
ESAIM: M2AN 55 (2021) S535–S571 ESAIM: Mathematical Modelling and Numerical Analysis
https://doi.org/10.1051/m2an/2020052 www.esaim-m2an.org

DISCRETE TRANSPARENT BOUNDARY CONDITIONS FOR THE
TWO-DIMENSIONAL LEAP-FROG SCHEME: APPROXIMATION AND FAST

IMPLEMENTATION

Christophe Besse1,*, Jean-François Coulombel1 and Pascal Noble2

Abstract. We develop a general strategy in order to implement approximate discrete transparent
boundary conditions for finite difference approximations of the two-dimensional transport equation.
The computational domain is a rectangle equipped with a Cartesian grid. For the two-dimensional
leap-frog scheme, we explain why our strategy provides with explicit numerical boundary conditions on
the four sides of the rectangle and why it does not require prescribing any condition at the four corners
of the computational domain. The stability of the numerical boundary condition on each side of the
rectangle is analyzed by means of the so-called normal mode analysis. Numerical investigations for the
full problem on the rectangle show that strong instabilities may occur when coupling stable strategies
on each side of the rectangle. Other coupling strategies yield promising results.

Mathematics Subject Classification. 65M06, 65M12.

Received September 6, 2019. Accepted July 25, 2020.

1. Introduction

In this article, we are concerned with the construction and numerical implementation of discrete transparent
boundary conditions for linear transport equations. Our goal is to derive numerical boundary conditions that
minimize the parasitic wave reflections at the boundary of the computational domain. This research area has
been increasingly active since the pioneering work by Engquist and Majda [19] and our goal here is to explain
why following the same “small frequency approximation” strategy as in [19] can be successful at the fully discrete
level when one deals with a rectangular computational domain. Namely, we shall construct fully discrete,
approximate transparent boundary conditions for the two-dimensional leap-frog scheme on a rectangle. Our
numerical boundary conditions will not be exactly transparent since the derivation of such conditions on a
rectangle seems to be out of reach. Our strategy is to start from the exact transparent boundary conditions for
a half-space and, as in [19], to localize them with respect to the tangential variable by means of a suitable “small
frequency approximation”. This general strategy may be applied to any finite difference scheme. In terms of wave
reflection magnitude, our numerical simulations show that our approximate transparent boundary conditions

Keywords and phrases. Transport equation, leap-frog schemes, transparent boundary conditions, stability.

1 Institut de Mathématiques de Toulouse, UMR5219, Université de Toulouse, CNRS, Université Paul Sabatier,
F-31062 Toulouse Cedex 9, France.
2 Institut de Mathématiques de Toulouse, UMR5219, Université de Toulouse, CNRS, INSA, F-31077 Toulouse, France.
*Corresponding author: jean-francois.coulombel@math.univ-toulouse.fr

c○ The authors. Published by EDP Sciences, SMAI 2021

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

https://doi.org/10.1051/m2an/2020052
https://www.esaim-m2an.org
mailto:jean-francois.coulombel@math.univ-toulouse.fr
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0

S536 C. BESSE ET AL.

are more efficient than more standard, purely local extrapolation strategies, hence, in our opinion, the relevance
of implementing discrete time convolution operators as described below.

We focus here on the discretization of the two-dimensional transport equation by means of the leap-frog
scheme. The nice feature of this approximation is that it does not dissipate high frequency signals – and therefore
allows for a precise analysis of wave reflections on each side of the rectangle – and, moreover, its stencil exhibits
some “dimensional splitting”. The latter feature will be helpful in our construction since we shall not have to
develop a specific numerical treatment for the four corners of the computational domain. Hence we shall focus on
the numerical boundary conditions on each of the four sides of the rectangle and on their coupling through the
eight mesh points that are closest to the four corners. More simple, purely local, outflow strategies [1,21,24,35]
may be implemented for dissipative schemes (e.g., the Lax–Wendroff scheme). Even though these extrapolation
boundary conditions are much cheaper from a computational point of view and are quite efficient in terms
of absence of wave reflection for dissipative schemes, they only give poor intuition for more complex wave
propagation phenomena modeled for instance by the Schrödinger or Airy equations. Moreover, our simulations
clearly show that local extrapolation boundary conditions for the leap-frog scheme give rise to larger reflected
waves than those generated by the boundary conditions we shall construct below. For inflow boundaries, high
order local numerical treatments based on the inverse Lax–Wendroff method [16, 20, 31, 33, 36] have also been
constructed and analyzed in the past. As for extrapolation strategies at outflow boundaries, these numerical
treatments may yield good convergence properties. However, they generate wave reflections whose magnitude
is larger than what we observe with our nonlocal (in time) procedure. Despite a more involved implementation
and a higher computational cost, we thus believe that nonlocal strategies as those examined below may be
relevant.

An alternative strategy to the one developed below would consist in starting from the exact transparent
boundary condition for the underlying partial differential equation (the continuous problem) and then trying to
discretize it. This strategy has been examined, at least, in [2,8,23], and the overall conclusion is that there is no
general answer for the construction of such absorbing boundary conditions if one wishes to maintain stability.
We therefore rather follow the approach developed in [3,18] and later used in a wide variety of contexts, and thus
construct (approximate) transparent boundary conditions that are adapted to the considered finite difference
approximation.

Exact Discrete Transparent Boundary Conditions (DTBC in what follows) are analytically available in two
space dimensions only when the computational domain is a half-space (Z𝑑−1 × N) or the product of a half-line
by a torus ((Z/𝐽 Z)𝑑−1 × N). By “analytically available”, we mean that DTBC can be expressed by a well-
defined operator, even though its practical implementation may be difficult. We refer for instance to [2–4, 15]
and references therein for various aspects of the theory, the main features of which are recalled below. In either
case, the discrete spatial domain is a cylinder of the form 𝒟 × N with no tangential boundary (the variables
in 𝒟) so DTBC can be derived by performing either a Fourier transform or a Fourier series decomposition
with respect to the spatial tangential variables. In the end, this approach yields a one-dimensional problem
that is parametrized by the tangential frequency1. In that framework, the two-dimensional DTBC thus take the
form of a tangential pseudo-differential operator that is intrinsically nonlocal. In order to be implemented on
a rectangular computational domain, one therefore has to make the DTBC local, which we achieve here as in
[19] by using a suitable “small frequency approximation”, which is meaningful (at least formally) for smooth
solutions. The frequency cut-off amounts to retaining only finitely many terms in the Taylor expansion of the
symbol of the DTBC operator and rewriting the Taylor expansion as a trigonometric polynomial (up to higher
order terms). This cut-off strategy is implemented here in such a way that the stencil used for the numerical
boundary conditions is not wider than that of the interior numerical scheme. Higher order strategies could be
relevant but would require a specific treatment when getting closer to the corner. We do not investigate this
issue here.

1The same strategy applies when the computational domain is a disk by using polar coordinates.

DISCRETE TRANSPARENT BOUNDARY CONDITIONS S537

As in all numerical approximation problems, a crucial feature for the efficiency of the numerical scheme is
stability. Following the general result of [15], the DTBC for the leap-frog scheme on a half-space do not meet the
strongest possible stability properties because the leap-frog scheme exhibits glancing wave packets (even in one
space dimension). On a half-space, the exact DTBC meet some kind of neutral stability which calls for special
care since a slight modification in the numerical boundary conditions may yield violent instabilities. In what
follows, we show that the zero, first and second order tangential frequency cut-off – as described above – maintain
neutral stability when implemented on a half-space (the so-called Godunov–Ryabenkii condition is satisfied [22]).
In other words, our approximate transparent boundary conditions are as spectrally stable as the exact ones on a
half-space and we therefore feel rather safe to implement them on a rectangular geometry. If instabilities occur in
the rectangular geometry, they will necessarily stem from the coupling between the various numerical boundary
conditions on each side of the rectangle. A thorough stability analysis on the rectangle seems to be out of reach
at the present time. It is not even fully understood at the continuous level! The numerical investigations that
we report below show that stability in the rectangle should not be taken for granted. Some coupling strategies
exhibit good stability – and convergence – properties while at least one displays violent instabilities. In a future
work, we shall extend our strategy to fully discretized hyperbolic systems and to implicit difference schemes for
dispersive equations.

Let us now give the plan of our work. In Section 2, we introduce the two-dimensional transport equation
and the leap-frog scheme on a rectangular computational domain. The goal is then to construct and analyze
approximate transparent boundary conditions. For later use and also for the ease of reading, we first go back
to the corresponding one-dimensional problem in Section 3. We adapt the general strategy of [3,18], which was
recently generalized in [15], to the particular case of the leap-frog scheme. Some of the tools used in [15] are
complemented here by some explicit expansions, based on Legendre polynomials, which were already used in
[3,12,18]. Such explicit representation formulae lower the implementation cost of our method and give a sharp
asymptotic behavior for the convolution coefficients, which would not be possible by only using the tools in [15].
We then analyze the stability of the one-dimensional DTBC by means of the normal mode decomposition and
show that they satisfy the so-called Godunov–Ryabenkii condition [22]. Since the numerical implementation
and computational cost of DTBC is sometimes considered as heavy, we then discuss the fast implementation
of approximate DTBC by the so-called sum of exponential approach. We relax some of the constraints used in
[3,18] for the free parameters in this approximation, and show that the resulting approximation is efficient from
a numerical cost point of view and also from the wave reflection magnitude point of view. Section 4 extends this
approach to the two-dimensional problem by first considering the exact DTBC on a half-space and then using
low frequency truncations in order to derive local (in the tangential space variable) approximate DTBC. We
analyze, for the half-space problem, the stability of our approximate DTBC and then report on some numerical
simulations on the rectangle.

2. The transport equation and the leap-frog approximation

In this article, we consider the linear advection equation in two space dimensions:{︂
𝜕𝑡𝑢 + c · ∇𝑢 = 0, 𝑡 ≥ 0, (𝑥, 𝑦) ∈ R2,
𝑢|𝑡=0 = 𝑢0,

(2.1)

where the space coordinates are denoted (𝑥, 𝑦), the velocity reads c = (𝑐𝑥, 𝑐𝑦)𝑇 and ∇ = (𝜕𝑥, 𝜕𝑦)𝑇 . It is
always assumed from now on that the velocity c is nonzero. To fix ideas, we shall always take 𝑐𝑥 and 𝑐𝑦 to be
nonnegative, but this has no impact on the analysis below. The solution to (2.1) reads:

𝑢(𝑡, 𝑥, 𝑦) = 𝑢0(𝑥− 𝑐𝑥 𝑡, 𝑦 − 𝑐𝑦 𝑡),

so if the initial condition 𝑢0 is supported, say in the square [−𝐿, 𝐿] × [−𝐿, 𝐿], the solution vanishes in the
larger square [−2𝐿, 2𝐿]× [−2𝐿, 2𝐿] after some time 𝑇 ∼ 𝐿/|c|. Given a finite difference approximation to (2.1)

S538 C. BESSE ET AL.

associated with a Cartesian grid, our goal in this article is to propose a systematic construction of transparent,
or approximate transparent numerical boundary conditions2 in order to simulate the advection of the initial
condition through the computational domain and eventually its exit through the numerical boundary. Our goal
is to minimize as much as possible parasitic wave reflections on the numerical boundary.

In all what follows, the computational domain is a fixed rectangle [𝑥ℓ, 𝑥𝑟] × [𝑦𝑏, 𝑦𝑡] (ℓ, 𝑟, 𝑏, 𝑡 stand for left,
right, bottom and top). We consider some space steps 𝛿𝑥, 𝛿𝑦 > 0 such that the ratios:

𝑥𝑟 − 𝑥ℓ

𝛿𝑥
=: 𝐽 + 1,

𝑦𝑡 − 𝑦𝑏

𝛿𝑦
=: 𝐾 + 1,

define some integers 𝐽 and 𝐾 (that are meant to be large). Eventually, the time step 𝛿𝑡 > 0 will always be
chosen so that the parameters

𝜇𝑥 := 𝑐𝑥
𝛿𝑡

𝛿𝑥
, 𝜇𝑦 := 𝑐𝑦

𝛿𝑡

𝛿𝑦
,

are fixed (or at worse vary between two fixed positive constants). These parameters should satisfy some stability
requirement, the so-called Courant–Friedrichs–Lewy condition, as explained below. The grid points are defined
as (𝑥𝑗 , 𝑦𝑘), with:

∀ 𝑗 = 0, . . . , 𝐽 + 1, ∀ 𝑘 = 0, . . . ,𝐾 + 1, 𝑥𝑗 := 𝑥ℓ + 𝑗 𝛿𝑥, 𝑦𝑘 := 𝑦𝑏 + 𝑘 𝛿𝑦.

The interior points correspond to 1 ≤ 𝑗 ≤ 𝐽 and 1 ≤ 𝑘 ≤ 𝐾. The four sides of the rectangle (the numerical
boundary) correspond to 𝑗 ∈ {0, 𝐽 + 1} and 𝑘 ∈ {0, 𝐾 + 1}.

Letting now 𝑢𝑛
𝑗,𝑘 denote the approximation of the exact solution to (2.1) at (𝑥𝑗 , 𝑦𝑘) and time 𝑛 𝛿𝑡, the

two-dimensional leap-frog scheme reads:

𝑢𝑛+2
𝑗,𝑘 − 𝑢𝑛

𝑗,𝑘 + 𝜇𝑥

(︀
𝑢𝑛+1

𝑗+1,𝑘 − 𝑢𝑛+1
𝑗−1,𝑘

)︀
+ 𝜇𝑦

(︀
𝑢𝑛+1

𝑗,𝑘+1 − 𝑢𝑛+1
𝑗,𝑘−1

)︀
= 0, (2.2)

which holds for 1 ≤ 𝑗 ≤ 𝐽 and 1 ≤ 𝑘 ≤ 𝐾, that is at all interior points. The definition of the numerical
scheme requires to prescribe numerical boundary conditions for 𝑢𝑛+2

0,𝑘 , 𝑢𝑛+2
𝐽+1,𝑘, 𝑘 = 1, . . . ,𝐾, and 𝑢𝑛+2

𝑗,0 , 𝑢𝑛+2
𝑗,𝐾+1,

𝑗 = 1, . . . , 𝐽 . A crucial observation for what follows is that the update of the numerical solution in the interior
does not require to prescribe any numerical boundary condition at the corners (this is because 𝑢𝑛+2

𝑗,𝑘 does not
depend on 𝑢𝜎

𝑗±1,𝑘±1 at any earlier time index 𝜎). In all what follows, the numerical solution (𝑢𝑛
𝑗,𝑘) will therefore

be defined for (𝑗, 𝑘) ∈ {0, . . . , 𝐽 + 1} × {0, . . . ,𝐾 + 1} ∖ {(0, 0), (0, 𝐾 + 1), (𝐽 + 1, 0), (𝐽 + 1, 𝐾 + 1)}. We shall
be careful in our definition of the numerical boundary conditions to make sure that the four corner values are
not involved either.

Let us note that on the whole space Z2, the ℓ2-stability condition for (2.2) reads:

𝜇𝑥 + 𝜇𝑦 ≤ cfl < 1, (2.3)

where cfl is a free positive parameter to be chosen. We consider the case 𝑐𝑥, 𝑐𝑦 ≥ 0, hence 𝜇𝑥, 𝜇𝑦 ≥ 0, so we
do not write absolute values in (2.3). The inequality (2.3) gives an upper bound for 𝛿𝑡 in terms of 𝛿𝑥, 𝛿𝑦. The
bound (2.3), or its one-dimensional analogue that we shall discuss below, is always assumed to hold from now
on.

We wish to construct approximate transparent boundary conditions for (2.2) on each side of the rectangle.
For ease of reading and also for future use on the two-dimensional problem (2.2), we first go back to the one-
dimensional problem and briefly recall the construction of DTBC for the one-dimensional leap-frog scheme. We
discuss the various possible implementations of the DTBC and approximations by means of sums of exponentials.
This technique was used for instance in [3] in the context of the Schrödinger equation and later extended to
other contexts. Once the tools have been set in one space dimension, we shall feel free to use them in two space
dimensions whenever it makes sense.

2Sometimes these are also called non-reflecting or absorbing numerical boundary conditions.

DISCRETE TRANSPARENT BOUNDARY CONDITIONS S539

3. Discrete transparent boundary conditions for the one-dimensional
leap-frog scheme

3.1. The numerical scheme

We now consider the one-dimensional transport equation:{︂
𝜕𝑡𝑢 + 𝑐𝑥 𝜕𝑥𝑢 = 0, 𝑡 ≥ 0, 𝑥 ∈ R,
𝑢|𝑡=0 = 𝑢0,

(3.1)

with an initial condition 𝑢0 that is supported in an interval [𝑥ℓ; 𝑥𝑟]. For concreteness, we shall assume from now
on 𝑐𝑥 > 0 so that the initial condition is transported towards the right and eventually exits the initial support
[𝑥ℓ; 𝑥𝑟]. We are interested here in simulating the solution to (3.1) on the fixed interval [𝑥ℓ; 𝑥𝑟] by imposing
suitable non-reflecting boundary conditions at the boundary points 𝑥ℓ, 𝑥𝑟.

As in the previous section, we choose a mesh size 𝛿𝑥 > 0 such that

𝑥𝑟 − 𝑥ℓ

𝛿𝑥
=: 𝐽 + 1,

is an integer. The time step 𝛿𝑡 > 0 is chosen in such a way that the parameter 𝜇𝑥 defined by:

𝜇𝑥 := 𝑐𝑥
𝛿𝑡

𝛿𝑥
,

is a fixed positive constant. Keeping the notation 𝑥𝑗 := 𝑥ℓ + 𝑗 𝛿𝑥, 𝑗 = 0, . . . , 𝐽 + 1, and letting now 𝑢𝑛
𝑗 denote

the approximation of the solution to (3.1) at 𝑥𝑗 and time 𝑛 𝛿𝑡, the one-dimensional leap-frog scheme reads

𝑢𝑛+2
𝑗 − 𝑢𝑛

𝑗 + 𝜇𝑥

(︀
𝑢𝑛+1

𝑗+1 − 𝑢𝑛+1
𝑗−1

)︀
= 0, 𝑗 = 1, . . . , 𝐽. (3.2)

The parameter 𝜇𝑥 is fixed by imposing:
𝜇𝑥 ≤ cfl < 1, (3.3)

which is a necessary and sufficient ℓ2 stability requirement for (3.2) on the whole real line 𝑗 ∈ Z, see [22, 29].
Since 𝜇𝑥 is positive in our framework, we thus fix 𝜇𝑥 ∈ (0, 1) and let 𝛿𝑥, 𝛿𝑡 vary accordingly.

The numerical sheme (3.2) on the interval 1 ≤ 𝑗 ≤ 𝐽 requires a definition for the boundary values 𝑢𝑛+1
0 ,

𝑢𝑛+1
𝐽+1, and a definition for the initial data (𝑢0

𝑗), (𝑢1
𝑗). The initial condition (𝑢0

𝑗) is defined by setting

∀ 𝑗 = 0, . . . , 𝐽 + 1, 𝑢0
𝑗 := 𝑢0(𝑥𝑗),

where 𝑢0 is the initial condition for (3.1). In the numerical simulations reported below, we have chosen
[𝑥ℓ, 𝑥𝑟] = [−3, 3] and 𝑢0(𝑥) = exp(−10 𝑥2). The first time step value (𝑢1

𝑗) is defined by imposing the second
order Lax–Wendroff scheme in the interior domain, namely:

∀ 𝑗 = 1, . . . , 𝐽, 𝑢1
𝑗 := 𝑢0

𝑗 −
𝜇𝑥

2
(𝑢0

𝑗+1 − 𝑢0
𝑗−1) +

𝜇2
𝑥

2
(𝑢0

𝑗+1 − 2 𝑢0
𝑗 + 𝑢0

𝑗−1).

The boundary values 𝑢1
0 and 𝑢1

𝐽+1 are set equal to zero for simplicity (which is almost exact for the Gaussian
initial condition that we consider). We now recall how to derive the DTBC for the scheme (3.2).

3.2. Derivation of DTBC

The goal of this paragraph is to derive the DTBC for the leap-frog scheme (3.2). We follow the methodology of
[18], which was originally designed for the Schrödinger equations, and therefore consider the numerical scheme:

𝑢𝑛+2
𝑗 − 𝑢𝑛

𝑗 + 𝜇𝑥

(︀
𝑢𝑛+1

𝑗+1 − 𝑢𝑛+1
𝑗−1

)︀
= 0, 𝑗 ∈ Z, (3.4)

S540 C. BESSE ET AL.

on the whole real line Z, assuming that the initial conditions (𝑢0
𝑗)𝑗∈Z, (𝑢1

𝑗)𝑗∈Z belong to ℓ2 and vanish outside of
the interval {1, . . . , 𝐽}. The stability condition (3.3) is assumed to hold. The DTBC are first computed in terms
of the so-called 𝒵-transform of the sequences (𝑢𝑛

𝑗)𝑛∈N. Let us briefly recall the definition of the 𝒵-transform
(we do not pay too much attention here to the convergence of the Laurent series involved in the computations
below and rather remain at the level of formal series).

Definition 3.1. Let (𝑢𝑛)𝑛∈N ∈ CN be a sequence. The 𝒵-transform of (𝑢𝑛)𝑛∈N, which is denoted ̂︀𝑢, is defined by:

̂︀𝑢(𝑧) :=
∞∑︁

𝑛=0

𝑢𝑛

𝑧𝑛
,

the series being well-defined and holomorphic in {𝑧 ∈ C, |𝑧| > 𝑅} where 1/𝑅 is the convergence radius of∑︀∞
𝑛=0 𝑢𝑛 𝑤𝑛 (here 𝑤 is a placeholder for 1/𝑧 and the radius 𝑅 may be zero or infinite).

We now let 𝑢̂𝑗(𝑧), 𝑗 ∈ Z, denote the 𝒵-transform of the sequence (𝑢𝑛
𝑗)𝑛∈N:

𝑢̂𝑗(𝑧) :=
∞∑︁

𝑛=0

𝑢𝑛
𝑗 𝑧−𝑛.

It is shown in [15] that the above series converges for |𝑧| > 1 thanks to the ℓ2-stability of the leap-frog scheme3.
Moreover, the sequence (𝑢̂𝑗(𝑧))𝑗∈Z is square integrable. We apply the 𝒵-transform to the numerical scheme (3.4)
and obtain: (︀

𝑧 − 𝑧−1
)︀
𝑢̂𝑗 + 𝜇𝑥

(︀
𝑢̂𝑗+1 − 𝑢̂𝑗−1

)︀
= 0, (3.5)

for 𝑗 ≤ 0 and 𝑗 ≥ 𝐽 + 1. (On the interval {1, . . . , 𝐽}, the initial conditions give rise to a nonzero source term on
the right hand side of (3.5).) The equation (3.5) is a recurrence relation and we therefore look for the solutions
to the characteristic equation:

𝜅2 +
𝑧 − 𝑧−1

𝜇𝑥
𝜅− 1 = 0. (3.6)

The two roots to (3.6) are given by

𝜅± :=
𝑧−1 − 𝑧 ±

√︀
𝑧2 + 2 (2 𝜇2

𝑥 − 1) + 𝑧−2

2 𝜇𝑥
, (3.7)

with the standard definition of the square root (the branch cut is R−). When |𝑧| → +∞, |𝜅−| → +∞ and
|𝜅+| → 0. Moreover, 𝜅± do not belong to S1 for |𝑧| > 1 so we have |𝜅+| < 1 and |𝜅−| > 1 for |𝑧| > 1. We thus
relabel these two roots as a stable and unstable one and write from now on:

𝜅0
𝑠(𝑧) :=

𝑧−1 − 𝑧 +
√︀

𝑧2 + 2 (2 𝜇2
𝑥 − 1) + 𝑧−2

2 𝜇𝑥
, 𝜅0

𝑢(𝑧) :=
𝑧−1 − 𝑧 −

√︀
𝑧2 + 2 (2 𝜇2

𝑥 − 1) + 𝑧−2

2 𝜇𝑥
· (3.8)

The reason for the superscript 0 will be clear in the next section when we deal with the two-dimensional problem.
The recurrence relation (3.5) and the decay at infinity of (𝑢̂𝑗(𝑧))𝑗∈Z implies:

𝑢̂𝐽+1(𝑧) = 𝜅0
𝑠(𝑧) 𝑢̂𝐽(𝑧), 𝑢̂0(𝑧) =

1
𝜅0

𝑢(𝑧)
𝑢̂1(𝑧). (3.9)

It now remains to compute the Laurent series expansion of both 𝜅0
𝑠 and 1/𝜅0

𝑢 and to perform the inverse 𝒵-
transform in order to write the numerical boundary conditions (3.9) in the original discrete time variable 𝑛.
Since we have 𝜅0

𝑠(𝑧) 𝜅0
𝑢(𝑧) = −1, see (3.6), we can equivalently rewrite (3.9) as:

𝑢̂𝐽+1(𝑧) = 𝜅0
𝑠(𝑧) 𝑢̂𝐽(𝑧), 𝑢̂0(𝑧) = −𝜅0

𝑠(𝑧) 𝑢̂1(𝑧). (3.10)

3This is where the condition 𝜇𝑥 < 1 becomes necessary.

DISCRETE TRANSPARENT BOUNDARY CONDITIONS S541

There are at least two ways to compute the Laurent series expansion of 𝜅0
𝑠 for the leap-frog scheme, which we

now detail in order to compare the possible benefits and drawbacks of each method. The first method is rather
in the spirit of [18] while the second one follows [11,15].

An explicit expansion in terms of Legendre polynomials. The first method to obtain this expansion
relies on the explicit formula (3.8) and on the expansion

1√
1− 2 𝑥 𝑡 + 𝑡2

=
∞∑︁

𝑛=0

𝑃𝑛(𝑥) 𝑡𝑛, (3.11)

where 𝑃𝑛 denotes the 𝑛th-Legendre polynomial [32]. This family of polynomials can be equivalently defined by
the first two terms 𝑃0(𝑥) := 1, 𝑃1(𝑥) := 𝑥 and by the recurrence formula:

∀𝑛 ≥ 1, (𝑛 + 1) 𝑃𝑛+1(𝑥) := (2𝑛 + 1) 𝑥 𝑃𝑛(𝑥)− 𝑛 𝑃𝑛−1(𝑥). (3.12)

Starting from (3.8), we have√︀
𝑧2 + 2 (2 𝜇2

𝑥 − 1) + 𝑧−2 = 𝑧
1− 2 (1− 2 𝜇2

𝑥) 𝑧−2 + 𝑧−4√︀
1− 2 (1− 2 𝜇2

𝑥) 𝑧−2 + 𝑧−4

= 𝑧 (1− 2 𝛼𝑥 𝑧−2 + 𝑧−4)
∞∑︁

𝑛=0

𝑃𝑛(𝛼𝑥) 𝑧−2𝑛,

with 𝛼𝑥 := 1− 2 𝜇2
𝑥 ∈ (−1, 1). We therefore derive the expansion

2 𝜇𝑥 𝑧 𝜅0
𝑠 (𝑧) = 1− 𝑧2 +

(︀
𝑧2 − 2 𝛼𝑥 + 𝑧−2

)︀ ∞∑︁
𝑛=0

𝑃𝑛(𝛼𝑥) 𝑧−2𝑛. (3.13)

We focus below on the right boundary condition at point 𝑥𝐽+1 = 𝑥𝑟. Going back to (3.10) and using the above
expansion (3.13) for 𝜅0

𝑠, the DTBC (3.10) reads

2 𝜇𝑥 𝑧 𝑢̂𝐽+1(𝑧) =

(︃
1 +

∞∑︁
𝑛=0

𝐵𝑛 𝑧−2𝑛

)︃
𝑢̂𝐽(𝑧),

with
∀𝑛 ∈ N, 𝐵𝑛 := 𝑃𝑛+1(𝛼𝑥) − 2 𝛼𝑥 𝑃𝑛(𝛼𝑥) + 𝑃𝑛−1(𝛼𝑥),

and it is understood that 𝑃−1 vanishes (in the expression of 𝐵0). We compute 𝐵0 = −𝛼𝑥, and thanks to the
recurrence relation (3.12), we get the shorter expression

∀𝑛 ≥ 1, 𝐵𝑛 =
𝑃𝑛−1(𝛼𝑥)− 𝑃𝑛+1(𝛼𝑥)

2 𝑛 + 1
,

and finally

2 𝜇𝑥 𝑧 𝑢̂𝐽+1(𝑧) =

(︃
2 𝜇2

𝑥 +
∞∑︁

𝑛=1

𝑃𝑛−1(𝛼𝑥)− 𝑃𝑛+1(𝛼𝑥)
2 𝑛 + 1

𝑧−2𝑛

)︃
𝑢̂𝐽(𝑧). (3.14)

Recall that in (3.14), we use the notation 𝛼𝑥 = 1− 2 𝜇2
𝑥.

We now look for an efficient way to implement the coefficients of the above series without using the expression
of the Legendre polynomials (which would be computationally rather cheap anyway). Let us define the sequence
(𝑠0

𝑛)𝑛≥0 such that 𝑠0
0 := 𝜇𝑥, 𝑠0

1 := 𝜇𝑥 (1− 𝜇2
𝑥), and 𝑠0

𝑛 := (𝑃𝑛−1(𝛼𝑥)−𝑃𝑛+1(𝛼𝑥))/((4 𝑛 + 2) 𝜇𝑥) for 𝑛 ≥ 2. After
various simplifications using (3.12), we obtain

∀𝑛 ≥ 2, 𝑠0
𝑛 =

2 𝑛− 1
𝑛 + 1

(1− 2 𝜇2
𝑥) 𝑠0

𝑛−1 −
𝑛− 2
𝑛 + 1

𝑠0
𝑛−2. (3.15)

S542 C. BESSE ET AL.

The DTBC (3.14) therefore reads

𝑢̂𝐽+1(𝑧) =
∞∑︁

𝑛=0

𝑠0
𝑛 𝑧−2 𝑛−1 𝑢̂𝐽(𝑧). (3.16)

Performing the inverse 𝒵-transform, we get4:

𝑢𝑛+2
𝐽+1 =

∑︁
0≤𝑚≤(𝑛+1)/2

𝑠0
𝑚 𝑢𝑛+1−2 𝑚

𝐽 . (3.17)

The recurrence relation (3.15) may be efficiently implemented in a computer code, which gives access to the
coefficients in the numerical boundary condition (3.17) up to any prescribed final time index 𝑁𝑓 . Going back
to (3.10), we also derive the “left” numerical boundary condition:

𝑢𝑛+2
0 = −

∑︁
0≤𝑚≤(𝑛+1)/2

𝑠0
𝑚 𝑢𝑛+1−2 𝑚

1 . (3.18)

In view of understanding the stability properties of the numerical boundary condition (3.18), it might be
important to determine the asymptotics of the sequence (𝑠0

𝑛)𝑛∈N. Let us recall that 𝑠0
𝑛 equals (𝑃𝑛−1(𝛼𝑥) −

𝑃𝑛+1(𝛼𝑥))/((4 𝑛 + 2) 𝜇𝑥) for 𝑛 ≥ 2 (here 𝜇𝑥 ∈ (0, 1) and 𝛼𝑥 = 1− 2 𝜇2
𝑥). We use the so-called Laplace formula

for the Legendre polynomials, see Theorem 8.21.2 of [32]:

∀ 𝜃 ∈ (0, 𝜋), 𝑃𝑛(cos 𝜃) =

√︂
2

𝜋 𝑛 sin 𝜃
cos
(︂(︂

𝑛 +
1
2

)︂
𝜃 − 𝜋

4

)︂
+ 𝑂(𝑛−3/2), (3.19)

where the remainder term is even uniform with respect to 𝜃 on every compact set of the form [𝜀, 𝜋 − 𝜀], 𝜀 > 0.
We fix the angle 𝜃𝑥 ∈ (0, 𝜋) such that cos 𝜃𝑥 = 𝛼𝑥 = 1 − 2 𝜇2

𝑥, and therefore sin 𝜃𝑥 = 2 𝜇𝑥

√︀
1− 𝜇2

𝑥. We then
apply the Laplace formula and obtain after a few simplifications:

𝑠0
𝑛 =

(1− 𝜇2
𝑥)1/4√︀

𝜋 𝜇𝑥 𝑛3
sin
(︂(︂

𝑛 +
1
2

)︂
𝜃𝑥 −

𝜋

4

)︂
+ 𝑂(𝑛−5/2). (3.20)

This asymptotic behavior can be verified on numerical experiments.

Determining inductively the expansion. As observed in [11, 15], the Laurent series expansion of 𝜅0
𝑠 can

also be computed inductively by using the equation (3.6). The main benefit is that the method does not rely on
an explicit knowledge of a power series expansion such as the one involving the Legendre polynomials (which
is useful only for three point schemes). The methodology below is therefore more flexible in view of being
generalized to numerical schemes with larger stencils (as the one considered in [11]).

We know that 𝜅0
𝑠 tends to zero at infinity so we may plug its Laurent series expansion5

∑︀
𝑛≥1 𝜎0

𝑛 𝑧−𝑛 into
(3.6) and obtain (︀

𝑧 − 𝑧−1
)︀ ∞∑︁

𝑛=1

𝜎0
𝑛 𝑧−𝑛 + 𝜇𝑥

⎛⎝(︃ ∞∑︁
𝑛=1

𝜎0
𝑛 𝑧−𝑛

)︃2

− 1

⎞⎠ = 0,

which is found to be equivalent to 𝜎0
1 = 𝜇𝑥 and

∀𝑛 ∈ N, 𝜎0
𝑛+2 = 𝜎0

𝑛 − 𝜇𝑥

𝑛∑︁
𝑚=1

𝜎0
𝑚 𝜎0

𝑛+1−𝑚, (3.21)

4It is understood in (3.17) that the summation holds over all integers 𝑚 between 0 and (𝑛 + 1)/2. In case 𝑛 is even, then the
summation holds over all integers 𝑚 between 0 and 𝑛/2.

5It is proved in [15] that the Laurent series is convergent for |𝑧| > 1 which follows from the splitting of the two roots of (3.6) for
|𝑧| > 1.

DISCRETE TRANSPARENT BOUNDARY CONDITIONS S543

where we use the convention 𝜎0
0 = 0. It is not difficult to see that if 𝑛 is even, then 𝜎0

𝑛 = 0. Let now 𝑛 = 2 𝑝 + 1
be odd, 𝑝 ≥ 0. An easy computation gives

𝜎0
2 𝑝+3 = 𝜎0

2 𝑝+1 − 𝜇𝑥

𝑝∑︁
𝑚=0

𝜎0
2 𝑚+1 𝜎0

2(𝑝−𝑚)+1.

This means that the sequence (𝑠0
𝑛)𝑛∈N appearing in (3.17) and that satisfies the recurrence relation (3.15) also

satisfies

𝑠0
𝑛+1 = 𝑠0

𝑛 − 𝜇𝑥

𝑛∑︁
𝑝=0

𝑠0
𝑝 𝑠0

𝑛−𝑝, (3.22)

with 𝑠0
0 = 𝜇𝑥 (𝑠0

𝑛 coincides with 𝜎0
2 𝑛+1). Observe that the value 𝑠0

1 = 𝜇𝑥 (1 − 𝜇2
𝑥) that we have found in the

previous paragraph is consistent with (3.22). It seems less clear to derive the asymptotic behavior (3.20) by
starting from (3.22) rather than from the more explicit representation (3.14). Both approaches thus seem to
have their own interest.

Given the initial conditions (𝑢0
𝑗)0≤𝑗≤𝐽+1 and (𝑢1

𝑗)0≤𝑗≤𝐽+1 as described above (𝑢0 is determined by the initial
condition for the transport equation and 𝑢1 is determined by applying the Lax–Wendroff method), both of
which satisfy 𝑢0

0 = 𝑢1
0 = 𝑢0

𝐽+1 = 𝑢1
𝐽+1 = 0, the leap-frog scheme on the interval {1, . . . , 𝐽} with DTBC reads:

𝑢𝑛+2
𝑗 = 𝑢𝑛

𝑗 − 𝜇𝑥

(︀
𝑢𝑛+1

𝑗+1 − 𝑢𝑛+1
𝑗−1

)︀
, 1 ≤ 𝑗 ≤ 𝐽, 𝑛 ∈ N, (3.23a)

𝑢𝑛+2
0 = −

∑︁
0≤𝑚≤(𝑛+1)/2

𝑠0
𝑚 𝑢𝑛+1−2 𝑚

1 , (3.23b)

𝑢𝑛+2
𝐽+1 =

∑︁
0≤𝑚≤(𝑛+1)/2

𝑠0
𝑚 𝑢𝑛+1−2 𝑚

𝐽 , (3.23c)

where the parameter 𝜇𝑥 in (3.23) is fixed such that 0 ≤ 𝜇𝑥 < 1 and the sequence (𝑠0
𝑛)𝑛∈N is defined by 𝑠0

0 = 𝜇𝑥,
𝑠0
1 = 𝜇𝑥 (1 − 𝜇2

𝑥) and the recurrence relation (3.15) for 𝑛 ≥ 2 (or equivalently (3.22), but this is slightly less
efficient from a numerical point of view). We recall that we consider the case 𝑐𝑥 ≥ 0 in (3.1), hence the sign for
𝜇𝑥, but the other case 𝑐𝑥 ≤ 0 can be dealt with the same arguments (assuming −1 < 𝜇𝑥 ≤ 0).

3.3. Stability analysis on a half-line

In this short paragraph, we explain why the normal mode analysis predicts “neutral stability” for any of the
two half-line problems where the leap-frog scheme (3.23a) is considered on the half-line {𝑗 ≤ 𝐽} or {𝑗 ≥ 1}, in
combination with either (3.23b) or (3.23c). Let us focus on the case {𝑗 ≥ 1}, since the other case is entirely
similar.

The normal mode analysis consists in determining the solutions of the leap-frog scheme (3.23a) of the form
𝑢𝑛

𝑗 = 𝑧𝑛 𝑣𝑗 , with |𝑧| > 1, and (𝑣𝑗) ∈ ℓ2. Among such sequences, the final question is to determine whether there
exist nonzero ones that satisfy the numerical boundary condition (3.23b). Following [22], we shall say that the
Godunov–Ryabenkii condition is satisfied if there is no nonzero sequence (𝑣𝑗) ∈ ℓ2 such that 𝑢𝑛

𝑗 = 𝑧𝑛 𝑣𝑗 is a
solution to the leap-frog scheme that satisfies (3.23b). Otherwise, we shall say that 𝑧 is an unstable eigenvalue.
Of course, unstable eigenvalues preclude (in the most violent way) stability estimates hence a desirable feature
of any numerical boundary condition is to satisfy the Godunov–Ryabenkii condition.

Plugging the ansatz 𝑢𝑛
𝑗 = 𝑧𝑛 𝑣𝑗 in the leap-frog scheme, we find that the sequence (𝑣𝑗) should belong to ℓ2

and satisfy
∀ 𝑗 ≥ 1,

(︀
𝑧2 − 1

)︀
𝑣𝑗 + 𝜇𝑥 𝑧

(︀
𝑣𝑗+1 − 𝑣𝑗−1

)︀
= 0.

The computation of the ℓ2-solutions to this recurrence relation follows by solving the characteristic equation
(3.6) and by determining among the roots to (3.6) which have modulus less than 1. This classification has

S544 C. BESSE ET AL.

already been performed in the previous paragraph, so for |𝑧| > 1, we can conclude that the sequence (𝑣𝑗) is
given by

∀ 𝑗 ≥ 1, 𝑣𝑗 = 𝑣0 𝜅0
𝑠(𝑧)𝑗 , 𝑣0 ∈ C.

Inserting into (3.23b), we have to determine whether among such sequences (that are parametrized by their
initial state 𝑣0), we can have

𝑣0 = −
∑︁

0≤𝑚≤(𝑛+1)/2

𝑠0
𝑚 𝑧−2 𝑚−1 𝑣1.

Taking the limit 𝑛 →∞, we thus need to determine whether there can hold

𝑣0 = −𝜅0
𝑠(𝑧) 𝑣1 =

1
𝜅0

𝑢(𝑧)
𝑣1 =

𝜅0
𝑠(𝑧)

𝜅0
𝑢(𝑧)

𝑣0,

where the last equality follows from the expression of 𝑣1. In other words, we need to determine whether there
can hold 𝜅0

𝑠(𝑧) = 𝜅0
𝑢(𝑧) for some complex number 𝑧 with |𝑧| > 1. This is clearly impossible since 𝜅0

𝑠(𝑧) has
modulus < 1 and 𝜅0

𝑢(𝑧) has modulus > 1. This means that the so-called Godunov–Ryabenkii condition holds
(see [22]): there does not exist any unstable eigenvalue for the half-space problem {𝑗 ≥ 1} with the numerical
boundary condition (3.23b). Let us observe however that the roots 𝜅0

𝑠 and 𝜅0
𝑢 coincide when 𝑧 equals one of the

four values
±𝑖 𝜇𝑥 ±

√︀
1− 𝜇2

𝑥,

for which the characteristic equation (3.6) has a double root. These values of 𝑧 correspond to the glancing
spatial frequencies 𝜅 (for which the associated group velocity vanishes). This is a neutral stability case, whose
continuous counterpart has been analyzed in details in Chapter 7 of [10], see also [35] for other examples of this
situation.

3.4. Fast implementation of approximate DTBC with sums of exponentials

The computation of the DTBC (3.23b) and (3.23c) at nodes 𝑥ℓ and 𝑥𝑟 and time 𝑡𝑛+2 = (𝑛+2) 𝛿𝑡 requires 𝑛/2
sums and 𝑛/2 multiplications. Therefore, the total cost of discrete convolution computations for a full simulation
up to time 𝑇𝑓 = 𝑁𝑓 𝛿𝑡 is 𝒪(𝑁2

𝑓). Since 𝛿𝑡 is related to 𝛿𝑥 by the CFL condition (3.3), a fine space grid will
make the time step small and as a consequence the number of time steps 𝑁𝑓 large. Since the leap-frog scheme
(3.2) is explicit, each time iteration requires 𝒪(𝐽) operations for interior nodes 𝑥𝑗 , 𝑗 = 1, . . . , 𝐽 , which gives
𝒪(𝐽𝑁𝑓) operations for a full simulation. Thus, the total number of operations is 𝒪(𝑁2

𝑓 +𝑁𝑓𝐽). If 𝑁𝑓 > 𝐽 , which
corresponds to large time simulations, the main part of the computational cost is related to the computation
of discrete convolutions. Moreover, it is necessary to store in memory the evolution of the solution at the two
boundary nodes. It may therefore be useful to reduce this part of the computation by applying a more “local”
formula.

In [3, 17], a fast convolution procedure to compute approximation of discrete convolutions
𝐶𝑛(𝑣) :=

∑︀𝑛
𝑘=0 𝑣𝑘 𝜈𝑛−𝑘 was introduced. We assume that the convolution coefficients (𝜈𝑘)𝑘∈N are given and

satisfy a decay property similar to (3.20) that allows to derive their approximation by “sums of exponentials”.
In order to present the idea and the efficiency of the method, let us assume for a moment that we are able to
compute an approximation (𝜈𝑘)𝑘∈N of the convolution terms (𝜈𝑘)𝑘∈N given by

𝜈𝑘 ≈ 𝜈𝑘 =
𝑀∑︁

𝑚=1

𝑏𝑚 𝑞−𝑘
𝑚 , 𝑘 ≥ 0, (3.24)

where the integer 𝑀 , the coefficients 𝑏𝑚 and the complex numbers 𝑞𝑚, all of them satisfying |𝑞𝑚| > 1, have to
be defined. Denoting 𝐶𝑛(𝑣) :=

∑︀𝑛
𝑘=0 𝑣𝑘 𝜈𝑛−𝑘, we compute

DISCRETE TRANSPARENT BOUNDARY CONDITIONS S545

𝐶𝑛(𝑣) =
𝑛∑︁

𝑘=0

𝑣𝑘

𝑀∑︁
𝑚=1

𝑏𝑚 𝑞−(𝑛−𝑘)
𝑚 =

𝑀∑︁
𝑚=1

𝑏𝑚

𝑛∑︁
𝑘=0

𝑣𝑘 𝑞−(𝑛−𝑘)
𝑚 =:

𝑀∑︁
𝑚=1

𝐶(𝑛)
𝑚 (𝑣).

The efficiency of the method relies on the derivation of a recurrence relation to compute the terms 𝐶
(𝑛)
𝑚 (𝑣):

𝐶(𝑛)
𝑚 (𝑣) = 𝑏𝑚

𝑛−1∑︁
𝑘=0

𝑣𝑘 𝑞−(𝑛−𝑘)
𝑚 + 𝑏𝑚 𝑣𝑛 = 𝑏𝑚 𝑞−1

𝑚

𝑛−1∑︁
𝑘=0

𝑣𝑘 𝑞−(𝑛−1−𝑘)
𝑚 + 𝑏𝑚 𝑣𝑛,

so we get the recurrence relation
𝐶(𝑛)

𝑚 (𝑣) = 𝑞−1
𝑚 𝐶(𝑛−1)

𝑚 (𝑣) + 𝑏𝑚 𝑣𝑛. (3.25)

Assuming 𝑣0 = 0, the initial value for each 𝐶
(𝑛)
𝑚 (𝑣) is given by 𝐶

(0)
𝑚 (𝑣) = 0. It should be understood that in a

practical implementation, each value 𝐶
(𝑛)
𝑚 (𝑣) is stored in memory so the recurrence (3.25) represents only three

operations at each time iteration.
Accordingly, the original discrete convolution 𝐶𝑛(𝑣) is approximated by

𝐶𝑛(𝑣) =
𝑛∑︁

𝑘=0

𝑣𝑘 𝜈𝑛−𝑘 ≈ 𝐶𝑛(𝑣) =
𝑀∑︁

𝑚=1

𝐶(𝑛)
𝑚 (𝑣), (3.26)

and we have replace the computation of a nonlocal discrete convolution that involves 𝑛 operations by the sum
of 𝑀 terms computed by the explicit local operations (3.25). In this case, the total number of operations is
𝒪(𝑁𝑓 (𝐽 + 𝑀)).

It remains to derive the approximation (3.24) of the sequence (𝜈𝑘)𝑘∈N by (𝜈𝑘)𝑘∈N. The sum-of-exponential
formula (3.24) is frequent and various techniques are available to compute the coefficients (𝑏𝑚)𝑚 and (𝑞𝑚)𝑚

(see e.g., [13,14]). We present here a modified version of the algorithm derived in [3]. Let us consider the power
series

𝑓(𝑥) :=
∑︁
𝑘∈N

𝜈𝑘 𝑥𝑘, for |𝑥| < 1,

associated with the original sequence (𝜈𝑘)𝑘∈N (which we assume to satisfy a polynomial bound of the form
|𝜈𝑘| . 𝑘𝛼, 𝛼 ∈ R, so the power series converges on the unit disk). We then consider its [𝑁, 𝑀] Padé approximant,
see [5, 7], which we denote 𝑓(𝑥) = 𝑃𝑁 (𝑥)/𝑄𝑀 (𝑥), where 𝑃𝑁 and 𝑄𝑀 are respectively polynomials of degree 𝑁
and 𝑀 . We assume 𝑄𝑀 to be unitary in order to normalize the polynomials. Here we shall always consider the
case 𝑁 < 𝑀 . The power series expansion of 𝑓 at 0 is given by

𝑓(𝑥) =
∑︁
𝑘∈N

𝜈𝑘 𝑥𝑘,

with 𝜈𝑘 = 𝜈𝑘 for 0 ≤ 𝑘 ≤ 𝑁 + 𝑀 (by definition of the Padé approximants).
Let us now assume that 𝑄𝑀 has 𝑀 simple roots 𝑞𝑚 with |𝑞𝑚| > 1 for 1 ≤ 𝑚 ≤ 𝑀 . So, we have

𝑄𝑀 (𝑥) =
𝑀∏︁

𝑚=1

(𝑥− 𝑞𝑚), and 𝑄′𝑀 (𝑥) =
𝑀∑︁

𝑘=1

∏︁
𝑚̸=𝑘

(𝑥− 𝑞𝑚),

and thus
𝑄′𝑀 (𝑞𝑚) =

∏︁
𝑘 ̸=𝑚

(𝑞𝑚 − 𝑞𝑘).

Let us now define the coefficients

S546 C. BESSE ET AL.

𝑏𝑚 := − 𝑃𝑁 (𝑞𝑚)
𝑞𝑚 𝑄′𝑀 (𝑞𝑚)

, 1 ≤ 𝑚 ≤ 𝑀. (3.27)

So, we obtain

𝑀∑︁
𝑚=1

𝑏𝑚 𝑞𝑚

𝑞𝑚 − 𝑥
=

𝑀∑︁
𝑚=1

𝑃𝑁 (𝑞𝑚)
𝑄′𝑀 (𝑞𝑚)

1
𝑥− 𝑞𝑚

=
𝑀∑︁

𝑚=1

𝑃𝑁 (𝑞𝑚)
𝑄′𝑀 (𝑞𝑚)

∏︀
𝑘 ̸=𝑚(𝑥− 𝑞𝑘)∏︀𝑀
𝑘=1(𝑥− 𝑞𝑘)

=
𝑀∑︁

𝑚=1

𝑃𝑁 (𝑞𝑚)
𝑄𝑀 (𝑥)

∏︀
𝑘 ̸=𝑚(𝑥− 𝑞𝑘)
𝑄′𝑀 (𝑞𝑚)

·

Thereby,
𝑀∑︁

𝑚=1

𝑏𝑚 𝑞𝑚

𝑞𝑚 − 𝑥
=

1
𝑄𝑀 (𝑥)

𝑀∑︁
𝑚=1

𝑃𝑁 (𝑞𝑚)
∏︁

𝑘 ̸=𝑚

𝑥− 𝑞𝑘

𝑞𝑚 − 𝑞𝑘
=:

𝑅𝑀−1(𝑥)
𝑄𝑀 (𝑥)

·

We are going to show that the polynomial 𝑅𝑀−1 in the latter equality equals 𝑃𝑁 . Indeed, we have 𝑅𝑀−1(𝑞𝑚) =
𝑃𝑁 (𝑞𝑚) for any 1 ≤ 𝑚 ≤ 𝑀 and 𝑑∘(𝑅𝑀−1) ≤ 𝑀 − 1. Since 𝑃𝑁 is of degree 𝑁 ≤ 𝑀 − 1, by uniqueness of the
interpolating polynomial, we have 𝑅𝑀−1 = 𝑃𝑁 . As a partial conclusion, we have

𝑓(𝑥) =
𝑃𝑁 (𝑥)
𝑄𝑀 (𝑥)

=
𝑀∑︁

𝑚=1

𝑏𝑚 𝑞𝑚

𝑞𝑚 − 𝑥
,

where the coefficients 𝑏𝑚 are defined in (3.27). Writing 𝑞𝑚 − 𝑥 = 𝑞𝑚(1 − 𝑥/𝑞𝑚), and using |𝑞𝑚| > 1, then for
|𝑥| ≤ 1 < |𝑞𝑚|, we obtain

1
𝑞𝑚 − 𝑥

= 𝑞−1
𝑚

∞∑︁
𝑘=0

(︂
𝑥

𝑞𝑚

)︂𝑘

·

So,

𝑓(𝑥) =
𝑀∑︁

𝑚=1

𝑏𝑚

∞∑︁
𝑘=0

(︂
𝑥

𝑞𝑚

)︂𝑘

=
∞∑︁

𝑘=0

𝑀∑︁
𝑚=1

𝑏𝑚 𝑞−𝑘
𝑚 𝑥𝑘.

Let us recall that the power series expansion of 𝑓 at the origin reads 𝑓(𝑥) =
∑︀

𝑘≥0 𝜈𝑘 𝑥𝑘 so proceeding by
identification, we have

∀ 𝑘 ≥ 0, 𝜈𝑘 =
𝑀∑︁

𝑚=1

𝑏𝑚 𝑞−𝑘
𝑚 ,

and the coefficients 𝜈𝑘 satisfy the property

𝜈𝑘 = 𝜈𝑘 for 0 ≤ 𝑘 ≤ 𝑀 + 𝑁.

The computation of (𝜈𝑘)𝑘∈N requires to determine the [𝑁, 𝑀] Padé approximant of 𝑓 , the roots 𝑞𝑚 of 𝑄𝑀

(praying for them to be simple) and the coefficients 𝑏𝑚 given by (3.27).

Remark 3.2. In [3], the authors suggested to take 𝑁 = 𝑀 − 1. Unfortunately, when we apply the latter
approximation strategy to the function 𝜅0

𝑠(1/𝑥), we are not always able to verify the assumption inf𝑚 |𝑞𝑚| > 1
on the roots of 𝑄𝑀 , even when these roots are computed with (very) high accuracy. Our choice to take 𝑁 “free”
and not necessarily equal to 𝑀 − 1 allows us to find Padé approximants for which we can verify inf𝑚 |𝑞𝑚| > 1.
We present below some experiments to emphasize this remark.

DISCRETE TRANSPARENT BOUNDARY CONDITIONS S547

Remark 3.3. In [3], the authors justified the convergence of the approximate coefficients 𝜈𝑘 to 𝜈𝑘 as 𝑀 →∞.
Their result was based on the so-called Baker–Gammel–Wills conjecture, which is unfortunately now known to be
false, see [6] and references therein. That does not mean however that the above procedure is meaningless, as the
numerical results in [3] and those we present below confirm. The main difficulty in applying the above approach
is that there does not seem to be any general result available to make sure that the condition inf𝑚 |𝑞𝑚| > 1
holds in a systematic way (not mentioning the condition that the roots 𝑞𝑚 should be simple. . .).

In [3], a Maple code is proposed to calculate the Padé approximant of 𝑓 . The use of Maple insures to not
be limited to double precision computations. This is very important to compute accurately the coefficients of
the monomials of 𝑃𝑁 and 𝑄𝑀 , and accordingly to determine the roots of 𝑄𝑀 with high accuracy. This process
is however quite limited since it relies on formal calculus softwares and is also restricted to small values of
𝑀 (typically 𝑀 ≤ 20). We therefore present below an alternative self-contained procedure which allows us to
consider much larger values of 𝑀 (say, 𝑀 ≤ 200) provided that 𝑁 is not close to 𝑀 (say 𝑁 ≤ 50). When 𝑁
is close to 𝑀 , the coefficients of 𝑃𝑁 and 𝑄𝑀 become extremely large and the numerical computations become
rather unstable. The [𝑁, 𝑀] Padé approximant 𝑓 of 𝑓 reads

𝑓(𝑥) =
𝑃𝑁 (𝑥)
𝑄𝑀 (𝑥)

=

∑︀𝑁
𝑗=0 p𝑗 𝑥𝑗∑︀𝑀
𝑗=0 q𝑗 𝑥𝑗

,

where we fix for instance q0 = 1, and we restrict to the case 𝑁 < 𝑀 . (The normalization convention for 𝑄𝑀 is
not the same as above but this does not affect the previous arguments.) We therefore have to compute 𝑁 +𝑀 +1
unknown coefficients, which are solutions of the 𝑁 + 𝑀 + 1 equations given by

𝐷(𝑛) [𝑄𝑀 (𝑥) 𝑓(𝑥)]|𝑥=0
= 𝐷(𝑛) [𝑃𝑁 (𝑥)]|𝑥=0

, 0 ≤ 𝑛 ≤ 𝑁 + 𝑀, (3.28)

where 𝐷(𝑛) denotes the 𝑛th derivative with respect to 𝑥. Indeed, thanks to the property 𝑄𝑀 (0) ̸= 0, (3.28) can
be seen to be equivalent to the property

𝐷(𝑛) [𝑓(𝑥)]|𝑥=0
= 𝐷(𝑛)

[︂
𝑃𝑁 (𝑥)
𝑄𝑀 (𝑥)

]︂
|𝑥=0

, 0 ≤ 𝑛 ≤ 𝑁 + 𝑀,

which defines the [𝑁, 𝑀] Padé approximant of 𝑓 . The equations (3.28) reduce to

𝑛∑︁
𝑘=1

q𝑘 𝜈𝑛−𝑘 − p𝑛 = −𝜈𝑛, for 0 ≤ 𝑛 ≤ 𝑁, (3.29)

and

min(𝑛,𝑀)∑︁
𝑘=1

q𝑘 𝜈𝑛−𝑘 = −𝜈𝑛, for 𝑁 < 𝑛 ≤ 𝑁 + 𝑀. (3.30)

The first equation in (3.29) leads to p0 = 𝜈0 = 𝑓(0), and the remaining equations in (3.29) and (3.30) can be
recast as a linear system:

𝑆 𝑋 = 𝑌, (3.31)

S548 C. BESSE ET AL.

where 𝑆 ∈ M𝑁+𝑀,𝑁+𝑀 (R) and 𝑋, 𝑌 are vectors in R𝑁+𝑀 . The matrix 𝑆 in (3.31) is given by (the first row
and column below present the indices for the sake of clarity):

1 2 𝑁 𝑁 + 1 𝑀 𝑀 + 1 𝑁 + 𝑀
1 𝜈0 −1

2 𝜈1
.

...
...

.
𝑁 𝜈𝑁−1 · · · 𝜈1 𝜈0 −1

𝑁 + 1 𝜈𝑁 · · · · · · 𝜈1 𝜈0 0
...

...
... 𝜈1

.
...

...
...

...
.

𝑀 𝜈𝑀−1 · · · · · · 𝜈𝑀−𝑁 𝜈𝑀−𝑁+1 · · · 𝜈1 𝜈0 0
𝑀 + 1 𝜈𝑀 · · · · · · 𝜈𝑀−𝑁+1 𝜈𝑀−𝑁 · · · · · · 𝜈1 0

...
...

...
...

...
. . .

...
...

...
...

...
. . .

𝑁 + 𝑀 𝜈𝑁+𝑀−1 · · · · · · 𝜈𝑀 𝜈𝑀−1 · · · · · · 𝜈𝑁 0

.

The unknown in (3.31) is 𝑋 = (q1, . . . , q𝑀 , p1, . . . , p𝑁)𝑇 , and the right hand side is
𝑌 = (−𝜈1,−𝜈2, . . . ,−𝜈𝑁+𝑀)𝑇 . The linear system (3.31) thus displays block matrices

𝐴 𝐵

𝐶 0

q

p

=

𝑌1

𝑌2

,

with 𝐴 ∈ M𝑀,𝑀 (R), 𝐵 ∈ M𝑀,𝑁 (R) et 𝐶 ∈ M𝑁,𝑀 (R). The matrix 𝐴 is a subtriangular Toeplitz matrix. Its
inverse (assuming that 𝜈0 is nonzero) is also a subtriangular Toeplitz matrix whose first column is easy to
compute by solving the linear system 𝐴 𝑥 = 𝑒1 where 𝑒1 is the first vector of the canonical basis of R𝑀 . The
other columns of 𝐴−1 are deduced from the Toeplitz structure.

Using the Schur complement method, we can compute the unknowns by solving successively

𝐶 𝐴−1 𝐵 p = 𝐶 𝐴−1 𝑌1 − 𝑌2,

and then
q = 𝐴−1 (𝑌1 −𝐵 p).

In order to get high accuracy both in the computations of p and q, but also of the roots 𝑞𝑚 of 𝑄𝑀 , we use the
floating-point arithmetic with arbitrary accuracy Python library mpmath. The advantage of using the library
mpmath is its ability to control the accuracy of floating-point arithmetic. For all the numerical experiments in
this paper, we set the decimal accuracy to 80, meaning the library uses 266 bits to hold an approximation of
the numbers that is accurate to 80 decimal places.

Going back to our numerical scheme (3.23), we wish to approximate the sequence (𝑠0
𝑛) given by (3.15) by

a sum of exponentials. We apply the above algorithm, which is legitimate since 𝑠0
0 ̸= 0 (𝑠0

𝑛 plays the above
role of 𝜈𝑛 for all 𝑛). We present below a comparison between the thousand first elements of the sequence (𝑠0

𝑛)

DISCRETE TRANSPARENT BOUNDARY CONDITIONS S549

Figure 1. Position of the roots of 𝑄𝑀 (left), and |𝑠0
𝑛| vs. |𝑠0

𝑛| (right) for (𝑀,𝑁) = (50, 10).

given by (3.15) and their sum of exponentials approximations (𝑠0
𝑛) for various pairs (𝑁, 𝑀) with 𝑁 < 𝑀 . The

numerical parameters are chosen to satisfy the CFL condition (3.3) with cfl = 5/6. The transport velocity is
𝑐 = 1. The space and time steps are 𝛿𝑥 = 6/1000 and 𝛿𝑡 = 5/1000 (which corresponds to the space interval
[−3, 3] and choosing a thousand grid points). On Figures 1–4, we plot on the left the position of the roots (𝑞𝑚)
of 𝑄𝑀 in the complex plane, compared with the unit circle, and the evolution of 𝑠0

𝑛 compared with that of 𝑠0
𝑛

for 0 ≤ 𝑛 ≤ 1000. We first choose 𝑀 = 50 with 𝑁 = 10 (see Fig. 1), then 𝑀 = 50 with 𝑁 = 49 (see Fig. 2), then
𝑀 = 100 with 𝑁 = 30 (see Fig. 3), and eventually 𝑀 = 100 with 𝑁 = 99 (see Fig. 4). On Figures 2 and 4, one
root of the polynomial 𝑄𝑀 is relatively big compared with the other roots and we therefore do not represent it.
They respectively take the values −4.6 1017 and −1.2 1029, which means that some of the coefficients of 𝑄𝑀 are
so large that any computation involving the roots of 𝑄𝑀 should be taken with much care. We see that the more
𝑁 is close to 𝑀 , the more 𝑠0

𝑛 are close to 𝑠0
𝑛 for a large interval of values of 𝑛. The quality of the approximations

for (𝑀,𝑁) = (50, 49) and (𝑀, 𝑁) = (100, 30) is equivalent ; the case (𝑀, 𝑁) = (100, 30) is however much more
stable since all roots of the polynomial 𝑄𝑀 remain within a “small” ball of the complex plane while 𝑄𝑀 has
a very large root in the case (𝑀,𝑁) = (50, 49). When (𝑀,𝑁) = (100, 99), one of the roots that we computed
for 𝑄𝑀 has a modulus less than one, which generates blow up for sequence (𝑠0

𝑛) (see Fig. 4). This does not
prove however that 𝑄𝑀 has a root of modulus less than 1, because the computation is so unstable (due to the
very large coefficients in 𝑄𝑀) that the final result should be taken with care even with the decimal accuracy
set to 80.

3.5. Numerical experiments

We present here some numerical tests with the following parameters:

𝑢0(𝑥) = exp(−10 𝑥2), 𝑥ℓ = −3, 𝑥𝑟 = 3, 𝑇 = 10, 𝑐 = 1.

The number of grid points is 𝐽 +1 = 1000, and the leap-frog scheme (3.2) is implemented with a CFL parameter
𝜇𝑥 = 5/6 (the time step 𝛿𝑡 is computed accordingly). Since the initial condition is roughly concentrated in the
interval [−1, 1], the exact solution to the transport equation more or less vanishes on the interval [𝑥ℓ, 𝑥𝑟] after
the time 4. We measure below the amplitude of the reflected wave at the right boundary 𝑥𝑟 depending on the
choice of numerical boundary conditions.

We present below the evolution of the logarithm log10 |𝑢𝑛
𝑗 | rather than the evolution of the solution 𝑢𝑛

𝑗 itself.
This gives a much more visible representation of wave reflections and their magnitude. Let us observe that in

S550 C. BESSE ET AL.

Figure 2. Position of the roots of 𝑄𝑀 (left), and |𝑠0
𝑛| vs. |𝑠0

𝑛| (right) for (𝑀,𝑁) = (50, 49).

Figure 3. Position of the roots of 𝑄𝑀 (left), and |𝑠0
𝑛| vs. |𝑠0

𝑛| (right) for (𝑀,𝑁) = (100, 30).

Figures 5 and 6 below, we always observe a left going wave emanating from the initial condition, this wave
being highly oscillatory (in both space and time) and having magnitude 10−8. This is due to the fact that the
leap-frog scheme (3.2) supports the wave (−1)𝑗+𝑛 which has group velocity −𝑐 and thus travels backwards [34].
In Figure 5, we first compare the leap-frog scheme with exact DTBC (3.23) (left) with the leap-frog scheme
implemented with the more classical Neumann type boundary condition 𝑢𝑛+2

𝐽+1 = 𝑢𝑛+1
𝐽 , see [35] (accordingly the

numerical boundary condition at 𝑥0 is 𝑢𝑛+2
0 = 𝑢𝑛+1

1). After the theoretical exit time for the continuous solution,
the DTBC strategy leaves a solution of amplitude 10−16 in the whole domain while the easier (local) Neumann
strategy exhibits multiple wave reflections.

We then show on Figure 6 the evolution of the logarithm log10 |𝑢𝑛
𝑗 | when we do not implement the exact

DTBC (3.23b) and (3.23c) but rather their approximation by sums of exponentials as explained in the preceding
paragraph. The numerical simulation with the parameters (𝑀, 𝑁) = (50, 6) (left of Fig. 6) and (𝑀, 𝑁) = (50, 49)

DISCRETE TRANSPARENT BOUNDARY CONDITIONS S551

Figure 4. Position of the roots of 𝑄𝑀 (left), and |𝑠0
𝑛| vs. |𝑠0

𝑛| (right) for (𝑀,𝑁) = (100, 99).

Figure 5. Evolution of log10 |𝑢𝑛
𝑗 | for DTBC (3.23) (left) and homogeneous Neumann BC

𝑢𝑛+2
0 = 𝑢𝑛+1

1 , 𝑢𝑛+2
𝐽+1 = 𝑢𝑛+1

𝐽 (right).

(right of Fig. 6) for the degrees of the Padé approximant. In each of these two cases, the condition that all roots
of 𝑄𝑀 are simple and lie outside the unit circle has been checked numerically. We observe that in the numerical
boundary conditions (3.23b) and (3.23c), the determination of 𝑢𝑛+2

0 and 𝑢𝑛+2
𝐽+1 relies on the values 𝑢𝜎

1 and 𝑢𝜎
𝐽 for

either only odd or even values of 𝜎. When we implement the approximate numerical boundary condition (3.26),
we thus need to consider separately the cases where 𝑛 is either odd or even, and we therefore introduce two
sequences

(︁
𝐶

(2 𝑝)
𝑚

)︁
and

(︁
𝐶

(2 𝑝+1)
𝑚

)︁
for each root 𝑞𝑚 of the polynomial 𝑄𝑀 . The numerical results presented in

Figure 6 exhibit very low reflection amplitudes. In the case (𝑀, 𝑁) = (50, 49), the overall accuracy is comparable
with the exact DTBC. Note however that the condition inf𝑚 |𝑞𝑚| > 1 for this approximation to make sense is
not granted and the implementation of the sum of exponential approximation requires first solving for 𝑃𝑁 and
𝑄𝑀 and then identifying the roots of 𝑄𝑀 (which is not necessarily easier than implementing (3.15) and (3.23)).

S552 C. BESSE ET AL.

Figure 6. Evolution of log10 |𝑢𝑛
𝑗 | for the sum of exponentials BC (3.26): (𝑀, 𝑁) = (50, 6) (left)

and (𝑀, 𝑁) = (50, 49) (right).

4. Approximate DTBC for the two-dimensional leap-frog scheme on a
rectangle

4.1. Exact DTBC on a half-space and local approximations

In this paragraph, we go back to the leap-frog scheme (2.2) for the linear advection equation (2.1) in two
space dimensions. Our first goal is to derive the exact DTBC for (2.2) when that scheme is considered on a
half-space, be it {𝑗 ≥ 1}, {𝑗 ≤ 𝐽}, {𝑘 ≥ 1} or {𝑘 ≤ 𝐾}. This means that we shall consider the leap-frog scheme
(2.2) in the whole plane (𝑗, 𝑘) ∈ Z2 with initial data supported, say, in the half-space {𝑗 ≥ 1}, and we shall
derive the numerical boundary conditions satisfied by the solution to (2.2) at 𝑗 = 0. This is exactly the problem
considered in [15] in the general framework of multistep finite difference schemes. For ease of reading and in
order to stick to the notation of Section 3, we consider from now on the case where the initial data for (2.2)
are supported in {𝑗 ≥ 1}, and it is understood that in (2.2) the tangential variable 𝑘 lies in Z. We consider the
step function 𝑢𝑛

𝑗 (·) defined by
𝑢𝑛

𝑗 (𝑦) := 𝑢𝑛
𝑗,𝑘, ∀ 𝑦 ∈ [𝑦𝑘, 𝑦𝑘+1), 𝑘 ∈ Z,

with 𝑦𝑘 = 𝑦𝑏 + 𝑘 𝛿𝑦 for all 𝑘 ∈ Z and not only for 𝑘 = 0, . . . ,𝐾 + 1. Then (2.2) reads

𝑢𝑛+2
𝑗 (𝑦)− 𝑢𝑛

𝑗 (𝑦) + 𝜇𝑥

(︀
𝑢𝑛+1

𝑗+1 (𝑦)− 𝑢𝑛+1
𝑗−1 (𝑦)

)︀
+ 𝜇𝑦

(︀
𝑢𝑛+1

𝑗 (𝑦 + 𝛿𝑦)− 𝑢𝑛+1
𝑗 (𝑦 − 𝛿𝑦)

)︀
= 0,

so applying first a partial Fourier transform with respect to 𝑦 and then the 𝒵-transform in time, we are led
(with obvious notation) to the recurrence relation

(𝑧2 − 1) 𝑢̂𝑗(𝑧, 𝜂) + 𝜇𝑥 𝑧
(︀
𝑢̂𝑗+1(𝑧, 𝜂)− 𝑢̂𝑗−1(𝑧, 𝜂)

)︀
+ 2 𝑖 𝜇𝑦 sin(𝜂 𝛿𝑦) 𝑧 𝑢̂𝑗(𝑧, 𝜂) = 0, (4.1)

which holds for all 𝑗 ≤ 0 (in the half-space {𝑗 ≥ 1} where the initial data are supported, the analogous recurrence
relation displays a nonzero source term on the right hand side).

The solution to the recurrence relation (4.1) is computed by considering the characteristic equation:

(𝑧2 − 1) 𝜅 + 𝜇𝑥 𝑧 (𝜅2 − 1) + 2 𝑖 𝜇𝑦 sin 𝜃 𝑧 𝜅 = 0, (4.2)

where 𝜃 is a placeholder for the rescaled frequency 𝜂 𝛿𝑦. For any real number 𝜃 and |𝑧| > 1, the roots to (4.1) do
not belong to S1. Therefore one has modulus < 1 and the other one has modulus > 1 (see the general splitting
argument in [15]). We label the two roots in such a way that:

|𝜅𝑠(𝑧, 𝜃)| < 1, |𝜅𝑢(𝑧, 𝜃)| > 1,

DISCRETE TRANSPARENT BOUNDARY CONDITIONS S553

whenever |𝑧| > 1 and 𝜃 ∈ R. The discrete boundary condition (on the Fourier-𝒵-transform side) thus reads

𝑢̂0(𝑧, 𝜂) =
1

𝜅𝑢(𝑧, 𝜂 𝛿𝑦)
𝑢̂1(𝑧, 𝜂), (4.3)

which is reminiscent of (3.9). The analogous numerical boundary condition at 𝑗 = 𝐽 + 1 (for the other half
space problem) is

𝑢̂𝐽+1(𝑧, 𝜂) = 𝜅𝑠(𝑧, 𝜂 𝛿𝑦) 𝑢̂𝐽(𝑧, 𝜂).

If we now apply the inverse Fourier-𝒵-transform to (4.3), this would lead to the exact, nonlocal DTBC
for (2.2) on a half space. Nonlocality refers here both to time and to the tangential variable 𝑘. In other words,
determining 𝑢𝑛+2

0,𝑘 requires the knowledge of 𝑢𝜎
1,𝑘′ for all 𝑘′ ∈ Z and at all time steps 𝜎 up to 𝑛+1. The nonlocality

in time is not so harmful from a computational point of view (as we have seen in one space dimension) but the
nonlocality with respect to 𝑘 is much more problematic since the set to which 𝑘 belongs is infinite. We therefore
propose to follow the idea developed by Engquist and Majda [19] for continuous problems and to localize the
exact DTBC (4.3) in the 𝑘-direction. This is performed by means of an asymptotic expansion with respect to
𝜃 = 𝜂 𝛿𝑦 in (4.3). At a formal level, this amounts more or less to assuming that the discrete solution displays
only bounded tangential frequencies 𝜂 and to performing an asymptotic expansion with respect to 𝛿𝑦 (which is
meant to be small in practice).

Let us therefore go back to (4.2) and observe that again the product of the two roots 𝜅𝑠 and 𝜅𝑢 equals −1.
Hence (4.3) reads

𝑢̂0(𝑧, 𝜂) = −𝜅𝑠(𝑧, 𝜂 𝛿𝑦) 𝑢̂1(𝑧, 𝜂),

and we now expand the stable root 𝜅𝑠(𝑧, 𝜃) to (4.2) with respect to 𝜃. Up to the third order, this expansion
reads

𝜅𝑠(𝑧, 𝜃) = 𝜅0
𝑠(𝑧) + 2 𝑖 sin 𝜃 𝜅1

𝑠(𝑧)− 4 sin2 𝜃

2
𝜅2

𝑠(𝑧) + 𝑂(𝜃3), (4.4)

where 𝜅0
𝑠(𝑧) is the stable root for the one-dimensional problem (which corresponds to 𝜃 = 0 in (4.2)) and the

choice of writing sin 𝜃 rather than 𝜃, as well as sin2 𝜃/2 rather than 𝜃2, has been made in order to exhibit
amplification factors that are obviously linked with tangential finite difference operators (the centered first
order derivative and the discrete Laplacian). At this stage, localizing the exact DTBC (4.3) with respect to 𝑘
amounts to using in (4.3) finitely many terms of the Taylor expansion (4.4) (e.g., either the first term, or the
two/three first terms). Namely, on the Fourier-𝒵-transform, our localization procedure for (4.3) yields one of
the three following choices (in increasing order of approximation):

𝑢̂0(𝑧, 𝜂) = −𝜅0
𝑠(𝑧) 𝑢̂1(𝑧, 𝜂), (4.5a)

𝑢̂0(𝑧, 𝜂) = −𝜅0
𝑠(𝑧) 𝑢̂1(𝑧, 𝜂)− 2 𝑖 sin (𝜂 𝛿𝑦) 𝜅1

𝑠(𝑧) 𝑢̂1(𝑧, 𝜂), (4.5b)

𝑢̂0(𝑧, 𝜂) = −𝜅0
𝑠(𝑧) 𝑢̂1(𝑧, 𝜂)− 2 𝑖 sin (𝜂 𝛿𝑦) 𝜅1

𝑠(𝑧) 𝑢̂1(𝑧, 𝜂) + 4 sin2 𝜂 𝛿𝑦

2
𝜅2

𝑠(𝑧) 𝑢̂1(𝑧, 𝜂). (4.5c)

After performing an inverse Fourier transform with respect to 𝜂, (4.5) reads:

𝑢̂0,𝑘(𝑧) = −𝜅0
𝑠(𝑧) 𝑢̂1,𝑘(𝑧), (4.6a)

𝑢̂0,𝑘(𝑧) = −𝜅0
𝑠(𝑧) 𝑢̂1,𝑘(𝑧)− 𝜅1

𝑠(𝑧)
(︀
𝑢̂1,𝑘+1(𝑧)− 𝑢̂1,𝑘−1(𝑧)

)︀
, (4.6b)

𝑢̂0,𝑘(𝑧) = −𝜅0
𝑠(𝑧) 𝑢̂1,𝑘(𝑧)− 𝜅1

𝑠(𝑧)
(︀
𝑢̂1,𝑘+1(𝑧)− 𝑢̂1,𝑘−1(𝑧)

)︀
− 𝜅2

𝑠(𝑧)
(︀
𝑢̂1,𝑘+1(𝑧)− 2 𝑢̂1,𝑘(𝑧) + 𝑢̂1,𝑘−1(𝑧)

)︀
, (4.6c)

where the hat notation refers here to the 𝒵-transform only. In order to perform the inverse 𝒵-transform in (4.6)
and write down the approximate non-reflecting boundary conditions in the physical variables, we need to com-
pute the Laurent series expansion of the functions 𝜅1

𝑠, 𝜅
2
𝑠 that appear on the right hand side of (4.6b) and (4.6c).

(The Laurent series expansion of 𝜅0
𝑠 has already been derived in the analysis of the one-dimensional problem.)

This is achieved below with either of the two methods that we have already used in the one-dimensional case.

S554 C. BESSE ET AL.

Expansions based on Legendre (and Tchebychev) polynomials. Let us recall that we have already
determined the Laurent series expansion of the function 𝜅0

𝑠 in (4.6). We have written it under the form

𝜅0
𝑠(𝑧) =

∞∑︁
𝑛=1

𝜎0
𝑛

𝑧𝑛
=

∞∑︁
𝑛=0

𝑠0
𝑛

𝑧2 𝑛+1
,

where the sequence (𝑠0
𝑛)𝑛≥0 is determined by either (3.15) or (3.22). The two first values are 𝑠0

0 = 𝜇𝑥 and
𝑠0
1 = 𝜇𝑥 (1− 𝜇2

𝑥). Let us eventually recall that the expression of 𝜅0
𝑠(𝑧) is given by (3.8).

We are now going to determine the Laurent series expansion of 𝜅1
𝑠(𝑧). The root 𝜅𝑠(𝑧, 𝜃) to (4.2) is simple for

𝜃 ∈ R and |𝑧| > 1. It thus depends holomorphically on 𝑧 and is 𝒞∞ with respect to 𝜃. Differentiating (4.2) with
respect to 𝜃 at 𝜃 = 0, and identifying 𝜅1

𝑠 = 𝜕𝜃𝜅𝑠(𝑧, 0)/(2 𝑖), we obtain(︀
𝑧2 − 1 + 2 𝜇𝑥 𝑧 𝜅0

𝑠(𝑧)
)︀
𝜅1

𝑠(𝑧) = −𝜇𝑦 𝑧 𝜅0
𝑠(𝑧), (4.7)

which yields

𝜅1
𝑠(𝑧) = − 𝜇𝑦 𝜅0

𝑠√︀
(𝑧 − 𝑧−1)2 + 4 𝜇2

𝑥

= − 𝜇𝑦

2 𝜇𝑥

{︃
1 +

𝑧−2 − 1√︀
(𝑧−2 − 1)2 + 4 𝜇2

𝑥 𝑧−2

}︃

= − 𝜇𝑦

2 𝜇𝑥

∞∑︁
𝑛=1

𝑃𝑛−1(𝛼𝑥)− 𝑃𝑛(𝛼𝑥)
𝑧2 𝑛

, (4.8)

by using (3.8) and (3.11). We can therefore write the Laurent series expansion of 𝜅1
𝑠 under the form:

𝜅1
𝑠(𝑧) =

∞∑︁
𝑛=0

𝑠1
𝑛

𝑧2 𝑛
, (4.9)

with 𝑠1
0 = 0 and

∀𝑛 ≥ 1, 𝑠1
𝑛 :=

𝜇𝑦

2 𝜇𝑥

(︀
𝑃𝑛(𝛼𝑥)− 𝑃𝑛−1(𝛼𝑥)

)︀
. (4.10)

We can, for instance, compute (recall 𝑠1
0 = 0):

𝑠1
1 = −𝜇𝑥 𝜇𝑦, 𝑠1

2 = −𝜇𝑥 𝜇𝑦 (2− 3 𝜇2
𝑥).

The expression (4.10) is only seemingly singular with respect to 𝜇𝑥 for 𝜇𝑥 ≪ 1. Indeed, we recall 𝛼𝑥 = 1− 2 𝜇2
𝑥

and since all Legendre polynomials satisfy 𝑃𝑛(1) = 1, the expression 𝑃𝑛(𝛼𝑥) − 𝑃𝑛−1(𝛼𝑥) can be written as
𝜇2

𝑥 𝑄𝑛(𝜇2
𝑥) for some polynomial 𝑄𝑛. We therefore see from (4.10) that all coefficients 𝑠1

𝑛 read 𝜇𝑦 𝜇𝑥𝒬𝑛(𝜇2
𝑥) for

some real polynomial 𝒬𝑛. Using again the Laplace formula (3.19), we also get the asymptotic behavior:

𝑠1
𝑛 = −𝜇𝑦

𝜇𝑥

√︂
tan(𝜃𝑥/2)

𝜋 𝑛
sin
(︁
𝑛 𝜃𝑥 −

𝜋

4

)︁
+ 𝑂(𝑛−3/2), (4.11)

where the angle 𝜃𝑥 ∈ (0, 𝜋) is still defined by cos 𝜃𝑥 = 1− 2 𝜇2
𝑥. The asymptotic behavior (4.11) can be verified

by numerical experiments. Comparing with (3.20), we observe that the sequence (𝑠1
𝑛) has a slower decay than

(𝑠0
𝑛), but it decays to zero nevertheless. This is due to the fact that 𝜅1

𝑠 has (four) singularities of the form
(𝑧/𝑧0 − 1)−1/2, 𝑧0 ∈ S1, as 𝑧 approaches the unit circle S1, while 𝜅0

𝑠 is continuous up to S1.

DISCRETE TRANSPARENT BOUNDARY CONDITIONS S555

The Laurent series expansion of 𝜅2
𝑠 can be derived by following more or less the same lines. By differentiating

twice (4.2) with respect to 𝜃 and plugging the expression (4.7) of 𝜅1
𝑠, we first get:

𝜅2
𝑠(𝑧) = −4 𝑧 𝜅1

𝑠(𝑧)
𝜇𝑦 + 𝜇𝑥 𝜅1

𝑠(𝑧)
𝑧2 − 1 + 2 𝜇𝑥 𝑧 𝜅0

𝑠(𝑧)
(4.12)

=
4 𝜇2

𝑦 𝑧2(︀
𝑧2 − 1 + 2 𝜇𝑥 𝑧 𝜅0

𝑠(𝑧)
)︀2 𝜅0

𝑠(𝑧)
(︀
𝑧2 − 1 + 𝜇𝑥 𝑧 𝜅0

𝑠(𝑧)
)︀

𝑧2 − 1 + 2 𝜇𝑥 𝑧 𝜅0
𝑠(𝑧)

=
4 𝜇2

𝑦 𝑧2(︀
𝑧2 − 1 + 2 𝜇𝑥 𝑧 𝜅0

𝑠(𝑧)
)︀2 𝜇𝑥 𝑧

𝑧2 − 1 + 2 𝜇𝑥 𝑧 𝜅0
𝑠(𝑧)

·

In other words, we have derived the relation

𝜅2
𝑠(𝑧) =

4 𝜇𝑥 𝜇2
𝑦

𝑧3

1
(1− 𝑧−2)2 + 4 𝜇2

𝑥

1√︀
(1− 𝑧−2)2 + 4 𝜇2

𝑥

,

and it only remains to use (3.11) as well as the generating function of the Tchebychev polynomials of the second
kind (see [32]):

1
1− 2 𝑥 𝑡 + 𝑡2

=
∞∑︁

𝑛=0

𝑈𝑛(𝑥) 𝑡𝑛, (4.13)

to derive

𝜅2
𝑠(𝑧) =

4 𝜇𝑥 𝜇2
𝑦

𝑧3

∞∑︁
𝑛=0

(︃
𝑛∑︁

𝑚=0

𝑈𝑚(𝛼𝑥) 𝑃𝑛−𝑚(𝛼𝑥)

)︃
𝑧−2 𝑛.

Writing the Laurent series expansion of 𝜅2
𝑠 under the form:

𝜅2
𝑠(𝑧) =

∞∑︁
𝑛=0

𝑠2
𝑛

𝑧2 𝑛+1
, (4.14)

we have derived the relations 𝑠2
0 = 0 and

∀𝑛 ≥ 1, 𝑠2
𝑛 = 4 𝜇𝑥 𝜇2

𝑦

𝑛−1∑︁
𝑚=0

𝑈𝑚(𝛼𝑥) 𝑃𝑛−1−𝑚(𝛼𝑥), (4.15)

with 𝛼𝑥 = 1− 2 𝜇2
𝑥. We can for instance compute

𝑠2
1 = 4 𝜇𝑥 𝜇2

𝑦, 𝑠2
2 = 12 𝜇𝑥 𝜇2

𝑦 (1− 2 𝜇2
𝑥).

It does not seem so easy to infer from (3.19) and from the relation

𝑈𝑚(cos 𝜃) =
sin((𝑚 + 1) 𝜃)

sin 𝜃
,

the asymptotic behavior of (𝑠2
𝑛)𝑛∈N. However, we verify below on some numerical experiments that (𝑠2

𝑛)𝑛∈N
does not seem to be bounded. It actually seems to grow like

√
𝑛, see Figure 7, up to an oscillating behavior

similar to the one we have exhibited in (3.20) and (4.11). This growth in
√

𝑛 is consistent with the singularities
of the form (𝑧/𝑧0 − 1)−3/2 displayed by 𝜅2

𝑠. The rigorous justification of this asymptotic behavior is left to a
future work.

S556 C. BESSE ET AL.

Figure 7. Asymptotic behaviour of 𝑠0
𝑛, 𝑠1

𝑛 and 𝑠2
𝑛.

Inductive determination of the expansions. As we have already seen in the analysis of the one-dimensional
case, the Laurent series of 𝜅0

𝑠 can be also determined inductively by plugging the expansion

𝜅0
𝑠(𝑧) =

∞∑︁
𝑛=1

𝜎0
𝑛

𝑧𝑛
,

by then first identifying 𝜎0
1 and then deriving a recurrence formula which gives the expression of 𝜎0

𝑛 in terms
of 𝜎0

1 , . . . , 𝜎0
𝑛−1. This led to the formula (3.21). This strategy can be extended to the “correctors” 𝜅1

𝑠 and 𝜅2
𝑠.

Namely, the function 𝜅1
𝑠 is given by the relation (4.7). Since 𝑧 𝜅0

𝑠(𝑧) has a finite limit at infinity, we already see
on (4.7) that 𝜅1

𝑠 tends to zero at infinity. It actually decays like 𝑧−2. Hence its Laurent series expansion reads

𝜅1
𝑠(𝑧) =

∞∑︁
𝑛=1

𝜎1
𝑛

𝑧𝑛
,

and the coefficients (𝜎1
𝑛)𝑛≥1 are computed by plugging the latter expression in (4.7) (which itself has been

obtained by differentiating (4.2) with respect to 𝜃). After a few simplifications, we obtain 𝜎1
1 = 0 and the

recurrence relation

∀𝑛 ≥ 1, 𝜎1
𝑛+1 − 𝜎1

𝑛−1 + 2 𝜇𝑥

𝑛∑︁
𝑚=0

𝜎1
𝑚 𝜎0

𝑛−𝑚 = −𝜇𝑦 𝜎0
𝑛,

where we use the convention 𝜎1
0 = 0. We easily deduce that all odd coefficients 𝜎1

2 𝑝+1 vanish (recall that the
even coefficients 𝜎0

2 𝑚 vanish), and the even coefficients 𝜎1
2 𝑝, which we also write 𝑠1

𝑝 to be consistent with (4.9),
satisfy 𝑠1

0 = 0 and

∀𝑛 ≥ 0, 𝑠1
𝑛+1 = 𝑠1

𝑛 − 2 𝜇𝑥

𝑛∑︁
𝑚=0

𝑠1
𝑚𝑠0

𝑛−𝑚 − 𝜇𝑦 𝑠0
𝑛. (4.16)

Recalling the initial values 𝑠0
0 = 𝜇𝑥 and 𝑠0

1 = 𝜇𝑥 (1−𝜇2
𝑥), we recover for instance from (4.16) the two first values

𝑠1
1 = −𝜇𝑥 𝜇𝑦 and 𝑠1

2 = −𝜇𝑥 𝜇𝑦 (2− 3 𝜇2
𝑥) as in the previous method.

We can follow the same lines to derive the Laurent series expansion of 𝜅2
𝑠, by starting from the relation (4.12)

and plugging (observing on (4.12) that 𝜅2
𝑠 tends to zero at infinity):

𝜅2
𝑠(𝑧) =

∞∑︁
𝑛=1

𝜎2
𝑛

𝑧𝑛
,

which yields 𝜎2
1 = 0 and the recurrence relation

∀𝑛 ≥ 1, 𝜎2
𝑛+1 − 𝜎2

𝑛−1 + 2 𝜇𝑥

𝑛∑︁
𝑚=0

𝜎2
𝑚 𝜎0

𝑛−𝑚 = −4 𝜇𝑦 𝜎1
𝑛 − 4 𝜇𝑥

𝑛∑︁
𝑚=0

𝜎1
𝑚 𝜎1

𝑛−𝑚.

DISCRETE TRANSPARENT BOUNDARY CONDITIONS S557

Consistently with (4.14), we find that all even coefficients 𝜎2
2 𝑝 vanish, and the odd coefficients 𝜎2

2 𝑝+1 = 𝑠2
𝑝 satisfy

𝑠2
0 = 0 as well as the recurrence relation

∀𝑛 ≥ 0, 𝑠2
𝑛+1 = 𝑠2

𝑛 − 2 𝜇𝑥

𝑛∑︁
𝑚=1

𝑠2
𝑚 𝑠0

𝑛−𝑚 − 4 𝜇𝑦 𝑠1
𝑛+1 − 4 𝜇𝑥

𝑛∑︁
𝑚=1

𝑠1
𝑚 𝑠1

𝑛+1−𝑚.

For instance, we can recover the first value 𝑠2
1 = 𝑠2

0 − 4 𝜇𝑦 𝑠2
1 = 4 𝜇𝑥 𝜇2

𝑦 as given by the previous method.

Independently of the method we choose to compute the coefficients in the Laurent series expansion of
𝜅1

𝑠 and 𝜅2
𝑠, we can implement them numerically up to any prescribed final time index 𝑁𝑓 . We now go back

to (4.6). Once we have performed the inverse Fourier 𝒵-transform, the approximate DTBC (4.6) respectively
read:

𝑢𝑛+2
0,𝑘 = −

∑︁
0≤𝑚≤(𝑛+1)/2

𝑠0
𝑚 𝑢𝑛+1−2 𝑚

1,𝑘 , (4.17a)

𝑢𝑛+2
0,𝑘 = −

∑︁
0≤𝑚≤(𝑛+1)/2

𝑠0
𝑚 𝑢𝑛+1−2 𝑚

1,𝑘 −
∑︁

1≤𝑚≤(𝑛+2)/2

𝑠1
𝑚 (𝑢𝑛+2−2 𝑚

1,𝑘+1 − 𝑢𝑛+2−2 𝑚
1,𝑘−1), (4.17b)

𝑢𝑛+2
0,𝑘 = −

∑︁
0≤𝑚≤(𝑛+1)/2

𝑠0
𝑚 𝑢𝑛+1−2 𝑚

1,𝑘 −
∑︁

1≤𝑚≤(𝑛+2)/2

𝑠1
𝑚 (𝑢𝑛+2−2 𝑚

1,𝑘+1 − 𝑢𝑛+2−2 𝑚
1,𝑘−1)

−
∑︁

1≤𝑚≤(𝑛+1)/2

𝑠2
𝑚

(︀
𝑢𝑛+1−2 𝑚

1,𝑘+1 − 2 𝑢𝑛+1−2 𝑚
1,𝑘 + 𝑢𝑛+1−2 𝑚

1,𝑘−1

)︀
, (4.17c)

depending on the tangential accuracy we aim at achieving on the boundary.
Of course, the asymptotic expansion that we have derived for 𝜅𝑠(𝑧, 𝜃) also provides the approximate DTBC

at the right boundary 𝑗 = 𝐽 + 1:

𝑢𝑛+2
𝐽+1,𝑘 =

∑︁
0≤𝑚≤(𝑛+1)/2

𝑠0
𝑚 𝑢𝑛+1−2 𝑚

𝐽,𝑘 , (4.18a)

𝑢𝑛+2
𝐽+1,𝑘 =

∑︁
0≤𝑚≤(𝑛+1)/2

𝑠0
𝑚 𝑢𝑛+1−2 𝑚

𝐽,𝑘 +
∑︁

1≤𝑚≤(𝑛+2)/2

𝑠1
𝑚 (𝑢𝑛+2−2 𝑚

𝐽,𝑘+1 − 𝑢𝑛+2−2 𝑚
𝐽,𝑘−1), (4.18b)

𝑢𝑛+2
𝐽+1,𝑘 =

∑︁
0≤𝑚≤(𝑛+1)/2

𝑠0
𝑚 𝑢𝑛+1−2 𝑚

𝐽,𝑘 +
∑︁

1≤𝑚≤(𝑛+2)/2

𝑠1
𝑚 (𝑢𝑛+2−2 𝑚

𝐽,𝑘+1 − 𝑢𝑛+2−2 𝑚
𝐽,𝑘−1)

+
∑︁

1≤𝑚≤(𝑛+1)/2

𝑠2
𝑚

(︀
𝑢𝑛+1−2 𝑚

𝐽,𝑘+1 − 2 𝑢𝑛+1−2 𝑚
𝐽,𝑘 + 𝑢𝑛+1−2 𝑚

𝐽,𝑘−1

)︀
. (4.18c)

Let us observe that the boundary conditions (4.17) and (4.18) are nonlocal in time but they are local in space
(unlike the original exact DTBC). The boundary conditions (4.17) and (4.18) only involve a three point stencil,
as depicted on Figure 8 (left picture) on the example of the point located closest to the upper right corner. We
could have pushed the Taylor expansion with respect to 𝜃 further by including for instance the following term 𝜃3.
The problem is that there is no linear combination of 1, cos 𝜃 and sin 𝜃 that behaves like 𝜃3 at the origin. In
other words, if one writes 𝜃3 as a trigonometric polynomial 𝑝(𝜃) up to an 𝑂(𝜃4) term, then the trigonometric
polynomial 𝑝 has degree at least 2, which means that the associated finite difference operator in 𝑘 will involve
at least 4 points (and more likely five if one wishes to keep some symmetry). Hence this extension causes some
trouble when getting close to the four corners of the rectangle because the very last boundary points close to
the corner would require a specific treatment. We therefore do not pursue this higher order extension for the
time being and leave it to future investigations.

At this stage, we have made the numerical boundary conditions on the “left” and “right” boundaries, resp.
{𝑗 = 0} and {𝑗 = 𝐽 + 1}, explicit. The analysis can be carried out almost word for word for the “bottom” and

S558 C. BESSE ET AL.

“top” boundaries, namely {𝑘 = 0} and {𝑘 = 𝐾 + 1}. The only thing is to observe that the indices 𝑗, 𝑘 in (2.2)
can be exchanged by simply switching the roles of 𝜇𝑥 and 𝜇𝑦. From now on, we let (𝑡0𝑛)𝑛≥0, (𝑡1𝑛)𝑛≥0, (𝑡2𝑛)𝑛≥0

denote the sequences obtained by the same procedure as (𝑠0
𝑛)𝑛≥0, (𝑠1

𝑛)𝑛≥0, (𝑠2
𝑛)𝑛≥0, but switching the roles of

𝜇𝑥 and 𝜇𝑦. For instance, the sequence (𝑡0𝑛)𝑛≥0 is defined by 𝑡00 = 𝜇𝑦, 𝑡01 := 𝜇𝑦 (1− 𝜇2
𝑦), and

∀𝑛 ≥ 2, 𝑡0𝑛 =
2 𝑛− 1
𝑛 + 1

(1− 2 𝜇2
𝑦) 𝑡0𝑛−1 −

𝑛− 2
𝑛 + 1

𝑡0𝑛−2.

Then the approximate DTBC that we consider on the bottom and top boundaries read

𝑢𝑛+2
𝑗,0 = −

∑︁
0≤𝑚≤(𝑛+1)/2

𝑡0𝑚 𝑢𝑛+1−2 𝑚
𝑗,1 , (4.19a)

𝑢𝑛+2
𝑗,0 = −

∑︁
0≤𝑚≤(𝑛+1)/2

𝑡0𝑚 𝑢𝑛+1−2 𝑚
𝑗,1 −

∑︁
1≤𝑚≤(𝑛+2)/2

𝑡1𝑚 (𝑢𝑛+2−2 𝑚
𝑗+1,1 − 𝑢𝑛+2−2 𝑚

𝑗−1,1), (4.19b)

𝑢𝑛+2
𝑗,0 = −

∑︁
0≤𝑚≤(𝑛+1)/2

𝑡0𝑚 𝑢𝑛+1−2 𝑚
𝑗,1 −

∑︁
1≤𝑚≤(𝑛+2)/2

𝑡1𝑚 (𝑢𝑛+2−2 𝑚
𝑗+1,1 − 𝑢𝑛+2−2 𝑚

𝑗−1,1)

−
∑︁

1≤𝑚≤(𝑛+1)/2

𝑡2𝑚
(︀
𝑢𝑛+1−2 𝑚

𝑗+1,1 − 2 𝑢𝑛+1−2 𝑚
𝑗,1 + 𝑢𝑛+1−2 𝑚

𝑗−1,1

)︀
, (4.19c)

and

𝑢𝑛+2
𝑗,𝐾+1 =

∑︁
0≤𝑚≤(𝑛+1)/2

𝑡0𝑚 𝑢𝑛+1−2 𝑚
𝑗,𝐾 , (4.20a)

𝑢𝑛+2
𝑗,𝐾+1 =

∑︁
0≤𝑚≤(𝑛+1)/2

𝑡0𝑚 𝑢𝑛+1−2 𝑚
𝑗,𝐾 +

∑︁
1≤𝑚≤(𝑛+2)/2

𝑡1𝑚 (𝑢𝑛+2−2 𝑚
𝑗+1,𝐾 − 𝑢𝑛+2−2 𝑚

𝑗−1,𝐾), (4.20b)

𝑢𝑛+2
𝑗,𝐾+1 =

∑︁
0≤𝑚≤(𝑛+1)/2

𝑡0𝑚 𝑢𝑛+1−2 𝑚
𝑗,𝐾 +

∑︁
1≤𝑚≤(𝑛+2)/2

𝑡1𝑚 (𝑢𝑛+2−2 𝑚
𝑗+1,𝐾 − 𝑢𝑛+2−2 𝑚

𝑗−1,𝐾)

+
∑︁

1≤𝑚≤(𝑛+1)/2

𝑡2𝑚
(︀
𝑢𝑛+1−2 𝑚

𝑗+1,𝐾 − 2 𝑢𝑛+1−2 𝑚
𝑗,𝐾 + 𝑢𝑛+1−2 𝑚

𝑗−1,𝐾

)︀
. (4.20c)

Before reporting on several numerical simulations using the boundary conditions (4.17)–(4.20), we first study
whether each subcase in these boundary conditions, for instance (4.17a)–(4.17c) satisfy some basic stability
requirements. This stability analysis for half-space problems is carried out in the following paragraph.

4.2. Stability analysis

The stability analysis of initial boundary value problems for hyperbolic systems in regions with corners is
a delicate matter, see for instance [9, 27, 28, 30] and references therein for a partial account of the theory (of
which much, if not all, remains to be done). The discrete counterpart is not easier and has been left (almost)
undone so far. At a theoretical level, we do not claim to study the interaction of either one of the numerical
boundary conditions in (4.20) with either of the conditions in (4.18) at the upper right corner of the rectangle.
Such an analytical study seems to be out of reach at the present time. However we shall report below on some
interesting numerical observations which call for a lot of care in the coupling of numerical strategies on each
side of the rectangle. Namely, we shall show on one example that coupling two specific numerical boundary
conditions on the top and right boundaries, namely (4.20c) and (4.18c) yields strong instabilities (even though
the two separate half-space problems seem to be stable, as our partial proof below indicates). This phenomenon
is well-known in the PDE context, see an elementary example in [26] or more elaborate examples in [9, 30].

We now examine a more simple problem which consists in studying the stability of the half-space problem
where the leap-frog scheme (2.2) holds in the half space {(𝑗, 𝑘) ∈ Z2, 𝑗 ≥ 1} and either of the numerical

DISCRETE TRANSPARENT BOUNDARY CONDITIONS S559

boundary conditions (4.17a)–(4.17c) is imposed on the boundary {𝑗 = 0}. Following what we have done in the
one-dimensional case, the stability analysis is carried out here by means of the so-called normal mode analysis.
Extending slightly what we have done in the one-dimensional case, the normal mode analysis amounts here to
determining the solutions to the leap-frog scheme (2.2) which are of the form:

𝑢𝑛
𝑗,𝑘 = 𝑧𝑛 exp(𝑖 𝑘 𝜃) 𝑣𝑗 ,

with |𝑧| > 1, 𝜃 ∈ R and (𝑣𝑗)𝑗≥0 ∈ ℓ2, that also satisfy the homogeneous numerical boundary conditions, be they
(4.17a), (4.17b) or (4.17c). The arguments are quite similar in each of the three cases (except that we shall not
be able to carry them out completely in the last case). We deal below with (4.17a)–(4.17c) in increasing order
of complexity.

The “zero order” numerical boundary condition (4.17a). First of all, we plug the expression
𝑢𝑛

𝑗,𝑘 = 𝑧𝑛 exp(𝑖 𝑘 𝜃) 𝑣𝑗 in (2.2) and find that (𝑣𝑗)𝑗≥0 must satisfy the recurrence relation

∀ 𝑗 ≥ 1,
(︀
𝑧2 − 1

)︀
𝑣𝑗 + 𝜇𝑥 𝑧

(︀
𝑣𝑗+1 − 𝑣𝑗−1

)︀
+ 2 𝑖 sin 𝜃 𝑧 𝑣𝑗 = 0.

(Compare with (4.1).) Since (𝑣𝑗)𝑗≥0 should decay to zero at infinity, we get

∀ 𝑗 ≥ 0, 𝑣𝑗 = 𝑣0 𝜅𝑠(𝑧, 𝜃)𝑗 , 𝑣0 ∈ C,

where we recall that 𝜅𝑠(𝑧, 𝜃) is the only root of modulus < 1 to (4.2) for |𝑧| > 1 and 𝜃 ∈ R (and 1/𝜅𝑠(𝑧, 𝜃) =
−𝜅𝑢(𝑧, 𝜃) where 𝜅𝑢(𝑧, 𝜃) is the only root of modulus > 1 to the same equation).

Going back to (4.17a), or rather to its Fourier-𝒵-transform counterpart (4.5a), we now need to determine
whether there holds

1 = −𝜅0
𝑠(𝑧) 𝜅𝑠(𝑧, 𝜃),

or equivalently
𝜅𝑢(𝑧, 𝜃) = 𝜅0

𝑠(𝑧) (= 𝜅𝑠(𝑧, 0))

for some pair (𝑧, 𝜃) with |𝑧| > 1 and 𝜃 ∈ R. The latter relation can never hold because |𝜅𝑢(𝑧, 𝜃)| > 1 and
|𝜅0

𝑠(𝑧)| < 1 so the Godunov–Ryabenkii condition holds as for the one-dimensional problem which we have
considered in the previous section. Here again, there does not exist any unstable eigenvalue for the half-space
problem {𝑗 ≥ 1} with the numerical boundary condition (4.17a). The same argument would apply for any of
the other half space problems in {𝑗 ≤ 𝐽}, {𝑘 ≥ 1} or {𝑘 ≤ 𝐾} with their corresponding “zero order” numerical
boundary condition.

The “first order” numerical boundary condition (4.18b). We can use part of the previous analysis,
namely the determination of the “stable” solutions to (2.2) of the prescribed normal mode form. However we
now consider the numerical boundary condition (4.18b) or rather its Fourier-𝒵-transform counterpart (4.5b),
so we need to determine whether there holds

1 = −𝜅0
𝑠(𝑧) 𝜅𝑠(𝑧, 𝜃)− 2 𝑖 sin 𝜃 𝜅1

𝑠(𝑧) 𝜅𝑠(𝑧, 𝜃),

or equivalently
𝜅𝑢(𝑧, 𝜃) = 𝜅0

𝑠(𝑧) + 2 𝑖 sin 𝜃 𝜅1
𝑠(𝑧), (4.21)

for some pair (𝑧, 𝜃) with |𝑧| > 1 and 𝜃 ∈ R. Let us recall that 𝜅0
𝑠 is a root to (3.6) and that 𝜅1

𝑠 is given by the
relation (4.7).

Let us first consider the case 𝜃 = 0 (𝜋), that is, sin 𝜃 = 0. Then 𝜅𝑢(𝑧, 𝜃) = 𝜅0
𝑢(𝑧) and (4.21) can not hold since

the left hand side has modulus > 1 while the right hand side has modulus < 1. We therefore assume from now
on sin 𝜃 ̸= 0. Let us assume for a moment that the equality (4.21) holds for some pair (𝑧, 𝜃) with |𝑧| > 1 and

S560 C. BESSE ET AL.

sin 𝜃 ̸= 0. Then the right hand side of (4.21) must be a solution to the second degree polynomial equation (4.2).
Plugging the right hand side of (4.21) in (4.2) and expanding, we eventually get6:

(2 𝑖 sin 𝜃)2 𝑧 𝜅1
𝑠(𝑧)

(︀
𝜇𝑦 + 𝜇𝑥 𝜅1

𝑠(𝑧)
)︀

= 0.

Simplifying by sin 𝜃, we get either 𝜅1
𝑠(𝑧) = 0 or 𝜇𝑦 + 𝜇𝑥 𝜅1

𝑠(𝑧) = 0. Let us exclude the first of these two options.
For |𝑧| > 1, the stable root 𝜅0

𝑠(𝑧) to (3.6) does not vanish. Hence we see on the relation (4.7) that 𝜅1
𝑠(𝑧) does not

vanish either. This means that if (4.21) holds for some pair (𝑧, 𝜃), then there necessarily holds 𝜇𝑦 +𝜇𝑥 𝜅1
𝑠(𝑧) = 0.

We use again (4.7) to compute:

𝜇𝑦 + 𝜇𝑥 𝜅1
𝑠(𝑧) = 𝜇𝑦

𝑧2 − 1 + 𝜇𝑥 𝑧 𝜅0
𝑠(𝑧)

𝑧2 − 1 + 2 𝜇𝑥 𝑧 𝜅0
𝑠(𝑧)

= − 𝜇𝑥 𝜇𝑦 𝜅0
𝑢(𝑧)

𝑧2 − 1 + 2 𝜇𝑥 𝑧 𝜅0
𝑠(𝑧)

,

and the latter quantity can vanish only if 𝜇𝑦 = 0 (recall that we have assumed 𝜇𝑥 ̸= 0). At this point of the
analysis, we have shown that the only possibility for (4.21) to hold is to have 𝜇𝑦 = 0, that is 𝑐𝑦 = 0. However,
in that case, we have 𝜅𝑢(𝑧, 𝜃) = 𝜅0

𝑢(𝑧) for all 𝜃, see (4.2), and 𝜅1
𝑠(𝑧) = 0 (see (4.7)). Hence (4.21) can never

hold because for 𝜇𝑦 = 0, the right hand side has modulus < 1 while the left hand side has modulus > 1. In
other words, the Godunov-Ryabenkiii condition holds and there does not exist any unstable eigenvalue for the
half-space problem {𝑗 ≥ 1} with the numerical boundary condition (4.17b). Of course, the same arguments
would apply for any of the other half space problems.

The “second order” numerical boundary condition (4.18c). We can use the same approach as above.
Verifying the Godunov–Ryabenkii condition amounts to determining whether there exists a pair (𝑧, 𝜃) with
|𝑧| > 1 and 𝜃 ∈ R such that:

𝜅𝑢(𝑧, 𝜃) = 𝜅0
𝑠(𝑧) + 2 𝑖 sin 𝜃 𝜅1

𝑠(𝑧)− 4 sin2 𝜃

2
𝜅2

𝑠(𝑧). (4.22)

We verify again that (4.22) can not hold if 𝜃 = 0 (𝜋) or if 𝜇𝑦 = 0. Hence we assume from now on sin 𝜃 ̸= 0
and 𝜇𝑦 ̸= 0. Let us assume that the relation (4.22) holds, meaning that not only the right hand side of (4.22)
is a root to (4.2) but also that it is the only root of modulus > 1. We first plug the right hand side of (4.22)
in (4.2) and collect the terms in increasing powers of sin 𝜃/2 (we use again the equation (3.6) satisfied by 𝜅0

𝑠,
the relation (4.7) satisfied by 𝜅1

𝑠 and we also use the relation (4.12) satisfied by 𝜅2
𝑠). After simplifying (quite a

bit. . .), we eventually get the polynomial equation

𝑖 sin
𝜃

2
(︀
(𝑧2 − 1)4 + 8 𝜇2

𝑥 𝑧2 (𝑧2 − 1)2 + 16 𝜇2
𝑥 (𝜇2

𝑥 − 𝜇2
𝑦) 𝑧4

)︀
− 4 cos

𝜃

2
𝜇𝑦 𝑧 (𝑧2 − 1)

(︀
(𝑧2 − 1)2 + 4 𝜇2

𝑥 𝑧2
)︀

= 0. (4.23)

Since sin 𝜃 is nonzero, then sin 𝜃/2 is also nonzero, and (4.23) is consequently an eight degree polynomial equation
in 𝑧. Changing 𝑧 into 𝑖 𝑧, (4.23) becomes a polynomial equation with real coefficients (after simplifying by 𝑖).
Moreover, the roots of (4.23) are nonzero and are invariant by the transformation 𝑧 → −1/𝑧. Let us also recall
that we are interested in determining the roots of (4.23) that satisfy |𝑧| > 1.

We have not been able to obtain a complete proof of the facts we claim below, hence we do not have a
complete proof for the verification of the Godunov–Ryabenkii condition, but repeated numerical experiments
indicate the following facts:

6Here we use the equation (3.6) satisfied by 𝜅0
𝑠 as well as the relation (4.7) satisfied by 𝜅1

𝑠.

DISCRETE TRANSPARENT BOUNDARY CONDITIONS S561

– For 𝜃 ∈ (0, 𝜃max), where the angle 𝜃max is defined by

tan
𝜃max

2
=

2 𝜇𝑦 (1− 𝜇2
𝑥)

(1− 𝜇2
𝑥)2 − 𝜇2

𝑥 𝜇2
𝑦

,

(4.23) has a unique root 𝑧𝜃 verifying |𝑧𝜃| > 1. This root is a purely imaginary number (one other root of
(4.23) is −1/𝑧𝜃 since the roots of (4.23) are invariant under the transformation 𝑧 → −1/𝑧, and the six other
roots have modulus one).

– For 𝜃 ∈ [𝜃max, 𝜋), all roots to (4.23) have modulus one (the value 𝜃max is obtained by considering the case
where −𝑖 is a (double) root to (4.23)).

For (4.23) to have a root 𝑧 that satisfies |𝑧| > 1, we must necessarily have 𝜃 ∈ (0, 𝜃max), and in that case the
remaining question is to determine whether the quantity

𝜅0
𝑠(𝑧𝜃) + 2 𝑖 sin 𝜃 𝜅1

𝑠(𝑧𝜃)− 4 sin2 𝜃

2
𝜅2

𝑠(𝑧𝜃)

is either the stable or the unstable root to (4.2). On the numerical experiments we have conducted, we have
verified the property: ⃒⃒

𝜅0
𝑠(𝑧𝜃) + 2 𝑖 sin 𝜃 𝜅1

𝑠(𝑧𝜃)− 4 sin2 𝜃

2
𝜅2

𝑠(𝑧𝜃)
⃒⃒

< 1, (4.24)

for 𝜃 ∈ (0, 𝜃max), meaning that the right hand side of (4.22) may coincide with a root (4.2) for some specific
values of (𝑧, 𝜃) but in that case it coincides with the stable root 𝜅𝑠(𝑧, 𝜃) and not with the unstable root 𝜅𝑢(𝑧, 𝜃)
(which would complete the verification of the Godunov–Ryabenkii condition). The inequality (4.24) can be
shown rigorously in the regime where 𝜃 is small, for in that case we have 𝑧𝜃 →∞, see (4.22), and all functions
𝜅0

𝑠, 𝜅1
𝑠, 𝜅2

𝑠 tend to zero at infinity, so the modulus of

𝜅0
𝑠(𝑧𝜃) + 2 𝑖 sin 𝜃 𝜅1

𝑠(𝑧𝜃)− 4 sin2 𝜃

2
𝜅2

𝑠(𝑧𝜃)

tends to zero as 𝜃 tends to zero. We can also verify (4.24) in the limit regime 𝜃 → 𝜃max for in that case we get
𝑧𝜃 → −𝑖 and we compute

𝜅0
𝑠(𝑧𝜃) →

𝑖
(︀
1−

√︀
1− 𝜇2

𝑥

)︀
𝜇𝑥

, 𝜅1
𝑠(𝑧𝜃) →

𝜇𝑦

(︀
1−

√︀
1− 𝜇2

𝑥

)︀
2 𝜇𝑥

√︀
1− 𝜇2

𝑥

, 𝜅2
𝑠(𝑧𝜃) → −

𝑖 𝜇2
𝑦 𝜇𝑥

2 (1− 𝜇2
𝑥)3/2

·

We can then verify numerically that the inequality⃒⃒⃒⃒
⃒ 𝑖
(︀
1−

√︀
1− 𝜇2

𝑥

)︀
𝜇𝑥

+ 2 𝑖 sin 𝜃max

𝜇𝑦

(︀
1−

√︀
1− 𝜇2

𝑥

)︀
2 𝜇𝑥

√︀
1− 𝜇2

𝑥

+ 4 sin2 𝜃max

2
𝑖 𝜇2

𝑦 𝜇𝑥

2 (1− 𝜇2
𝑥)3/2

⃒⃒⃒⃒
⃒ < 1

holds for all positive values of 𝜇𝑥, 𝜇𝑦 such that 𝜇𝑥+𝜇𝑦 < 1 (here we use the classical formula sin 𝜃max = 2 𝑡/(1+𝑡2)
and sin2 𝜃max/2 = 𝑡2/(1 + 𝑡2) with 𝑡 := tan 𝜃max/2). Hence it does seem that (4.22) can not hold for some pair
(𝑧, 𝜃), which means that the Godunov–Ryabenkii condition is verified (though a complete analytical proof of
this fact still remains open). We postpone this rigorous justification to a future work.

4.3. Numerical experiments on a rectangle

We go back to our original motivation which is the simulation of the leap-frog scheme (2.2) on the rectangle
{1 ≤ 𝑗 ≤ 𝐽, 1 ≤ 𝑘 ≤ 𝐾} with some approximate DTBC on each side. In the numerical simulations reported
below, the computations were run on the rectangle (𝑥, 𝑦) ∈ (−3, 3)× (−2, 2) and on the time interval 𝑡 ∈ [0, 8].

S562 C. BESSE ET AL.

Figure 8. The stencil of the numerical boundary conditions (4.18b) and (4.20b) near the upper
right corner. Left: the points (in blue crosses) involved in the computation of 𝑢𝑛+2

𝐽+1,𝐾 (in red).
Right: the points (in blue crosses) involved in the computation of 𝑢𝑛+2

𝐽,𝐾+1 (in red).

The discretization parameters are 𝐽 = 300 and 𝐾 = 200 (from which one can deduce the values of the space
steps 𝛿𝑥, 𝛿𝑦). The time step 𝛿𝑡 is chosen in order to satisfy the CFL condition

𝜇𝑥 + 𝜇𝑦 =
1
2
·

(Recall the ℓ2-stability condition (2.3) for (2.2) on the whole space.) The initial datum that we consider for
the transport equation (2.1) is a Gaussian, namely 𝑢0(𝑥, 𝑦) = exp(−5 (𝑥2 + 𝑦2)). The discrete initial condition
(𝑢0

𝑗,𝑘) is defined by setting

∀ 𝑗 = 0, . . . , 𝐽 + 1, ∀ 𝑘 = 0, . . . ,𝐾 + 1, 𝑢0
𝑗,𝑘 := 𝑢0(𝑥𝑗 , 𝑦𝑘).

The first time step value (𝑢1
𝑗,𝑘) is defined by imposing the second order two-dimensional Lax–Wendroff scheme

[25], namely:

∀ 𝑗 = 1, . . . , 𝐽, ∀ 𝑘 = 1, . . . ,𝐾,

𝑢1
𝑗,𝑘 := 𝑢0

𝑗,𝑘 −
𝜇𝑥

2
(𝑢0

𝑗+1,𝑘 − 𝑢0
𝑗−1,𝑘)− 𝜇𝑦

2
(𝑢0

𝑗,𝑘+1 − 𝑢0
𝑗,𝑘−1)

+
𝜇2

𝑥

2
(𝑢0

𝑗+1,𝑘 − 2 𝑢0
𝑗,𝑘 + 𝑢0

𝑗−1,𝑘) +
𝜇2

𝑦

2
(𝑢0

𝑗,𝑘+1 − 2 𝑢0
𝑗,𝑘 + 𝑢0

𝑗,𝑘−1)

+
𝜇𝑥 𝜇𝑦

4
(𝑢0

𝑗+1,𝑘+1 − 𝑢0
𝑗+1,𝑘−1 − 𝑢0

𝑗−1,𝑘+1 + 𝑢0
𝑗−1,𝑘−1).

The boundary values for 𝑢1 (all other relevant values of 𝑗, 𝑘) are set equal to zero for simplicity.
In the numerical simulations below, we try various coupling strategies of numerical boundary conditions on

the “right” and “top” boundaries {𝑗 = 𝐽 + 1} and {𝑘 = 𝐾 + 1}. We first make it clear on Figure 8 that the
two sides of the upper right corner are coupled through the boundary conditions if one chooses for instance
to impose (4.18b) on 𝑗 = 𝐽 + 1 and (4.20b) on 𝑘 = 𝐾 + 1. The coupling is weak though since the boundary
conditions (4.18b) and (4.20b) are explicit so the trace values 𝑢𝑛+2

𝐽+1,𝐾 and 𝑢𝑛+2
𝐽,𝐾+1 are coupled only through the

preceding time steps.
In order to highlight the wave reflections on each side of the rectangle, we show below on some two and

three dimensional figures the logarithm of the (absolute value of the) solution. The logarithm of the solution
is represented on two-dimensional figures at various time steps. The full time evolution is represented on a
three dimensional figure. Logarithmic representations can be far more enlightening if one wishes to reveal the
magnitude of the reflected waves. The color legend for all 2D logarithmic representations reported below is given
in Figure 9 and the color legend for all 3D logarithmic representations reported below is given in Figure 10.

DISCRETE TRANSPARENT BOUNDARY CONDITIONS S563

Figure 9. Legend of the 2D representation of the evolution of log10 |𝑢𝑛
𝑗,𝑘|.

Figure 10. Legend of the 3D representation of the evolution of log10 |𝑢𝑛
𝑗,𝑘|.

Figure 11. Evolution of log10 |𝑢𝑛
𝑗,𝑘| (left: six successive times, right: full time evolution) for

c = (1, 0) and DTBC of order 0.

We first report on some cases where the initial Gaussian condition is transported towards one edge of the
rectangle and does not give rise (in the considered time interval) to multiple wave reflections. The first case is
depicted in Figure 11 where the chosen velocity is c = (1, 0) (and therefore all boundary conditions (4.18a)–
(4.18c) coincide since 𝜇𝑦 = 0). We call them DTBC of order 0 since (4.18a) amounts to not retaining any
tangential dependence. The results are of course as accurate as in one space dimension (because the scheme
(2.2) is one-dimensional in that case and the tangential index 𝑘 only enters as a parameter). We now turn on
the tangential dependence by considering the case c = (1, 0.1). Both 𝜇𝑥 and 𝜇𝑦 are positive then. On the right
and left faces of the rectangle, we either implement:

– The approximate DTBC (4.18a) and (4.17a). These are called DTBC of order 0; accordingly our choice of
approximate DTBC for the top and bottom faces of the rectangle are (4.20a) and (4.19a). The results are
shown in Figure 12. The reflected wave at the (right) outflow boundary has magnitude 10−3.

– The approximate DTBC (4.18b) and (4.17b). These are called DTBC of order 1; accordingly our choice of
approximate DTBC for the top and bottom faces of the rectangle are (4.20b) and (4.19b). The results are
shown in Figure 13. The reflected wave at the (right) outflow boundary now has magnitude 10−5, which
shows significant improvement.

S564 C. BESSE ET AL.

Figure 12. Evolution of log10 |𝑢𝑛
𝑗,𝑘| (left: six successive times, right: full time evolution) for

c = (1, 0.1) and DTBC of order 0.

– The approximate DTBC (4.18c) and (4.17c). These are called DTBC of order 2; there is a subtlety
here because our choice of approximate DTBC for the top and bottom faces of the rectangle are still
(4.20b) and (4.19b), and not (4.20c) and (4.19c) as one might expect. This is further explained below. The
results are shown in Figure 14. The reflected wave at the (right) outflow boundary now has magnitude 10−8

and is therefore not visible. This shows again significant improvement.

The overall conclusion that can be drawn from these numerical results is that, up to stability issues (which
can be challenging), adding more tangential terms in the Taylor expansion (4.5) seems to lead to more accurate
results, which was to be expected of course since we consider smooth solutions. The numerical simulations
quantify the gain of adding each new term in (4.5b) and (4.5c) with respect to (4.5a).

We now report on more intricate cases that exhibit multiple wave reflections. Namely, we now choose the
velocity c = (1, 0.3). With this velocity, the initial Gaussian function should leave the rectangle through the
right edge of the boundary. Because the numerical boundary conditions (4.18) are not exactly transparent,
wave reflection occurs. For the leap-frog scheme, the reflection takes place according to the billiard law. A (small
amplitude highly oscillating) wave then moves towards the top face of the rectangle and a second wave reflection
occurs. For this second reflection, the small tangential frequency assumption that motivated the expansion (4.5)
is not any longer valid. Hence it is likely that there will be little absorption through the top boundary. The
numerical simulations confirm that expectation. We follow the same plan as for the case c = (1, 0.1) and report
on some simulations with increasing tangential approximation. We thus implement:

– The zero order DTBC (4.18a), (4.17a), (4.20a), and (4.19a) on the four sides of the rectangle. This case is
shown in Figure 15; after the first reflection on the right face, the wave has magnitude 10−3. The magnitude
remains of order 10−3 after the second reflection on the top boundary.

– The first order DTBC (4.18b), (4.17b), (4.20b), and (4.19b) on the four sides of the rectangle. This case is
shown in Figure 16; after the first reflection on the right face, the wave has magnitude 10−5. The magnitude
remains of order 10−5 after the second reflection on the top boundary. The overall accuracy is improved.

DISCRETE TRANSPARENT BOUNDARY CONDITIONS S565

Figure 13. Evolution of log10 |𝑢𝑛
𝑗,𝑘| (left: six successive times, right: full time evolution) for

c = (1, 0.1) and DTBC of order 1.

Figure 14. Evolution of log10 |𝑢𝑛
𝑗,𝑘| (left: six successive times, right: full time evolution) for

c = (1, 0.1) and DTBC of order 2 in the 𝑥-direction and order 1 in the 𝑦-direction.

S566 C. BESSE ET AL.

Figure 15. Evolution of log10 |𝑢𝑛
𝑗,𝑘| (left: six successive times, right: full time evolution) for

c = (1, 0.3) and DTBC of order 0.

– The second order DTBC (4.18c) and (4.17c) on the right and left boundaries with the first order DTBC
(4.20b) and (4.19b) on the top and bottom boundaries. This case is shown in Figure 17; after the first
reflection on the right face, the wave has magnitude 10−6. The magnitude remains of order 10−6 after the
second reflection on the top boundary. The overall accuracy is improved again.

Figures 18–20 represent similar simulations as Figures 15–17 with the velocity c = (1, 2/3). In that case,
the initial condition is transported towards the upper right corner of the computational domain. There is
again an improvement when passing from zero order DTBC to first order DTBC (compare the scales between
Figs. 18 and 19). Figure 20 shows that coupling approximate DTBC with different tangential approximation
orders on the two sides of a corner may affect the overall accuracy. Namely, for the velocity c = (1, 2/3), using
DTBC of order 1 on the four sides of the rectangle yields better results than coupling DTBC of order 2 on two
opposite sides with DTBC of order 1 on the two remaining sides.

Eventually, we show in Figure 21 the evolution of the ℓ2 norm of (𝑢𝑛
𝑗,𝑘) as a function of the time 𝑡𝑛 in the

case c = (1, 0.3) when the second order DTBC (4.18c), (4.17c), (4.20c), and (4.19c) are implemented on the
four sides of the rectangle. The computation exhibits two stages. In the first stage, the initial condition (mostly)
exits through the right boundary. As long as the solution remains small on the boundary, the effect of the
numerical boundary conditions is rather invisible and the ℓ2 norm remains approximately constant. In a second
stage, the trace of the solution is no longer small and an exponential instability takes place. The logarithmic
scale in Figure 21 clearly shows the exponential behavior in time. The numerical solution displays a profile that
is concentrated along the top and right boundaries (right of Fig. 21). It thus seems clear that the coupling
between (4.18c) and (4.20c) gives rise to an unstable eigenvalue that is associated with a “surface wave” that
has exponential decay with respect to the normal directions to both the right and top boundaries. We have
unfortunately not been able to obtain an analytical proof of this fact, but our conclusion is that despite good
stability properties of (4.18c) and (4.20c) when considered separately on each side of the rectangle, the coupling
at the corner may yield strong instabilities.

DISCRETE TRANSPARENT BOUNDARY CONDITIONS S567

Figure 16. Evolution of log10 |𝑢𝑛
𝑗,𝑘| (left: six successive times, right: full time evolution) for

c = (1, 0.3) and DTBC of order 1.

Figure 17. Evolution of log10 |𝑢𝑛
𝑗,𝑘| (left: six successive times, right: full time evolution) for

c = (1, 0.1) and DTBC of order 2 in the 𝑥-direction and order 1 in the 𝑦-direction.

S568 C. BESSE ET AL.

Figure 18. Evolution of log10 |𝑢𝑛
𝑗,𝑘| (left: six successive times, right: full time evolution) for

c = (1, 2/3) and DTBC of order 0.

Figure 19. Evolution of log10 |𝑢𝑛
𝑗,𝑘| (left: six successive times, right: full time evolution) for

c = (1, 2/3) and DTBC of order 1.

DISCRETE TRANSPARENT BOUNDARY CONDITIONS S569

Figure 20. Evolution of log10 |𝑢𝑛
𝑗,𝑘| (left: six successive times, right: full time evolution) for

c = (1, 2/3) and DTBC of order 2 in the 𝑥-direction and order 1 in the 𝑦-direction.

Figure 21. The instability for c = (1, 0.3) and DTBC of order 2 in both 𝑥 and 𝑦 directions.
Left: time evolution of the logarithm of the ℓ2-norm of the solution. Right: the unstable profile
at 𝑡 = 4 (logarithmic scale).

At last, we have also tested the efficiency of the sum of exponential approximation compared to the standard
convolution procedure in the case of DTBC of order 1 (4.18b), (4.17b), (4.20b), and (4.19b). Namely, we have
compared the computational effort in that case with the sum of exponential approximation of both sequences (𝑠0

𝑛)
and (𝑠1

𝑛). We have chosen (𝑀,𝑁) = (50, 20) for the degrees of the Padé approximant. The results are presented
in Table 1. Though there is little gain for the sum of exponential approximation in one space dimension, there

S570 C. BESSE ET AL.

Table 1. Comparison of cputime between the implementation of DTBC and the implementa-
tion of the sum of exponential approximation in two space dimensions.

Minimal cputime Mean cputime

DTBC 21.9850 s 22.2692 s
SumExp 9.7760 s 10.0946 s

is a factor 2 gain in terms of computational effort in two space dimensions for an overall accuracy that is
comparable.

For the reader’s convenience, all numerical codes are made available on the web page http://nabuco.math.
cnrs.fr.

Acknowledgements. Research of all the authors was supported by ANR project NABUCO, ANR-17-CE40-0025.

References

[1] S. Abarbanel and D. Gottlieb, Stability of two-dimensional initial boundary value problems using leap-frog type schemes.
Math. Comput. 33 (1979) 1145–1155.

[2] X. Antoine, A. Arnold, C. Besse, M. Ehrhardt and A. Schädle, A review of transparent and artificial boundary conditions
techniques for linear and nonlinear Schrödinger equations. Commun. Comput. Phys. 4 (2008) 729–796.

[3] A. Arnold, M. Ehrhardt and I. Sofronov, Discrete transparent boundary conditions for the Schrödinger equation: fast calcula-
tion, approximation, and stability. Commun. Math. Sci. 1 (2003) 501–556.

[4] A. Arnold, M. Ehrhardt, M. Schulte and I. Sofronov, Discrete transparent boundary conditions for the Schrödinger equation
on circular domains. Commun. Math. Sci. 10 (2012) 889–916.

[5] G.A. Baker, Jr., Essentials of Padé Approximants. Academic Press (1975).

[6] G.A. Baker, Jr., Counter-examples to the Baker–Gammel–Wills conjecture and patchwork convergence. J. Comput. Appl.
Math. 179 (2005) 1–14.

[7] G.A. Baker, Jr. and P. Graves-Morris, Padé Approximants, 2nd edition. In: Vol. 59 of Encyclopedia of Mathematics and its
Applications. Cambridge University Press, Cambridge (1996).

[8] V.A. Baskakov and A.V. Popov, Implementation of transparent boundaries for numerical solution of the Schrödinger equation.
Wave Motion 14 (1991) 123–128.

[9] A. Benoit, Geometric optics expansions for hyperbolic corner problems, I: self-interaction phenomenon. Anal. PDE 9 (2016)
1359–1418.

[10] S. Benzoni-Gavage and D. Serre, Multidimensional Hyperbolic Partial Differential Equations: First-Order Systems and Appli-
cations. Oxford University Press (2007).

[11] C. Besse, P. Noble and D. Sanchez, Discrete transparent boundary conditions for the mixed KDV–BBM equation. J. Comput.
Phys. 345 (2017) 484–509.

[12] C. Besse, B. Mésognon-Gireau and P. Noble, Artificial boundary conditions for the linearized Benjamin–Bona–Mahony equa-
tion. Numer. Math. 139 (2018) 281–314.

[13] G. Beylkin and L. Monzón, On approximation of functions by exponential sums. Appl. Comput. Harmonic Anal. 19 (2005)
17–48.

[14] G. Beylkin and L. Monzón, Approximation by exponential sums revisited. Appl. Comput. Harmonic Anal. 28 (2010) 131–149.
Special Issue on Continuous Wavelet Transform in Memory of Jean Morlet, Part I.

[15] J.-F. Coulombel, Transparent numerical boundary conditions for evolution equations: derivation and stability analysis. Ann.
Fac. Sci. Toulouse Math. 28 (2019) 259–327.

[16] G. Dakin, B. Després and S. Jaouen, Inverse Lax–Wendroff boundary treatment for compressible Lagrange-remap hydrody-
namics on Cartesian grids. J. Comput. Phys. 353 (2018) 228–257.

[17] A. Dedner, D. Kröner, I.L. Sofronov and M. Wesenberg, Transparent boundary conditions for mhd simulations in stratified
atmospheres. J. Comput. Phys. 171 (2001) 448–478.

[18] M. Ehrhardt and A. Arnold, Discrete transparent boundary conditions for the Schrödinger equation. In: Fluid dynamic processes
with inelastic interactions at the molecular scale (Torino, 2000). Riv. Mat. Univ. Parma 4 (2001) 57–108.

[19] B. Engquist and A. Majda, Absorbing boundary conditions for the numerical simulation of waves. Math. Comput. 31 (1977)
629–651.

[20] F. Filbet and C. Yang, An inverse Lax–Wendroff method for boundary conditions applied to Boltzmann type models.
J. Comput. Phys. 245 (2013) 43–61.

[21] M. Goldberg, On a boundary extrapolation theorem by Kreiss. Math. Comput. 31 (1977) 469–477.

http://nabuco.math.cnrs.fr
http://nabuco.math.cnrs.fr

DISCRETE TRANSPARENT BOUNDARY CONDITIONS S571

[22] B. Gustafsson, H.-O. Kreiss and J. Oliger, Time Dependent Problems and Difference Methods. John Wiley & Sons, New York
(1995).

[23] L. Halpern, Absorbing boundary conditions for the discretization schemes of the one-dimensional wave equation. Math. Comput.
38 (1982) 415–429.

[24] H.-O. Kreiss, Difference approximations for hyperbolic differential equations. In: Numerical Solution of Partial Differential
Equations (Proc. Sympos. Univ. Maryland, 1965). Academic Press (1966) 51–58.

[25] P.D. Lax and B. Wendroff, Difference schemes for hyperbolic equations with high order of accuracy. Commun. Pure Appl.
Math. 17 (1964) 381–398.

[26] S. Osher, An ill posed problem for a hyperbolic equation near a corner. Bull. Am. Math. Soc. 79 (1973) 1043–1044.

[27] S. Osher, Initial-boundary value problems for hyperbolic systems in regions with corners. I. Trans. Am. Math. Soc. 176 (1973)
141–164.

[28] S. Osher, Initial-boundary value problems for hyperbolic systems in regions with corners. II. Trans. Am. Math. Soc. 198 (1974)
155–175.

[29] R.D. Richtmyer and K.W. Morton, Difference Methods for Initial Value Problems. Graduate Texts in Mathematics. Interscience
Publishers John Wiley & Sons (1967). Theory and applications.

[30] L. Sarason and J.A. Smoller, Geometrical optics and the corner problem. Arch. Ratio. Mech. Anal. 56 (1974/75) 34–69.

[31] C.-W. Shu and S. Tan, Inverse Lax–Wendroff procedure for numerical boundary treatment of hyperbolic equations. In: Vol. 18
of Handbook of Numerical Methods for Hyperbolic Problems. Handbook of Numerical Analysis. Elsevier, North-Holland (2017)
23–52.

[32] G. Szegő, Orthogonal Polynomials. American Mathematical Society, Providence, RI (1975).

[33] S. Tan and C.-W. Shu, Inverse Lax–Wendroff procedure for numerical boundary conditions of conservation laws. J. Comput.
Phys. 229 (2010) 8144–8166.

[34] L.N. Trefethen, Group velocity in finite difference schemes. SIAM Rev. 24 (1982) 113–136.

[35] L.N. Trefethen, Instability of difference models for hyperbolic initial boundary value problems. Commun. Pure Appl. Math.
37 (1984) 329–367.

[36] F. Vilar and C.-W. Shu, Development and stability analysis of the inverse Lax–Wendroff boundary treatment for central
compact schemes. ESAIM:M2AN 49 (2015) 39–67.

	Introduction
	The transport equation and the leap-frog approximation
	Discrete transparent boundary conditions for the one-dimensional leap-frog scheme
	The numerical scheme
	Derivation of DTBC
	An explicit expansion in terms of Legendre polynomials.
	Determining inductively the expansion.

	Stability analysis on a half-line
	Fast implementation of approximate DTBC with sums of exponentials
	Numerical experiments

	Approximate DTBC for the two-dimensional leap-frog scheme on a rectangle
	Exact DTBC on a half-space and local approximations
	Expansions based on Legendre (and Tchebychev) polynomials.
	Inductive determination of the expansions.

	Stability analysis
	The ``zero order'' numerical boundary condition (4.17a).
	The ``first order'' numerical boundary condition (4.18b).
	The ``second order'' numerical boundary condition (4.18c).

	Numerical experiments on a rectangle

	References

