Convergence rate estimates for the low Mach and Alfvén number three-scale singular limit of compressible ideal magnetohydrodynamics
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 55 (2021), pp. S733-S759

Convergence rate estimates are obtained for singular limits of the compressible ideal magnetohydrodynamics equations, in which the Mach and Alfvén numbers tend to zero at different rates. The proofs use a detailed analysis of exact and approximate fast, intermediate, and slow modes together with improved estimates for the solutions and their time derivatives, and the time-integration method. When the small parameters are related by a power law the convergence rates are positive powers of the Mach number, with the power varying depending on the component and the norm. Exceptionally, the convergence rate for two components involve the ratio of the two parameters, and that rate is proven to be sharp via corrector terms. Moreover, the convergence rates for the case of a power-law relation between the small parameters tend to the two-scale convergence rate as the power tends to one. These results demonstrate that the issue of convergence rates for three-scale singular limits, which was not addressed in the authors’ previous paper, is much more complicated than for the classical two-scale singular limits.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1051/m2an/2020051
Classification : 35B25, 35L45, 35Q35, 76W05
Keywords: Rate of convergence, singular limit, magnetohydrodynamics
@article{M2AN_2021__55_S1_S733_0,
     author = {Cheng, Bin and Ju, Qiangchang and Schochet, Steve},
     title = {Convergence rate estimates for the low {Mach} and {Alfv\'en} number three-scale singular limit of compressible ideal magnetohydrodynamics},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {S733--S759},
     year = {2021},
     publisher = {EDP-Sciences},
     volume = {55},
     number = {Suppl\'ement},
     doi = {10.1051/m2an/2020051},
     mrnumber = {4221327},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/m2an/2020051/}
}
TY  - JOUR
AU  - Cheng, Bin
AU  - Ju, Qiangchang
AU  - Schochet, Steve
TI  - Convergence rate estimates for the low Mach and Alfvén number three-scale singular limit of compressible ideal magnetohydrodynamics
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2021
SP  - S733
EP  - S759
VL  - 55
IS  - Supplément
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/m2an/2020051/
DO  - 10.1051/m2an/2020051
LA  - en
ID  - M2AN_2021__55_S1_S733_0
ER  - 
%0 Journal Article
%A Cheng, Bin
%A Ju, Qiangchang
%A Schochet, Steve
%T Convergence rate estimates for the low Mach and Alfvén number three-scale singular limit of compressible ideal magnetohydrodynamics
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2021
%P S733-S759
%V 55
%N Supplément
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/m2an/2020051/
%R 10.1051/m2an/2020051
%G en
%F M2AN_2021__55_S1_S733_0
Cheng, Bin; Ju, Qiangchang; Schochet, Steve. Convergence rate estimates for the low Mach and Alfvén number three-scale singular limit of compressible ideal magnetohydrodynamics. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 55 (2021), pp. S733-S759. doi: 10.1051/m2an/2020051

[1] T. Alazard, A minicourse on the low Mach number limit. Disc. Contin. Dyn. Syst. Ser. S 1 (2008) 365–404. | MR | Zbl

[2] K. Asano, On the incompressible limit of the compressible Euler equation. Jpn. J. Appl. Math. 4 (1987) 455–488. | MR | Zbl | DOI

[3] B. Cheng, Singular limits and convergence rates of compressible Euler and rotating shallow water equations. SIAM J. Math. Anal. 44 (2012) 1050–1076. | MR | Zbl | DOI

[4] B. Cheng, Improved accuracy of incompressible approximation of compressible Euler equations. SIAM J. Math. Anal. 46 (2014) 3838–3864. | MR | DOI

[5] B. Cheng and A. Mahalov, Time-averages of fast oscillatory systems. Disc. Contin. Dyn. Syst. Ser. S 6 (2013) 1151–1162. | MR | Zbl

[6] B. Cheng, Q. Ju and S. Schochet, Three-scale singular limits of evolutionary PDEs. Arch. Ration. Mech. Anal. 229 (2018) 601–625. | MR | DOI

[7] R. M. Colombo, G. Guerra and V. Schleper, The compressible to incompressible limit of one dimensional Euler equations: the non smooth case. Arch. Ration. Mech. Anal. 219 (2016) 701–718. | MR | DOI

[8] S. Cordier and E. Grenier, Quasineutral limit of an Euler-Poisson system arising from plasma physics. Commun. Part. Differ. Equ. 25 (2000) 1099–1113. | MR | Zbl | DOI

[9] P. A. Davidson, An Introduction to Magnetohydrodynamics. Cambridge Texts in Applied Mathematics. Cambridge University Press, Cambridge (2001). | MR | Zbl

[10] B. Desjardins, E. Grenier, P.-L. Lions and N. Masmoudi, Incompressible limit for solutions of the isentropic Navier-Stokes equations with Dirichlet boundary conditions. J. Math. Pures Appl. 78 (1999) 461–471. | MR | Zbl | DOI

[11] S. Ding, J. Huang, H. Wen and R. Zi, Incompressible limit of the compressible nematic liquid crystal flow. J. Funct. Anal. 264 (2013) 1711–1756. | MR | Zbl | DOI

[12] A. Dutrifoy and T. Hmidi, The incompressible limit of solutions of the two-dimensional compressible Euler system with degenerating initial data. Commun. Pure Appl. Math. 57 (2004) 1159–1177. | MR | Zbl | DOI

[13] E. Feireisl and A. Novotný, Singular Limits in Thermodynamics of Viscous Fluids. Advances in Mathematical Fluid Mechanics. Birkhäuser Verlag, Basel (2009). | MR | Zbl

[14] J. Földes, S. Friedlander, N. Glatt-Holtz and G. Richards, Asymptotic analysis for randomly forced MHD. SIAM J. Math. Anal. 49 (2017) 4440–4469. | MR | DOI

[15] I. Gallagher, A mathematical review of the analysis of the betaplane model and equatorial waves. Disc. Contin. Dyn. Syst. Ser. S 1 (2008) 461–480. | MR | Zbl

[16] I. Gallagher, From Newton to Navier-Stokes, or how to connect fluid mechanics equations from microscopic to macroscopic scales. Bull. Amer. Math. Soc. (N.S.) 56 (2019) 65–85. | MR | DOI

[17] S. Goto, Singular limit of the incompressible ideal magneto-fluid motion with respect to the Alfvén number. Hokkaido Math. J. 19 (1990) 175–187. | MR | Zbl | DOI

[18] E. Grenier, Oscillatory perturbations of the Navier-Stokes equations. J. Math. Pures Appl. 76 (1997) 477–498. | MR | Zbl | DOI

[19] E. Grenier, Pseudo-differential energy estimates of singular perturbations. Commun. Pure Appl. Math. 50 (1997) 821–865. | MR | Zbl | DOI

[20] S. Jiang, Q. Ju and F. Li, Incompressible limit of the compressible magnetohydrodynamic equations with periodic boundary conditions. Commun. Math. Phys. 297 (2010) 371–400. | MR | Zbl | DOI

[21] S. Jiang, Q. Ju and F. Li, Low Mach number limit for the multi-dimensional full magnetohydrodynamic equations. Nonlinearity 25 (2012) 1351–1365. | MR | Zbl | DOI

[22] Q. Ju and X. Xu, Small Alfvén number limit of the plane magnetohydrodynamic flows. Appl. Math. Lett. 86 (2018) 77–82. | MR | DOI

[23] T. Kato, A Short Introduction to Perturbation Theory for Linear Operators. Springer-Verlag, New York-Berlin (1982). | MR | Zbl | DOI

[24] S. Klainerman and A. Majda, Singular limits of quasilinear hyperbolic systems with large parameters and the incompressible limit of compressible fluids. Commun. Pure Appl. Math. 34 (1981) 481–524. | MR | Zbl | DOI

[25] S. Klainerman and A. Majda, Compressible and incompressible fluids. Commun. Pure Appl. Math. 35 (1982) 629–651. | MR | Zbl | DOI

[26] H. Lindblad and C. Luo, A priori estimates for the compressible Euler equations for a liquid with free surface boundary and the incompressible limit. Commun. Pure Appl. Math. 71 (2018) 1273–1333. | MR | DOI

[27] P.-L. Lions and N. Masmoudi, Incompressible limit for a viscous compressible fluid. J. Math. Pures Appl. 77 (1998) 585–627. | MR | Zbl | DOI

[28] A. Majda, Compressible Fluid Flow and Systems of Conservation Laws in Several Space Variables. In: Vol. 53 of Applied Mathematical Sciences. Springer-Verlag, New York (1984). | MR | Zbl | DOI

[29] G. Métivier and S. Schochet, The incompressible limit of the non-isentropic euler equations. Arch. Ration. Mech. Anal 158 (2001) 61–90. | MR | Zbl | DOI

[30] S. Schochet, Asymptotics for symmetric hyperbolic systems with a large parameter. J. Differ. Equ. 75 (1988) 1–27. | MR | Zbl | DOI

[31] S. Schochet, Fast singular limits of hyperbolic PDEs. J. Differ. Equ. 114 (1994) 476–512. | MR | Zbl | DOI

[32] P. Secchi, 2D slightly compressible ideal flow in an exterior domain. J. Math. Fluid Mech. 8 (2006) 564–590. | MR | Zbl | DOI

[33] S. Ukai, The incompressible limit and the initial layer of the compressible Euler equation. J. Math. Kyoto Univ. 26 (1986) 323–331. | MR | Zbl

Cité par Sources :