of 𝑌 into cells is motivated by the theoretical results of Section 3.
However, we make some modifications of this strategy which we now explain. Since in our numerical examples
𝑢 has singularity near 𝑦 = −1 because 𝑐𝑗 > 0 for all 𝑗 = 1, . . . , 64, we now grade the partition to be finer near
−1 when we refine a coordinate direction. This is in contrast to the theoretical description, which partitions in
a symmetric way for each coordinate 𝑦𝑗 .

On the other hand, we have found that prescribing 𝜀 and 𝑚 and then implementing the theoretical partitioning
strategy actually produces a partition with much better accuracy than 𝜀, and thus we have used too many cells.
So instead of viewing the target error and 𝑚 as the parameters to determine the partition, we introduce a single
parameter 𝜂 to generate a partition. We then select 𝜂 to give the required accuracy 𝜀 = 10−4 and a good control
on 𝑚 and the number of cells 𝑁 . To be precise, we take 𝑞 = 1 and given 𝜂 > 0, we generate a partition as
follows.

Construction of the partition for a given 𝜂 and a non-decreasing sequence (𝜌𝑗)𝑗≥1

Choose 𝐽 ≥ 0 as the smallest integer such that
∑︀64
𝑗=𝐽+1 𝜌

−1
𝑗 ≤ 1

2𝜂 and set 𝜎 = 𝜂
2𝐽 , 𝑗 = 1;

While 𝜎𝜌𝑗 < 1 do
𝑦0
𝑗 = 1−𝜎𝜌𝑗

1+𝜎 , 𝜆0
𝑗 = 𝜎(𝜌𝑗 + 𝑦0

𝑗 ), 𝑖 = 0;
While 𝑦𝑖𝑗 − 𝜆𝑖𝑗 > −1
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Table 1. Number of terms 𝑚 needed to meet the target accuracy 𝜀 = 10−4 on each cell using
the piecewise (adaptive) Taylor polynomial approximations.

𝑎min = 0.1 𝑎min = 0.01
# of cells 𝑠 = 2 𝑠 = 3 𝑠 = 4 # of cells 𝑠 = 2 𝑠 = 3 𝑠 = 4

𝑁 = 1 102 68 61 𝑁 = 1 666 614 603
𝑁 = 3 29 13 9 𝑁 = 3 48 30 27
𝑁 = 8 22 8 5 𝑁 = 10 24 11 8

Increment 𝑖;
Compute 𝜆𝑖𝑗 = 𝜎

1+𝜎 (𝜌𝑗 + 𝑦𝑖−1
𝑗 − 𝜆𝑖−1

𝑗 ) = 1−𝜎
1+𝜎𝜆

𝑖−1
𝑗 and 𝑦𝑖𝑗 = 𝑦𝑖−1

𝑗 − 𝜆𝑖−1
𝑗 − 𝜆𝑖𝑗 ;

End do
If 𝑦𝑖𝑗 − 𝜆𝑖𝑗 < −1 set 𝜆𝑖𝑗 = 1

2

(︀
𝑦𝑖−1
𝑗 − 𝜆𝑖−1

𝑗 + 1
)︀

and 𝑦𝑖𝑗 = 1
2

(︀
𝑦𝑖−1
𝑗 − 𝜆𝑖−1

𝑗 − 1
)︀
;

Increment 𝑗;
End do
Set 𝑦0

𝑙 = 0, 𝜆0
𝑙 = 1 for 𝑙 = 𝑗, . . . , 𝐽 .

The algorithm generates a tensor product partition with cells 𝑄𝜆(𝑦) of the form (3.15). For each cell 𝑄𝜆(𝑦)
from this partition we define a sequence (𝜌𝑗)𝑗≥1, where

𝜌𝑗 :=
{︂ 𝜌𝑗+𝑦𝑗

𝜆𝑗
, when 𝜎𝜌𝑗 < 1,

𝜌𝑗 , otherwise.

It is easy to check that conditions similar to those in Corollary 3.3 are satisfied. Namely, 𝜌𝑗 ≥ 𝜅, 𝑗 = 1, . . . , 64,
and ‖(𝜌−1

𝑗 )64𝑗=1‖ℓ𝑞 ≤ ‖(𝜌
−1
𝑗 )64𝑗=1‖ℓ𝑞 . Moreover, we have

𝛿 := max
𝑗=1,...,64

⃒⃒⃒⃒
𝜌𝑗𝑐𝑗 + 𝑦𝑗𝑐𝑗

1 + 𝑦𝑗𝑐𝑗

⃒⃒⃒⃒
< 1,

since 𝜌𝑗𝑐𝑗 = 1 − 𝑎min/2 < 1, but not necessarily that 𝛿 ≤ 𝛿. However, we can still get the error bound (3.18)
of Corollary 3.3, but with constant 𝐶(𝛿, 𝜌, 𝑞) replaced by the potentially larger constant 𝐶(𝛿, 𝜌, 𝑞). A uniform
error bound can be obtained by taking the constant associated to the largest 𝛿 over all cells in the partition.

Table 1 shows the number of terms 𝑚 needed in the Taylor expansion on each of the 𝑁 cells from our partition
to meet our error criteria. We see that partitioning can significantly reduce the number of polynomial terms
needed to meet the target accuracy. For example, in the case 𝑁 = 1 (no partitioning), we need to take 𝑚 = 603,
whereas with only ten cells the necessary 𝑚 is reduced to 8. Note however, that reducing 𝑚 even further may
cause a considerable growth in the number of cells 𝑁 . Finally, we mention that 𝐽 = 1 in all the examples above.

Remark 4.1. In the above numerical examples, we have not considered the case of using nonlinear models
based on piecewise greedy bases. Our current strategy uses the a priori local polynomial error to partition,
and we do not yet have a corresponding way to generate a partition of 𝑌 when greedy bases are used on each
cell. One appropriate strategy would be to do the partitioning in tandem with the local greedy constructions.
Strategies for doing this are currently under investigation.

4.3. State estimation using linear and nonlinear reduced models

As remarked in the introduction, we anticipate that one of the major advantages of using library approxi-
mation occurs in the problem of state estimation from data observations. In this section, we recall the state
estimation problem and execute several numerical experiments indicating the performance of piecewise polyno-
mial approximations for this problem.
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In state estimation, we are given measurements of an unknown state 𝑢(𝑦*) where 𝑢 is the solution to (1.6)
with the model 𝑎 for the diffusion known to us. We assume that the data is of the form

𝑤𝑗 = 𝑙𝑗(𝑢(𝑦*)), 𝑗 = 1, . . . , 𝐿,

where the 𝑙𝑗 are linear functionals defined on 𝑉 . Each linear functional 𝑙𝑗 has a Riesz representation

𝑙𝑗(𝑣) = ⟨𝑣, 𝜔𝑗⟩𝑉 , 𝑗 = 1, . . . , 𝐿.

The functions 𝜔𝑗 , 𝑗 = 1, . . . , 𝐿, span a subspace 𝑊 of 𝑉 . Without loss of generality, we can assume that the
dimension of 𝑊 is 𝐿 since otherwise there is redundancy in the measurements.

We want to use these data observations together with the known model 𝑎 for diffusion in order to construct
an approximation 𝑢̂ to the state 𝑢(𝑦*). Note that 𝑦* and 𝑢(𝑦*) are not necessarily uniquely determined by the
measurements. One way of proceeding, as was proposed in [13], is to employ a reduced model based on a linear
space 𝑉𝑛 to approximate ℳ. The algorithm in [13] constructs an approximation 𝑢̂𝑛 to 𝑢(𝑦*) by solving a least
squares fit to the data from 𝑉𝑛. This algorithm was shown to be optimal in a certain sense (see [2,10]) once 𝑉𝑛
is chosen. The performance of this algorithm is upper bounded by

‖𝑢(𝑦*)− 𝑢̂𝑛‖𝑉 ≤ 𝜇𝑛𝜀𝑛. (4.7)

Here 𝜀𝑛 := dist(ℳ, 𝑉𝑛)𝑉 , and 𝜇𝑛 = 𝜇(𝑊,𝑉𝑛) ≥ 1 is a certain inf-sup constant which can be interpreted as the
reciprocal of the angle between 𝑉𝑛 and the space 𝑊 [3]. More preceisely,

𝜇𝑛 = 𝜇(𝑊,𝑉𝑛) :=
(︂

inf
𝑣∈𝑉𝑛

sup
𝑤∈𝑊

⟨𝑣, 𝑤⟩𝑉
‖𝑣‖𝑉 ‖𝑤‖𝑉

)︂−1

·

This motivates choosing a nested sequence of spaces 𝑉1 ⊂ 𝑉2 ⊂ · · · with dim(𝑉𝑗) = 𝑗, and selecting a space
from this sequence which minimizes the right side of (4.7). Note that while 𝜀𝑛 decreases when increasing 𝑛, the
constant 𝜇𝑛 increases and is in fact infinite if 𝑛 > 𝐿.

For our numerical experiments in state estimation we use the same models for the diffusion 𝑎 as described in
(4.1)–(4.3). For the measurements, we take linear functionals which emulate point evaluation. Specifically, each
𝑙𝑗 is of the form

𝑙𝑗(𝑢) :=
∫︁
𝐷

𝑢(𝑥)𝐾(𝑥− 𝑥𝑗) d𝑥, 𝐾(𝑥) := exp(−𝜆|𝑥|2), (4.8)

where |𝑥| is the Euclidean norm of 𝑥 and 𝜆 = 227.5̄.
In our numerical experiments, we set 𝑦* = 0.5384, but of course operate as if 𝑦* is unknown to us. We take

𝐿 = 20 measurements of the form (4.8), where the centers 𝑥𝑗 are chosen at random, applied to the solution
𝑢(·, 𝑦*) of (1.6) with 𝑎 satisfying (4.1)–(4.3) with 𝑠 = 4 and 𝑎min = 0.1. We only see these measurements and
not the entire function 𝑢(·, 𝑦*).

Our first numerical experiment is to compute the behavior of 𝜇𝑛, the recovery error ‖𝑢̄(𝑦*) − 𝑢̂𝑛‖𝑉 and
its upper bound 𝜇𝑛𝜖𝑛, see (4.7), for different choices of 𝑉𝑛. Here 𝑉𝑛 is the (adaptive) Taylor reduced space
with 𝑛 terms and 𝜖𝑛 is the approximation error computed as discussed in Section 4.1. The values obtained
for 𝑛 = 1, 2, . . . , 20 when 𝐿 = 20, 𝑠 = 4 and 𝑎min = 0.1 are provided in Figure 3. An important observation
from this figure is that increasing the value of 𝑛 (in order to improve the approximation error) causes 𝜇𝑛 to
increase greatly and thereby limits the recovery accuracy. We shall see in the next experiments that this can be
circumvented by using piecewise polynomial approximations.

Notice that the dimension 𝑛 of 𝑉𝑛 is limited by 𝑛 ≤ 𝐿 since otherwise 𝜇𝑛 is infinite. This motivates the use
of library approximation where the spaces in the library have small dimension 𝑚 ≤ 𝐿. We do such a numerical
experiment using piecewise Taylor polynomial approximation obtained via the adaptive method. We partition
𝑌 into 8 cells. This partition corresponds to only subdividing the first coordinate direction 𝑦1. Each cell gives
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Figure 3. The constant 𝜇𝑛, the upper bound 𝜇𝑛𝜖𝑛 and the recovery error ‖𝑢̄(𝑦*)− 𝑢̂𝑛‖𝑉 for
the (adaptive) Taylor approximation when 𝐿 = 20, 𝑠 = 4 and 𝑎min = 0.1. Left: graphs for
𝑛 = 1, 2 . . . , 20; right: values for 𝑛 = 5, 10, 15.
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Figure 4. Results of the piecewise (adaptive) Taylor polynomial approximation on each cell
when 𝐿 = 20, 𝑠 = 4 and 𝑎min = 0.1. Left: the constant 𝜇𝑗𝑚; middle: 𝜇𝑗𝑚𝜖

𝑗
𝑚; right: recovery error

‖𝑢̄(𝑦*)− 𝑢̂𝑗𝑚‖𝑉 .

rise to a “local” value of the inf-sup constant 𝜇𝑗𝑚 := 𝜇(𝑊,𝑉 𝑗𝑚), 𝑗 = 1, 2, . . . , 8, where the 𝑉 𝑗𝑚’s are the spaces in
the library associated with the partition of 𝑌 . Finally, we use 𝑚 = 5 which ensures that the local approximation
error satisfies 𝜖𝑗𝑚 ≤ 𝜀 = 10−4 for 𝑗 = 1, 2, . . . , 8, see Table 1. Figure 4 gives the value of 𝜇𝑗𝑚, the upper bound
𝜇𝑗𝑚𝜖

𝑗
𝑚 and the recovery error ‖𝑢̄(𝑦*) − 𝑢̂𝑗𝑚‖𝑉 , 𝑢̂𝑗𝑚 ∈ 𝑉 𝑗𝑚, for each cell 𝑗 = 1, 2, . . . , 8. Notice that the values of

𝜇𝑗𝑚 do not depend on 𝑦*.
Also note that the “local” constants 𝜇𝑗𝑚 for the various cells do not exceed 12, while the corresponding 𝜇

was about 230 for the one cell case; see Figure 3-right. Moreover, we observe that for all the cells, the upper
bound 𝜇𝑗𝑚𝜖

𝑗
𝑚 is smaller than 1.1 × 10−3, which ensures that the recovery error (unknown in practice) is less

than 1.1× 10−3 for all cells. Note however that we are not providing an algorithm for determining the cell most
likely to contain 𝑦*.

5. Conclusions

In this section, we briefly discuss the possible advantages and disadvantages of using nonlinear reduced
models in the context of parametric PDEs. We consider only the case of elliptic PDEs (1.6) with affine diffusion
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coefficients (1.7). We suppose that for the given (𝜓𝑗)𝑗≥1, there is a nondecreasing sequence (𝜌𝑗)𝑗≥1 with 𝜌1 > 1
satisfying (3.5). Quantitative theorems for constructing online solvers with performance guarantees are proven
using assumptions on the growth of the sequence (𝜌𝑗)𝑗≥1. The assumption we use here is that the sequence
(𝜌−1
𝑗 )𝑗≥1 is in ℓ𝑞(N) for some 𝑞 < 2 (see [1, 4]). Our discussion is guided by both the theoretical and numerical

results of this paper.

5.1. Offline cost for constructing a solver for linear reduced models

Let us first consider the case where our interest is constructing an online linear solver for the parametric PDE
that performs with a guaranteed approximation error 𝜀. There is a distinction in the offline cost of constructing
such a solver, depending on whether it is based on Taylor expansions or on a greedy basis expansion.

When using a Taylor polynomial approximation, we need to find a lower set Λ*𝑛 = Λ*𝑛(𝜀) of indices used in
the Taylor polynomial expansion (1.3).

We presented two methods for finding such an index set Λ, which we referred to as the a priori and the
adaptive method. The a priori method is numerically cheap since it only requires us to sort the 𝜌−𝜈 to identify
the largest of these numbers (see [4] for one such sorting algorithm). Once the set Λ*𝑛 is identified, the Taylor
coefficients 𝑡𝜈 can be computed recursively with finite element solvers as already discussed. The adaptive method
is more expensive as it requires the computation of all 𝑡𝜈 in the reduced margin of the adaptively constructed
monotone set, while only a few may be included in the set Λ*𝑛; compare for instance (7.104) and (7.105) in [6].
However, this algorithm is preferred in our numerical experiments presented because it generates sets Λ*𝑛 with
eventually smaller cardinality by assessing precisely the magnitude of ‖𝑡𝜈‖𝑉 instead of using its upper bound
𝐶𝑢𝜌

−𝜈 (see Lem. 3.14 in [6]).
Consider next the linear reduced model based on the Galerkin projection onto a linear space 𝑉𝑛 of dimension

𝑛 constructed by a weak greedy selection of snapshots from the solution manifold. Its main advantage is that 𝑛
may be much smaller than the number of terms used in the Taylor polynomial approximation (see Fig. 2). Yet,
the deficiencies in such greedy algorithms are that the offline cost for the selection of the greedy basis using an
𝜀-net training set grows like 𝒪(𝜀−𝑐/𝑟𝑒𝐶𝜀

−1/𝑟

) (see for instance (8.89) together with (8.108) from [6]) which may
be prohibitive for small 𝜀. This was one of the main motivations for using nonlinear models in place of linear
models.

5.2. Offline cost for constructing a solver using nonlinear reduced models

We discuss next the offline cost in the construction of nonlinear reduced models based on piecewise Taylor
polynomials. We have given a priori recipes for the tensor product partitioning of 𝑌 into cells 𝑄 based on the
knowledge of the sequence (𝜌𝑗)𝑗≥1, and thus the main issue is building the appropriate basis for each cell 𝑄
of this partition. This requires the computation of the finite element approximation of the appropriate Taylor
coefficients on each cell. Note that these computations can be done in parallel. The total cost of this offline
construction is governed by 𝑁 , the total number of cells in the partition, and 𝑚, the number of terms used on
each cell. In our numerical examples, these constructions were not an issue because the number of cells 𝑁 was
reasonable for moderate values of 𝑚.

We have given a priori bounds on the number of cells needed for the partition in Section 3.2. Recall that if
we are in a situation where linear methods (such as polynomial or greedy) give an approximation rate 𝑀𝑛−𝑟,
then we can guarantee an approximation error 𝜀 = 𝑛−𝑟 by using piecewise polynomials with 𝑚 terms and
𝑁 ≤ 𝑒𝐶(𝑛/𝑚)𝛼

cells, at least in the special case discussed in Section 3.3. If we assume the cost of creating a
polynomial approximation with 𝑚 terms scales like 𝑒𝑐𝑚, which we know is the case for greedy constructions, then
the cost for constructing the piecewise polynomial is bounded by 𝑒𝐶(𝑛/𝑚)𝛼+𝑐𝑚. By choosing 𝑚 < 𝑛 appropriately,
this is always less than the cost of the approximation without partitioning, which is 𝑒𝐶𝑛. For example, if 𝛼 = 1
then we could choose 𝑚 =

√
𝑛 and get the total piecewise polynomial cost to be 𝑒𝐶

√
𝑛 as compared with the

𝑒𝐶𝑛 if we do not partition. In our numerical examples, we have seen that the a priori bounds on the number of
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cells is quite pessimistic, and we actually get better performance than that predicted by the a priori estimates
for the number of cells.

5.3. Online cost for constructing the approximate solution for linear reduced models

If we use a linear reduced model based on Taylor polynomials, then once the index set Λ is found and the
Taylor coefficients 𝑡𝜈 , 𝜈 ∈ Λ, are computed, the reduced model is

𝑢̄(𝑦) =
∑︁
𝜈∈Λ

𝑡𝜈𝑦
𝜈 .

Thus, given a parameter query, the online cost for the evaluation of 𝑢̄(𝑦) is trivial.
If we use a greedily generated linear space 𝑉𝑛 of dimension 𝑛, there are additional online costs. Given a

parameter query 𝑦 one must find the Galerkin projection of 𝑢(𝑦) onto 𝑉𝑛. This entails the inversion of an 𝑛×𝑛
dense matrix where the matrix depends on 𝑦. In certain cases, such as when the diffusion coefficient is affine,
this can be somewhat mitigated by precomputing certain matrices (see the discussion in [6]). Therefore, there
is a balancing between having a smaller dimensional reduced model (when compared with the polynomial case)
and the additional cost of matrix inversion in an online solver.

Notice also that the accuracy of the online performance for reduced models using Taylor polynomials can be
improved by using a Galerkin projection onto the polynomial space in place of the plug in formula. However,
this projection would also involve an expensive matrix inversion.

5.4. Online cost for constructing the approximate solution for nonlinear reduced models

Building an online solver based on piecewise Taylor polynomial approximations proceeds by building a linear
solver for each cell of the partition. An additional step is required to determine which space from the library of
spaces should be used for the query 𝑦. This only requires the identification of the cell which contains 𝑦, and is
easily determined from the knowledge of the partition since the cells are hyperrectangles.

5.5. Storage costs

The storage cost for the online solver is dominated by the storage of the basis functions. They are typically
large vectors depending on 𝜀, 𝐷 and 𝑓 in (1.6). We observe from our numerical experiments that the storage cost
is higher for linear reduced models using Taylor polynomials compared to the greedy reduced basis algorithm; see
Figure 2. Moreover, the costs for Taylor polynomial reduced models and piecewise Taylor polynomial reduced
models are quite comparable. For example, Table 2 shows that for a target accuracy 𝜀 = 10−4 and 𝑠 = 3,
𝑎min = 0.01, the linear reduced model uses 614 basis functions 𝑡𝜈 while the piecewise Taylor construction has
48 cells with 𝑚 = 9 terms on each cell, and hence requires the storage of 432 vectors.

5.6. Summary

Linear reduced models based on Taylor polynomials have several advantages, including simple identification
of the set Λ with no need for optimization or search algorithms, and fast computation of the online solver 𝑢̄(𝑦).
The deficiency in such constructions is that to reach a small target accuracy 𝜀 the dimension 𝑚 = #Λ may be
very large and thus affect the offline construction. A large value of 𝑚 would also lead to large storage costs.

The advantage of a greedily chosen linear reduced model is that the dimension required for it to reach a
target accuracy is typically much smaller than what is required when using Taylor polynomials. However, there
is typically a larger offline cost to construct the greedy basis when the required dimension is large, and the costs
of executing an online solver are higher. On the other hand, because the dimension of the greedy space is small,
there is a savings in storage.

These considerations lead us to consider replacing the linear reduced model by nonlinear models, and in this
work we considered nonlinear reduced models based on piecewise polynomial approximation. These piecewise
polynomial models have the advantage of being able to achieve a better accuracy than linear reduced models
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while still taking 𝑚 small, provided that the number of cells 𝑁 in the piecewise construction is moderate. In
this paper, we have given both a priori bounds on the necessary size of 𝑁 as well as numerical bounds. Both
bounds show the advantage of this approach. The potential deficiency of this approach is a large storage cost if
𝑁 is large. Our numerical examples suggest that 𝑁 is considerably smaller than the a priori bounds, thereby
making this a viable approach when the desired accuracy 𝜀 is small.
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