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CONVERGENCE RATE ESTIMATES FOR THE LOW MACH AND ALFVEN
NUMBER THREE-SCALE SINGULAR LIMIT OF COMPRESSIBLE IDEAL
MAGNETOHYDRODYNAMICS

BIN CHENG!, QIANGCHANG JU? AND STEVE SCHOCHET®*

Abstract. Convergence rate estimates are obtained for singular limits of the compressible ideal mag-
netohydrodynamics equations, in which the Mach and Alfvén numbers tend to zero at different rates.
The proofs use a detailed analysis of exact and approximate fast, intermediate, and slow modes together
with improved estimates for the solutions and their time derivatives, and the time-integration method.
When the small parameters are related by a power law the convergence rates are positive powers of the
Mach number, with the power varying depending on the component and the norm. Exceptionally, the
convergence rate for two components involve the ratio of the two parameters, and that rate is proven
to be sharp wvia corrector terms. Moreover, the convergence rates for the case of a power-law relation
between the small parameters tend to the two-scale convergence rate as the power tends to one. These
results demonstrate that the issue of convergence rates for three-scale singular limits, which was not
addressed in the authors’ previous paper, is much more complicated than for the classical two-scale
singular limits.

Mathematics Subject Classification. 35B25, 35145, 35Q35, 7T6WO05.

Received March 10, 2020. Accepted July 23, 2020.

1. INTRODUCTION

A uniform existence theorem and a convergence theorem as the small parameters tend to zero were recently
developed [6] for singular limits of symmetric hyperbolic systems of the form

d
1 1
Ap(eu V) Vi+ > Ai(V) Vg, = —L\V+—LuV, (1.1)
i=1 A M
where €, and ¢, are small positive parameters and £, and L, are skew-adjoint constant-coefficient first-order
differential operators. If % tends to zero as the parameters tend to zero then systems of the form (1.1) have

three time scales: O(i), O(i)7 and O(1).
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In this paper we begin the study of the rate of convergence of solutions of three-scale singular limits to
corresponding solutions of their limit equations, an issue that was not considered in [6], but which is significant
for applications because it determines the accuracy of using the limiting dynamics to approximate the original
system. The convergence rate in the general case will undoubtedly be very complicated, since in general many
different limit systems are obtained for different power-law relations between the two small parameters as they
both tend to zero ([6], Sect. 4). As a first step, we study here the particular case of the low Mach and Alfvén
number limit of the compressible ideal magnetohydrodynamics (MHD) equations in the presence of a large
uniform magnetic field, which was the motivating example for our work. As we will show, that system has
essentially only one limit system, although the limit

Mim = lim  p (1.2)
eA,em—0
of the ratio
poi= A (1.3)

appears in that limit system as a parameter. Even for the MHD system the study of the convergence rate is
much more intricate than for two-scale singular limits because, as described below, the bounds on the first time
derivative satisfied by solutions to three-scale systems are weaker than those satisfied for two-scale systems,
and the eigenspace projections of the large operator iﬁ At iﬁM depend on the ratio of the small parameters
instead of being fixed as in the two-scale case.

The asymptotic analysis of singular limits is of fundamental importance in the theory of fluid dynamics,
since some continuum fluid models are limits of the Boltzmann equation, which in turn is the limit of particle
dynamics [16], and many continuum models are limits of other such models as one or more dimensionless
parameters, such as the Mach number, Froude number, Rossby number, and Alfvén number, tend to zero.
The modern theory of two-scale singular limits of continuum fluid models and PDEs in general, in which all
small parameters tend to zero at the same rate, was initiated in [24,25], where smooth solutions of initial-value
problems for the compressible isentropic Euler or Navier-Stokes equations were shown to converge to solutions
of the corresponding incompressible equations, and a rate of convergence was demonstrated. Restrictions on
the initial data in that pioneering work were later eliminated [2,18,31,33]. Analogous results have subsequently
been shown for a variety of initial and boundary conditions and for a wide variety of two-scale singular limits
arising in fluid dynamics and related equations [1,5,8,11,12,15,19, 26, 32], including various forms of the MHD
equations [17,20-22]. Some of these papers include a convergence rate of the type that will be discussed below.
Like the results presented in this paper, the results discussed so far concern smooth solutions, but there is a
parallel theory of singular limits of weak solutions [7,10,13,27].

The MHD system in three spatial dimensions that we study in this paper, derived in Appendix A from a
standard formulation of that system, is

alenr) (Opr + (u-V)r) + L(Ehil?ﬁ(sw)vu =0 (1.4a)
plenr) (Oru+ (u-V)u) + %WVT + Vg — (b-V)b = %:b—¥ba (1.4b)
9ib + (u-V)b + (V-u)b — (b-V)u = du=e=u, (1.4c)
Vb =0, (1.4d)
where ( )
_p(l+s .
a(s) := T3 p(s):=1+s. (1.5)

The divergence-free condition (1.4d) on the magnetic field is preserved by the dynamics of (1.4¢), and so is
just a restriction on the initial data. Hence straightforward calculations show that the system (1.4) has the form
(1.1), with V = (r,u, b).
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Our main result is a rate of convergence of solutions of the MHD system (1.4) as the small parameters €, and
ey tend to zero. As a preliminary, we prove a uniform existence and a convergence result, including determining
the limit system. Before stating these results we discuss notations, operators, initial data, and parameters that
will be used in the statement of the theorem. First, we let || ||, denote the H* norm. Next, for any vector w let its
“horizontal” part wy, denote its x,y components (4} ), and let P denote the two-dimensional Leray-Helmholtz
projection onto divergence-free velocity fields in the x,y plane or 2-torus, i.e.

Pﬁiivwh =Wy, — VhAh—lvh.wh, where V, := (gz), Ay = 85 + 85. (1.6)
The large terms in (1.4) form the “Alfvén” and “Mach” operators
Vubatd.b —Yu
L,V = ( haso : h) , LV = ((_Z::)) , (1.7)
Gt 0
where for notational convenience we have normalized the pressure law p(p) to satisfy satisfy
P =1 (1.8)
by rescaling e,,. Also, the full average av f and the vertical average a, f of any function f defined on the 3-torus T3
are
[[J fdzdydz [ flz,y,2)dz
=g — ’ JY) = 1.9
= e (D@ = (19)

Although the uniform existence and convergence results require that the initial data satisfy the “well-
preparedness” condition
H(E,ZlﬁA + EI\_AIACM)VO”nfl <g, (1.10)

they do not require any assumption about the rate at which the initial data converge to their limit. However,
such an assumption is obviously required in order to obtain a rate of convergence of solutions of the PDE. In
the convergence rate result we assume that the initial data has the form developed in Section 2, which is a
specialization of the general form of initial data satisfying (1.10). Specifically, after expanding the initial data
in powers of the small parameters and their ratio, the leading-order terms are assumed to be independent of
the small parameters in order to avoid degrading the convergence rate. However, valid estimates for any initial
data satisfying (1.10) below can be obtained simply by adding the size of the difference of the initial data when
that difference is larger than the estimates obtained below.

When the parameter p in (1.3) is fixed then (1.1) and (1.4) essentially contain only one small parameter and
hence have only two time scales. Uniform existence and convergence results for initial-value problems of general
systems containing one small parameter were obtained in [24]. Moreover, their results remain valid with only
cosmetic changes to the proofs whenever py, > 0. Convergence rate theorems for both specific and general
two-scale systems have been proven in [3,4,25,30,31]. We therefore focus on the more challenging case when
p — 0, although our results will be phrased so as to remain valid when g5, > 0. It will be convenient to express
our convergence results using just powers of €, by defining a parameter v determined by

1+v . v In(z7) In()
exa=2¢€y ", or,equivalently, p=ct, ie v:= ln(i) —-1= ln(i)’ (1.11)
€M M
where in view of the results for two-scale singular limits we will assume for notational simplicity that
€a < Ewm, i.e. p <1 and v > 0. (1.12)

To simplify the exposition we will assume that the spatial domain is periodic. The uniform existence result
remains valid with the same proof when the spatial domain is R?, while the the limit system is then identically
zero because it is independent of the vertical coordinate. Throughout this paper ¢ and C denote positive
constants that are independent of €, and &,;, which may take different values in each appearance.
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Theorem 1.1. Let n > 3 be an integer. Assume that the spatial domain is T3 and that the small parameters

are restricted to the region
141
O0<en < 5(134 and a4 > c5M+”‘1. (1.13)
Assume in addition that the initial data V° := (r°,u® b®) for system (1.4), which may depend on the small
parameters €, and ey, are uniformly bounded in H™ and satisfy (1.4d) and (1.10).

Uniform existence. Under the above conditions there exist fized positive T and K such that for (ea,ey)
satisfying (1.13) the solution to (1.4) having the initial data VO ezists for 0 <t < T and satisfies

n . n—1 .
sup | [ V]l + [ Villo + Y el (min(2, 1)) 9] V]n-s| < K. (1.14)
0<t<T o
Convergence and limit. Assume in addition that the normalization (1.8) holds and that as (e,ey) satisfying
(1.13) tend to zero, their ratio ;—ﬁ converges to some value Wiy, and the initial data VO converges in H™ to

V. Then the solution V = (r,u = (up,u3),b = (bn,b3)) of the MHD system (1.4) with initial data V°
converges miCOi([O,T]; H™ %) for every a > 0. Its limit is independent of z, and is the unique solution V =
(7, (Tp, a3), (bh, b3)) of the limit system

(14 pim) [0 + (Gh-Vh)7] + ftim (bh- Vi) iz = 0, (1.15a)
PEY(9ytin + (- Via)iih — (bp-Vi)bp) = 0, Vi = 0, (1.15b)
Oyt + (- Vi )lis + friim (bh- V)7 = 0, (1.15¢)

O¢bn + (- Vi)by — (bh-Vi)an = 0, Vinby =0, (1.15d)

by = avbl — fiyim (F — avi) (1.15€)

having initial data v

Rate of convergence. In addition to the original assumptions and the additional assumptions of the conver-
gence part, assume that the initial data for the MHD system have the more specific form (2.28), (2.30), (2.34)
and that (1.12) holds. Then there is a constant ¢ independent of €5 and ey such that for all t € [0,T],

11 =P a,)un |, + (1= a)bally + [bs — avh§ + pu(a, r — avi®)||; < cen V7V, j=0,...,n 1, (1.16a)
[P a,un — tnln—2 + || 4z by — balln—2 < e, (1.16b)
11 = a)rll; + 11— a)usll; < cen 71, j=1,...,n—1, (1.16¢)
ayr — Fllnes + || ag us — Gllnz < ¢ |en ™™ 44— il | (1.16d)

Moreover, there exist O(1) correctors (r(c°r),u§for)) defined in (3.83)—(3.84) such that

o r = (7 e D)o 0y s = (s + (= )™z < cor ™OTOY (116e)
The uniform existence part of Theorem 1.1 is a special case of the corresponding general result for systems
(1.1) stated in Lemma B.1 and proven in Appendix B, which is an improvement of Theorem 3.6 from [6]. The
convergence part of Theorem 1.1 will be proven in Appendix C. The convergence-rate estimates in (1.16) are
direct consequences of the estimates (3.4), (3.16), (3.42), (3.65), and (3.85) proven in Section 3.
Under the scaling (1.13) all powers of £ appearing in (1.16) are positive, so a nontrivial rate of convergence
is obtained over the full range of allowed values of v, in all the norms listed in the theorem. The corrector

estimate (1.16e) has been included because (1.11)—(1.13) imply that estimate (1.16d) is much weaker than the
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other estimates in (1.16) in the main case of interest in which i, = 0. The improved estimate (1.16¢) involving
the corrector shows that (1.16d) is in fact sharp in this case, and gives a formula for the principal error term.

For well-prepared initial data like that considered here, the convergence rate for solutions of two-scale systems
is typically first order in the single small parameter [30,31]. That result depends crucially on the uniform
boundedness of the first time derivative of solutions being propagated for positive time, which does not generally
hold for three-scale systems (1.1) ([6], Sect. 2). We use the time-integration method developed in [3,4] to mitigate
the effect of the lack of uniform boundedness of first time derivatives. Moreover, the estimates in (1.16) are
O(ey) for those components and norms for which uniform boundedness of the first time derivative holds, and
tend, except for (1.16d), to the two-scale O(ey;) convergence rate as v — 0, which makes (1.1) tend to a two-scale
system. Obtaining that asymptotic consistency is only possible on account of the improvement (1.14) over the
estimate €y ||Vi|n—1 < ¢ in [6].

The H7 estimates (1.16a) and (1.16c) for intermediate values of j are obtained using interpolation. Those
estimates are the starting point for an improved estimate for z-averages of products derived in Appendix E,
which is used in the proof of (1.16b), and should be useful more generally.

One of the main techniques used in the proof of (1.16) is partitioning the solution into fast, intermediate,
and slow modes, and analyzing each mode separately. In contrast to the two-scale case (e.g. [4], Sect. 2), the
exact eigenspaces of the large operator iﬁA + %EM having eigenvalues of sizes strictly O(i), O(i)7 and
o(ﬁ) depend on the parameter p. For simplicity, in Section 2 we define the fast, intermediate, and slow modes
to be the fixed projections onto the limits as y — 0 of the exact eigenspaces. These projections are also used to
determine the appropriate form of the initial data used in the convergence rate part of Theorem 1.1. However,
certain estimates in Section 3 for the intermediate modes require the use of the exact p-dependent modes.

The only previous convergence rate result we know for evolutionary PDEs with two parameters tending
to zero independently appears in [14], which considered the low Rossby and magnetic Reynolds number limit
of the stochastically-forced viscous incompressible rotating MHD system. Compared to the hyperbolic system
considered here the deterministic case without forcing ([14], p. 4444) of their system has many simplifying
features, including the absence of a matrix multiplying the time derivatives, which eliminates the need for
restriction (1.13), the presence of a closed L? energy estimate, and the presence of regularizing viscous terms
whose diffusivity rates tend to infinity as the small parameters tend to zero, which yields a highly parabolic
system that induces smoothing when the large operator is used to determine the fast components in terms of
the slow component.

2. ANALYSIS OF THE LARGE OPERATOR

Following Section 4 of [6] but without treating each Fourier mode separately, let P° denote the L?-orthogonal
projection operator onto the nullspace of £,, and let P! denote the L2-orthogonal projection operator onto the
nullspace of P°L,P°. Then R(I — P%) C N(P°L,,P) = R(P') = N(I —P!), so R(I —P°) L R(I —P!), and
hence

(I P -PY)=0=(I—-PYHY(TI-P°. (2.1)
Expanding the factors in (2.1) shows that P'P! = P!P? which implies that P := P°P! is an orthogonal
projection operator satisfying P(I —P/) = 0 = (I — P/)P for j € {0,1}. Moreover, (2.1) and the definition of P
yield (I —PY) + (I —=PY) + P =1+ (I — P°)(I —P!) = I, which shows that the sum of the fast, intermediate,
and slow modes defined by

VP = (1 -P)V, VIii=I-PHYV, V5.=PV (22)

satisfies VI + V! 4 V5 = V. These modes are the limits as g — 0 of the direct sums of the eigenspaces of
L4 + pLy whose eigenvalues are strictly O(1), O(p), and o(u), respectively ([23], [6], Sect. 4). Moreover, since
the P/ are orthogonal projections onto the null spaces of constant-coefficient differential operators they commute
with derivatives, and hence are also orthogonal in any H*. Therefore estimates for the full solution obtained by
combining estimates for each mode are as sharp as the component estimates, modulo constant factors.



S738 B. CHENG ET AL.

The above results do not depend on the particular form of the operators £, and L. We now calculate
the projections and modes for the MHD system (1.4). For brevity, we restrict consideration to V = (r,u, b)
satisfying V-b = 0, which causes no difficulties since we only consider initial data and solutions satisfying that
constraint. Recall that P&V, a,, and av were defined in (1.6) and (1.9).

Lemma 2.1. Assume that the spatial domain is T3 and that V = (r,u,b) where b satisfies V-b = 0. Then
(1) L,V =0 iff O,up, = 0 = 0,bp, Vih-u, =0, and bg = avbs.
(@) (ZLa+LLu)V=0if

9.V =0, Vpu,=0, bg=avby— 2 (r—avr). (2.3)

(3) The formulas for the projections are

1
PO — (Pﬁ“vazfgxz

o rpdiv a, I
I[D — ( h 2x2 az) s

CEEIe

where all missing entries vanish.

(4) All eigenvalues of L, + ply that are o(p) are identically zero.

(5) Using the notations V¢ = (rf,u®,b*) for £ € {F,1,S} and w* = (w{,w§) for w € {u, b}, the formulas for
the fast, intermediate and slow modes are

o (0709 (1-2)
(rf,ul,p’) = ((1 —a,)r, <(1 sz)m) , 03> : (2.5)

(S uS,b%) = <az r (Pﬁ,ﬁv a, uh) ’ (ﬂz bh>) '
a, us avbs

In particular,

Vbf=0, Vbl=0 Vb°=0, (2.6)
V* is independent of z, (2.7)

and
Vhup =0=Vy-by. (2.8)

(6) For any nonnegative integer j, there are constants ¢; and co such that

all(La + pla) Vil < 1020 [l + [IVaud |l + 1102 (by — pA ' Vhd.r!)|;
+ 165+ pAT AT+ pll|02r" 5 + 1102ud]l;] (2.9)
< C2||(£A + MEM)VHJ"

Proof. Applying L, to V yields (07 (azbh’ovhbS) , (_%E“Uh )) Hence the last part of £,V vanishes iff 0,u, = 0

and Vj-u, = 0. Taking the horizontal divergence of the second component of £, and using the fact that V-b = 0
yields
Vh-(@bh — Vhbs) = —Abs. (2.10)
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Hence if £,V = 0 then b3 is a constant, i.e. b3 = avbsz, which implies further that 0,b, = Vyb3 = 0. On the
other hand, when those conditions hold then each term in the second part of £,V vanishes.
Similarly,

1 v
__1ly.u
M

1 1 = (—Vhbz+9.b— AV
—La4 —Ly |V = ( i RN “T)> . (2.11)
€a Em _51\5 =
=)
The last component of the second part vanishes iff

0,1 =0, (2.12)

and since d,uz = V-u — Vy-uy, the first and last parts vanish iff Vi-up = 0 and d,u = 0. Next, use (2.10) and
(2.12) to write the horizontal divergence of the second part as

Em

Vi (vhb3 +8.by — EAV;,T) = —(Aby+ B Ar) = A (b3 + %r) , (2.13)

which vanishes iff the last equation of (2.3) holds. That equation together with (2.12) implies that d,b3 = 0.
Finally, the last equation of (2.3) also shows that the horizontal components of the second part of (2.11) vanish
iff 9,bp = 0.

The formula for PO follows from the conditions for £,V to vanish in the first part of the lemma, and that
formula together with the formula for £, in (1.7) implies that

PLuP’V = — (d.us, (o2,.),0). (2.14)

Formula (2.14) implies the formula for P!, and the formulas for the P/ yield P.

The conditions (2.3) for (£, + uLy)V to vanish differ from the conditions to belong to the null space of P
only by adding an O(u) term to the formula for b3. Hence the rank of the restriction to any Fourier mode of
N(L, + pLly) equals the rank of the restriction to that mode of P, which in turn equals the dimension of the
direct sum of all eigenspaces of L, + pLy in that Fourier mode having eigenvalues of size o(u) ([23], Sect. 4 of
[6]). Hence all such eigenvalues vanish identically.

The formulas (2.5) for the modes follow from their definition (2.2) and formula (2.4) for the projections.
Formula (2.5) for b plus the fact that a, b is independent of z imply that V-b® = 0, and trivially V-b! = 0,
which implies the rest of (2.6). Each component of V¥ contains a, or av, so (2.7) holds. The left equation in
(2.8) follows from the presence of the operator PV in the formula for u, while the right equation there follows
from (2.6)—(2.7).

The formula for uf" in (2.5) and the formula (2.11) for (£, + uLy)V yield

1020y 1 = 19:unll; < ell(La + Lo V5, (2.15)

IVhud 15 = IVaunll; < el (La + pLa) V] ;. (2.16)

By the ellipticity of A, formula (2.5) for b%", the first identity in (2.13) and (2.11),
165 + A A ja = [ATHAL = av)bs + plpr|j1 < ¢ Abs + pApr -1

= [V (Taba + Vi = Do) -1 < ell(En -+ ) VIl 210
Also, combining formula (2.5) for bf", formula (2.11) for £, + uLy;, and (2.17) yields
1= (b — pA VR8Tl = (102 (by — nAT' VD7) | 5
= ||0;bn — pVa AT H(Ar — Apr)||; (2.18)

= [|(9:bh — pVhr — Vibs) + Vi(bs + pA Apr)|;
< (La + MEM)VHJ' + ||b§ + MA_lAhT”j—&-l <cl|(La+ NﬁM)VHJ"
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By the formula (2.5) defining the modes and formula (2.11) for £, + uLy,

pllozrtll; = plldarll; < ell(Ca + uly) Vi, (2.19)
plldzuzll; = ulld:usll; = pllV-u = Vieunll; < e (Ca + pla) Vl;- (2.20)

Combining (2.15)—(2.20) yields the right inequality in (2.9), and the expressions estimated there yield all the
terms in (L, + pLy)V so the left inequality also holds. O

Solving the PDE for (£, + pLy)V and using the bounds (1.14) to estimate the result yields a bound for
the H"~! norm of that expression, which by (2.9) implies “static” estimates for the fast and intermediate
modes, which will be written explicitly in Section 3. However, we also need to obtain “dynamic” estimates for
the intermediate and slow modes via differential inequalities. To do so we cannot use the limit modes defined
above. The exact slow eigenspace of the zero eigenvalue of £, + uL,, was determined in Lemma 2.1. In the next
lemma we obtain formulas for 7-vectors of Fourier multiplier operators V, and Vg and the self-adjoint Fourier
multiplier operator Q, such that

(La+ pLa)Va -V +pQ0.Vs-V=0= (L + ply)Vs-V +pQd.Vy - V (2.21)

for every vector-valued function V. Equations (2.21) imply that for every Fourier mode (k,l,m) the linear
combinations (V, £ Vg)ei(’”*‘ly*‘mz) are eigenfunctions of the operator £, + uL, with purely imaginary or
zero eigenvalues FimpQ where

~

Q — efi(szrlermz) Qei(kx+ly+mz) , (222)
i.e. they yield the exact pu-dependent intermediate eigenspaces. However, in Section 3 we will obtain dynamic
estimates for (1 —a,)Vy -V and (1 —a,)Vg-V rather than (V, £Vg) -V, to reduce disruption to the structure
of the rest of the PDE. The operator 1 — a, is applied because the eigenvalues +imuQ are only of size p when
m # 0. Moreover, since V-b = 0 we will replace V,, by the variant V2-*" defined in (2.23) that omits the
gradient term in the magnetic field component.

Since the limits as g — 0 of V,, and Vg should belong to the intermediate mode defined in (2.5), trying
various perturbations leads to the ansatz

0 1
V, = VI 4 Vet = O3 + 03 ,
wstam) \u(t) e ()
. (2.23)
V= (HQCAflazvh>
D
03

where the vectors have been normalized by setting the first component of V,, to the identity operator 1, and
factors of A~! have been included so that if (A, B,C, D) are all homogeneous order zero Fourier multipliers then
all components of V,, and Vg will also be Fourier multipliers of order zero. Furthermore, in the limit as y — 0
the operator —d,Q should tend to the operator —d, appearing in P°L,P? in (2.14), i.e. Q should tend to one.

Lemma 2.2. The vectors V,, and Vg defined in (2.23) satisfy (2.21) with

-1 .
Q= \/2 (1 Fu2 V(1 + 22— 4u28§A—1) , de Q= 2 —, (2.24)
\/1+“2+\/(1+“2)2_4“2m

provided that
C=-Q(1— p2?A'Q*) ™", A=-cQ', B=0A"'cQ, D=0Q " (2.25)
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Proof. Substituting (2.23) into (2.21) yields

0 —pd(D — Q + p?CARA™Y)
—pd(B-cQa?a v — 0= O3
( : — 18 (1-DQ) h) =0= 0 ; (2.26)

03

292 A—1 _ 0
prOAT(C+AQV (,ﬁaz(ug;ﬁsg))

which will hold provided that
C+AQ=0, DQ=1, B=CQJI’A"' C+Q=u’BQ, D-Q+2AA'C=0. (2.27)

Solving the first three equations in (2.27) for A, D, and B yields the formulas for those operators claimed
in (2.25). Substituting those formulas into the fourth equation in (2.27) and solving the result for C yields
the formula for that operator in (2.25). Substituting the formulas obtained so far into the last equation in
(2.27) yields Q7! — Q@ — p2ARLATIQ(1 — p202A~1Q?%)~! = 0, whose only solution tending to one as p — 0
is (2.24). |

We now turn to explicating the form that initial data satisfying (1.10) takes.
Lemma 2.3. Initial data VO = (r° u®, b®) will be uniformly bounded in H™ and satisfy the constraint V-b® = 0
and the condition (1.10) iff it has the form

0 0,8 0,1 0 0,8 0,F 0 0,8 0,I
ro=ro eyrt, Uy =1, +Eeau’ , ug =u3’” +egyusg’,

(2.28)
b = by + e b, by = avhl — p(1 — av)r®S + 2,03,

where every term w®¢ with w € {r,up, us, by, bz} and £ € {F,1,S} has the form specified for the w component
of the £ mode in (2.5), and may depend on (£4,ey) but satisfies

I

I+ {1027 -1 + exellr® 1]

11yl + (1000l 4+ 100+ 2all ] 4+ 1105 o + (1920 -1 + vl 1
10+ (1057 s + 2107 ] + v+ 57 + A7 A0, < e
(2.29)
uniformly in those parameters, and
Viby® =0 = Vi-bpt 4+ 9,b5". (2.30)

Proof. Since the terms in (2.28) are allowed to depend on €, and &, that formula simply expresses the separation
of the initial data into fast, intermediate, and slow modes, with the factors of €, and ¢, and the inclusion of the
specific term — (1 — av)r®S being purely for later convenience. By Lemma 2.1, the condition V-b = 0 implies
that each mode is divergence-free, and the conditions V-bf = 0 for ¢ € {F, I, S} clearly imply that V-b = 0, so
for initial data of the form (2.28) the conditions (2.30) are equivalent to the assumed condition that V-b? = 0.

Since, as shown above, the square of the H™ norm of V° equals the sum of the squares of the H™ norms of
its modes, the assumed uniform boundedness of ||[V?||,, is equivalent to

N [ P o P e

I+ eallbplln + [avb3] + [ = p(l = av)r®® 4 5057 |l < c.

1%l + exallr®!

0,8
+ [|by

(2.31)

For k = n — 1 the sum of terms estimated in (2.9) is equivalent to the H"~! norm of (£, + uLy)V. Hence
the assumed uniform boundedness of iH(EA + 1Ly)VO||,—1 becomes, for initial data VO of the form (2.28)
satisfying (2.30),
10087 1+ Tt 8- (0T — A0y + 100
1102 It + | — e (1 — av)r® + 537 + e ATIAL S 4 ATTA O, < e

(2.32)
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Since the expression — p(1 —av)r®® appearing in the last term in (2.31) can be estimated by the first term there
it can be omitted from that last term, leaving e, b3 ||,,. Similarly, the expression —d. (A 'A,)d.r% in the
third term of (2.32) can be omitted. Also the expression —eg; (1 — av)r®S + e ' A~ A0 in the last term of
(2.32) vanishes identically because 75 is independent of z, leaving ||b3" + A~1A7%7||,,. The uniform bounds
for that term and for ey |r®7|[, from (2.31) imply the uniform boundedness of ey]||b3" ||, so the modified
term &,[|b3" ||, for (2.31) can be omitted. However, since (2.32) only contains an O(1) estimate for 8,77 not
7 itself, it is not possible to omit the expression A~'A,r%7 from the term [|b37 + A~*A,r®7]|,. Adding
(2.31) and (2.32) and making the above-mentioned modifications shows that (2.29) is equivalent to the uniform
boundedness of |V, + i”(ﬁA + pey) VO|,,—1 for initial data of the form (2.28). O
We note that, by a slight notational exception, the fast part of b in (2.28) is

) = — u(1 —av)yr®S +e,09", (2.33)

showing that, to the leading O(u) order, (b3)¥ only depends on the slow part of r°.

Although Lemma 2.3 determines the most general initial data satisfying the conditions needed for the exis-
tence and convergence results, as noted in the introduction we need more to obtain the rate of convergence.
In order to allow the initial data to contain all modes but not interfere with the convergence rate, we will still
assume that the initial data have the form (2.28), and that (2.30) holds, but will assume that

0,0

all terms w®¢ in (2.28) are uniformly bounded in H" and each term w®* is fixed, (2.34)

which automatically implies that (2.29) holds. We allow the w%¥ w%? to depend on (e,,¢&y) because we only
bound the distance of the fast and intermediate modes to zero (i.e. estimate their Sobolev norms), not their
distance to any non-trivial limits.

3. CONVERGENCE RATE ESTIMATES

Recall that “static” estimates are obtained by solving the PDE (1.4) for certain terms and bounding the norms
of the result via (1.14), while “dynamic” estimates are obtained via energy estimates for the time evolution.
We will estimate the size of the fast modes statically, the size of the intermediate modes statically and then
dynamically, and the difference between the slow modes and the solution of the limit system dynamically, with
earlier estimates used when deriving later ones. To optimize the use of earlier estimates we use the interpolation
estimate (B.6) to obtain smaller estimates in weaker norms.

Recall that u = 8—;‘4 = €}, is assumed to be less than one. To see easily how the estimate to be obtained

g
depends on the norm used, we introduce an increasing geometric sequence

gj = etvTIv (3.1)
so that by (1.13), (1.11), €9 =¢a, €1 =¢€wn, € = lEj11, €n < C.

3.1. Static estimates

Static estimates will be obtained by solving the PDE system for (£, + L)V and using the uniform bounds
(1.14) together with the standard Sobolev product and composition estimates

If9ll; < cllflln-allgls; 5=0,....n—1 (3.2)
IF(@)ln-1 < Cllglln-1),
which will all be used henceforth without mention, plus the interpolation estimate (B.6). We will also need an

estimate for the time integral of certain fast terms, which will be obtained similarly from the time integral of
the PDE.
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Theorem 3.1. Assume that the basic conditions of Theorem 1.1 hold. Then the fast component VI satisfies
the estimates

sup [ I -+ 19 [+ 907+ 065+ B, + 11 = aa)bf

te[0,T]

ey s + 6 + oA Aprlly] < Cjy G=0,0m =1, (3.4)
t t t
sup [H/ a,uf dt'l| + H/ uf dt’ + H/ Vi-uf dt’
refo,r) U Jo no w1 g n—1
t
+ / a, (0f +pax a0y | | < o)k, (3.5)
0 n
and the intermediate component (r!,u) = ((1 — a,)r, (1 — a,)u3) satisfies
cej .

(! us)lly < ell(@art, Bouz) |l < cejur = 7]7 j=0,....,n—1 (3.6)

Note that the bounds in (3.5) for the time integrals of fast components are smaller than the bounds in (3.4) for
those components themselves.

Proof. Taking the H* norm of both sides of £, times (1.1) and using the interpolation bounds (B.6) to estimate
the left side shows that ‘
I(La + nLa) VI, < ekt = ce;. (3.7)

Combining (3.7), (2.9) and the Poincaré inequality
11 =a.)fll; < clld:£l;, (3.8)
yields (3.6). By (2.9), (3.7), and the fact that ul =0,
007 | + 1V + 6 + p AT Aprlyan < cej §=0,.n—1. (3.9)

Combining the definition (2.5) of the fast modes, the Poincaré inequality (3.8), the second inequality of (2.9),
and (3.7) yields

(10515 4 168 115 + 11 = a,)b5'[|;] < cl|0-b" |
< c[)|0:(bf — pAT 'R0+ pllOarT Il + 1102 (b5 + pAT AR + pll 0T 5] (3.10)
SCH(EA—F,MEM)VHJ‘SC&‘J', j=0,...,mn—1.

By the definition (2.5) of the fast modes
u = (1 —a)uf +auf =(1—a)uf + VeA; a,(Veul). (3.11)
Note that Ap, is elliptic when applied to functions independent of z so
VoA, az fllj1 < el £l (3.12)
By (3.11), (3.8), (3.12), (2.9), and (3.7),

w15+ 1oz agllin < Q= a)uy |l + Ve as(Vaug)ll

< cl|zug |l + clVhug ll; < ell(La + nLu) VI <cej j=0,...,n—1.

(3.13)

Combining (3.9), (3.10), and (3.13) yields (3.4).
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The bounds on time integrals in (3.5) are obtained by integrating (1.1) with respect to time, which yields

t t t d
/0 (Lo + pLa)V = 21 (AO(EMV)VS— /0 (Vi - VyAg)V + /O ;Ai(V)VM). (3.14)

For the MHD system (1.4), only the variable r appears in the argument of Ay, and (1.4a) shows that the time
derivative of 7 is O(ey!), so the term &,,V; - Vy A is uniformly bounded. This yields the estimate

<cen =celtr. (3.15)

n—1

H /Ot(ﬁA + puly)Vdt

Since spatial operators commute with time integration, replacing every solution component in the second inequal-

ity of (2.9) with its time-integral from 0 to ¢ and combining the result with the bound (3.15) yields (3.5) since
s

a,r=r-. O

3.2. Intermediate system dynamic estimates

Theorem 3.2. Assume that the conditions of the convergence part of Theorem 1.1 hold, and let (r,u,b) be the
solution obtained for the MHD system (1.4). Then

H7°1||j + ||u§||J < cCemax(jy, J=0,...,n—1 (3.16)

The case j = 0 in (3.16) was already proven in Theorem 3.1. The remaining cases in (3.16) are an improvement
over the corresponding cases in (3.6) by one factor of p.
To prove (3.16) we will use the variables

a:=(1—a,)Vy ™V =(1—a,)(r— ubs + p*CQA™92bs),
B:=01-a,)Vs-V=(1-a,)(Dus+ p*CA"9.Vy-up),

where the operators V'™, Vg, C, D, and Q were defined in (2.23)—(2.25). As a preliminary we will derive a
system of PDEs satisfied by («, ), with remainder terms that are consistent with the desired estimate (3.16).
The general idea is to apply each of the operators V2>*" and Vg to the PDE, note that by Lemma 2.2 the
large terms of the result are 0,Q applied to the other operator, and calculate the form of the order one terms.
To simplify that calculation we first simplify the original equations by moving to the right sides all terms whose
HJ norms can be estimated by a constant times ¢; or the H? norms of ! and u} using (3.4), (3.6), and (B.6).
To do so we will the formulas (2.5) and in particular their consequence

(3.17)

uV=(u’4u +uf").V=u®V+uld. +ul -V, (3.18)

S or zero where

Starting from the MHD equations (1.4), we replace the argument eyr of p and a by eyr
possible and compensate by adding terms to the right sides of the equations, except that we retain a factor of
a(eyr®) multiplying %Vh'uh because that expression will then cancel exactly when we build the time evolution
equation for a, (3.22). In addition, we apply 1 — a, to the equations since that operator appears in all terms of
the formulas (3.17) for a and S. Since slow modes are independent of z the operator 1 — a, can be moved past

most coefficients. This yields

a(ewr®) (8 + (u¥-V))r! 4 ool g o by 2w (1 g )Ty, = (1 - a,)Ri, (3.19a)
plenm®)(0; + (0¥ -V))(1 — a,)up + —“(E“rs>§§f““’“s)‘1vhrf
2 —
+ (1= a,)[Va B — (b-V)by] — L2200 — Vibd — uVir!) = (1 — a,) Ra, (3.19b)

plent®) (0, + (WS- V))ud + UenrDeenr®) g o1 (18 71— q,)bF = (1 — a,)Rs, (3.19¢)

EM
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(00 + (u®-V))(1 = a,)bs — (b7 -Vin)ug + (1 — a,) 2 Vioup = (1 — a,) Ry, (3.194)
where the equation for b, has been omitted since it does not enter into « or 3, and

Ry = —alewr) (ubd.r + (uf -Vi)r) + (alewr®) — a(ewr)) (O + (u®-V)r)

4 a(g““rs)p(wsg) — AP (G, 4 D) + afeyr®) L PEMT) pE(EMTS) Vh . (3.20a)
M M
Ry = — pler) (usdzun + (uy - Vi)un) + (plenr®) = plenr)) (Grun + (u”-V)up)
N a(eMrS)p(eMrss) — a(eyr)p(enr) Vir, (3.20b)
M
Rs := — p(eyr) (ué@zu;g + (uf - Vin)us) + (p(EMTS) — plewr)) (Bpus + (u®-V)us)
+ G(EMTS)p(EMTSE) —alEwm)PEn) L 9.bE 4 (b V)b, (3.20¢)
M
Ry= — (uz0:bs + (uy -Vi)bs) — (Virun)bs + (by -V )us. (3.20d)
Wherever u appears undifferentiated in R;, the H7 norm of the term in which it appears can be estimated by a
constant times the H? norm of uf, for j = 0,...,n—1. Similarly, for any smooth function F and j = 0,...,n—1,
| Elemr)=Flenn) < el |5, and [[F(eyr®) — Fleur)|@V + (@ V)V)|; < ceullr! [Vl + [V]la) <

c|[rt];. By (3.4), terms containing uf’, bl", Vy-ul" = Vy-up, or 8,bl” without further derivatives can be estimated
in the HY norm by cej, for 0 < j < n — 1. Since these cases cover all the terms in the R;,

4 4
DI —a)Rill; < Y IRilly < el ug)lly +e5), J=0,...,n—1. (3.21)

i=1 i=1

To obtain the evolution equation for a, subtract pa(eyr®) times (3.19d) from (3.19a) and add
a(exr®)PCQAT19? applied to (3.19d) to the result. Then commute CQA™'9? past u® -V, make the coeffi-
cient of the large terms that do not cancel be ap everywhere while compensating via terms on the right side,

force the function to which u(by-Vy) is applied to be \/1[172 for reasons to be explained later and again com-
o

pensate on the right side, and use the identity 1 = QD from (2.25) that makes the large terms exactly involve
3, as we know from (2.21) that they must. This yields

S S
a(enr¥) (0 + (0¥ -V))a + 1“+u2 (b - V)6 + w@lﬁ =Ro1+Rao+ Rasz+ Raa,  (3.22)

where

Ry1:=(1—a,)R; — ua(EMTS)(l —a,) Ry + ,u3a(5MrS)CQA_18§R4 (3.23)
comes from the right sides of the modified equations (3.19),

Ra o= —pla(enr®) [CQAT02,u®]- V(1 — a,)bf (3.24)
comes from commuting the operator applied to (3.19d) past the coefficient u§ ,

Ry3:=— NEMM(bth)ué + pla(enr®)CQATLO, [(th-Vh)azué]

EM

+ WPaleyr®) L IZLC QAT 02 (Vi uy)

€

(3.25)

comes from adding compensating terms to the right side and moving entire terms there, and

R4 := p(b-Vp) ( fﬂtz — u§> (3.26)
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comes from forcing the term involving th -V to have the desired form, and will be rearranged further later.
Similarly, to obtain the evolution equation for 3, add u?CA=19,V},- applied to (3.19b) to D applied to (3.19¢),
and rearrange terms in similar fashion as for (3.22). Then force the function to which bf -V is applied on the left

side of the equation to be \/%a for reasons to be explained later, and subtract appropriate constants from the
1

factors appearing inside commutators since that does not affect their value, in order to facilitate estimate the
size of the resulting terms. Also, to ensure the symmetry of the resulting system for a and 3, multiply the large

term g(l —a,)CA™0, Vi (0.by, — Vibs — puVr) appearing on the left side of the equation by a(eyr®)p(enr?)
and compensate by adding a(eyr®)p(eyr®) — 1 times that term to the right side. By (2.25), the resulting large
term exactly involves . This yields

S S, W S | a‘(EMTS)p(EMTS) _ 3.27
P(&'M'f" )(at + (11 V))ﬁ + W(bh Vh)Oé + - Q0,0 = Rg1+ Rg2+ Rg 3+ Rg 4, ( . )

where
Rp1:=D(1—a,)Rs + p*>CA™ 10, Vi-(1 — a,) Ry
comes from the right sides of (3.19),

S S S
Roa = = ieu B34, 202 (0 4 (u- )l — wp(enr®) [ Bt u®] - Vuf — p0* [ B3t elewrSletawit ]

— plen [CAflanh, ”(EME;MS)A] (0 4+ (V) (1 — a)uf — pPplenr®) [CAflﬁth,uS] V(1 —a,)uf

_ /f [CAflazvh’ CL(SMTS)EPIE;MTS)*l] .VhTI
comes from commuting the operators applied to (3.19¢) and (3.19b) past coeflicients in those equations,

Ryg i= — 2 2eurolenr 1o N1, 9 T 20N 19,7, (w@ _ (b.v)bh>

EM

— ppeler e ey (bF 4 AT Ayr)

comes from moving terms to the right side, balancing a term added on the left side, and using (2.10), and

Rgy = \/ﬁ(bf-vh)a +D(by V) (1 — a,)b (3.28)
comes from forcing the term involving th -V to have the desired form, and will be rearranged further later.

We now estimate the terms R, ; and Rg;. Since the operators applied to the R; in R, and Rg; are all
bounded, (3.21) implies that

[Raall; + |1 Raally < c(ll(r' ub)ll; +e5), 7=0,...,n—1. (3.29)

The terms in R, 2 and Rg 2 all involve commutators, and the following lemma says that the commutator
gains one derivative, which in many cases is a vital improvement.

Lemma 3.3 ([29], Lem. 2.5). Let P(k,l,m) be homogeneous of degree zero and real analytic for (k,1,m) #
(0,0,0), and let P be the Fourier multiplier operator defined by ]57 = ﬁf Then for all n > 3, f € H™(T?),
jel,...,n, and g€ HI1,

1P, Flgll; < ellFllnllglli-1- (3.30)

The constant-coefficient pseudo-differential operators appearing in the commutators in R, 2 and Rgo are all
homogeneous of degree zero and bounded uniformly in g (in particular (3.38) below implies a bound on Dﬂ§1)7
and they are real analytic for (k,I,m) # (0,0,0) since the denominators in the formulas for C, D, and Q in

(2.24), (2.25) are positive for p < 1, so they satisfy the conditions of Lemma 3.3. The expressions to which the
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commutators are applied have one of two forms: either they consist of a single spatial derivative applied to a fast
or intermediate component that is estimated in (3.4) or (3.6), or they are some component of (9; + (u®-V))V. In
the former case the expression contains a factor u? with p > 2, so by Lemma, 3.3 its H’ norm for j = 0,...,n—1
can be estimated by

C/~‘2||v((1 - az)b§7u§,rl, th)HmaX(O,jfl) < CMQH((l - aZ)bg’u§7r17 u{)HmaX(l,]’) < c:u25j+2 < CEj.

In the latter case the expression contains the factor y2ey; so by the interpolation bounds (B.6) its H? norm for
j=0,...,n—1 can be estimated by cu®ey(||V¢|[j—1 + ¢) < cu?enp™ < cue;. Hence

|Razoll; + |1Rg2llj <cej, 7=0,...,n—1 (3.31)

To estimate the terms in R, 3 and Rg 3 note that those terms either have a factor 1?ey that is smaller than
all €5, have a zeroth-order pseudo-differential operator applied to d.r%, b, (after applying the z-derivative in
the expression to some factor of b), Vi-up, or 8, (b + pA~1Ayr), all of which have their H’ norms estimated
in (3.4) or (3.6), or have a zeroth-order pseudo-differential operator applied to A=, [(bn-Vp)d,ul]. In the
first case using the uniform estimate (1.14) shows that the H"~! norm is bounded by ceg. In the middle
cases each term contains a factor of u? so its H/ norm is bounded by cu?eji1 < ce;. In the final case, since
A0, fl; < cllfllmax(j—1,0) and the term contains a factor of x?, it is bounded by /|| V. ud ||l max(j—1,0) <
P[]0 U max(j1) < cp’ejre < cue;. Together, these yield

|Raslly + | Rasll; <cej j=0,...,n—1 (3.32)

For j <n — 2 the terms R, 4 and Rg 4 can be estimated by using the fact that (3.4) and (3.6) imply that
pIVE in + 221V 41 < elugjon + pPejp2) < cejy j=0,...,n -2, (3.33)
where V" means all components of V" except a, b%', which is not estimated in (3.4). The estimate ||Rq.4; +

|Rg,4ll; < ce; can therefore be obtained for j < n — 2 by using the formulas for o and 3 in (3.17) together with
the facts that Dugl is a bounded zeroth-order pseudo-differential operator and that

bE = (b + pAT ALY + pATO% T — p(r — avr) (3.34)

plus estimates similar to those used for R, 3 and Rg 3.
However, (3.33) is not valid for j = n—1 because (3.4) and (3.6) do not hold for j = n. We therefore rearrange
Ry 4 and Rg 4 to be linear combinations of the terms

Vhun, O.uf’, 9.b, V(b§+A_1AhT), 0.,r and O,us (3.35)

whose H’ norms are estimated in (3.4) or (3.6) even though they involve a first derivative of V; in addition a
factor of y must be present multiplying the terms 9, (r!,ul) to compensate for the extra factor of % in (3.6).

Substituting (3.34) into the formula for « in (3.17) and solving the result for 7 yields
(1+p2)r! = a+ p(l —a,) (b5 + pA Apr) + > A710%rT — pPCcoA~1o% . (3.36)

Applying (1 — a,) to (3.34), which turns the final — pu(r — avr) into — pr?, dividing (3.36) by 1 + u? and
substituting the result for that final !, and substituting the result into (3.28) shows that Rg 4 equals

(i D) (Ve (33
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plus a sum of terms involving operators of order zero applied to the expressions in (3.35) whose H? norms can
be bounded by ce; using (3.4) and (3.6). To estimate (3.37) we use the identity

D=1+ 48”102
<\/p2(2—4A*183)+u4+1+p2+1> (ﬁ\/\/lﬂ(2—4A*183)+#4+1+u2+1+2,/u2+1> (3.38)

derived from (2.25), which makes the constant term in (3.37) cancel. The other term in (3.38) contains a factor
of 0, multiplied by an operator of order —1, the z-derivative of all the constituents of « are estimated in (3.4)
and (3.6), and an overall factor of y is present in (3.38), so the H/ norm of Rg 4 is bounded by a constant
times ¢, even for j = n — 1. Similarly, substituting formula (3.17) for 5 into the definition (3.26) of R, 4 and
substituting (3.38) into the result makes the constant term from (3.38) cancel. All remaining terms involve the
expressions from (3.35) and so can be estimated by a constant times €; since an overall factor of y is present.
This yields

[Raall; + [ Raall; < cejy j=0,...,n—1 (3.39)

Proof of Theorem 3.2. The system (3.22), (3.27) has the form of the Klainerman-Majda two-scale theory. More-
over, (3.17) plus estimates similar to those above yield

la—rt; + |8 —udll; <cejy §=0,...,n—1. (3.40)

Together with the estimates (3.29), (3.31), (3.32), and (3.39), (3.40) shows that the H’ norm of the right sides
of those equations is bounded by a constant times ||(«, 3)||; +¢;. Hence the standard Klainerman-Majda energy
estimates show that

i < j i j=0,...,n—1. .
s 1@, ) < e(a(0), SO)s +25), 5 =0,...om 1 (3.41)
The initial data (2.28), (2.34) satisfies ||VIH”_1|t:O < cen = ceq, s0 (3.40) implies that ||a(0), 5(0))|l; < cer
and hence (3.41) implies that maxo<;<7 ||(c, 5)||; < ¢ max(ej,eq) for j =0,...,n — 1. Using (3.40) once more
yields (3.16). O

3.3. Equations and estimates for horizontal components of the slow mode

Like for the intermediate mode dynamic estimates, estimating the difference between the slow modes of the
solution to the original system and the solution of the limit system requires PDEs for the exact zero eigenspace
of the operator £, +uLy,. The horizontal velocity and magnetic field slow modes belong to that eigenspace, so we
will write the equations for those modes as the limit equations plus error terms, by applying the projection P onto
the slow horizontal modes to the original system, expanding all dependent variables into fast, intermediate, and
slow modes, and moving all terms except those involving purely slow modes to the right sides of the equations.
The remaining slow modes will be treated in the following subsection.

Theorem 3.4. Assume thatl the conditions of the convergence part of Theorem 1.1 hold. Let (r,u,b) be the
solution of the MHD system (1.4), and let (¥, 1n,ds, bn,b3) be the solution of the limit system (1.15) whose
initial data is the limit (1%, u% b%S + i (1 — av)r®) of the initial data (2.28) of the original system. Then

[l — iz + by — bhlln—2 < cen. (3.42)

Before proving Theorem 3.4 we need to derive appropriate equations. Since all slow modes contain the averaging
operator a, in the z direction, it will be convenient to write the equations in conservation form, so that derivatives
with respect to z disappear when a, is applied. In particular,

ClZ(W'Vf + (VW)f) =aqa, V(fW) =aqa, Vh~(fwh) = az(wh-Vhf + (Vh~Wh)f). (343)
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Adding the continuity equation (A.la) to the momentum equation (1.4b) yields

d(pu) +u-V(pu) + (V-u)(pu) + V& — b-Vb = ¢, *(9,b — Vb3), (3.44)
where ® is some scalar-valued function defined on T3, i.e. periodic in z,y,z. Apply P,ﬁh" a, to the first two
components of (3.44) and a, to the first two components of (1.4c), and simplify the result by using the identity
(3.43) not only with w = u but also with w = b since the constraint V-b = 0 implies that b-Vf equals
V-(fb). The resulting equations can be further simplified by using the definitions (2.5) of the modes to obtain
the identities a, by, = b and a,(pun) = a,(puy) + a,(puf’) = (a, p)up + a,(pul’), and then using the facts that
p=1+¢eyr and a,u}" is a gradient to obtain P& a,(pul’) = ey PEY a,(ruf’). This yields

0y P ((a, p)u) + P a, Vi (pun @ up — by @ by) = —e4 0: P a,(ruyy ), (3.45a)

815 th + a, Vh~(uh ® by — by, ® uh) = 0, (34513)

where the tensor product ® follows the convention that Vi-(up ® bn) = uy - Viby + (Vh-uy)bp. Since

OPIV ((a, p)up) = O + en 0 P ((a, r)u), (3.45) together with the bounds (1.14) and (1.13) and the rela-
tion (1.11) show that

10605 |1 + (106D ln—1 < . (3.46)

Recalling that u, and by have no intermediate part, we separate them into their fast and slow parts in the
tensor products in (3.45a):

a, Vi-(pun @ up — by @ bp) = a, Vi (pug @ uf — by @ by)

+a, V- ((puhs ®uf — by @bf) +trsp) +a, Vi (puf ®@uf —bf @b})
(3.47)
where trsp denotes the tensor transpose. By (2.7)—(2.8), the slow parts (u7,bs) are independent of z and
divergence-free, so the first term on the right side of (3.47) simplifies to u-Vi((a, p)uy) —bi-Viby. Also, since

by is independent of z while (2.5) shows that a,bf = 0, the expression —a, Vi,-(bJ ® b{") appearing in the
second term on the right in (3.47) is identically zero. Next, we can drop the PV operator from (3.45a) at the

cost of adding a term V0(t,x,y) to that equation, since a 2-vector is in the kernel of PV if and only if it is a
horizontal gradient. Thus, (3.45a) becomes

0.((0 PYUE) 15 - Fi((a D)US) — bF TS = e 0 (ruf) — Vi (o © uf 1+ trsp)
—a, Vi (puf @ uf — bl @b{) + V4o.

The second term on the right side is a “slow-fast” product, which can be rewritten using time-integrated variable

A(t, ) := /Ot a,ul dt’, (3.48)
as the time derivative of a small term plus a small term, since (3.5) shows that
1Al < cey™. (3.49)
For example,

a(puf @ul) = a,(uf @ul) + ey a,(ruf @ul) =i @ (a,uf) + ey a,(ruf @ ul’)

=0i(u) ®A) — (0)) ® A+ ey a,(ruy @ uf).
Hence we obtain

(0 + (u) Vi) ((a, p)uyy) — by -Vibp = 0: Zq + & + Vi, Viup =0 (3.50)
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with
Bl = —ema(ruf) — Vi (uhS QA+ trsp),

& = Vh-{((?tuhs) A+ trsp} — e, Vi (ruy @ uf +trsp) — a, Vi (puf @ uf — bl @ bl).

The bound (3.4) together with the constraint (1.13), the relation (1.11) between the parameters and the defi-
nition (3.1) of the ; implies that ||uf’|l,—1 + ||b{ [[n—1 < c€¥%. Using that estimate, the time-derivative bound
(3.46), estimate (3.49) for A, the formula p = 1 4 ey, and Corollary E.3 yields the estimates

[1E1lln—1 + [IE1]ln—2 < ceyt™. (3.51)

Applying the same ideas to the slow magnetic equation (3.45b), and in particular noting that a,(uy ® bf" +
trsp) = 0 yields
@+ (07 -Va))by = by -Viuy =9, Eps + &5, Vb =0, (3.52)

with
Sps =~V [A@Dby —trsp], &5 = Vi [A@ by — trsp] — a, Vir-(uf @ by’ — trsp). (3.53)
The same bounds as for (3.51) show that
1oz s + s Iz < celf”. (3.54)

The equation for the time evolution of u7 can be further simplified using an equation for the time evolution
of r°. By the first part of (2.8) and the facts from (2.5) that u} = 0 and a,r = 7°, the vertically-averaged
equation (C.2) simplifies to

S +uf Vi (r®) = —a, V- (ruf) — e, Vi (a, uf). (3.55)
Using the time-integrated variable A from (3.48), (3.55) can be rewritten as
(O + (0 - Vi) (enr®) = —en ay Vi-(ruf ) — 9, Vi-A. (3.56)

Subtracting uy times (3.56) from (3.50) noting that a, p = 1+ &y, and rewriting the term uy9;Vy,-A on the
right side of the result as 9;(u (Vh-A)) — (9,1 ) Vir-A yields

(1+ ) (0 + (0 -Va))ug — b -Vibe = 9,23 + & + Vb,  Viud =0, (3.57)
where
Hy =B+ uiVi-A, & =& — (00 Vi-A+ eyup a, Vi-(rul) (3.58)
also satisfy
[1E2lln—1 + I€2lln—2 < celt” (3.59)

in view of the estimate (3.51) and the same bounds used to obtain that estimate.
Now move the £,7° term to the right side of (3.57) and replace ;25 there by its divergence-free part, which
only changes the divergence term, to obtain

O+ (0 -V))ui =Dy -Viby = 0, s +&us + Vibys, Vi =0 (3.60)
with _
Bug = PRVE2, Es =G —enr® (0 + (0 - Vi))ui. (3.61)

Using the estimate (3.59), the fact from (3.46) that d;uf = O(1), and the fact that the projection P&V does
not increase Sobolev norms yields

[Buslln—1 < celt”s  €uslln-2 < ceu (3.62)

in view of the term that is explicitly O(ey) in the definition (3.61) of &s.
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Proof of Theorem 3.4. The functions (i, by,) satisfy the systems

(0: + (- Vin))h — (bn-Vi)by = Va®, Vi, =0, (3.63)
(8t —+ (ﬁh~Vh))Eh - (bh~Vh)ﬁh =0. (364)

We now apply Theorem D.1 to the system (3.60), (3.52) for u := (up, bn) and the system (3.63), (3.64) for

U := (iin, bp). Assumptions (2.28) and (2.34) ensure that the difference in their initial data is O(sb‘“’; émce Eu
contains PV, Z, := (Eys, Epg) and Ey = 0 satisfy LE, = 0 = LEy, where L = (Vi 0). Define £, = (&5, §bs)
and {y = 0. The estimates (3.62), (3.54) together with the above-mentioned estimate on the difference of the
initial data then imply that the hypotheses of Theorem D.1 hold with ¥ = n, »r = 1, and § = ¢,. Hence the

conclusion of that theorem yields (3.42). O

3.4. Equations and estimates for remaining slow modes

The third component of equation (1.4b) implies that there are no large terms in the PDE for ug = a,us,
i.€. (0, (3;‘% ), 03) is a zero eigenvector of the full large operator £, + pLy. However, as shown in Lemma 2.1,

the p-dependent zero eigenvector of £, + uLy having a nontrivial projection onto the density component is not
just the slow mode 7°. Specifically, (2.3) implies that V, = (az, 03, (7%% )) satisfies (L, + pLy)V, -V =0
for all functions V, which by the MHD system (1.4) and the skew-adjointness of (£, + pLy) implies that the
PDE satisfied by a,(r — pbs) = V, - V will contain no large terms. We therefore need to calculate the PDE
system satisfied by a,(r — pbs) and a, ug. It turns out that while the PDEs for those two variables are coupled
by terms that are strictly O(1), their coupling to other components of the solution contains only terms that are
o(1) and so can be considered as small perturbations.

Theorem 3.5. Under the conditions of Theorem 3.4,

7 = Pllas 1§ — 15 lace < e 21050 ] (3.65)

Proof. Writing the variables in (C.3) in terms of fast, intermediate, and slow components and using the facts
that the slow components are independent of z, uhs and bf have zero horizontal divergence, the vertical averages
of rf, u and b}’ vanish, and b3 is constant in time as well as space transforms that equation into

Ou(r® = payby) + (Vi) (r® = pa, b5) + p(bp -V )us
=—a,{Vn [(r— ubg)uﬂ} — pay, [Vh(uébhF)] (3.66)
= —Vp- [(rS — pa,bs)ay, th] —a, V- [(rl — (1 — az)bg)th] — pay, [Vh(uébhF)] )

Replacing uhs , bhs , and p on the left side of (3.66) by their limit values, and compensating by adding terms to
the right side yields

[0+ (@n- V)] (7 = o, b5) + i (bn-Vn)u§ = 0=y 0,58 + &5 pua, o8 (3.67)

where

[1]

t
S pabf = — Vi [(TS - uazbg)/o a, uf] = —V}- [(TS — pazbz)Al

grsfuaz bg = Vh’ [(at(rs - Nazb3>)A] — Oy Vh' |:(7J - ,U'(l - az)bg‘)uf} — Hay [vh(uébhF)]

i 3 (3.68)
+ (U —up)- Vi (r® — pa, b5) + p((bn = by)-Va)us + (wim — 1) (bn-Va)us .
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Since 9;b5 = 0, (3.66) implies a uniform H"~! bound for 9;(r° — pa, b3). Using in addition the uniform estimate
(1.14), estimate (3.49) for A, the estimate (3.42) for the convergence rate of the horizontal components, and
Corollary E.3 shows that

1E0s pa,erln-1 <ced™,  l€s_ pa,prlln2 < clew+ o — piml] - (3.69)

The third component of (3.44) can be written as
O(puz) +u-V(puz) + (V-u)(pusz) + 9,® — by-Vipbs = 0.
Applying the vertical averaging operator a, and using (3.43) reduces this to
Oe(az(puz)) + az [un- Vi(pus)] + a; [(Vi-un) (pus)] — a; [ba-Vabs | = 0.
In order to treat the term a,[by-Vipbl] we write a, bf as
a, b = — pAT ALY+ a,(0F + pATIALPS) = — p(r® — avr®) 4 a, (b + AT AR (3.70)

in accordance with the expression estimated in (3.4). Using (3.70) while noting that (by-V})(avr®) = 0, and
using the facts from (1.5), (2.7), and (2.5) that p = 1+¢ey,r, 7° and u3 are independent of z and a, uf =0 = uf,

which imply that a,(pu3) = (1 + eyr¥)us, a,(pul) = ey a,(rfud), and a,r = 79, we obtain
(1+enr®) [0 + (0 -Vi)] uf +u3 [0 + (0 - V)] (enr®) + p(by - Vi)r®
= (by-Vh) [a, (b + uAflAhrS)] + a, {(bE V) (A — a )bl } — e - Vi) (a,(r7ud)) (3.71)
— e a,(r'ul) — Vi [(0:A)uS ] — 0, {Vi-(uf ud)} — e 0, {Vi-(a) rus)},
where the last line results from separating the various modes in a,{Vy-(uf pus)} and using the definition of A
from (3.48). Since there are no terms of size £ ! in the equations for the time evolution of 7 or ug, (3.71) implies

that
|0u3 |ln1 < c. (3.72)

Subtracting u3 times (3.56) from (3.71), moving the term eyr® [9; + (uy V)] u§ to the right side of the
result, noting that the two terms involving A partially cancel and rewriting the remaining term (9;A-Vy)uj as
O[(A-Vi)ug] — (A-Vy)0us yields

(O + (0 -Vn))usg + (b - V)= 0Z, 5 + &g + (b7 Vi) [0 (B + pA Apr®)] (3.73)
where
éug = (A-Vius — ey a,(r’ud),
Eus = a{(by Vi) (1 = a,)b5'} — eu (- Vi) (a,(ruf)) — au{ Vi (uf uf)} — ene a{ V- (uf rug) }
+enus a, Vi (rug) — (A- Vi) (0pul) — enr® [0 + (0 - V)] uf .
As a step towards symmetrizing the system consisting of (3.67), (3.73), we want to replace r in the last term
on the left side of (3.73) by ¥ — pa, bl which requires adding a balancing term involving a, b, which must also
be rewritten using (3.70). This leads us to write u(bg-Vi)r® as ki (by V) (r® — pa, bE) + ko (b V) (a, bF + prd).

Equating those two expressions and comparing the coefficients of (by-V)(a, bL") shows that ks = k1, and then

comparing the coefficients of (by-Vy,)r? yields k; = ﬁ,

B0 VTS = i (05 V) (S = g bE) + 2 (05 Vi) (0, B+ pur)

= (B V) — g b) 1 (05 V) [a, (B + pAT Ar)]

(3.74)
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where the second equation follows as in (3.70). Substituting (3.74) into (3.73), moving the second term from
(3.74) to the right side of the resulting equation and combining it with the similar term already present, and
replacing uhS , th and p on the left side of the result by their limiting values and compensating on the right side
yields

04 + (Bn- V)] u3 + 5 vy (bh Vn)(r® = pa, b)) = 05,5 + Eus (3.75)

where
t
2o = Zus + 1 (0500 / (b + u Ay (3.76)
0

t
Eug = Eug + T (D5 V)| - / @, (0 + p AT A S)| + (i - ) Vi
0 (3.77)

i (b — D) Vi, b+ por)) + (72— — ) (b Vi) (0, 0 + r®).

The system consisting of (3.67), (3.75) can be symmetrized by multiplying the latter equation by 1+ u . The
estimates used to obtain (3.69) together with the time-derivative estimates (3.46), (3.72) and the time-integrated
estimate (3.5) show that

IZuslln—1 < cer™, llguslin—2 < clen + I — piml] - (3.78)

Using (1.15e) and the fact that avr®S is a constant, the limit equations (1.15a) and (1.15¢) can be rewritten
as the system

[at + (ﬁh'Vh)] {( + /’(’hm) /’(‘llm aV?"O S} + Mllm(bh vh)u?) - 0 (379)
(01 + (- V)] i3 + 45— (bn- Vi) { (1 + [T — M avr®5} =0, (3.80)

for the dependent variables (1 + u? )7 — ,uﬁm avr®¥ and @3, which has the same form as the system (3.67),

(3.75) for the dependent variables r* — pa, bs and u?‘f , except that the terms on the right sides are omitted.
Since the evolution equation for r shows that avr = avr® = avr®S + ¢, avr®! = avr9s,

S pa, by = (L4 p?)r® — g avr — pa,(by + p(r — avr))
= [(1+p?)r® — @2 avr®®] — pa, (b + pA Apr).

Hence, by (2.28), (2.34), the difference between the initial data for the two systems is bounded in H™ by a
constant times e1F2” + | — puim|. In view of that bound plus the estimates (3.69), (3.78) for the right sides of
(3.67), (3.75), Theorem D.1 shows that

(3.81)

1% = pas bg) = {(1+ pi)7 = pifin av7* Y lnmz + [l — tislln—2 < ¢ [en + [ — piml] (3.82)
By (3.81), the static estimate (3.4) with j = n — 3 applied to the — pa, (bl + pA~1A,r) term of (3.81) shows
that (3.82) implies that (3.65) holds. O

As discussed in the introduction, the term |p@ — fuim| is the dominating error term in (3.82) and (3.65)
whenever p;, = 0, but that term will be eliminated in Theorem 3.6 below by adding corrector terms.

Theorem 3.6. Let (r(°°'), u(cor)) be the solution of the inhomogeneous linear system
Byr(©) + (1 Vi) 4 pu(bp- Vi )u§™ = —(bn- Vi )iz — (1 + ot ) (s + (- V)7, (3.83)

atu3cor + (Tn-Vh)ug or 1"'#2 (bh'vh)r( o) = — (1+Lz)lﬁ$r;ﬁm) (bn-Vn)((1 4 UZ)F -t aVTO’S) (3.84)

having initial data zero. If the conditions of Theorem 3.4 hold then

S _ (% 4 B— Him ,.(cor)
r (rJr e B

» + Hu§ — (113 + (u— mim)ugcor)) H B < cel{d_max(n_&o)u. (3.85)



S754 B. CHENG ET AL.

0,8

Proof. Since (i — fiim) (@t + pim) = p? — pd,, and avr® is a constant, adding p — gy, times (3.83) to (3.79)

yields

00+ (n V)] { (1 2)7 = 2 avr®S 4 (= g )} + (b n) (1 + (0 = s )u™ ) = 0. (3.36)

Similarly, since (g — fiim) times 5/l ) equals # — Miwadding g — pim times (3.84) to (3.80)

i (A+u2) A+, R
yields

[0¢ + (Tn-Vh)] {Mlim + (1 — mim)uécor)} + ﬁ(k}h-vh) {(1 + u?)7 — pPavr®S 4 (p — mim)r(“’)} =0. (3.87)

Equations (3.86)—(3.87) have the same form as as the system (3.67), (3.75) for the dependent variables
rS — wa, by and u;? , except that the terms on the right sides are omitted and all occurrences of piy in the
coefficients on the left sides are replaced by p. Omitting the step of replacing p by pim, in the derivation of
(3.67), (3.75) yields those equations with all occurrences of pi, on the left sides replaced by p and the terms of
order p1 — fiji, omitted from their right sides. Since the terms of order 2 in (3.86) now involve p? rather than
pi . asin (3.81) and in contrast to (3.79), there is also no longer a term of size O(|u — im|) in the difference
in the initial data. Hence applying Theorem D.1 now yields an estimate without the term involving |u — pim|,
and by using (3.81) the estimate so obtained can be written as (3.85). O

APPENDIX A. DERIVATION OF THE MHD SYSTEM

Suitably scaled, the motion of an isentropic compressible, conducting, inviscid fluid is modeled by the MHD
system ([9], Sect. 3.8)

B+ V-(pu) = 0 (A.1a)

dr(pu) +u-V(pu) + (V-u)pu + e,2Vp(p) + e,?B x (VxB) = 0, (A.1b)
0B — Vx(u x B) =0, (A.1c)

V.B =0. (A.1d)

Here e denotes the well-known Mach number, p is the fluid density, p(p) is the pressure law that satisfies
p’ > 0, u is the fluid velocity, and B is the magnetic field. The parameter €,, as we call the Alfvén number in
this article, is the ratio between flow velocity and speed of the magnetosonic waves; in [24] the Alfvén number
is the reciprocal of our version.

We consider the case in which a uniform magnetic field is applied in the direction e, parallel to the z-axis,
which subjects the fluid to a large Lorenz force. To reformulate the system (A.1) into a form to which the results
of [6] can be applied, we begin by rescaling the magnetic field and the density via

B =¢e, +c,b, p=1+¢eyr. (A.2)

Applying calculus identities for the curl, subtracting u times (A.la) from (A.1b), and multiplying (A.la) by
a(eyr) from (1.5) yields the system (1.4).

APPENDIX B. IMPROVED UNIFORM BOUND

Lemma B.1. Let n > sg + 1 be an integer, where sg := Lg] + 1 is the Sobolev embedding exponent, i.e. the
smallest integer s for which ||f||p~ < c||f||zs. Assume that the spatial domain is R or T and that the system
(1.1) and its initial data VO satisfy the following conditions:

(1) the operators L, and Ly are constant-coefficient differential operators of order at most one and are skew-
adjoint on L?,
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(2) the matrices A; are smooth symmetric functions for j > 0 and the matriz Aq is positive definite,

(3) the small parameters are restricted to the region (1.13),

(4) the initial data V°, which may depend on the small parameters £, and ey, are uniformly bounded in H™
and satisfy the “well-preparedness” condition (1.10).

Then there exist fixed positive T and K such that for (ea,eyu) satisfying (1.13) the solution to (1.1) having
the initial data VO exists for 0 <t < T and satisfies (1.14); in particular the solution is uniformly bounded in
H".

Proof. Lemma B.1 differs from Theorem 3.6 of [6] only by having different weights multiplying the norms of
time derivatives. Hence it suffices to show that in all places in the proof of Theorem 3.6 from [6] where the use
of the weights
n .
Joax, Zofill\aiVllnfj +Villo] <K (B.1)
j=
was justified the use of the improved weights in (1.14) is also justified. There are only two such places, namely
where it was shown that the weighted sum of norms is bounded at time zero and where it was shown that the
small parameters scale out of the estimate for the time derivative of an appropriately weighted energy.
As noted in proof of Lemma 3.5 from [6], assumption (1.10) ensures that ||Vt‘t:0||n_1 is bounded uniformly

in the small parameters and the PDE (1.1) then yields the estimates ||8fV|t:0||n_j <cexdforl <j<n.
Therefore, for 1 < j < n,

j— . n—1 ; . A n—1 . ) n—j
gl (mln (g—ﬁ,l)) ||8{V|t=0||n,j <elt (mln (5—3{,1)) (csi 7 §c<mm (Z—ﬁ,l)) <e,

which shows that the weighted sum of norms in (1.14) is also bounded at time zero uniformly in the small
parameters.
The energy estimate both in [6] and here makes use of the norms

len = | 3 / (D f)T Ao(ex V) Do f du, (B.2)

0<]al<t

where V is a solution to (1.1) and D* = 93! ---dg¢. As shown in [6], in order to prove a weighted energy
estimate like (B.1) or (1.14) it suffices to obtain a uniform bound for

E =V a0 + IVl 4 + D wi IO VI 4y (B.3)
j=1

where the weights w; are €/, for the estimate (B.1) or

. n—1
w; = el (min(EA 1)) L 1<j<n (B.4)

em’

for the estimate (1.14). Moreover, in the estimates ([6], (3.12), (3.24)) for & E, the only facts used about the
weights w; to prove a uniform bound for E are that for some finite ¢ that may be different in each appearance

em < cwy, (B.5a)

emWj < cWjyr for1<j<n-—1, (B.5b)
J J

wy < ¢ H wy, whenever ij =k, (B.5¢)
=1 j=1
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J J
eqwy < ¢ H Wy, whenever Z ki =k+1. (B.5d)

Jj=1 J=1

Since (B.5d) can be obtained by substituting (B.5c¢) with & replaced by k + 1 into (B.5b) with j set equal to
k, it suffices to prove (B.ba)—(B.5¢). The definitions (B.4) imply that (B.5b) holds provided that ¢ there is at

n—1
least one, while both (B.5a) and (B.5c) reduce to the condition ey < ¢ (min (%ﬁ’ 1)) that is equivalent to
(1.13).

r

Combining estimate (1.14) with the standard Sobolev interpolation inequality ||f||, < Ci s : f ||(1)7£ for

0<r<s(eg. [28], (2.32)), yields the following result.

f

Corollary B.2. When the basic conditions of Theorem 1.1 hold and p <1 then

Vel < ep™ = cey?” j=0,...,n—1. (B.6)

APPENDIX C. CONVERGENCE AND LIMIT

The convergence part of Theorem 1.1 follows from Theorem 4.6 of [6] when py, = 0, and from simple
modifications of convergence results for two-scale singular limits when p;,, > 0. Since we need explicit formulas
for the limit equations and will use some of the formulas derived below in Section 3 we indicate a direct unified
proof.

Proof of the convergence part of Theorem 1.1. The uniform bounds on V and V; provide compactness, which
together with the uniqueness of solutions to the limit equations ensures the convergence of V, in C°([0, T]; H"~%)
for any o > 0 and weak-* in L>°([0,T]; H"), to a limit V as €,, ey tend to zero with their ratio converging to
a given limit pu;m, with V; converging weak-+ in L°°([0,T], H" 1) to V.

Multiplying (1.1) by €, or applying £,P° to it, and taking the limit yields

(La + mimLa)V =0=PL, V. (C.1)

Identities (C.1) and Lemma 2.1 imply that V is independent of z, the horizontal parts of its velocity and
magnetic field are divergence free, and (1.15e) holds. If the spatial domain is R* then V must therefore vanish,
so from now on that domain is T?.

By (2.4) and (2.11), P (iz:A n ﬁ,cM) = (@, Vy-up, 03,03). Taking the limit of the equations with no
large terms in P applied to (1.4) yields (1.15b), (1.15¢), (1.15d).

To determine the limit equation for the density, divide (1.4a) by a(eyr), which puts it in conservation form,
and apply a, to obtain

5t(az 7”) + az[Vh'(ruh)] —+ i az(Vh~uh) =0. (CQ)

To eliminate the large term in (C.2), write the third component of (1.4c) in conservation form as dpbs+V-(bsu) —
V-(usb) + ex*Vh-u, = 0, apply pa, and subtract the result from (C.2), which yields

Bulay (r — ubs)] + ap {Va-[(r — pbs)un]} + 1 0y [Vi-(uzby)] = 0. (C.3)

Taking the limit of (C.3), using facts that V is independent of z and that @, and by, are divergence free, and
substituting (1.15e) into the result yields (1.15a). O
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APPENDIX D. PERTURBATION THEOREM

The following perturbation theorem is a variant of Lemma 3.2 from [4], and can be proven by similar methods.

Theorem D.1. Suppose that u and U are solutions in C°([0,T]; H*) of

d
Ao (u)us + Z Ai(u)ug, = F 4+ L'v + Ag(u)0: 2y + &u, Lu=0, (D.1)
=1
d
A(U)Ur + > Ai(U)Ua, = F + L'V + Ay(U)0:Z0 + &u, LU =0, (D.2)
=1

having the same initial value ug € H*, where k > L%J + 2, the matrices A; are smooth and symmetric and
Ag is positive-definite, F' is a given function of t and x, L is a first-order differential operator with constant
coefficients, with L* denoting its L?>-adjoint, and E,, Zu, &, and &y satisfy

1Zullb—r + 120 k—r + €ullk—r—1 + €0 llk—r—1 < cd  for some 0 <7 <k —1,
L=, =0=LEy, and 10:Eu|k—r—1 < e

Then maxo<i<7 ||t — Ullg—r—1 < c0.

APPENDIX E. CALCULUS INEQUALITIES FOR VERTICAL AVERAGES

The following result is sharper than what would be obtained by the standard product estimate (e.g. [28],
Prop. 2.1A), because the entire product is estimated using the W*''! norm rather than pulling out one factor in
the L° norm, and the Gagliardo-Nirenberg inequalities are used in dimension two rather than three.

Lemma E.1. For all j > 1 there exists a constant C; such that for f,g € H’(T?)
laz(f) | i-1r2y < Cj (I1flms sy gl z2cesy + [Lf |2 crey gl (s - (E.1)

Proof. We first prove (E.1) for j = 1: By the Gagliardo-Nirenberg inequality ||h||z2(r2) < c||h|lw1.1(r2) and the
Cauchy-Schwartz inequality,

laz(fo)ll2r2y < el aa(f9)lwracrey < e(lfllarcrsylglle sy + 1 Fle2crsy gl e (rsy) -

Now let j be any integer greater than one. By the definition of the H7~! norm, the result for the case j = 1,
the Sobolev interpolation inequality, and Young’s inequality for products a®b'~® < a+bfor 0 <o < 1,

la.(F)llas-rmy < e Y llau(Dg,(F9))llLacr) (E.2)
l]<j—1
<c Y Na(DL, D o)l
[Bl+IvI<i—1

<c Z (||f||H|ﬂ|+1(1r3)||9||H\w\(1r3) + ||f||H\ﬁ\(T3)HgHHHHl(T?’))
[B]+[v]<j—1

<c Y (I lallgllze + gl
0<i<j—1
< c(Ifllmsllgllce + gl -2 Ll + [ f -2 gl + Nglles |1 f122)
A second application of the Sobolev interpolation inequality followed by Young’s inequality shows that each of

the terms in the final line of (E.2) in which the H?~! and H' norms appear is bounded by the sum of the two
terms there in which the H7 and L? norms appear, which yields (E.1) for j > 1. O

[l ]+ 1 f e

gllar + gl 11 fllz=1)
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Corollary E.2. Consider integer n > 3 and a geometric sequence {&;} with common ratio % >1lande, <c.
Suppose v(x,y,z),w(x,y,z) € H*(T3) satisfy the “interpolative estimates”

||(U7w)||Hj(']I‘3) <cegj, j=0,...,n—1, ||(vaw)HHn(T3) <ec
Then
la o)l <o, | au(ou)llmsqs.) < ccou. (£3)

Proof. By Lemma E.1, || a,(vw)|;—1 < e(||lv]l;||w||0 + ||vlollv]l;) < cejeo. Since e, < ¢ and e,-1 < pe, < cp,
this implies (E.3). O

In view of the uniform H"™ estimate (1.14), the static estimates (3.4), (3.6), and the relations (1.13), (1.11)
between the parameters, Corollary E.2 yields the following estimates for products of components of various
modes.

Corollary E.3. Assume that the basic conditions of Theorem 1.1 hold. Let v¥', w¥ be either (1 —a,)bt or any
component of VI except bf" and let v, w! be any component of V1. Then,

sup_ {110, (070"t + #0007t + 420 80 07 et 41 V(00 el o} < e,
0<t<

and the estimates also hold when 1 or p? on the left side is replaced by ey.

The estimate of ey|vT||,,_1 does not use Lemma E.1 but is included for convenience.
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