Discrete transparent boundary conditions for the two-dimensional leap-frog scheme: approximation and fast implementation
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 55 (2021), pp. S535-S571

We develop a general strategy in order to implement approximate discrete transparent boundary conditions for finite difference approximations of the two-dimensional transport equation. The computational domain is a rectangle equipped with a Cartesian grid. For the two-dimensional leap-frog scheme, we explain why our strategy provides with explicit numerical boundary conditions on the four sides of the rectangle and why it does not require prescribing any condition at the four corners of the computational domain. The stability of the numerical boundary condition on each side of the rectangle is analyzed by means of the so-called normal mode analysis. Numerical investigations for the full problem on the rectangle show that strong instabilities may occur when coupling stable strategies on each side of the rectangle. Other coupling strategies yield promising results.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1051/m2an/2020052
Classification : 65M06, 65M12
Keywords: Transport equation, leap-frog schemes, transparent boundary conditions, stability
@article{M2AN_2021__55_S1_S535_0,
     author = {Besse, Christophe and Coulombel, Jean-Fran\c{c}ois and Noble, Pascal},
     title = {Discrete transparent boundary conditions for the two-dimensional leap-frog scheme: approximation and fast implementation},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {S535--S571},
     year = {2021},
     publisher = {EDP-Sciences},
     volume = {55},
     number = {Suppl\'ement},
     doi = {10.1051/m2an/2020052},
     zbl = {1481.65122},
     mrnumber = {4221310},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/m2an/2020052/}
}
TY  - JOUR
AU  - Besse, Christophe
AU  - Coulombel, Jean-François
AU  - Noble, Pascal
TI  - Discrete transparent boundary conditions for the two-dimensional leap-frog scheme: approximation and fast implementation
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2021
SP  - S535
EP  - S571
VL  - 55
IS  - Supplément
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/m2an/2020052/
DO  - 10.1051/m2an/2020052
LA  - en
ID  - M2AN_2021__55_S1_S535_0
ER  - 
%0 Journal Article
%A Besse, Christophe
%A Coulombel, Jean-François
%A Noble, Pascal
%T Discrete transparent boundary conditions for the two-dimensional leap-frog scheme: approximation and fast implementation
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2021
%P S535-S571
%V 55
%N Supplément
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/m2an/2020052/
%R 10.1051/m2an/2020052
%G en
%F M2AN_2021__55_S1_S535_0
Besse, Christophe; Coulombel, Jean-François; Noble, Pascal. Discrete transparent boundary conditions for the two-dimensional leap-frog scheme: approximation and fast implementation. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 55 (2021), pp. S535-S571. doi: 10.1051/m2an/2020052

[1] S. Abarbanel and D. Gottlieb, Stability of two-dimensional initial boundary value problems using leap-frog type schemes. Math. Comput. 33 (1979) 1145–1155. | Zbl | MR

[2] X. Antoine, A. Arnold, C. Besse, M. Ehrhardt and A. Schädle, A review of transparent and artificial boundary conditions techniques for linear and nonlinear Schrödinger equations. Commun. Comput. Phys. 4 (2008) 729–796. | Zbl | MR

[3] A. Arnold, M. Ehrhardt and I. Sofronov, Discrete transparent boundary conditions for the Schrödinger equation: fast calculation, approximation, and stability. Commun. Math. Sci. 1 (2003) 501–556. | Zbl | MR | DOI

[4] A. Arnold, M. Ehrhardt, M. Schulte and I. Sofronov, Discrete transparent boundary conditions for the Schrödinger equation on circular domains. Commun. Math. Sci. 10 (2012) 889–916. | Zbl | MR | DOI

[5] G. A. Baker, Jr., Essentials of Padé Approximants. Academic Press (1975). | Zbl | MR

[6] G. A. Baker, Jr., Counter-examples to the Baker–Gammel–Wills conjecture and patchwork convergence. J. Comput. Appl. Math. 179 (2005) 1–14. | Zbl | MR | DOI

[7] G. A. Baker, Jr. and P. Graves-Morris, Padé Approximants, 2nd edition. In: Vol. 59 of Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge (1996). | Zbl | MR

[8] V. A. Baskakov and A. V. Popov, Implementation of transparent boundaries for numerical solution of the Schrödinger equation. Wave Motion 14 (1991) 123–128. | Zbl | MR | DOI

[9] A. Benoit, Geometric optics expansions for hyperbolic corner problems, I: self-interaction phenomenon. Anal. PDE 9 (2016) 1359–1418. | Zbl | MR | DOI

[10] S. Benzoni-Gavage and D. Serre, Multidimensional Hyperbolic Partial Differential Equations: First-Order Systems and Applications. Oxford University Press (2007). | Zbl | MR

[11] C. Besse, P. Noble and D. Sanchez, Discrete transparent boundary conditions for the mixed KDV–BBM equation. J. Comput. Phys. 345 (2017) 484–509. | Zbl | MR | DOI

[12] C. Besse, B. Mésognon-Gireau and P. Noble, Artificial boundary conditions for the linearized Benjamin–Bona–Mahony equation. Numer. Math. 139 (2018) 281–314. | Zbl | MR | DOI

[13] G. Beylkin and L. Monzón, On approximation of functions by exponential sums. Appl. Comput. Harmonic Anal. 19 (2005) 17–48. | Zbl | MR | DOI

[14] G. Beylkin and L. Monzón, Approximation by exponential sums revisited. Appl. Comput. Harmonic Anal. 28 (2010) 131–149. Special Issue on Continuous Wavelet Transform in Memory of Jean Morlet, Part I. | Zbl | MR | DOI

[15] J.-F. Coulombel, Transparent numerical boundary conditions for evolution equations: derivation and stability analysis. Ann. Fac. Sci. Toulouse Math. 28 (2019) 259–327. | Zbl | MR | Numdam | DOI

[16] G. Dakin, B. Després and S. Jaouen, Inverse Lax-Wendroff boundary treatment for compressible Lagrange-remap hydrodynamics on Cartesian grids. J. Comput. Phys. 353 (2018) 228–257. | Zbl | MR | DOI

[17] A. Dedner, D. Kröner, I. L. Sofronov and M. Wesenberg, Transparent boundary conditions for mhd simulations in stratified atmospheres. J. Comput. Phys. 171 (2001) 448–478. | Zbl | DOI

[18] M. Ehrhardt and A. Arnold, Discrete transparent boundary conditions for the Schrödinger equation. In: Fluid dynamic processes with inelastic interactions at the molecular scale (Torino, 2000). Riv. Mat. Univ. Parma 4 (2001) 57–108. | Zbl | MR

[19] B. Engquist and A. Majda, Absorbing boundary conditions for the numerical simulation of waves. Math. Comput. 31 (1977) 629–651. | Zbl | MR | DOI

[20] F. Filbet and C. Yang, An inverse Lax-Wendroff method for boundary conditions applied to Boltzmann type models. J. Comput. Phys. 245 (2013) 43–61. | Zbl | MR | DOI

[21] M. Goldberg, On a boundary extrapolation theorem by Kreiss. Math. Comput. 31 (1977) 469–477. | Zbl | MR | DOI

[22] B. Gustafsson, H.-O. Kreiss and J. Oliger, Time Dependent Problems and Difference Methods. John Wiley & Sons, New York (1995). | Zbl | MR

[23] L. Halpern, Absorbing boundary conditions for the discretization schemes of the one-dimensional wave equation. Math. Comput. 38 (1982) 415–429. | Zbl | MR | DOI

[24] H.-O. Kreiss, Difference approximations for hyperbolic differential equations. In: Numerical Solution of Partial Differential Equations (Proc. Sympos. Univ. Maryland, 1965). Academic Press (1966) 51–58. | Zbl | MR

[25] P. D. Lax and B. Wendroff, Difference schemes for hyperbolic equations with high order of accuracy. Commun. Pure Appl. Math. 17 (1964) 381–398. | Zbl | MR | DOI

[26] S. Osher, An ill posed problem for a hyperbolic equation near a corner. Bull. Am. Math. Soc. 79 (1973) 1043–1044. | Zbl | MR | DOI

[27] S. Osher, Initial-boundary value problems for hyperbolic systems in regions with corners. I. Trans. Am. Math. Soc. 176 (1973) 141–164. | Zbl | MR | DOI

[28] S. Osher, Initial-boundary value problems for hyperbolic systems in regions with corners. II. Trans. Am. Math. Soc. 198 (1974) 155–175. | Zbl | MR | DOI

[29] R. D. Richtmyer and K. W. Morton, Difference Methods for Initial Value Problems. Graduate Texts in Mathematics. Interscience Publishers John Wiley & Sons (1967)Theory and applications. | Zbl | MR

[30] L. Sarason and J. A. Smoller, Geometrical optics and the corner problem. Arch. Ratio. Mech. Anal. 56 (1974/75) 34–69. | Zbl | MR | DOI

[31] C.-W. Shu and S. Tan, Inverse Lax–Wendroff procedure for numerical boundary treatment of hyperbolic equations. In: Vol. 18 of Handbook of Numerical Methods for Hyperbolic ProblemsHandbook of Numerical Analysis. North-Holland, Elsevier (2017) 23–52. | Zbl | MR | DOI

[32] G. Szegö, Orthogonal Polynomials. American Mathematical Society, Providence, RI (1975). | MR

[33] S. Tan and C.-W. Shu, Inverse Lax-Wendroff procedure for numerical boundary conditions of conservation laws. J. Comput. Phys. 229 (2010) 8144–8166. | Zbl | MR | DOI

[34] L. N. Trefethen, Group velocity in finite difference schemes. SIAM Rev. 24 (1982) 113–136. | Zbl | MR | DOI

[35] L. N. Trefethen, Instability of difference models for hyperbolic initial boundary value problems. Commun. Pure Appl. Math. 37 (1984) 329–367. | Zbl | MR | DOI

[36] F. Vilar and C.-W. Shu, Development and stability analysis of the inverse Lax-Wendroff boundary treatment for central compact schemes. ESAIM:M2AN 49 (2015) 39–67. | Numdam | MR | Zbl | DOI

Cité par Sources :