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CONVERGENCE RATE ESTIMATES FOR THE LOW MACH AND ALFVÉN
NUMBER THREE-SCALE SINGULAR LIMIT OF COMPRESSIBLE IDEAL

MAGNETOHYDRODYNAMICS

Bin Cheng1, Qiangchang Ju2 and Steve Schochet3,*

Abstract. Convergence rate estimates are obtained for singular limits of the compressible ideal mag-
netohydrodynamics equations, in which the Mach and Alfvén numbers tend to zero at different rates.
The proofs use a detailed analysis of exact and approximate fast, intermediate, and slow modes together
with improved estimates for the solutions and their time derivatives, and the time-integration method.
When the small parameters are related by a power law the convergence rates are positive powers of the
Mach number, with the power varying depending on the component and the norm. Exceptionally, the
convergence rate for two components involve the ratio of the two parameters, and that rate is proven
to be sharp via corrector terms. Moreover, the convergence rates for the case of a power-law relation
between the small parameters tend to the two-scale convergence rate as the power tends to one. These
results demonstrate that the issue of convergence rates for three-scale singular limits, which was not
addressed in the authors’ previous paper, is much more complicated than for the classical two-scale
singular limits.
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1. Introduction

A uniform existence theorem and a convergence theorem as the small parameters tend to zero were recently
developed [6] for singular limits of symmetric hyperbolic systems of the form

𝐴0(𝜀MV) V𝑡 +
𝑑∑︁

𝑖=1

𝐴𝑖(V) V𝑥𝑖
=

1
𝜀A

ℒAV +
1
𝜀M

ℒMV, (1.1)

where 𝜀A and 𝜀M are small positive parameters and ℒA and ℒM are skew-adjoint constant-coefficient first-order
differential operators. If 𝜀A

𝜀M
tends to zero as the parameters tend to zero then systems of the form (1.1) have

three time scales: 𝑂( 1
𝜀A

), 𝑂( 1
𝜀M

), and 𝑂(1).
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In this paper we begin the study of the rate of convergence of solutions of three-scale singular limits to
corresponding solutions of their limit equations, an issue that was not considered in [6], but which is significant
for applications because it determines the accuracy of using the limiting dynamics to approximate the original
system. The convergence rate in the general case will undoubtedly be very complicated, since in general many
different limit systems are obtained for different power-law relations between the two small parameters as they
both tend to zero ([6], Sect. 4). As a first step, we study here the particular case of the low Mach and Alfvén
number limit of the compressible ideal magnetohydrodynamics (MHD) equations in the presence of a large
uniform magnetic field, which was the motivating example for our work. As we will show, that system has
essentially only one limit system, although the limit

𝜇lim := lim
𝜀A,𝜀M→0

𝜇 (1.2)

of the ratio
𝜇 := 𝜀A

𝜀M
(1.3)

appears in that limit system as a parameter. Even for the MHD system the study of the convergence rate is
much more intricate than for two-scale singular limits because, as described below, the bounds on the first time
derivative satisfied by solutions to three-scale systems are weaker than those satisfied for two-scale systems,
and the eigenspace projections of the large operator 1

𝜀A
ℒA + 1

𝜀M
ℒM depend on the ratio of the small parameters

instead of being fixed as in the two-scale case.
The asymptotic analysis of singular limits is of fundamental importance in the theory of fluid dynamics,

since some continuum fluid models are limits of the Boltzmann equation, which in turn is the limit of particle
dynamics [16], and many continuum models are limits of other such models as one or more dimensionless
parameters, such as the Mach number, Froude number, Rossby number, and Alfvèn number, tend to zero.
The modern theory of two-scale singular limits of continuum fluid models and PDEs in general, in which all
small parameters tend to zero at the same rate, was initiated in [24,25], where smooth solutions of initial-value
problems for the compressible isentropic Euler or Navier-Stokes equations were shown to converge to solutions
of the corresponding incompressible equations, and a rate of convergence was demonstrated. Restrictions on
the initial data in that pioneering work were later eliminated [2,18,31,33]. Analogous results have subsequently
been shown for a variety of initial and boundary conditions and for a wide variety of two-scale singular limits
arising in fluid dynamics and related equations [1,5,8,11,12,15,19,26,32], including various forms of the MHD
equations [17,20–22]. Some of these papers include a convergence rate of the type that will be discussed below.
Like the results presented in this paper, the results discussed so far concern smooth solutions, but there is a
parallel theory of singular limits of weak solutions [7, 10,13,27].

The MHD system in three spatial dimensions that we study in this paper, derived in Appendix A from a
standard formulation of that system, is

𝑎(𝜀M𝑟)
(︀
𝜕𝑡𝑟 + (u·∇)𝑟) + 𝑎(𝜀M𝑟)𝜌(𝜀M𝑟)

𝜀M
∇·u = 0 (1.4a)

𝜌(𝜀M𝑟)
(︀
𝜕𝑡u + (u·∇)u

)︀
+ 𝑎(𝜀M𝑟)𝜌(𝜀M𝑟)

𝜀M
∇𝑟 +∇ |b|2

2 − (b·∇)b = 𝜕𝑧b−∇𝑏3
𝜀A

, (1.4b)

𝜕𝑡b + (u·∇)b + (∇·u)b− (b·∇)u = 𝜕𝑧u−e𝑧 ∇·u
𝜀A

, (1.4c)

∇·b = 0, (1.4d)

where

𝑎(𝑠) :=
𝑝′(1 + 𝑠)

1 + 𝑠
, 𝜌(𝑠) := 1 + 𝑠. (1.5)

The divergence-free condition (1.4d) on the magnetic field is preserved by the dynamics of (1.4c), and so is
just a restriction on the initial data. Hence straightforward calculations show that the system (1.4) has the form
(1.1), with V = (𝑟,u,b).
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Our main result is a rate of convergence of solutions of the MHD system (1.4) as the small parameters 𝜀A and
𝜀M tend to zero. As a preliminary, we prove a uniform existence and a convergence result, including determining
the limit system. Before stating these results we discuss notations, operators, initial data, and parameters that
will be used in the statement of the theorem. First, we let ‖ ‖𝑘 denote the 𝐻𝑘 norm. Next, for any vector w let its
“horizontal” part wh denote its 𝑥, 𝑦 components ( 𝑤1

𝑤2 ), and let 𝒫div
h denote the two-dimensional Leray-Helmholtz

projection onto divergence-free velocity fields in the 𝑥, 𝑦 plane or 2-torus, i.e.

𝒫div
h wh := wh −∇h∆−1

h ∇h·wh, where ∇h :=
(︁

𝜕𝑥

𝜕𝑦

)︁
, ∆h := 𝜕2

𝑥 + 𝜕2
𝑦 . (1.6)

The large terms in (1.4) form the “Alfvén” and “Mach” operators

ℒAV :=

⎛⎝ 0(︁
−∇h𝑏3+𝜕𝑧bh

0

)︁

(︁
𝜕𝑧uh
−∇h·uh

)︁

⎞⎠ , ℒMV :=

(︃
−∇·u(︁−∇h𝑟
−𝜕𝑧𝑟

)︁

03

)︃
, (1.7)

where for notational convenience we have normalized the pressure law 𝑝(𝜌) to satisfy satisfy

𝑝′(1) = 1 (1.8)

by rescaling 𝜀M. Also, the full average av𝑓 and the vertical average az𝑓 of any function 𝑓 defined on the 3-torus T3

are

av𝑓 :=
∫︀∫︀∫︀

𝑓 d𝑥 d𝑦 d𝑧∫︀∫︀∫︀
1 d𝑥 d𝑦 d𝑧

, (az 𝑓)(𝑥, 𝑦) :=
∫︀

𝑓(𝑥, 𝑦, 𝑧) d𝑧∫︀
1 d𝑧

· (1.9)

Although the uniform existence and convergence results require that the initial data satisfy the “well-
preparedness” condition

‖(𝜀−1
A ℒA + 𝜀−1

M ℒM)V0‖𝑛−1 ≤ 𝑐, (1.10)

they do not require any assumption about the rate at which the initial data converge to their limit. However,
such an assumption is obviously required in order to obtain a rate of convergence of solutions of the PDE. In
the convergence rate result we assume that the initial data has the form developed in Section 2, which is a
specialization of the general form of initial data satisfying (1.10). Specifically, after expanding the initial data
in powers of the small parameters and their ratio, the leading-order terms are assumed to be independent of
the small parameters in order to avoid degrading the convergence rate. However, valid estimates for any initial
data satisfying (1.10) below can be obtained simply by adding the size of the difference of the initial data when
that difference is larger than the estimates obtained below.

When the parameter 𝜇 in (1.3) is fixed then (1.1) and (1.4) essentially contain only one small parameter and
hence have only two time scales. Uniform existence and convergence results for initial-value problems of general
systems containing one small parameter were obtained in [24]. Moreover, their results remain valid with only
cosmetic changes to the proofs whenever 𝜇lim > 0. Convergence rate theorems for both specific and general
two-scale systems have been proven in [3, 4, 25, 30, 31]. We therefore focus on the more challenging case when
𝜇 → 0, although our results will be phrased so as to remain valid when 𝜇lim > 0. It will be convenient to express
our convergence results using just powers of 𝜀M, by defining a parameter 𝜈 determined by

𝜀A = 𝜀1+𝜈
M , or, equivalently, 𝜇 = 𝜀𝜈

M, i.e. 𝜈 :=
ln( 1

𝜀A
)

ln( 1
𝜀M

)
− 1 =

ln( 1
𝜇 )

ln( 1
𝜀M

)
, (1.11)

where in view of the results for two-scale singular limits we will assume for notational simplicity that

𝜀A < 𝜀M, i.e. 𝜇 < 1 and 𝜈 > 0. (1.12)

To simplify the exposition we will assume that the spatial domain is periodic. The uniform existence result
remains valid with the same proof when the spatial domain is R3, while the the limit system is then identically
zero because it is independent of the vertical coordinate. Throughout this paper 𝑐 and 𝐶 denote positive
constants that are independent of 𝜀A and 𝜀M, which may take different values in each appearance.
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Theorem 1.1. Let 𝑛 ≥ 3 be an integer. Assume that the spatial domain is T3 and that the small parameters
are restricted to the region

0 < 𝜀M ≤ 𝜀0
M and 𝜀A ≥ 𝑐 𝜀

1+ 1
𝑛−1

M . (1.13)

Assume in addition that the initial data V0 := (𝑟0,u0,b0) for system (1.4), which may depend on the small
parameters 𝜀A and 𝜀M, are uniformly bounded in 𝐻𝑛 and satisfy (1.4d) and (1.10).

Uniform existence. Under the above conditions there exist fixed positive 𝑇 and 𝐾 such that for (𝜀A, 𝜀M)
satisfying (1.13) the solution to (1.4) having the initial data V0 exists for 0 ≤ 𝑡 ≤ 𝑇 and satisfies

sup
0≤𝑡≤𝑇

⎡⎣‖V‖𝑛 + ‖V𝑡‖0 +
𝑛∑︁

𝑗=1

𝜀𝑗−1
M

(︁
min( 𝜀A

𝜀M
, 1)
)︁𝑛−1

‖𝜕𝑗
𝑡 V‖𝑛−𝑗

⎤⎦ ≤ 𝐾. (1.14)

Convergence and limit. Assume in addition that the normalization (1.8) holds and that as (𝜀A, 𝜀M) satisfying
(1.13) tend to zero, their ratio 𝜀A

𝜀M
converges to some value 𝜇lim and the initial data V0 converges in 𝐻𝑛 to

V
0
. Then the solution V = (𝑟,u = (uh, 𝑢3),b = (bh, 𝑏3)) of the MHD system (1.4) with initial data V0

converges in 𝐶0([0, 𝑇 ]; 𝐻𝑛−𝛼) for every 𝛼 > 0. Its limit is independent of 𝑧, and is the unique solution V =
(𝑟, (ūh, 𝑢̄3), (b̄h, 𝑏̄3)) of the limit system

(1 + 𝜇2
lim) [𝜕𝑡𝑟 + (ūh ·∇h)𝑟] + 𝜇lim(b̄h ·∇h)𝑢̄3 = 0, (1.15a)

𝒫div
h

(︀
𝜕𝑡ūh + (ūh ·∇h)ūh − (b̄h ·∇h)b̄h

)︀
= 0, ∇h·ūh = 0, (1.15b)

𝜕𝑡𝑢̄3 + (ūh ·∇h)𝑢̄3 + 𝜇lim(b̄h ·∇h)𝑟 = 0, (1.15c)
𝜕𝑡b̄h + (ūh ·∇h)b̄h − (b̄h ·∇h)ūh = 0, ∇h·b̄h = 0, (1.15d)
𝑏̄3 = av𝑏̄0

3 − 𝜇lim(𝑟 − av𝑟0) (1.15e)

having initial data V
0
.

Rate of convergence. In addition to the original assumptions and the additional assumptions of the conver-
gence part, assume that the initial data for the MHD system have the more specific form (2.28), (2.30), (2.34)
and that (1.12) holds. Then there is a constant 𝑐 independent of 𝜀A and 𝜀M such that for all 𝑡 ∈ [0, 𝑇 ],

‖(1− 𝒫div
h az)uh

⃦⃦
𝑗

+ ‖(1− az)bh‖𝑗 + ‖𝑏3 − av𝑏̄0
3 + 𝜇(az 𝑟 − av𝑟0)‖𝑗 ≤ 𝑐 𝜀

1−(𝑗−1)𝜈
M , 𝑗 = 0, . . . , 𝑛− 1, (1.16a)

‖𝒫div
h az uh − ūh‖𝑛−2 + ‖ az bh − b̄h‖𝑛−2 ≤ 𝑐 𝜀M, (1.16b)

‖(1− az)𝑟‖𝑗 + ‖(1− az)𝑢3‖𝑗 ≤ 𝑐 𝜀
1−(𝑗−1)𝜈
M , 𝑗 = 1, . . . , 𝑛− 1, (1.16c)

‖ az 𝑟 − 𝑟‖𝑛−2 + ‖ az 𝑢3 − 𝑢̄3‖𝑛−2 ≤ 𝑐
[︁
𝜀
1−max(𝑛−5,0)𝜈
M + |𝜇− 𝜇lim|

]︁
. (1.16d)

Moreover, there exist 𝑂(1) correctors (𝑟(cor), 𝑢
(cor)
3 ) defined in (3.83)–(3.84) such that

‖ az 𝑟 − (𝑟 + 𝜇−𝜇lim
1+𝜇2 𝑟(cor))‖𝑛−2 + ‖ az 𝑢3 − (𝑢̄3 + (𝜇− 𝜇lim)𝑢(cor)

3 )‖𝑛−2 ≤ 𝑐 𝜀
1−max(𝑛−5,0)𝜈
M . (1.16e)

The uniform existence part of Theorem 1.1 is a special case of the corresponding general result for systems
(1.1) stated in Lemma B.1 and proven in Appendix B, which is an improvement of Theorem 3.6 from [6]. The
convergence part of Theorem 1.1 will be proven in Appendix C. The convergence-rate estimates in (1.16) are
direct consequences of the estimates (3.4), (3.16), (3.42), (3.65), and (3.85) proven in Section 3.

Under the scaling (1.13) all powers of 𝜀M appearing in (1.16) are positive, so a nontrivial rate of convergence
is obtained over the full range of allowed values of 𝜈, in all the norms listed in the theorem. The corrector
estimate (1.16e) has been included because (1.11)–(1.13) imply that estimate (1.16d) is much weaker than the
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other estimates in (1.16) in the main case of interest in which 𝜇lim = 0. The improved estimate (1.16e) involving
the corrector shows that (1.16d) is in fact sharp in this case, and gives a formula for the principal error term.

For well-prepared initial data like that considered here, the convergence rate for solutions of two-scale systems
is typically first order in the single small parameter [30, 31]. That result depends crucially on the uniform
boundedness of the first time derivative of solutions being propagated for positive time, which does not generally
hold for three-scale systems (1.1) ([6], Sect. 2). We use the time-integration method developed in [3,4] to mitigate
the effect of the lack of uniform boundedness of first time derivatives. Moreover, the estimates in (1.16) are
𝑂(𝜀M) for those components and norms for which uniform boundedness of the first time derivative holds, and
tend, except for (1.16d), to the two-scale 𝑂(𝜀M) convergence rate as 𝜈 → 0, which makes (1.1) tend to a two-scale
system. Obtaining that asymptotic consistency is only possible on account of the improvement (1.14) over the
estimate 𝜀M‖V𝑡‖𝑛−1 ≤ 𝑐 in [6].

The 𝐻𝑗 estimates (1.16a) and (1.16c) for intermediate values of 𝑗 are obtained using interpolation. Those
estimates are the starting point for an improved estimate for 𝑧-averages of products derived in Appendix E,
which is used in the proof of (1.16b), and should be useful more generally.

One of the main techniques used in the proof of (1.16) is partitioning the solution into fast, intermediate,
and slow modes, and analyzing each mode separately. In contrast to the two-scale case (e.g. [4], Sect. 2), the
exact eigenspaces of the large operator 1

𝜀A
ℒA + 1

𝜀M
ℒM having eigenvalues of sizes strictly 𝑂( 1

𝜀A
), 𝑂( 1

𝜀M
), and

𝑜( 1
𝜀M

) depend on the parameter 𝜇. For simplicity, in Section 2 we define the fast, intermediate, and slow modes
to be the fixed projections onto the limits as 𝜇 → 0 of the exact eigenspaces. These projections are also used to
determine the appropriate form of the initial data used in the convergence rate part of Theorem 1.1. However,
certain estimates in Section 3 for the intermediate modes require the use of the exact 𝜇-dependent modes.

The only previous convergence rate result we know for evolutionary PDEs with two parameters tending
to zero independently appears in [14], which considered the low Rossby and magnetic Reynolds number limit
of the stochastically-forced viscous incompressible rotating MHD system. Compared to the hyperbolic system
considered here the deterministic case without forcing ([14], p. 4444) of their system has many simplifying
features, including the absence of a matrix multiplying the time derivatives, which eliminates the need for
restriction (1.13), the presence of a closed 𝐿2 energy estimate, and the presence of regularizing viscous terms
whose diffusivity rates tend to infinity as the small parameters tend to zero, which yields a highly parabolic
system that induces smoothing when the large operator is used to determine the fast components in terms of
the slow component.

2. Analysis of the large operator

Following Section 4 of [6] but without treating each Fourier mode separately, let P0 denote the 𝐿2-orthogonal
projection operator onto the nullspace of ℒA, and let P1 denote the 𝐿2-orthogonal projection operator onto the
nullspace of P0ℒMP0. Then 𝑅(𝐼 − P0) ⊆ 𝑁(P0ℒMP0) = 𝑅(P1) = 𝑁(𝐼 − P1), so 𝑅(𝐼 − P0) ⊥ 𝑅(𝐼 − P1), and
hence

(𝐼 − P0)(𝐼 − P1) = 0 = (𝐼 − P1)(𝐼 − P0). (2.1)

Expanding the factors in (2.1) shows that P0P1 = P1P0, which implies that P := P0P1 is an orthogonal
projection operator satisfying P(𝐼 − P𝑗) = 0 = (𝐼 − P𝑗)P for 𝑗 ∈ {0, 1}. Moreover, (2.1) and the definition of P
yield (𝐼 − P0) + (𝐼 − P1) + P = 𝐼 + (𝐼 − P0)(𝐼 − P1) = 𝐼, which shows that the sum of the fast, intermediate,
and slow modes defined by

V𝐹 := (𝐼 − P0)V, V𝐼 := (𝐼 − P1)V, V𝑆 := PV (2.2)

satisfies V𝐹 + V𝐼 + V𝑆 = V. These modes are the limits as 𝜇 → 0 of the direct sums of the eigenspaces of
ℒA + 𝜇ℒM whose eigenvalues are strictly 𝑂(1), 𝑂(𝜇), and 𝑜(𝜇), respectively ([23], [6], Sect. 4). Moreover, since
the P𝑗 are orthogonal projections onto the null spaces of constant-coefficient differential operators they commute
with derivatives, and hence are also orthogonal in any 𝐻𝑘. Therefore estimates for the full solution obtained by
combining estimates for each mode are as sharp as the component estimates, modulo constant factors.
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The above results do not depend on the particular form of the operators ℒA and ℒM. We now calculate
the projections and modes for the MHD system (1.4). For brevity, we restrict consideration to V = (𝑟,u,b)
satisfying ∇·b = 0, which causes no difficulties since we only consider initial data and solutions satisfying that
constraint. Recall that 𝒫div

h , az, and av were defined in (1.6) and (1.9).

Lemma 2.1. Assume that the spatial domain is T3 and that V = (𝑟,u,b) where b satisfies ∇·b = 0. Then

(1) ℒAV = 0 iff 𝜕𝑧uh = 0 = 𝜕𝑧bh, ∇h·uh = 0, and 𝑏3 = av𝑏3.
(2)

(︁
1

𝜀A
ℒA + 1

𝜀M
ℒM

)︁
V = 0 iff

𝜕𝑧V = 0, ∇h·uh = 0, 𝑏3 = av𝑏3 − 𝜀A
𝜀M

(𝑟 − av𝑟) . (2.3)

(3) The formulas for the projections are

P0 =

⎛⎜⎝1 (︁
𝒫div

h az 𝐼2×2
1

)︁ (︀
az 𝐼2×2

av

)︀
⎞⎟⎠ , P1 =

⎛⎝az (︀
𝐼2×2

az

)︀
𝐼3×3

⎞⎠ ,

P =

⎛⎜⎝az (︁
𝒫div

h az 𝐼2×2
az

)︁ (︀
az 𝐼2×2

av

)︀
⎞⎟⎠ ,

(2.4)

where all missing entries vanish.
(4) All eigenvalues of ℒA + 𝜇ℒM that are 𝑜(𝜇) are identically zero.
(5) Using the notations Vℓ = (𝑟ℓ,uℓ,bℓ) for ℓ ∈ {𝐹, 𝐼, 𝑆} and wℓ = (wℓ

h, 𝑤
ℓ
3) for 𝑤 ∈ {u,b}, the formulas for

the fast, intermediate and slow modes are

(𝑟𝐹 ,u𝐹 ,b𝐹 ) =
(︂

0,

(︂(︀
1− az 𝒫div

h

)︀
uh

0

)︂
,

(︂
(1− az)bh

(1− av)𝑏3

)︂)︂
,

(︀
𝑟𝐼 ,u𝐼 ,b𝐼

)︀
=
(︂

(1− az)𝑟,
(︂

02

(1− az)𝑢3

)︂
, 03

)︂
,

(︀
𝑟𝑆 ,u𝑆 ,b𝑆

)︀
=
(︂

az 𝑟,

(︂
𝒫div

h az uh

az 𝑢3

)︂
,

(︂
az bh

av𝑏3

)︂)︂
.

(2.5)

In particular,
∇·b𝐹 = 0, ∇·b𝐼 = 0, ∇·b𝑆 = 0, (2.6)

V𝑆 is independent of 𝑧, (2.7)

and
∇h·u𝑆

h = 0 = ∇h·b𝑆
h . (2.8)

(6) For any nonnegative integer 𝑗, there are constants 𝑐1 and 𝑐2 such that

𝑐1‖(ℒA + 𝜇ℒM)V‖𝑗 ≤ ‖𝜕𝑧u𝐹
h ‖𝑗 + ‖∇h·u𝐹

h ‖𝑗 + ‖𝜕𝑧(b𝐹
h − 𝜇∆−1∇h𝜕𝑧𝑟

𝐼)‖𝑗

+ ‖𝑏𝐹
3 + 𝜇∆−1∆ℎ𝑟‖𝑗+1 + 𝜇[‖𝜕𝑧𝑟

𝐼‖𝑗 + ‖𝜕𝑧𝑢
𝐼
3‖𝑗 ]

≤ 𝑐2‖(ℒA + 𝜇ℒM)V‖𝑗 .

(2.9)

Proof. Applying ℒA to V yields
(︀
0,
(︀

𝜕𝑧bh−∇h𝑏3
0

)︀
,
(︀

𝜕𝑧uh
−∇h·uh

)︀)︀
. Hence the last part of ℒAV vanishes iff 𝜕𝑧uh = 0

and ∇h·uh = 0. Taking the horizontal divergence of the second component of ℒA and using the fact that ∇·b = 0
yields

∇h·(𝜕𝑧bh −∇h𝑏3) = −∆𝑏3. (2.10)
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Hence if ℒAV = 0 then 𝑏3 is a constant, i.e. 𝑏3 = av𝑏3, which implies further that 𝜕𝑧bh = ∇h𝑏3 = 0. On the
other hand, when those conditions hold then each term in the second part of ℒAV vanishes.

Similarly, (︂
1
𝜀A

ℒA +
1
𝜀M

ℒM

)︂
V =

⎛⎜⎜⎝
− 1

𝜀M
∇·u

⎛

⎝
1

𝜀A

(︁
−∇h𝑏3+𝜕𝑧bh−

𝜀A
𝜀M
∇h𝑟

)︁

− 1
𝜀M

𝜕𝑧𝑟

⎞

⎠

1
𝜀A

(︁
𝜕𝑧uh
−∇h·uh

)︁

⎞⎟⎟⎠ . (2.11)

The last component of the second part vanishes iff

𝜕𝑧𝑟 = 0, (2.12)

and since 𝜕𝑧𝑢3 = ∇·u−∇h·uh, the first and last parts vanish iff ∇h·uh = 0 and 𝜕𝑧u = 0. Next, use (2.10) and
(2.12) to write the horizontal divergence of the second part as

∇h·
(︂
−∇h𝑏3 + 𝜕𝑧bh −

𝜀A

𝜀M

∇h𝑟

)︂
= −(∆𝑏3 + 𝜀A

𝜀M
∆h𝑟) = ∆

(︁
𝑏3 + 𝜀A

𝜀M
𝑟
)︁

, (2.13)

which vanishes iff the last equation of (2.3) holds. That equation together with (2.12) implies that 𝜕𝑧𝑏3 = 0.
Finally, the last equation of (2.3) also shows that the horizontal components of the second part of (2.11) vanish
iff 𝜕𝑧bh = 0.

The formula for P0 follows from the conditions for ℒAV to vanish in the first part of the lemma, and that
formula together with the formula for ℒM in (1.7) implies that

P0ℒMP0V = −
(︀
𝜕𝑧𝑢3,

(︀
0

𝜕𝑧𝑟

)︀
, 0
)︀
. (2.14)

Formula (2.14) implies the formula for P1, and the formulas for the P𝑗 yield P.
The conditions (2.3) for (ℒA + 𝜇ℒM)V to vanish differ from the conditions to belong to the null space of P

only by adding an 𝑂(𝜇) term to the formula for 𝑏3. Hence the rank of the restriction to any Fourier mode of
𝑁(ℒA + 𝜇ℒM) equals the rank of the restriction to that mode of P, which in turn equals the dimension of the
direct sum of all eigenspaces of ℒA + 𝜇ℒM in that Fourier mode having eigenvalues of size 𝑜(𝜇) ([23], Sect. 4 of
[6]). Hence all such eigenvalues vanish identically.

The formulas (2.5) for the modes follow from their definition (2.2) and formula (2.4) for the projections.
Formula (2.5) for b𝑆 plus the fact that az b is independent of 𝑧 imply that ∇·b𝑆 = 0, and trivially ∇·b𝐼 = 0,
which implies the rest of (2.6). Each component of V𝑆 contains az or av, so (2.7) holds. The left equation in
(2.8) follows from the presence of the operator 𝒫div

h in the formula for u𝑆
h , while the right equation there follows

from (2.6)–(2.7).
The formula for u𝐹

h in (2.5) and the formula (2.11) for (ℒA + 𝜇ℒM)V yield

‖𝜕𝑧u𝐹
h ‖𝑗 = ‖𝜕𝑧uh‖𝑗 ≤ 𝑐‖(ℒA + 𝜇ℒM)V‖𝑗 , (2.15)

‖∇h·u𝐹
h ‖𝑗 = ‖∇h·uh‖𝑗 ≤ 𝑐‖(ℒA + 𝜇ℒM)V‖𝑗 . (2.16)

By the ellipticity of ∆, formula (2.5) for 𝑏𝐹
3 , the first identity in (2.13) and (2.11),

‖𝑏𝐹
3 + 𝜇∆−1∆ℎ𝑟‖𝑗+1 = ‖∆−1[∆(1− av)𝑏3 + 𝜇∆ℎ𝑟‖𝑗+1 ≤ 𝑐‖∆𝑏3 + 𝜇∆ℎ𝑟‖𝑗−1

= 𝑐‖∇h·(∇h𝑏3 + 𝜇∇h𝑟 − 𝜕𝑧bh)‖𝑗−1 ≤ 𝑐‖(ℒA + 𝜇ℒM)V‖𝑗 .
(2.17)

Also, combining formula (2.5) for b𝐹
h , formula (2.11) for ℒA + 𝜇ℒM, and (2.17) yields

‖𝜕𝑧(b𝐹
h − 𝜇∆−1∇h𝜕𝑧𝑟

𝐼)‖𝑗 = ‖𝜕𝑧(bh − 𝜇∆−1∇h𝜕𝑧𝑟)‖𝑗

= ‖𝜕𝑧bh − 𝜇∇h∆−1(∆𝑟 −∆ℎ𝑟)‖𝑗

= ‖(𝜕𝑧bh − 𝜇∇h𝑟 −∇h𝑏3) +∇h(𝑏3 + 𝜇∆−1∆ℎ𝑟)‖𝑗

≤ ‖(ℒA + 𝜇ℒM)V‖𝑗 + ‖𝑏𝐹
3 + 𝜇∆−1∆ℎ𝑟‖𝑗+1 ≤ 𝑐‖(ℒA + 𝜇ℒM)V‖𝑗 .

(2.18)
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By the formula (2.5) defining the modes and formula (2.11) for ℒA + 𝜇ℒM,

𝜇‖𝜕𝑧𝑟
𝐼‖𝑗 = 𝜇‖𝜕𝑧𝑟‖𝑗 ≤ 𝑐‖(ℒA + 𝜇ℒM)V‖𝑗 , (2.19)

𝜇‖𝜕𝑧𝑢
𝐼
3‖𝑗 = 𝜇‖𝜕𝑧𝑢3‖𝑗 = 𝜇‖∇·u−∇h·uh‖𝑗 ≤ 𝑐‖(ℒA + 𝜇ℒM)V‖𝑗 . (2.20)

Combining (2.15)–(2.20) yields the right inequality in (2.9), and the expressions estimated there yield all the
terms in (ℒA + 𝜇ℒM)V so the left inequality also holds. �

Solving the PDE for (ℒA + 𝜇ℒM)V and using the bounds (1.14) to estimate the result yields a bound for
the 𝐻𝑛−1 norm of that expression, which by (2.9) implies “static” estimates for the fast and intermediate
modes, which will be written explicitly in Section 3. However, we also need to obtain “dynamic” estimates for
the intermediate and slow modes via differential inequalities. To do so we cannot use the limit modes defined
above. The exact slow eigenspace of the zero eigenvalue of ℒA +𝜇ℒM was determined in Lemma 2.1. In the next
lemma we obtain formulas for 7-vectors of Fourier multiplier operators V𝛼 and V𝛽 and the self-adjoint Fourier
multiplier operator 𝒬, such that

(ℒA + 𝜇ℒM)V𝛼 · ̃︀V + 𝜇𝒬𝜕𝑧V𝛽 · ̃︀V = 0 = (ℒA + 𝜇ℒM)V𝛽 · ̃︀V + 𝜇𝒬𝜕𝑧V𝛼 · ̃︀V (2.21)

for every vector-valued function ̃︀V. Equations (2.21) imply that for every Fourier mode (𝑘, 𝑙,𝑚) the linear
combinations (V𝛼 ± V𝛽)𝑒𝑖(𝑘𝑥+𝑙𝑦+𝑚𝑧) are eigenfunctions of the operator ℒA + 𝜇ℒM with purely imaginary or
zero eigenvalues ∓𝑖𝑚𝜇 ̂︀𝒬 where ̂︀𝒬 := 𝑒−𝑖(𝑘𝑥+𝑙𝑦+𝑚𝑧)

[︁
𝒬𝑒𝑖(𝑘𝑥+𝑙𝑦+𝑚𝑧)

]︁
, (2.22)

i.e. they yield the exact 𝜇-dependent intermediate eigenspaces. However, in Section 3 we will obtain dynamic
estimates for (1−az)V𝛼 ·V and (1−az)V𝛽 ·V rather than (V𝛼±V𝛽) ·V, to reduce disruption to the structure
of the rest of the PDE. The operator 1− az is applied because the eigenvalues ±𝑖𝑚𝜇𝒬 are only of size 𝜇 when
𝑚 ̸= 0. Moreover, since ∇·b = 0 we will replace V𝛼 by the variant Vno-div

𝛼 defined in (2.23) that omits the
gradient term in the magnetic field component.

Since the limits as 𝜇 → 0 of V𝛼 and V𝛽 should belong to the intermediate mode defined in (2.5), trying
various perturbations leads to the ansatz

V𝛼 := Vdiv
𝛼 + Vno-div

𝛼 =

⎛⎜⎝ 0
03

𝜇𝒜∆−1𝜕𝑧∇

⎞⎟⎠+

⎛⎜⎝ 1
03

−𝜇
(︁

0
0
1

)︁
+ 𝜇3

(︁
0
0
ℬ

)︁
⎞⎟⎠ ,

V𝛽 :=

⎛⎜⎝ 0(︁
𝜇2𝒞Δ−1𝜕𝑧∇ℎ

𝒟

)︁
03

⎞⎟⎠ ,

(2.23)

where the vectors have been normalized by setting the first component of V𝛼 to the identity operator 1, and
factors of ∆−1 have been included so that if (𝒜,ℬ, 𝒞,𝒟) are all homogeneous order zero Fourier multipliers then
all components of V𝛼 and V𝛽 will also be Fourier multipliers of order zero. Furthermore, in the limit as 𝜇 → 0
the operator −𝜕𝑧𝒬 should tend to the operator −𝜕𝑧 appearing in P0ℒMP0 in (2.14), i.e. 𝒬 should tend to one.

Lemma 2.2. The vectors V𝛼 and V𝛽 defined in (2.23) satisfy (2.21) with

𝒬 =

√︂
2
(︁

1 + 𝜇2 +
√︀

(1 + 𝜇2)2 − 4𝜇2𝜕2
𝑧∆−1

)︁−1

, i.e. ̂︀𝒬 =
√

2√︂
1+𝜇2+

√︁
(1+𝜇2)2−4𝜇2 𝑚2

𝑘2+𝑙2+𝑚2

, (2.24)

provided that

𝒞 = −𝒬
(︀
1− 𝜇2𝜕2

𝑧∆−1𝒬2
)︀−1

, 𝒜 = −𝒞𝒬−1, ℬ = 𝜕2
𝑧∆−1𝒞𝒬, 𝒟 = 𝒬−1. (2.25)
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Proof. Substituting (2.23) into (2.21) yields⎛⎜⎝ 0(︁
−𝜇3(ℬ−𝒞𝒬𝜕2

𝑧Δ−1)∇h

−𝜇𝜕𝑧(1−𝒟𝒬)

)︁
03

⎞⎟⎠ = 0 =

⎛⎜⎜⎝
−𝜇𝜕𝑧(𝒟 −𝒬+ 𝜇2𝒞∆ℎ∆−1)

03

𝜇2𝜕2
𝑧∆−1(𝒞 +𝒜𝒬)∇−

(︂
0
0

𝜇2𝜕𝑧(𝒞+𝒬−𝜇2ℬ𝒬)

)︂
⎞⎟⎟⎠ , (2.26)

which will hold provided that

𝒞 +𝒜𝒬 = 0, 𝒟𝒬 = 1, ℬ = 𝒞𝒬𝜕2
𝑧∆−1, 𝒞 +𝒬 = 𝜇2ℬ𝒬, 𝒟 −𝒬+ 𝜇2∆ℎ∆−1𝒞 = 0. (2.27)

Solving the first three equations in (2.27) for 𝒜, 𝒟, and ℬ yields the formulas for those operators claimed
in (2.25). Substituting those formulas into the fourth equation in (2.27) and solving the result for 𝒞 yields
the formula for that operator in (2.25). Substituting the formulas obtained so far into the last equation in
(2.27) yields 𝒬−1 − 𝒬 − 𝜇2∆ℎ∆−1𝒬(1 − 𝜇2𝜕2

𝑧∆−1𝒬2)−1 = 0, whose only solution tending to one as 𝜇 → 0
is (2.24). �

We now turn to explicating the form that initial data satisfying (1.10) takes.

Lemma 2.3. Initial data V0 = (𝑟0,u0,b0) will be uniformly bounded in 𝐻𝑛 and satisfy the constraint ∇·b0 = 0
and the condition (1.10) iff it has the form

𝑟0 = 𝑟0,𝑆 + 𝜀M𝑟0,𝐼 , u0
h = u0,𝑆

h + 𝜀Au0,𝐹
h , 𝑢0

3 = 𝑢0,𝑆
3 + 𝜀M𝑢0,𝐼

3 ,

b0
h = b0,𝑆

h + 𝜀Ab0,𝐹
h , 𝑏0

3 = av𝑏0
3 − 𝜇(1− av)𝑟0,𝑆 + 𝜀A𝑏0,𝐹

3 ,
(2.28)

where every term 𝑤0,ℓ with 𝑤 ∈ {𝑟, uh, 𝑢3, bh, 𝑏3} and ℓ ∈ {𝐹, 𝐼, 𝑆} has the form specified for the 𝑤 component
of the ℓ mode in (2.5), and may depend on (𝜀A, 𝜀M) but satisfies

‖𝑟0,𝑆‖𝑛 +
[︀
‖𝜕𝑧𝑟

0,𝐼‖𝑛−1 + 𝜀M‖𝑟0,𝐼‖𝑛

]︀
+ ‖u0,𝑆

h ‖𝑛 +
[︁
‖𝜕𝑧u0,𝐹

h ‖𝑛−1 + ‖∇h·u0,𝐹
h ‖𝑛 + 𝜀A‖u0,𝐹

h ‖𝑛

]︁
+ ‖𝑢0,𝑆

3 ‖𝑛 +
[︁
‖𝜕𝑧𝑢

0,𝐼
3 ‖𝑛−1 + 𝜀M‖𝑢0,𝐼

3 ‖𝑛

]︁
+ ‖b0,𝑆

h ‖𝑛 +
[︁
‖𝜕𝑧b0,𝐹

h ‖𝑛−1 + 𝜀A‖b0,𝐹
h ‖𝑛

]︁
+ | av𝑏0

3|+ ‖𝑏0,𝐹
3 + ∆−1∆ℎ𝑟0,𝐼‖𝑛 ≤ 𝑐

(2.29)
uniformly in those parameters, and

∇h·b0,𝑆
h = 0 = ∇h·b0,𝐹

h + 𝜕𝑧𝑏
0,𝐹
3 . (2.30)

Proof. Since the terms in (2.28) are allowed to depend on 𝜀A and 𝜀M, that formula simply expresses the separation
of the initial data into fast, intermediate, and slow modes, with the factors of 𝜀A and 𝜀M and the inclusion of the
specific term −𝜇(1− av)𝑟0,𝑆 being purely for later convenience. By Lemma 2.1, the condition ∇·b = 0 implies
that each mode is divergence-free, and the conditions ∇·bℓ = 0 for ℓ ∈ {𝐹, 𝐼, 𝑆} clearly imply that ∇·b = 0, so
for initial data of the form (2.28) the conditions (2.30) are equivalent to the assumed condition that ∇·b0 = 0.

Since, as shown above, the square of the 𝐻𝑛 norm of V0 equals the sum of the squares of the 𝐻𝑛 norms of
its modes, the assumed uniform boundedness of ‖V0‖𝑛 is equivalent to

‖𝑟0,𝑆‖𝑛 + 𝜀M‖𝑟0,𝐼‖𝑛 + ‖u0,𝑆
h ‖𝑛 + 𝜀A‖u0,𝐹

h ‖𝑛 + ‖𝑢0,𝑆
3 ‖𝑛 + 𝜀M‖𝑢0,𝐼

3 ‖𝑛

+ ‖b0,𝑆
h ‖𝑛 + 𝜀A‖b0,𝐹

h ‖𝑛 + | av𝑏0
3|+ ‖ − 𝜇(1− av)𝑟0,𝑆 + 𝜀A𝑏0,𝐹

3 ‖𝑛 ≤ 𝑐.
(2.31)

For 𝑘 = 𝑛 − 1 the sum of terms estimated in (2.9) is equivalent to the 𝐻𝑛−1 norm of (ℒA + 𝜇ℒM)V. Hence
the assumed uniform boundedness of 1

𝜀A
‖(ℒA + 𝜇ℒM)V0‖𝑛−1 becomes, for initial data V0 of the form (2.28)

satisfying (2.30),

‖𝜕𝑧u0,𝐹
h ‖𝑛−1 + ‖∇h·u0,𝐹

h ‖𝑛 + ‖𝜕𝑧(b0,𝐹
h −∆−1∇h𝜕𝑧𝑟

0,𝐼)‖𝑛−1 + ‖𝜕𝑧𝑟
0,𝐼‖𝑛−1

+ ‖𝜕𝑧𝑢
0,𝐼
3 ‖𝑛−1 + ‖ − 𝜀−1

M (1− av)𝑟0,𝑆 + 𝑏0,𝐹
3 + 𝜀−1

M ∆−1∆ℎ𝑟0,𝑆 + ∆−1∆ℎ𝑟0,𝐼‖𝑛 ≤ 𝑐.
(2.32)
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Since the expression −𝜇(1−av)𝑟0,𝑆 appearing in the last term in (2.31) can be estimated by the first term there
it can be omitted from that last term, leaving 𝜀A‖𝑏0,𝐹

3 ‖𝑛. Similarly, the expression −𝜕𝑧(∆−1∆ℎ)𝜕𝑧𝑟
0,𝐼 in the

third term of (2.32) can be omitted. Also the expression −𝜀−1
M (1− av)𝑟0,𝑆 + 𝜀−1

M ∆−1∆ℎ𝑟0,𝑆 in the last term of
(2.32) vanishes identically because 𝑟0,𝑆 is independent of 𝑧, leaving ‖𝑏0,𝐹

3 + ∆−1∆ℎ𝑟0,𝐼‖𝑛. The uniform bounds
for that term and for 𝜀M‖𝑟0,𝐼‖𝑛 from (2.31) imply the uniform boundedness of 𝜀M‖𝑏0,𝐹

3 ‖𝑛, so the modified
term 𝜀A‖𝑏0,𝐹

3 ‖𝑛 for (2.31) can be omitted. However, since (2.32) only contains an 𝑂(1) estimate for 𝜕𝑧𝑟
0,𝐼 not

𝑟0,𝐼 itself, it is not possible to omit the expression ∆−1∆ℎ𝑟0,𝐼 from the term ‖𝑏0,𝐹
3 + ∆−1∆ℎ𝑟0,𝐼‖𝑛. Adding

(2.31) and (2.32) and making the above-mentioned modifications shows that (2.29) is equivalent to the uniform
boundedness of ‖V0‖𝑛 + 1

𝜀A
‖(ℒA + 𝜇𝜀M)V0‖𝑛−1 for initial data of the form (2.28). �

We note that, by a slight notational exception, the fast part of 𝑏0
3 in (2.28) is

(𝑏0
3)𝐹 = −𝜇(1− av)𝑟0,𝑆 + 𝜀A𝑏0,𝐹

3 , (2.33)

showing that, to the leading 𝑂(𝜇) order, (𝑏0
3)𝐹 only depends on the slow part of 𝑟0.

Although Lemma 2.3 determines the most general initial data satisfying the conditions needed for the exis-
tence and convergence results, as noted in the introduction we need more to obtain the rate of convergence.
In order to allow the initial data to contain all modes but not interfere with the convergence rate, we will still
assume that the initial data have the form (2.28), and that (2.30) holds, but will assume that

all terms 𝑤0,ℓ in (2.28) are uniformly bounded in 𝐻𝑛 and each term 𝑤0,𝑆 is fixed, (2.34)

which automatically implies that (2.29) holds. We allow the 𝑤0,𝐹 , 𝑤0,𝐼 to depend on (𝜀A, 𝜀M) because we only
bound the distance of the fast and intermediate modes to zero (i.e. estimate their Sobolev norms), not their
distance to any non-trivial limits.

3. Convergence rate estimates

Recall that “static” estimates are obtained by solving the PDE (1.4) for certain terms and bounding the norms
of the result via (1.14), while “dynamic” estimates are obtained via energy estimates for the time evolution.
We will estimate the size of the fast modes statically, the size of the intermediate modes statically and then
dynamically, and the difference between the slow modes and the solution of the limit system dynamically, with
earlier estimates used when deriving later ones. To optimize the use of earlier estimates we use the interpolation
estimate (B.6) to obtain smaller estimates in weaker norms.

Recall that 𝜇 = 𝜀A
𝜀M

= 𝜀𝜈
M is assumed to be less than one. To see easily how the estimate to be obtained

depends on the norm used, we introduce an increasing geometric sequence

𝜀𝑗 := 𝜀1+𝜈−𝑗𝜈
M (3.1)

so that by (1.13), (1.11), 𝜀0 = 𝜀A, 𝜀1 = 𝜀M, 𝜀𝑗 = 𝜇𝜀𝑗+1, 𝜀𝑛 ≤ 𝑐.

3.1. Static estimates

Static estimates will be obtained by solving the PDE system for (ℒA +𝜇ℒM)V and using the uniform bounds
(1.14) together with the standard Sobolev product and composition estimates

‖𝑓𝑔‖𝑗 ≤ 𝑐‖𝑓‖𝑛−1‖𝑔‖𝑗 , 𝑗 = 0, . . . , 𝑛− 1 (3.2)
‖𝐹 (𝑔)‖𝑛−1 ≤ 𝐶(‖𝑔‖𝑛−1), (3.3)

which will all be used henceforth without mention, plus the interpolation estimate (B.6). We will also need an
estimate for the time integral of certain fast terms, which will be obtained similarly from the time integral of
the PDE.
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Theorem 3.1. Assume that the basic conditions of Theorem 1.1 hold. Then the fast component V𝐹 satisfies
the estimates

sup
𝑡∈[0,𝑇 ]

[︁⃦⃦
u𝐹

h

⃦⃦
𝑗

+
⃦⃦
∇h·u𝐹

h

⃦⃦
𝑗

+
⃦⃦
𝜕𝑧u𝐹

⃦⃦
𝑗

+
⃦⃦
𝜕𝑧b𝐹

⃦⃦
𝑗

+
⃦⃦
b𝐹

h

⃦⃦
𝑗

+
⃦⃦
(1− az)𝑏𝐹

3

⃦⃦
𝑗

+ ‖ az u𝐹
h ‖𝑗+1 + ‖𝑏𝐹

3 + 𝜇∆−1∆ℎ𝑟‖𝑗+1

]︁
≤ 𝐶 𝜀𝑗 , 𝑗 = 0, . . . , 𝑛− 1, (3.4)

sup
𝑡∈[0,𝑇 ]

[︁⃦⃦⃦ ∫︁ 𝑡

0

az u𝐹
h d𝑡′

⃦⃦⃦
𝑛

+
⃦⃦⃦ ∫︁ 𝑡

0

u𝐹
h d𝑡′

⃦⃦⃦
𝑛−1

+
⃦⃦⃦ ∫︁ 𝑡

0

∇h·u𝐹
h d𝑡′

⃦⃦⃦
𝑛−1

+
⃦⃦⃦ ∫︁ 𝑡

0

az

(︀
𝑏𝐹
3 + 𝜇∆−1∆ℎ𝑟𝑆

)︀
d𝑡′
⃦⃦⃦

𝑛

]︁
≤ 𝐶(𝑇 ) 𝜀1+𝜈

M , (3.5)

and the intermediate component (𝑟𝐼 , 𝑢𝐼
3) = ((1− az)𝑟, (1− az)𝑢3) satisfies

‖(𝑟𝐼 , 𝑢𝐼
3)‖𝑗 ≤ 𝑐‖(𝜕𝑧𝑟

𝐼 , 𝜕𝑧𝑢
𝐼
3)‖𝑗 ≤ 𝑐 𝜀𝑗+1 =

𝑐 𝜀𝑗

𝜇
, 𝑗 = 0, . . . , 𝑛− 1. (3.6)

Note that the bounds in (3.5) for the time integrals of fast components are smaller than the bounds in (3.4) for
those components themselves.

Proof. Taking the 𝐻𝑘 norm of both sides of 𝜀A times (1.1) and using the interpolation bounds (B.6) to estimate
the left side shows that

‖(ℒA + 𝜇ℒM)V‖𝑗 ≤ 𝑐 𝜀1+𝜈−𝑗𝜈
M = 𝑐 𝜀𝑗 . (3.7)

Combining (3.7), (2.9) and the Poincaré inequality

‖(1− az)𝑓‖𝑗 ≤ 𝑐‖𝜕𝑧𝑓‖𝑗 , (3.8)

yields (3.6). By (2.9), (3.7), and the fact that 𝑢𝐹
3 ≡ 0,

‖𝜕𝑧u𝐹 ‖𝑗 + ‖∇h·u𝐹
h ‖𝑗 + ‖𝑏𝐹

3 + 𝜇∆−1∆ℎ𝑟‖𝑗+1 ≤ 𝑐 𝜀𝑗 , 𝑗 = 0, . . . , 𝑛− 1. (3.9)

Combining the definition (2.5) of the fast modes, the Poincaré inequality (3.8), the second inequality of (2.9),
and (3.7) yields[︀

‖𝜕𝑧b𝐹 ‖𝑗 + ‖b𝐹
h ‖𝑗 + ‖(1− az)𝑏𝐹

3 ‖𝑗

]︀
≤ 𝑐‖𝜕𝑧b𝐹 ‖𝑗

≤ 𝑐
[︀
‖𝜕𝑧(b𝐹

h − 𝜇∆−1∇h𝜕𝑧𝑟
𝐼)‖𝑗 + 𝜇‖𝜕𝑧𝑟

𝐼‖𝑗 + ‖𝜕𝑧(𝑏𝐹
3 + 𝜇∆−1∆ℎ𝑟)‖𝑗 + 𝜇‖𝜕𝑧𝑟

𝐼‖𝑗

]︀
≤ 𝑐‖(ℒA + 𝜇ℒM)V‖𝑗 ≤ 𝑐 𝜀𝑗 , 𝑗 = 0, . . . , 𝑛− 1.

(3.10)

By the definition (2.5) of the fast modes

u𝐹
h = (1− az)u𝐹

h + az u𝐹
h = (1− az)u𝐹

h +∇h∆−1
ℎ az(∇h·u𝐹

h ). (3.11)

Note that ∆ℎ is elliptic when applied to functions independent of 𝑧 so

‖∇h∆−1
ℎ az 𝑓‖𝑗+1 ≤ 𝑐‖𝑓‖𝑗 . (3.12)

By (3.11), (3.8), (3.12), (2.9), and (3.7),

‖u𝐹
h ‖𝑗 + ‖ az u𝐹

h ‖𝑗+1 ≤ ‖(1− az)u𝐹
h ‖𝑗 + ‖∇h∆−1

ℎ az(∇h·u𝐹
h )‖𝑗+1

≤ 𝑐‖𝜕𝑧u𝐹
h ‖𝑗 + 𝑐‖∇h·u𝐹

h ‖𝑗 ≤ 𝑐‖(ℒA + 𝜇ℒM)V‖𝑗 ≤ 𝑐 𝜀𝑗 𝑗 = 0, . . . , 𝑛− 1.
(3.13)

Combining (3.9), (3.10), and (3.13) yields (3.4).
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The bounds on time integrals in (3.5) are obtained by integrating (1.1) with respect to time, which yields∫︁ 𝑡

0

(ℒA + 𝜇ℒM)V = 𝜀A

(︃
𝐴0(𝜀MV)V|𝑡0 −

∫︁ 𝑡

0

(𝜀MV𝑡 · ∇V𝐴0)V +
∫︁ 𝑡

0

𝑑∑︁
𝑖=1

𝐴𝑖(V) V𝑥𝑖

)︃
. (3.14)

For the MHD system (1.4), only the variable 𝑟 appears in the argument of 𝐴0, and (1.4a) shows that the time
derivative of 𝑟 is 𝑂(𝜀−1

M ), so the term 𝜀MV𝑡 · ∇V𝐴0 is uniformly bounded. This yields the estimate⃦⃦⃦ ∫︁ 𝑡

0

(ℒA + 𝜇ℒM)V d𝑡′
⃦⃦⃦

𝑛−1
≤ 𝑐 𝜀A = 𝑐 𝜀1+𝜈

M . (3.15)

Since spatial operators commute with time integration, replacing every solution component in the second inequal-
ity of (2.9) with its time-integral from 0 to 𝑡 and combining the result with the bound (3.15) yields (3.5) since
az 𝑟 = 𝑟𝑆 . �

3.2. Intermediate system dynamic estimates

Theorem 3.2. Assume that the conditions of the convergence part of Theorem 1.1 hold, and let (𝑟,u,b) be the
solution obtained for the MHD system (1.4). Then

‖𝑟𝐼‖𝑗 + ‖𝑢𝐼
3‖𝑗 ≤ 𝑐 𝜀max(𝑗,1), 𝑗 = 0, . . . , 𝑛− 1. (3.16)

The case 𝑗 = 0 in (3.16) was already proven in Theorem 3.1. The remaining cases in (3.16) are an improvement
over the corresponding cases in (3.6) by one factor of 𝜇.

To prove (3.16) we will use the variables

𝛼 := (1− az)Vno-div
𝛼 ·V = (1− az)(𝑟 − 𝜇𝑏3 + 𝜇3𝒞𝒬∆−1𝜕2

𝑧𝑏3),
𝛽 := (1− az)V𝛽 ·V = (1− az)(𝒟𝑢3 + 𝜇2𝒞∆−1𝜕𝑧∇h·uh),

(3.17)

where the operators Vno-div
𝛼 , V𝛽 , 𝒞, 𝒟, and 𝒬 were defined in (2.23)–(2.25). As a preliminary we will derive a

system of PDEs satisfied by (𝛼, 𝛽), with remainder terms that are consistent with the desired estimate (3.16).
The general idea is to apply each of the operators Vno-div

𝛼 and V𝛽 to the PDE, note that by Lemma 2.2 the
large terms of the result are 𝜕𝑧𝒬 applied to the other operator, and calculate the form of the order one terms.
To simplify that calculation we first simplify the original equations by moving to the right sides all terms whose
𝐻𝑗 norms can be estimated by a constant times 𝜀𝑗 or the 𝐻𝑗 norms of 𝑟𝐼 and 𝑢𝐼

3 using (3.4), (3.6), and (B.6).
To do so we will the formulas (2.5) and in particular their consequence

u·∇ = (u𝑆 + u𝐼 + u𝐹 )·∇ = u𝑆 ·∇+ 𝑢𝐼
3𝜕𝑧 + u𝐹

h ·∇h. (3.18)

Starting from the MHD equations (1.4), we replace the argument 𝜀M𝑟 of 𝜌 and 𝑎 by 𝜀M𝑟𝑆 or zero where
possible and compensate by adding terms to the right sides of the equations, except that we retain a factor of
𝑎(𝜀M𝑟𝑆) multiplying 1

𝜀M
∇h·uh because that expression will then cancel exactly when we build the time evolution

equation for 𝛼, (3.22). In addition, we apply 1− az to the equations since that operator appears in all terms of
the formulas (3.17) for 𝛼 and 𝛽. Since slow modes are independent of 𝑧 the operator 1− az can be moved past
most coefficients. This yields

𝑎(𝜀M𝑟𝑆)(𝜕𝑡 + (u𝑆 ·∇))𝑟𝐼 + 𝑎(𝜀M𝑟𝑆)𝜌(𝜀M𝑟𝑆)
𝜀M

𝜕𝑧𝑢
𝐼
3 + 𝑎(𝜀M𝑟𝑆)

𝜀M
(1− az)∇h·uh = (1− az)𝑅1, (3.19a)

𝜌(𝜀M𝑟𝑆)(𝜕𝑡 + (u𝑆 ·∇))(1− az)uh + 𝑎(𝜀M𝑟𝑆)𝜌(𝜀M𝑟𝑆)−1
𝜀M

∇h𝑟
𝐼

+ (1− az)[∇h
|b|2
2 − (b·∇)bh]− (1−az)

𝜀A
(𝜕𝑧b𝐹

h −∇h𝑏
𝐹
3 − 𝜇∇h𝑟

𝐼) = (1− az)𝑅2, (3.19b)

𝜌(𝜀M𝑟𝑆)(𝜕𝑡 + (u𝑆 ·∇))𝑢𝐼
3 + 𝑎(𝜀M𝑟𝑆)𝜌(𝜀M𝑟𝑆)

𝜀M
𝜕𝑧𝑟

𝐼 − (b𝑆
h ·∇h)(1− az)𝑏𝐹

3 = (1− az)𝑅3, (3.19c)
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(𝜕𝑡 + (u𝑆 ·∇))(1− az)𝑏3 − (b𝑆
h ·∇h)𝑢𝐼

3 + (1− az) 1
𝜀A
∇h·uh = (1− az)𝑅4, (3.19d)

where the equation for bh has been omitted since it does not enter into 𝛼 or 𝛽, and

𝑅1 := − 𝑎(𝜀M𝑟)
(︀
𝑢𝐼

3𝜕𝑧𝑟 + (u𝐹
h ·∇h)𝑟

)︀
+
(︀
𝑎(𝜀M𝑟𝑆)− 𝑎(𝜀M𝑟)

)︀
(𝜕𝑡𝑟 + (u𝑆 ·∇)𝑟)

+
𝑎(𝜀M𝑟𝑆)𝜌(𝜀M𝑟𝑆)− 𝑎(𝜀M𝑟)𝜌(𝜀M𝑟)

𝜀M

(∇h·uh + 𝜕𝑧𝑢
𝐼
3) + 𝑎(𝜀M𝑟𝑆)

1− 𝜌(𝜀M𝑟𝑆)
𝜀M

∇h·uh, (3.20a)

𝑅2 := − 𝜌(𝜀M𝑟)
(︀
𝑢𝐼

3𝜕𝑧uh + (u𝐹
h ·∇h)uh

)︀
+
(︀
𝜌(𝜀M𝑟𝑆)− 𝜌(𝜀M𝑟)

)︀
(𝜕𝑡uh + (u𝑆 ·∇)uh)

+
𝑎(𝜀M𝑟𝑆)𝜌(𝜀M𝑟𝑆)− 𝑎(𝜀M𝑟)𝜌(𝜀M𝑟)

𝜀M

∇h𝑟, (3.20b)

𝑅3 := − 𝜌(𝜀M𝑟)
(︀
𝑢𝐼

3𝜕𝑧𝑢3 + (u𝐹
h ·∇h)𝑢3

)︀
+
(︀
𝜌(𝜀M𝑟𝑆)− 𝜌(𝜀M𝑟)

)︀
(𝜕𝑡𝑢3 + (u𝑆 ·∇)𝑢3)

+
𝑎(𝜀M𝑟𝑆)𝜌(𝜀M𝑟𝑆)− 𝑎(𝜀M𝑟)𝜌(𝜀M𝑟)

𝜀M

𝜕𝑧𝑟 − bh · 𝜕𝑧b𝐹
h + (b𝐹

h ·∇h)𝑏𝐹
3 , (3.20c)

𝑅4 = −
(︀
𝑢𝐼

3𝜕𝑧𝑏3 + (u𝐹
h ·∇h)𝑏3

)︀
− (∇h·uh)𝑏3 + (b𝐹

h ·∇h)𝑢3. (3.20d)

Wherever 𝑢𝐼
3 appears undifferentiated in 𝑅𝑖, the 𝐻𝑗 norm of the term in which it appears can be estimated by a

constant times the 𝐻𝑗 norm of 𝑢𝐼
3, for 𝑗 = 0, . . . , 𝑛−1. Similarly, for any smooth function 𝐹 and 𝑗 = 0, . . . , 𝑛−1,

‖𝐹 (𝜀M𝑟𝑆)−𝐹 (𝜀M𝑟)
𝜀M

‖𝑗 ≤ 𝑐‖𝑟𝐼‖𝑗 , and ‖[𝐹 (𝜀M𝑟𝑆) − 𝐹 (𝜀M𝑟)](𝜕𝑡V + (u𝑆 ·∇)V)‖𝑗 ≤ 𝑐𝜀M‖𝑟𝐼‖𝑗(‖V𝑡‖𝑛−1 + ‖V‖𝑛) ≤
𝑐‖𝑟𝐼‖𝑗 . By (3.4), terms containing u𝐹

h , b𝐹
h , ∇h·u𝐹

h = ∇h·uh, or 𝜕𝑧b𝐹
h without further derivatives can be estimated

in the 𝐻𝑗 norm by 𝑐𝜀𝑗 , for 0 ≤ 𝑗 ≤ 𝑛− 1. Since these cases cover all the terms in the 𝑅𝑖,

4∑︁
𝑖=1

‖(1− az)𝑅𝑖‖𝑗 ≤
4∑︁

𝑖=1

‖𝑅𝑖‖𝑗 ≤ 𝑐(‖(𝑟𝐼 , 𝑢𝐼
3)‖𝑗 + 𝜀𝑗), 𝑗 = 0, . . . , 𝑛− 1. (3.21)

To obtain the evolution equation for 𝛼, subtract 𝜇𝑎(𝜀M𝑟𝑆) times (3.19d) from (3.19a) and add
𝑎(𝜀M𝑟𝑆)𝜇3𝒞𝒬∆−1𝜕2

𝑧 applied to (3.19d) to the result. Then commute 𝒞𝒬∆−1𝜕2
𝑧 past u𝑆 ·∇, make the coeffi-

cient of the large terms that do not cancel be 𝑎𝜌 everywhere while compensating via terms on the right side,
force the function to which 𝜇(b𝑆

h ·∇h) is applied to be 𝛽√
1+𝜇2

for reasons to be explained later and again com-

pensate on the right side, and use the identity 1 = 𝒬𝒟 from (2.25) that makes the large terms exactly involve
𝛽, as we know from (2.21) that they must. This yields

𝑎(𝜀M𝑟𝑆)(𝜕𝑡 + (u𝑆 ·∇))𝛼 + 𝜇√
1+𝜇2

(b𝑆
h ·∇h)𝛽 +

𝑎(𝜀M𝑟𝑆)𝜌(𝜀M𝑟𝑆)
𝜀M

𝒬𝜕𝑧𝛽 = 𝑅𝛼,1 + 𝑅𝛼,2 + 𝑅𝛼,3 + 𝑅𝛼,4, (3.22)

where

𝑅𝛼,1 := (1− az)𝑅1 − 𝜇𝑎(𝜀M𝑟𝑆)(1− az)𝑅4 + 𝜇3𝑎(𝜀M𝑟𝑆)𝒞𝒬∆−1𝜕2
𝑧𝑅4 (3.23)

comes from the right sides of the modified equations (3.19),

𝑅𝛼,2 := −𝜇3𝑎(𝜀M𝑟𝑆)
[︀
𝒞𝒬∆−1𝜕2

𝑧 ,u𝑆
]︀
·∇(1− az)𝑏𝐹

3 (3.24)

comes from commuting the operator applied to (3.19d) past the coefficient 𝑢𝑆
3 ,

𝑅𝛼,3 := −𝜇𝜀M
𝑎(𝜀M𝑟𝑆)−1

𝜀M
(b𝑆

h ·∇h)𝑢𝐼
3 + 𝜇3𝑎(𝜀M𝑟𝑆)𝒞𝒬∆−1𝜕𝑧

[︀
(b𝑆

h ·∇h)𝜕𝑧𝑢
𝐼
3

]︀
+ 𝜇3𝑎(𝜀M𝑟𝑆)𝜌(𝜀M𝑟𝑆)−1

𝜀A
𝒞𝒬∆−1𝜕2

𝑧 (∇h·uh)
(3.25)

comes from adding compensating terms to the right side and moving entire terms there, and

𝑅𝛼,4 := 𝜇(b𝑆
h ·∇h)

(︂
𝛽√

1+𝜇2
− 𝑢𝐼

3

)︂
(3.26)
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comes from forcing the term involving b𝑆
h ·∇h to have the desired form, and will be rearranged further later.

Similarly, to obtain the evolution equation for 𝛽, add 𝜇2𝒞∆−1𝜕𝑧∇h· applied to (3.19b) to 𝒟 applied to (3.19c),
and rearrange terms in similar fashion as for (3.22). Then force the function to which b𝑆

h ·∇h is applied on the left
side of the equation to be 𝜇√

1+𝜇2
𝛼 for reasons to be explained later, and subtract appropriate constants from the

factors appearing inside commutators since that does not affect their value, in order to facilitate estimate the
size of the resulting terms. Also, to ensure the symmetry of the resulting system for 𝛼 and 𝛽, multiply the large
term 𝜇2

𝜀A
(1− az)𝒞∆−1𝜕𝑧∇h·(𝜕𝑧bh−∇h𝑏3− 𝜇∇h𝑟) appearing on the left side of the equation by 𝑎(𝜀M𝑟𝑆)𝜌(𝜀M𝑟𝑆)

and compensate by adding 𝑎(𝜀M𝑟𝑆)𝜌(𝜀M𝑟𝑆)− 1 times that term to the right side. By (2.25), the resulting large
term exactly involves 𝛼. This yields

𝜌(𝜀M𝑟𝑆)(𝜕𝑡 + (u𝑆 ·∇))𝛽 + 𝜇√
1+𝜇2

(b𝑆
h ·∇h)𝛼 +

𝑎(𝜀M𝑟𝑆)𝜌(𝜀M𝑟𝑆)
𝜀M

𝒬𝜕𝑧𝛼 = 𝑅𝛽,1 + 𝑅𝛽,2 + 𝑅𝛽,3 + 𝑅𝛽,4, (3.27)

where
𝑅𝛽,1 := 𝒟(1− az)𝑅3 + 𝜇2𝒞∆−1𝜕𝑧∇h·(1− az)𝑅2

comes from the right sides of (3.19),

𝑅𝛽,2 = −𝜇2𝜀M

[︁
𝒟−1
𝜇2 , 𝜌(𝜀M𝑟𝑆)−1

𝜀M

]︁
(𝜕𝑡 + (u𝑆 ·∇))𝑢𝐼

3 − 𝜇2𝜌(𝜀M𝑟𝑆)
[︁
𝒟−1
𝜇2 ,u𝑆

]︁
·∇𝑢𝐼

3 − 𝜇2
[︁
𝒟−1
𝜇2 , 𝑎(𝜀M𝑟𝑆)𝜌(𝜀M𝑟𝑆)−1

𝜀M

]︁
𝜕𝑧𝑟𝐼

− 𝜇2𝜀M

[︁
𝒞Δ−1𝜕𝑧∇h,

𝜌(𝜀M𝑟𝑆)−1
𝜀M

]︁
· (𝜕𝑡 + (u𝑆 ·∇))(1− az)u

𝐹
h − 𝜇2𝜌(𝜀M𝑟𝑆)

[︁
𝒞Δ−1𝜕𝑧∇h,u

𝑆
]︁
∇(1− az)u

𝐹
h

− 𝜇2
[︁
𝒞Δ−1𝜕𝑧∇h,

𝑎(𝜀M𝑟𝑆)𝜌(𝜀M𝑟𝑆)−1
𝜀M

]︁
· ∇h𝑟

𝐼

comes from commuting the operators applied to (3.19c) and (3.19b) past coefficients in those equations,

𝑅𝛽,3 := −𝜇2 𝑎(𝜀M𝑟𝑆)𝜌(𝜀M𝑟𝑆)−1
𝜀M

𝒞∆−1∆ℎ𝜕𝑧𝑟
𝐼−𝜇2𝒞∆−1𝜕𝑧∇h ·

(︁
∇h

|b|2
2 − (b·∇)bh

)︁
− 𝜇2 𝑎(𝜀M𝑟𝑆)𝜌(𝜀M𝑟𝑆)−1

𝜀A
𝒞𝜕𝑧(𝑏𝐹

3 + 𝜇∆−1∆ℎ𝑟)

comes from moving terms to the right side, balancing a term added on the left side, and using (2.10), and

𝑅𝛽,4 := 𝜇√
1+𝜇2

(b𝑆
h ·∇h)𝛼 +𝒟(b𝑆

h ·∇h)(1− az)𝑏𝐹
3 (3.28)

comes from forcing the term involving b𝑆
h ·∇h to have the desired form, and will be rearranged further later.

We now estimate the terms 𝑅𝛼,𝑖 and 𝑅𝛽,𝑖. Since the operators applied to the 𝑅𝑖 in 𝑅𝛼,1 and 𝑅𝛽,1 are all
bounded, (3.21) implies that

‖𝑅𝛼,1‖𝑗 + ‖𝑅𝛽,1‖𝑗 ≤ 𝑐(‖(𝑟𝐼 , 𝑢𝐼
3)‖𝑗 + 𝜀𝑗), 𝑗 = 0, . . . , 𝑛− 1. (3.29)

The terms in 𝑅𝛼,2 and 𝑅𝛽,2 all involve commutators, and the following lemma says that the commutator
gains one derivative, which in many cases is a vital improvement.

Lemma 3.3 ([29], Lem. 2.5). Let ̂︀𝑃 (𝑘, 𝑙,𝑚) be homogeneous of degree zero and real analytic for (𝑘, 𝑙,𝑚) ̸=
(0, 0, 0), and let 𝑃 be the Fourier multiplier operator defined by ̂︁𝑃𝑓 = ̂︀𝑃 ̂︀𝑓 . Then for all 𝑛 ≥ 3, 𝑓 ∈ 𝐻𝑛(T3),
𝑗 ∈ 1, . . . , 𝑛, and 𝑔 ∈ 𝐻𝑗−1,

‖[𝑃, 𝑓 ]𝑔‖𝑗 ≤ 𝑐‖𝑓‖𝑛‖𝑔‖𝑗−1. (3.30)

The constant-coefficient pseudo-differential operators appearing in the commutators in 𝑅𝛼,2 and 𝑅𝛽,2 are all
homogeneous of degree zero and bounded uniformly in 𝜇 (in particular (3.38) below implies a bound on 𝒟−1

𝜇2 ),
and they are real analytic for (𝑘, 𝑙,𝑚) ̸= (0, 0, 0) since the denominators in the formulas for 𝒞, 𝒟, and 𝒬 in
(2.24), (2.25) are positive for 𝜇 < 1, so they satisfy the conditions of Lemma 3.3. The expressions to which the
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commutators are applied have one of two forms: either they consist of a single spatial derivative applied to a fast
or intermediate component that is estimated in (3.4) or (3.6), or they are some component of (𝜕𝑡 +(u𝑆·∇))V. In
the former case the expression contains a factor 𝜇𝑝 with 𝑝 ≥ 2, so by Lemma 3.3 its 𝐻𝑗 norm for 𝑗 = 0, . . . , 𝑛−1
can be estimated by

𝑐𝜇2‖∇((1− az)𝑏𝐹
3 , 𝑢𝐼

3, 𝑟
𝐼 , u𝐹

h )‖max(0,𝑗−1) ≤ 𝑐𝜇2‖((1− az)𝑏𝐹
3 , 𝑢𝐼

3, 𝑟
𝐼 , u𝐹

h )‖max(1,𝑗) ≤ 𝑐𝜇2𝜀𝑗+2 ≤ 𝑐 𝜀𝑗 .

In the latter case the expression contains the factor 𝜇2𝜀M so by the interpolation bounds (B.6) its 𝐻𝑗 norm for
𝑗 = 0, . . . , 𝑛− 1 can be estimated by 𝑐𝜇2𝜀M(‖V𝑡‖𝑗−1 + 𝑐) ≤ 𝑐𝜇2𝜀M𝜇−𝑗 ≤ 𝑐𝜇𝜀𝑗 . Hence

‖𝑅𝛼,2‖𝑗 + ‖𝑅𝛽,2‖𝑗 ≤ 𝑐 𝜀𝑗 , 𝑗 = 0, . . . , 𝑛− 1. (3.31)

To estimate the terms in 𝑅𝛼,3 and 𝑅𝛽,3 note that those terms either have a factor 𝜇2𝜀M that is smaller than
all 𝜀𝑗 , have a zeroth-order pseudo-differential operator applied to 𝜕𝑧𝑟

𝐼, b𝑧 (after applying the 𝑧-derivative in
the expression to some factor of b), ∇h·uh, or 𝜕𝑧(𝑏𝐹

3 + 𝜇∆−1∆ℎ𝑟), all of which have their 𝐻𝑗 norms estimated
in (3.4) or (3.6), or have a zeroth-order pseudo-differential operator applied to ∆−1𝜕𝑧[(bh ·∇h)𝜕𝑧𝑢

𝐼
3]. In the

first case using the uniform estimate (1.14) shows that the 𝐻𝑛−1 norm is bounded by 𝑐 𝜀0. In the middle
cases each term contains a factor of 𝜇2 so its 𝐻𝑗 norm is bounded by 𝑐𝜇2𝜀𝑗+1 ≤ 𝑐 𝜀𝑗 . In the final case, since
‖∆−1𝜕𝑧𝑓‖𝑗 ≤ 𝑐‖𝑓‖max(𝑗−1,0) and the term contains a factor of 𝜇3, it is bounded by 𝑐𝜇3‖∇𝜕𝑧𝑢

𝐼
3‖max(𝑗−1,0) ≤

𝑐𝜇3‖𝜕𝑧𝑢
𝐼
3‖max(𝑗,1) ≤ 𝑐𝜇3𝜀𝑗+2 ≤ 𝑐𝜇𝜀𝑗 . Together, these yield

‖𝑅𝛼,3‖𝑗 + ‖𝑅𝛽,3‖𝑗 ≤ 𝑐 𝜀𝑗 , 𝑗 = 0, . . . , 𝑛− 1. (3.32)

For 𝑗 ≤ 𝑛− 2 the terms 𝑅𝛼,4 and 𝑅𝛽,4 can be estimated by using the fact that (3.4) and (3.6) imply that

𝜇‖V𝐹
* ‖𝑗+1 + 𝜇2‖V𝐼‖𝑗+1 ≤ 𝑐(𝜇𝜀𝑗+1 + 𝜇2𝜀𝑗+2) ≤ 𝑐 𝜀𝑗 , 𝑗 = 0, . . . , 𝑛− 2, (3.33)

where V𝐹
* means all components of V𝐹 except az 𝑏𝐹

3 , which is not estimated in (3.4). The estimate ‖𝑅𝛼,4‖𝑗 +
‖𝑅𝛽,4‖𝑗 ≤ 𝑐𝜀𝑗 can therefore be obtained for 𝑗 ≤ 𝑛− 2 by using the formulas for 𝛼 and 𝛽 in (3.17) together with
the facts that 𝒟−1

𝜇2 is a bounded zeroth-order pseudo-differential operator and that

𝑏𝐹
3 = (𝑏𝐹

3 + 𝜇∆−1∆ℎ𝑟) + 𝜇∆−1𝜕2
𝑧𝑟𝐼 − 𝜇(𝑟 − av𝑟) (3.34)

plus estimates similar to those used for 𝑅𝛼,3 and 𝑅𝛽,3.
However, (3.33) is not valid for 𝑗 = 𝑛−1 because (3.4) and (3.6) do not hold for 𝑗 = 𝑛. We therefore rearrange

𝑅𝛼,4 and 𝑅𝛽,4 to be linear combinations of the terms

∇h·uh, 𝜕𝑧u𝐹 , 𝜕𝑧b, ∇(𝑏𝐹
3 + ∆−1∆ℎ𝑟), 𝜕𝑧𝑟 and 𝜕𝑧𝑢3 (3.35)

whose 𝐻𝑗 norms are estimated in (3.4) or (3.6) even though they involve a first derivative of V; in addition a
factor of 𝜇 must be present multiplying the terms 𝜕𝑧(𝑟𝐼 , 𝑢𝐼

3) to compensate for the extra factor of 1
𝜇 in (3.6).

Substituting (3.34) into the formula for 𝛼 in (3.17) and solving the result for 𝑟𝐼 yields

(1 + 𝜇2)𝑟𝐼 = 𝛼 + 𝜇(1− az)(𝑏𝐹
3 + 𝜇∆−1∆ℎ𝑟) + 𝜇2∆−1𝜕2

𝑧𝑟𝐼 − 𝜇3𝒞𝒬∆−1𝜕2
𝑧𝑟𝐼 . (3.36)

Applying (1 − az) to (3.34), which turns the final −𝜇(𝑟 − av𝑟) into −𝜇𝑟𝐼 , dividing (3.36) by 1 + 𝜇2 and
substituting the result for that final 𝑟𝐼, and substituting the result into (3.28) shows that 𝑅𝛽,4 equals

𝜇

(︂
1√

1+𝜇2
− 1

1+𝜇2𝒟
)︂

(bh ·∇h)𝛼 (3.37)
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plus a sum of terms involving operators of order zero applied to the expressions in (3.35) whose 𝐻𝑗 norms can
be bounded by 𝑐 𝜀𝑗 using (3.4) and (3.6). To estimate (3.37) we use the identity

𝒟 =
√︀

1 + 𝜇2 − 4𝜇2Δ−1𝜕2
𝑧(︂√︁

𝜇2(2−4Δ−1𝜕2
𝑧)+𝜇4+1+𝜇2+1

)︂(︃√
2

√︂√︁
𝜇2(2−4Δ−1𝜕2

𝑧)+𝜇4+1+𝜇2+1+2
√

𝜇2+1

)︃
(3.38)

derived from (2.25), which makes the constant term in (3.37) cancel. The other term in (3.38) contains a factor
of 𝜕𝑧 multiplied by an operator of order −1, the 𝑧-derivative of all the constituents of 𝛼 are estimated in (3.4)
and (3.6), and an overall factor of 𝜇 is present in (3.38), so the 𝐻𝑗 norm of 𝑅𝛽,4 is bounded by a constant
times 𝜀𝑗 even for 𝑗 = 𝑛 − 1. Similarly, substituting formula (3.17) for 𝛽 into the definition (3.26) of 𝑅𝛼,4 and
substituting (3.38) into the result makes the constant term from (3.38) cancel. All remaining terms involve the
expressions from (3.35) and so can be estimated by a constant times 𝜀𝑗 since an overall factor of 𝜇 is present.
This yields

‖𝑅𝛼,4‖𝑗 + ‖𝑅𝛽,4‖𝑗 ≤ 𝑐 𝜀𝑗 , 𝑗 = 0, . . . , 𝑛− 1. (3.39)

Proof of Theorem 3.2. The system (3.22), (3.27) has the form of the Klainerman–Majda two-scale theory. More-
over, (3.17) plus estimates similar to those above yield

‖𝛼− 𝑟𝐼‖𝑗 + ‖𝛽 − 𝑢𝐼
3‖𝑗 ≤ 𝑐 𝜀𝑗 , 𝑗 = 0, . . . , 𝑛− 1. (3.40)

Together with the estimates (3.29), (3.31), (3.32), and (3.39), (3.40) shows that the 𝐻𝑗 norm of the right sides
of those equations is bounded by a constant times ‖(𝛼, 𝛽)‖𝑗 +𝜀𝑗 . Hence the standard Klainerman–Majda energy
estimates show that

max
0≤𝑡≤𝑇

‖(𝛼, 𝛽)‖𝑗 ≤ 𝑐(‖𝛼(0), 𝛽(0))‖𝑗 + 𝜀𝑗), 𝑗 = 0, . . . , 𝑛− 1. (3.41)

The initial data (2.28), (2.34) satisfies ‖V𝐼‖𝑛−1

⃒⃒
𝑡=0

≤ 𝑐 𝜀M = 𝑐 𝜀1, so (3.40) implies that ‖𝛼(0), 𝛽(0))‖𝑗 ≤ 𝑐𝜀1

and hence (3.41) implies that max0≤𝑡≤𝑇 ‖(𝛼, 𝛽)‖𝑗 ≤ 𝑐 max(𝜀𝑗 , 𝜀1) for 𝑗 = 0, . . . , 𝑛− 1. Using (3.40) once more
yields (3.16). �

3.3. Equations and estimates for horizontal components of the slow mode

Like for the intermediate mode dynamic estimates, estimating the difference between the slow modes of the
solution to the original system and the solution of the limit system requires PDEs for the exact zero eigenspace
of the operator ℒA+𝜇ℒM. The horizontal velocity and magnetic field slow modes belong to that eigenspace, so we
will write the equations for those modes as the limit equations plus error terms, by applying the projection P onto
the slow horizontal modes to the original system, expanding all dependent variables into fast, intermediate, and
slow modes, and moving all terms except those involving purely slow modes to the right sides of the equations.
The remaining slow modes will be treated in the following subsection.

Theorem 3.4. Assume that the conditions of the convergence part of Theorem 1.1 hold. Let (𝑟,u,b) be the
solution of the MHD system (1.4), and let (𝑟, ūh, 𝑢̄3, b̄h, 𝑏̄3) be the solution of the limit system (1.15) whose
initial data is the limit (𝑟0,𝑆 ,u0,𝑆 ,b0,𝑆 + 𝜇lim(1− av)𝑟0,𝑆) of the initial data (2.28) of the original system. Then

‖u𝑆
h − ūh‖𝑛−2 + ‖b𝑆

h − b̄h‖𝑛−2 ≤ 𝑐 𝜀M. (3.42)

Before proving Theorem 3.4 we need to derive appropriate equations. Since all slow modes contain the averaging
operator az in the 𝑧 direction, it will be convenient to write the equations in conservation form, so that derivatives
with respect to 𝑧 disappear when az is applied. In particular,

az(w·∇𝑓 + (∇·w)𝑓) = az∇·(𝑓w) = az∇h·(𝑓wh) = az(wh ·∇h𝑓 + (∇h·wh)𝑓). (3.43)
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Adding the continuity equation (A.1a) to the momentum equation (1.4b) yields

𝜕𝑡(𝜌u) + u·∇(𝜌u) + (∇·u)(𝜌u) +∇Φ− b·∇b = 𝜀−1
A (𝜕𝑧b−∇𝑏3), (3.44)

where Φ is some scalar-valued function defined on T3, i.e. periodic in 𝑥, 𝑦, 𝑧. Apply 𝒫div
h az to the first two

components of (3.44) and az to the first two components of (1.4c), and simplify the result by using the identity
(3.43) not only with w = u but also with w = b since the constraint ∇·b = 0 implies that b ·∇𝑓 equals
∇·(𝑓b). The resulting equations can be further simplified by using the definitions (2.5) of the modes to obtain
the identities az bh = b𝑆

h and az(𝜌uh) = az(𝜌u𝑆
h ) + az(𝜌u𝐹

h ) = (az 𝜌)u𝑆
h + az(𝜌u𝐹

h ), and then using the facts that
𝜌 = 1 + 𝜀M𝑟 and az u𝐹

h is a gradient to obtain 𝒫div
h az(𝜌u𝐹

h ) = 𝜀M𝒫div
h az(𝑟u𝐹

h ). This yields

𝜕𝑡 𝒫div
h ((az 𝜌)u𝑆

h ) + 𝒫div
h az∇h·

(︀
𝜌 uh ⊗ uh − bh ⊗ bh

)︀
= −𝜀M 𝜕𝑡 𝒫div

h az(𝑟u𝐹
h ), (3.45a)

𝜕𝑡 b𝑆
h + az∇h·

(︀
uh ⊗ bh − bh ⊗ uh

)︀
= 0, (3.45b)

where the tensor product ⊗ follows the convention that ∇h·(uh ⊗ bh) = uh · ∇hbh + (∇h·uh)bh. Since
𝜕𝑡𝒫div

h ((az 𝜌)u𝑆
h ) = 𝜕𝑡u𝑆

h + 𝜀M𝜕𝑡𝒫div
h ((az 𝑟)u𝑆

h ), (3.45) together with the bounds (1.14) and (1.13) and the rela-
tion (1.11) show that

‖𝜕𝑡u𝑆
h ‖𝑛−1 + ‖𝜕𝑡b𝑆

h ‖𝑛−1 ≤ 𝑐. (3.46)

Recalling that uh and bh have no intermediate part, we separate them into their fast and slow parts in the
tensor products in (3.45a):

az∇h·
(︀
𝜌 uh ⊗ uh − bh ⊗ bh

)︀
= az∇h·

(︀
𝜌 u𝑆

h ⊗ u𝑆
h − b𝑆

h ⊗ b𝑆
h

)︀
+ az∇h·

(︁(︀
𝜌 u𝑆

h ⊗ u𝐹
h − b𝑆

h ⊗ b𝐹
h

)︀
+ trsp

)︁
+ az∇h·

(︀
𝜌 u𝐹

h ⊗ u𝐹
h − b𝐹

h ⊗ b𝐹
h

)︀
(3.47)

where trsp denotes the tensor transpose. By (2.7)–(2.8), the slow parts (u𝑆
h , b𝑆

h ) are independent of 𝑧 and
divergence-free, so the first term on the right side of (3.47) simplifies to u𝑆

h ·∇h((az 𝜌)u𝑆
h )−b𝑆

h ·∇hb𝑆
h . Also, since

b𝑆
h is independent of 𝑧 while (2.5) shows that az b𝐹

h = 0, the expression − az∇h·(b𝑆
h ⊗ b𝐹

h ) appearing in the
second term on the right in (3.47) is identically zero. Next, we can drop the 𝒫div

h operator from (3.45a) at the
cost of adding a term ∇h𝜃(𝑡, 𝑥, 𝑦) to that equation, since a 2-vector is in the kernel of 𝒫div

h if and only if it is a
horizontal gradient. Thus, (3.45a) becomes

𝜕𝑡((az 𝜌)u𝑆
h ) + u𝑆

h ·∇h((az 𝜌)u𝑆
h )− b𝑆

h ·∇hb𝑆
h = −𝜀M𝜕𝑡 az(𝑟u𝐹

h )− az∇h·
(︀
𝜌 u𝑆

h ⊗ u𝐹
h + trsp

)︀
− az∇h·

(︀
𝜌 u𝐹

h ⊗ u𝐹
h − b𝐹

h ⊗ b𝐹
h

)︀
+∇h𝜃.

The second term on the right side is a “slow-fast” product, which can be rewritten using time-integrated variable

A(𝑡, ·) :=
∫︁ 𝑡

0

az u𝐹
h d𝑡′, (3.48)

as the time derivative of a small term plus a small term, since (3.5) shows that

‖A‖𝑛 ≤ 𝑐 𝜀1+𝜈
M . (3.49)

For example,

az(𝜌 u𝑆
h ⊗ u𝐹

h ) = az(u𝑆
h ⊗ u𝐹

h ) + 𝜀M az(𝑟u𝑆
h ⊗ u𝐹

h ) = u𝑆
h ⊗ (az u𝐹

h ) + 𝜀M az(𝑟u𝑆
h ⊗ u𝐹

h )

= 𝜕𝑡(u𝑆
h ⊗ A)−

(︀
𝜕𝑡u𝑆

h

)︀
⊗ A + 𝜀M az(𝑟u𝑆

h ⊗ u𝐹
h ).

Hence we obtain

(𝜕𝑡 + (u𝑆
h ·∇h))

(︀
(az 𝜌)u𝑆

h

)︀
− b𝑆

h ·∇hb𝑆
h = 𝜕𝑡 Ξ1 + 𝜉1 +∇h𝜃, ∇h·u𝑆

h = 0 (3.50)
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with

Ξ1 := −𝜀M az(𝑟u𝐹
h )−∇h·

(︀
u𝑆

h ⊗ A + trsp
)︀
,

𝜉1 := ∇h·
{︁(︀

𝜕𝑡u𝑆
h

)︀
⊗ A + trsp

}︁
− 𝜀Maz∇h·(𝑟u𝑆

h ⊗ u𝐹
h + trsp)− az∇h·

(︀
𝜌 u𝐹

h ⊗ u𝐹
h − b𝐹

h ⊗ b𝐹
h

)︀
.

The bound (3.4) together with the constraint (1.13), the relation (1.11) between the parameters and the defi-
nition (3.1) of the 𝜀𝑗 implies that ‖u𝐹

h ‖𝑛−1 + ‖b𝐹
h ‖𝑛−1 ≤ 𝑐 𝜀𝜈

M. Using that estimate, the time-derivative bound
(3.46), estimate (3.49) for A, the formula 𝜌 = 1 + 𝜀M𝑟, and Corollary E.3 yields the estimates

‖Ξ1‖𝑛−1 + ‖𝜉1‖𝑛−2 ≤ 𝑐 𝜀1+𝜈
M . (3.51)

Applying the same ideas to the slow magnetic equation (3.45b), and in particular noting that az(u𝑆
h ⊗ b𝐹

h +
trsp) = 0 yields

(𝜕𝑡 + (u𝑆
h ·∇h))b𝑆

h − b𝑆
h ·∇hu𝑆

h = 𝜕𝑡 Ξb𝑆
h

+ 𝜉b𝑆
h
, ∇h·b𝑆

h = 0, (3.52)

with

Ξb𝑆
h

:= −∇h·
[︀
A⊗ b𝑆

h − trsp
]︀
, 𝜉b𝑆

h
:= ∇h·

[︀
A⊗ 𝜕𝑡b𝑆

h − trsp
]︀
− az∇h·

(︀
u𝐹

h ⊗ b𝐹
h − trsp

)︀
. (3.53)

The same bounds as for (3.51) show that

‖Ξb𝑆
h
‖𝑛−1 + ‖𝜉b𝑆

h
‖𝑛−2 ≤ 𝑐 𝜀1+𝜈

M . (3.54)

The equation for the time evolution of u𝑆
h can be further simplified using an equation for the time evolution

of 𝑟𝑆 . By the first part of (2.8) and the facts from (2.5) that u𝐼
h = 0 and az 𝑟 = 𝑟𝑆 , the vertically-averaged

equation (C.2) simplifies to

𝜕𝑡 𝑟𝑆 + u𝑆
h ·∇h(𝑟𝑆) = − az∇h·(𝑟u𝐹

h )− 𝜀−1
M ∇h·(az u𝐹

h ). (3.55)

Using the time-integrated variable A from (3.48), (3.55) can be rewritten as

(𝜕𝑡 + (u𝑆
h ·∇h))(𝜀M𝑟𝑆) = −𝜀M az∇h·(𝑟u𝐹

h )− 𝜕𝑡∇h·A. (3.56)

Subtracting u𝑆
h times (3.56) from (3.50) noting that az 𝜌 = 1 + 𝜀M𝑟𝑆 , and rewriting the term u𝑆

h 𝜕𝑡∇h·A on the
right side of the result as 𝜕𝑡(u𝑆

h (∇h·A))− (𝜕𝑡u𝑆
h )∇h·A yields

(1 + 𝜀M𝑟𝑆)(𝜕𝑡 + (u𝑆
h ·∇h))u𝑆

h − b𝑆
h ·∇hb𝑆

h = 𝜕𝑡 Ξ2 + 𝜉2 +∇h𝜃2, ∇h·u𝑆
h = 0, (3.57)

where
Ξ2 := Ξ1 + u𝑆

h∇h·A, 𝜉2 := 𝜉1 − (𝜕𝑡u𝑆
h )∇h·A + 𝜀Mu𝑆

h az∇h·(𝑟u𝐹
h ) (3.58)

also satisfy
‖Ξ2‖𝑛−1 + ‖𝜉2‖𝑛−2 ≤ 𝑐 𝜀1+𝜈

M (3.59)

in view of the estimate (3.51) and the same bounds used to obtain that estimate.
Now move the 𝜀M𝑟𝑆 term to the right side of (3.57) and replace 𝜕𝑡Ξ2 there by its divergence-free part, which

only changes the divergence term, to obtain

(𝜕𝑡 + (u𝑆
h ·∇h))u𝑆

h − b𝑆
h ·∇hb𝑆

h = 𝜕𝑡 Ξu𝑆
h

+ 𝜉u𝑆
h

+∇h𝜃u𝑆
h
, ∇h·u𝑆

h = 0 (3.60)

with
Ξu𝑆

h
:= 𝒫div

h Ξ2, 𝜉u𝑆
h

:= 𝜉2 − 𝜀M𝑟𝑆(𝜕𝑡 + (u𝑆
h ·∇h))u𝑆

h . (3.61)

Using the estimate (3.59), the fact from (3.46) that 𝜕𝑡u𝑆
h = 𝑂(1), and the fact that the projection 𝒫div

h does
not increase Sobolev norms yields

‖Ξu𝑆
h
‖𝑛−1 ≤ 𝑐 𝜀1+𝜈

M , ‖𝜉u𝑆
h
‖𝑛−2 ≤ 𝑐 𝜀M (3.62)

in view of the term that is explicitly 𝑂(𝜀M) in the definition (3.61) of 𝜉u𝑆
h
.
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Proof of Theorem 3.4. The functions (ūh, b̄h) satisfy the systems

(𝜕𝑡 + (ūh ·∇h))ūh − (b̄h ·∇h)b̄h = ∇hΦ, ∇h·ūh = 0, (3.63)
(𝜕𝑡 + (ūh ·∇h))b̄h − (b̄h ·∇h)ūh = 0. (3.64)

We now apply Theorem D.1 to the system (3.60), (3.52) for 𝑢 := (uh, bh) and the system (3.63), (3.64) for
𝑈 := (ūh, b̄h). Assumptions (2.28) and (2.34) ensure that the difference in their initial data is 𝑂(𝜀1+𝜈

M ). Since Ξu𝑆
h

contains 𝒫div
h , Ξ𝑢 := (Ξu𝑆

h
, Ξb𝑆

h
) and Ξ𝑈 := 0 satisfy 𝐿Ξ𝑢 = 0 = 𝐿Ξ𝑈 , where 𝐿 = (∇h· 0 ). Define 𝜉𝑢 = (𝜉u𝑆

h
, 𝜉b𝑆

h
)

and 𝜉𝑈 = 0. The estimates (3.62), (3.54) together with the above-mentioned estimate on the difference of the
initial data then imply that the hypotheses of Theorem D.1 hold with 𝑘 = 𝑛, 𝑟 = 1, and 𝛿 = 𝜀M. Hence the
conclusion of that theorem yields (3.42). �

3.4. Equations and estimates for remaining slow modes

The third component of equation (1.4b) implies that there are no large terms in the PDE for 𝑢𝑆
3 := az 𝑢3,

i.e.
(︁

0,
(︁

02

𝑢𝑆
3

)︁
, 03

)︁
is a zero eigenvector of the full large operator ℒA + 𝜇ℒM. However, as shown in Lemma 2.1,

the 𝜇-dependent zero eigenvector of ℒA + 𝜇ℒM having a nontrivial projection onto the density component is not
just the slow mode 𝑟𝑆 . Specifically, (2.3) implies that V𝑟 =

(︀
az, 03,

(︀
02

−𝜇 az

)︀)︀
satisfies (ℒA + 𝜇ℒM)V𝑟 · ̃︀V = 0

for all functions ̃︀V, which by the MHD system (1.4) and the skew-adjointness of (ℒA + 𝜇ℒM) implies that the
PDE satisfied by az(𝑟 − 𝜇𝑏3) = V𝑟 · V will contain no large terms. We therefore need to calculate the PDE
system satisfied by az(𝑟− 𝜇𝑏3) and az 𝑢3. It turns out that while the PDEs for those two variables are coupled
by terms that are strictly 𝑂(1), their coupling to other components of the solution contains only terms that are
𝑜(1) and so can be considered as small perturbations.

Theorem 3.5. Under the conditions of Theorem 3.4,

‖𝑟𝑆 − 𝑟‖𝑛−2 + ‖𝑢𝑆
3 − 𝑢̄3‖𝑛−2 ≤ 𝑐

[︁
𝜀
1−max(𝑛−5,0)𝜈
M + |𝜇− 𝜇lim|

]︁
. (3.65)

Proof. Writing the variables in (C.3) in terms of fast, intermediate, and slow components and using the facts
that the slow components are independent of 𝑧, u𝑆

h and b𝑆
h have zero horizontal divergence, the vertical averages

of 𝑟𝐼, 𝑢𝐼
3 and b𝐹

h vanish, and 𝑏𝑆
3 is constant in time as well as space transforms that equation into

𝜕𝑡(𝑟𝑆 − 𝜇 az 𝑏𝐹
3 ) + (u𝑆

h ·∇h)(𝑟𝑆 − 𝜇 az 𝑏𝐹
3 ) + 𝜇(b𝑆

h ·∇h)𝑢𝑆
3

= − az

{︀
∇h·

[︀
(𝑟 − 𝜇𝑏3)u𝐹

h

]︀}︀
− 𝜇 az

[︀
∇h·(𝑢𝐼

3b𝐹
h )
]︀

= −∇h·
[︀
(𝑟𝑆 − 𝜇 az 𝑏3) az u𝐹

h

]︀
− az∇h·

[︀(︀
𝑟𝐼 − 𝜇(1− az)𝑏𝐹

3

)︀
u𝐹

h

]︀
− 𝜇 az

[︀
∇h·(𝑢𝐼

3b𝐹
h )
]︀
.

(3.66)

Replacing u𝑆
h , b𝑆

h , and 𝜇 on the left side of (3.66) by their limit values, and compensating by adding terms to
the right side yields

[𝜕𝑡 + (ūh ·∇h)] (𝑟𝑆 − 𝜇 az 𝑏𝐹
3 ) + 𝜇lim(b̄h ·∇h)𝑢𝑆

3 = 𝜕𝑡Ξ𝑟𝑆−𝜇 az 𝑏𝐹
3

+ 𝜉𝑟𝑆−𝜇 az 𝑏𝐹
3
, (3.67)

where

Ξ𝑟𝑆−𝜇 az 𝑏𝐹
3

:= −∇h·
[︂
(𝑟𝑆 − 𝜇az𝑏3)

∫︁ 𝑡

0

az u𝐹
h

]︂
= −∇h·

[︀
(𝑟𝑆 − 𝜇az𝑏3)A

]︀
𝜉𝑟𝑆−𝜇 az 𝑏𝐹

3
:= ∇h·

[︀
(𝜕𝑡(𝑟𝑆 − 𝜇az𝑏3))A

]︀
− az∇h·

[︁(︀
𝑟𝐼 − 𝜇(1− az)𝑏𝐹

3

)︀
u𝐹

h

]︁
− 𝜇 az

[︀
∇h·(𝑢𝐼

3b𝐹
h )
]︀

+ (ūh − u𝑆
h )·∇h(𝑟𝑆 − 𝜇 az 𝑏𝐹

3 ) + 𝜇((b̄h − b𝑆
h )·∇h)𝑢𝑆

3 + (𝜇lim − 𝜇)(b̄h ·∇h)𝑢𝑆
3 .

(3.68)
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Since 𝜕𝑡𝑏
𝑆
3 ≡ 0, (3.66) implies a uniform 𝐻𝑛−1 bound for 𝜕𝑡(𝑟𝑆− 𝜇 az 𝑏3). Using in addition the uniform estimate

(1.14), estimate (3.49) for A, the estimate (3.42) for the convergence rate of the horizontal components, and
Corollary E.3 shows that

‖Ξ𝑟𝑆−𝜇 az 𝑏𝐹
3
‖𝑛−1 ≤ 𝑐 𝜀1+𝜈

M , ‖𝜉𝑟𝑆−𝜇 az 𝑏𝐹
3
‖𝑛−2 ≤ 𝑐 [𝜀M + |𝜇− 𝜇lim|] . (3.69)

The third component of (3.44) can be written as

𝜕𝑡(𝜌𝑢3) + u·∇(𝜌𝑢3) + (∇·u)(𝜌𝑢3) + 𝜕𝑧Φ− bh ·∇h𝑏3 = 0.

Applying the vertical averaging operator az and using (3.43) reduces this to

𝜕𝑡(az(𝜌𝑢3)) + az [uh ·∇h(𝜌𝑢3)] + az [(∇h·uh)(𝜌𝑢3)]− az

[︀
bh ·∇h𝑏

𝐹
3

]︀
= 0.

In order to treat the term az[bh ·∇h𝑏
𝐹
3 ] we write az 𝑏𝐹

3 as

az 𝑏𝐹
3 = −𝜇∆−1∆ℎ𝑟𝑆 + az(𝑏𝐹

3 + 𝜇∆−1∆ℎ𝑟𝑆) = −𝜇(𝑟𝑆 − av𝑟𝑆) + az(𝑏𝐹
3 + 𝜇∆−1∆ℎ𝑟𝑆) (3.70)

in accordance with the expression estimated in (3.4). Using (3.70) while noting that (b𝑆
h ·∇h)(av𝑟𝑆) = 0, and

using the facts from (1.5), (2.7), and (2.5) that 𝜌 = 1+𝜀M𝑟, 𝑟𝑆 and 𝑢𝑆
3 are independent of 𝑧 and az 𝑢𝐼

3 = 0 = 𝑢𝐹
3 ,

which imply that az(𝜌𝑢𝑆
3 ) = (1 + 𝜀M𝑟𝑆)𝑢𝑆

3 , az(𝜌𝑢𝐼
3) = 𝜀M az(𝑟𝐼𝑢𝐼

3), and az 𝑟 = 𝑟𝑆 , we obtain

(1 + 𝜀M𝑟𝑆)
[︀
𝜕𝑡 + (u𝑆

h ·∇h)
]︀
𝑢𝑆

3 + 𝑢𝑆
3

[︀
𝜕𝑡 + (u𝑆

h ·∇h)
]︀

(𝜀M𝑟𝑆) + 𝜇(b𝑆
h ·∇h)𝑟𝑆

= (b𝑆
h ·∇h)

[︀
az(𝑏𝐹

3 + 𝜇∆−1∆ℎ𝑟𝑆)
]︀

+ az{(b𝐹
h ·∇h)(1− az)𝑏𝐹

3 } − 𝜀M(u𝑆
h ·∇h)(az(𝑟𝐼𝑢𝐼

3))

− 𝜀M𝜕𝑡 az(𝑟𝐼𝑢𝐼
3)−∇h·

[︀
(𝜕𝑡A)𝑢𝑆

3

]︀
− az{∇h·(u𝐹

h 𝑢𝐼
3)} − 𝜀M az{∇h·(u𝐹

h 𝑟𝑢3)},
(3.71)

where the last line results from separating the various modes in az{∇h·(u𝐹
h 𝜌𝑢3)} and using the definition of A

from (3.48). Since there are no terms of size 𝜀−1
A in the equations for the time evolution of 𝑟 or 𝑢3, (3.71) implies

that
‖𝜕𝑡𝑢

𝑆
3 ‖𝑛−1 ≤ 𝑐. (3.72)

Subtracting 𝑢𝑆
3 times (3.56) from (3.71), moving the term 𝜀M𝑟𝑆

[︀
𝜕𝑡 + (u𝑆

h ·∇h)
]︀
𝑢𝑆

3 to the right side of the
result, noting that the two terms involving A partially cancel and rewriting the remaining term (𝜕𝑡A·∇h)𝑢𝑆

3 as
𝜕𝑡[(A·∇h)𝑢𝑆

3 ]− (A·∇h)𝜕𝑡𝑢
𝑆
3 yields

(𝜕𝑡 + (u𝑆
h ·∇h))𝑢𝑆

3 + 𝜇(b𝑆
h ·∇h)𝑟𝑆= 𝜕𝑡

̃︀Ξ𝑢𝑆
3

+ ̃︀𝜉𝑢𝑆
3

+ (b𝑆
h ·∇h)

[︀
az(𝑏𝐹

3 + 𝜇∆−1∆ℎ𝑟𝑆)
]︀

(3.73)

where ̃︀Ξ𝑢𝑆
3

= (A·∇h)𝑢𝑆
3 − 𝜀M az(𝑟𝐼𝑢𝐼

3),̃︀𝜉𝑢𝑆
3

= az{(b𝐹
h ·∇h)(1− az)𝑏𝐹

3 } − 𝜀M(u𝑆
h ·∇h)(az(𝑟𝐼𝑢𝐼

3))− az{∇h·(u𝐹
h 𝑢𝐼

3)} − 𝜀M az{∇h·(u𝐹
h 𝑟𝑢3)}

+ 𝜀M𝑢𝑆
3 az∇h·(𝑟u𝐹

h )− (A·∇h)(𝜕𝑡𝑢
𝑆
3 )− 𝜀M𝑟𝑆

[︀
𝜕𝑡 + (u𝑆

h ·∇h)
]︀
𝑢𝑆

3 .

As a step towards symmetrizing the system consisting of (3.67), (3.73), we want to replace 𝑟𝑆 in the last term
on the left side of (3.73) by 𝑟𝑆− 𝜇 az 𝑏𝐹

3 , which requires adding a balancing term involving az 𝑏𝐹
3 , which must also

be rewritten using (3.70). This leads us to write 𝜇(b𝑆
h ·∇h)𝑟𝑆 as 𝑘1(b𝑆

h ·∇h)(𝑟𝑆− 𝜇 az 𝑏𝐹
3 )+𝑘2(b𝑆

h ·∇h)(az 𝑏𝐹
3 +𝜇𝑟𝑆).

Equating those two expressions and comparing the coefficients of (b𝑆
h ·∇h)(az 𝑏𝐹

3 ) shows that 𝑘2 = 𝑘1𝜇, and then
comparing the coefficients of (bh ·∇h)𝑟𝑆 yields 𝑘1 = 𝜇

1+𝜇2 ,

𝜇(b𝑆
h ·∇h)𝑟𝑆 = 𝜇

1+𝜇2 (b𝑆
h ·∇h)(𝑟𝑆 − 𝜇 az 𝑏𝐹

3 ) + 𝜇2

1+𝜇2 (b𝑆
h ·∇h)(az 𝑏𝐹

3 + 𝜇𝑟𝑆)

= 𝜇
1+𝜇2 (b𝑆

h ·∇h)(𝑟𝑆 − 𝜇 az 𝑏𝐹
3 ) + 𝜇2

1+𝜇2 (b𝑆
h ·∇h)

[︀
az(𝑏𝐹

3 + 𝜇∆−1∆ℎ𝑟𝑆)
]︀
,

(3.74)
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where the second equation follows as in (3.70). Substituting (3.74) into (3.73), moving the second term from
(3.74) to the right side of the resulting equation and combining it with the similar term already present, and
replacing u𝑆

h , b𝑆
h and 𝜇 on the left side of the result by their limiting values and compensating on the right side

yields
[𝜕𝑡 + (ūh ·∇h)] 𝑢𝑆

3 + 𝜇lim
1+𝜇2

lim
(b̄h ·∇h)(𝑟𝑆 − 𝜇 az 𝑏𝐹

3 ) = 𝜕𝑡Ξ𝑢𝑆
3

+ 𝜉𝑢𝑆
3

(3.75)

where

Ξ𝑢𝑆
3

= ̃︀Ξ𝑢𝑆
3

+ 1
1+𝜇2 (b𝑆

h ·∇h)
[︁ ∫︁ 𝑡

0

az(𝑏𝐹
3 + 𝜇∆−1∆ℎ𝑟𝑆)

]︁
(3.76)

𝜉𝑢𝑆
3

= ̃︀𝜉𝑢𝑆
3

+ 1
1+𝜇2 (𝜕𝑡b𝑆

h ·∇h)
[︁
−
∫︁ 𝑡

0

az(𝑏𝐹
3 + 𝜇∆−1∆ℎ𝑟𝑆)

]︁
+ (ūh − u𝑆

h )·∇h𝑢
𝑆
3

+ 𝜇
1+𝜇2

(︀
(b̄h − b𝑆

h )·∇h(az 𝑏𝐹
3 + 𝜇𝑟𝑆)

)︀
+
(︁

𝜇lim
1+𝜇2

lim
− 𝜇

1+𝜇2

)︁
(b̄h ·∇h)(az 𝑏𝐹

3 + 𝜇𝑟𝑆).
(3.77)

The system consisting of (3.67), (3.75) can be symmetrized by multiplying the latter equation by 1 + 𝜇2
lim. The

estimates used to obtain (3.69) together with the time-derivative estimates (3.46), (3.72) and the time-integrated
estimate (3.5) show that

‖Ξ𝑢𝑆
3
‖𝑛−1 ≤ 𝑐 𝜀1+𝜈

M , ‖𝜉𝑢𝑆
3
‖𝑛−2 ≤ 𝑐 [𝜀M + |𝜇− 𝜇lim|] . (3.78)

Using (1.15e) and the fact that av𝑟0,𝑆 is a constant, the limit equations (1.15a) and (1.15c) can be rewritten
as the system

[𝜕𝑡 + (ūh ·∇h)]
{︀

(1 + 𝜇2
lim)𝑟 − 𝜇2

lim av𝑟0,𝑆
}︀

+ 𝜇lim(b̄h ·∇h)𝑢̄3 = 0, (3.79)

[𝜕𝑡 + (ūh ·∇h)] 𝑢̄3 + 𝜇lim
1+𝜇2

lim
(b̄h ·∇h)

{︀
(1 + 𝜇2

lim)𝑟 − 𝜇2
lim av𝑟0,𝑆

}︀
= 0, (3.80)

for the dependent variables (1 + 𝜇2
lim)𝑟 − 𝜇2

lim av𝑟0,𝑆 and 𝑢̄3, which has the same form as the system (3.67),
(3.75) for the dependent variables 𝑟𝑆 − 𝜇 az 𝑏3 and 𝑢𝑆

3 , except that the terms on the right sides are omitted.
Since the evolution equation for 𝑟 shows that av𝑟 = av𝑟0 = av𝑟0,𝑆 + 𝜀M av𝑟0,𝐼 = av𝑟0,𝑆 ,

𝑟𝑆 − 𝜇 az 𝑏𝐹
3 = (1 + 𝜇2)𝑟𝑆 − 𝜇2 av𝑟 − 𝜇 az(𝑏𝐹

3 + 𝜇(𝑟 − av𝑟))

=
[︀
(1 + 𝜇2)𝑟𝑆 − 𝜇2 av𝑟0,𝑆

]︀
− 𝜇 az(𝑏𝐹

3 + 𝜇∆−1∆ℎ𝑟).
(3.81)

Hence, by (2.28), (2.34), the difference between the initial data for the two systems is bounded in 𝐻𝑛 by a
constant times 𝜀1+2𝜈

M + |𝜇− 𝜇lim|. In view of that bound plus the estimates (3.69), (3.78) for the right sides of
(3.67), (3.75), Theorem D.1 shows that

‖(𝑟𝑆 − 𝜇 az 𝑏𝐹
3 )− {(1 + 𝜇2

lim)𝑟 − 𝜇2
lim av𝑟0,𝑆}‖𝑛−2 + ‖𝑢𝑆

3 − 𝑢̄3‖𝑛−2 ≤ 𝑐 [𝜀M + |𝜇− 𝜇lim|] . (3.82)

By (3.81), the static estimate (3.4) with 𝑗 = 𝑛− 3 applied to the −𝜇 az(𝑏𝐹
3 + 𝜇∆−1∆ℎ𝑟) term of (3.81) shows

that (3.82) implies that (3.65) holds. �

As discussed in the introduction, the term |𝜇 − 𝜇lim| is the dominating error term in (3.82) and (3.65)
whenever 𝜇lim = 0, but that term will be eliminated in Theorem 3.6 below by adding corrector terms.

Theorem 3.6. Let (𝑟(cor), 𝑢
(cor)
3 ) be the solution of the inhomogeneous linear system

𝜕𝑡𝑟
(cor) + (ūh ·∇h)𝑟(cor) + 𝜇(b̄h ·∇h)𝑢(cor)

3 = −(b̄h ·∇h)𝑢̄3 − (𝜇 + 𝜇lim)(𝜕𝑡 + (ūh ·∇h))𝑟, (3.83)

𝜕𝑡𝑢
(cor)
3 + (ūh ·∇h)𝑢(cor)

3 + 𝜇
1+𝜇2 (b̄h ·∇h)𝑟(cor) = − 1−𝜇𝜇lim

(1+𝜇2)(1+𝜇2
lim)

(b̄h ·∇h)((1 + 𝜇2)𝑟 − 𝜇2 av𝑟0,𝑆) (3.84)

having initial data zero. If the conditions of Theorem 3.4 hold then⃦⃦⃦
𝑟𝑆 −

(︁
𝑟 + 𝜇−𝜇lim

1+𝜇2 𝑟(cor)
)︁⃦⃦⃦

𝑛−2
+
⃦⃦⃦
𝑢𝑆

3 −
(︁
𝑢̄3 + (𝜇− 𝜇lim)𝑢(cor)

3

)︁⃦⃦⃦
𝑛−2

≤ 𝑐 𝜀
1−max(𝑛−5,0)𝜈
M . (3.85)
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Proof. Since (𝜇− 𝜇lim)(𝜇 + 𝜇lim) = 𝜇2 − 𝜇2
lim and av𝑟0,𝑆 is a constant, adding 𝜇− 𝜇lim times (3.83) to (3.79)

yields

[𝜕𝑡 + (ūh ·∇h)]
{︁

(1 + 𝜇2)𝑟 − 𝜇2 av𝑟0,𝑆 + (𝜇− 𝜇lim)𝑟(cor)
}︁

+ 𝜇(b̄h ·∇h)
(︁
𝑢̄3 + (𝜇− 𝜇lim)𝑢(cor)

3

)︁
= 0. (3.86)

Similarly, since (𝜇 − 𝜇lim) times 1−𝜇𝜇lim
(1+𝜇2)(1+𝜇2

lim)
equals 𝜇

1+𝜇2 − 𝜇lim
1+𝜇2

lim
, adding 𝜇 − 𝜇lim times (3.84) to (3.80)

yields

[𝜕𝑡 + (ūh ·∇h)]
{︁

𝜇𝑙𝑖𝑚 + (𝜇− 𝜇𝑙𝑖𝑚)𝑢(cor)
3

}︁
+ 𝜇

1+𝜇2 (b̄h·∇h)
{︁

(1 + 𝜇2)𝑟 − 𝜇2av𝑟0,𝑆 + (𝜇− 𝜇lim)𝑟(cor)
}︁

= 0. (3.87)

Equations (3.86)–(3.87) have the same form as as the system (3.67), (3.75) for the dependent variables
𝑟𝑆 − 𝜇 az 𝑏3 and 𝑢𝑆

3 , except that the terms on the right sides are omitted and all occurrences of 𝜇lim in the
coefficients on the left sides are replaced by 𝜇. Omitting the step of replacing 𝜇 by 𝜇lim in the derivation of
(3.67), (3.75) yields those equations with all occurrences of 𝜇lim on the left sides replaced by 𝜇 and the terms of
order 𝜇− 𝜇lim omitted from their right sides. Since the terms of order 𝜇2 in (3.86) now involve 𝜇2 rather than
𝜇2

lim, as in (3.81) and in contrast to (3.79), there is also no longer a term of size 𝑂(|𝜇− 𝜇lim|) in the difference
in the initial data. Hence applying Theorem D.1 now yields an estimate without the term involving |𝜇− 𝜇lim|,
and by using (3.81) the estimate so obtained can be written as (3.85). �

Appendix A. Derivation of the MHD system

Suitably scaled, the motion of an isentropic compressible, conducting, inviscid fluid is modeled by the MHD
system ([9], Sect. 3.8)

𝜕𝑡𝜌 +∇·(𝜌u) = 0 (A.1a)
𝜕𝑡(𝜌u) + u·∇(𝜌u) + (∇·u)𝜌u + 𝜀−2

M ∇𝑝(𝜌) + 𝜀−2
A B× (∇×B) = 0, (A.1b)

𝜕𝑡B−∇×(u×B) = 0, (A.1c)
∇·B = 0. (A.1d)

Here 𝜀M denotes the well-known Mach number, 𝜌 is the fluid density, 𝑝(𝜌) is the pressure law that satisfies
𝑝′ > 0, u is the fluid velocity, and B is the magnetic field. The parameter 𝜀A, as we call the Alfvén number in
this article, is the ratio between flow velocity and speed of the magnetosonic waves; in [24] the Alfvén number
is the reciprocal of our version.

We consider the case in which a uniform magnetic field is applied in the direction e𝑧 parallel to the 𝑧-axis,
which subjects the fluid to a large Lorenz force. To reformulate the system (A.1) into a form to which the results
of [6] can be applied, we begin by rescaling the magnetic field and the density via

B = e𝑧 + 𝜀Ab, 𝜌 = 1 + 𝜀M𝑟. (A.2)

Applying calculus identities for the curl, subtracting u times (A.1a) from (A.1b), and multiplying (A.1a) by
𝑎(𝜀M𝑟) from (1.5) yields the system (1.4).

Appendix B. Improved uniform bound

Lemma B.1. Let 𝑛 ≥ 𝑠0 + 1 be an integer, where 𝑠0 := ⌊𝑑
2⌋ + 1 is the Sobolev embedding exponent, i.e. the

smallest integer 𝑠 for which ‖𝑓‖𝐿∞ ≤ 𝑐‖𝑓‖𝐻𝑠 . Assume that the spatial domain is R𝑑 or T𝑑 and that the system
(1.1) and its initial data V0 satisfy the following conditions:

(1) the operators ℒA and ℒM are constant-coefficient differential operators of order at most one and are skew-
adjoint on 𝐿2,
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(2) the matrices 𝐴𝑖 are smooth symmetric functions for 𝑗 ≥ 0 and the matrix 𝐴0 is positive definite,
(3) the small parameters are restricted to the region (1.13),
(4) the initial data V0, which may depend on the small parameters 𝜀A and 𝜀M, are uniformly bounded in 𝐻𝑛

and satisfy the “well-preparedness” condition (1.10).

Then there exist fixed positive 𝑇 and 𝐾 such that for (𝜀A, 𝜀M) satisfying (1.13) the solution to (1.1) having
the initial data V0 exists for 0 ≤ 𝑡 ≤ 𝑇 and satisfies (1.14); in particular the solution is uniformly bounded in
𝐻𝑛.

Proof. Lemma B.1 differs from Theorem 3.6 of [6] only by having different weights multiplying the norms of
time derivatives. Hence it suffices to show that in all places in the proof of Theorem 3.6 from [6] where the use
of the weights

max
0≤𝑡≤𝑇

⎡⎣ 𝑛∑︁
𝑗=0

𝜀𝑗
M‖𝜕

𝑗
𝑡 V‖𝑛−𝑗 + ‖V𝑡‖0

⎤⎦ ≤ 𝐾 (B.1)

was justified the use of the improved weights in (1.14) is also justified. There are only two such places, namely
where it was shown that the weighted sum of norms is bounded at time zero and where it was shown that the
small parameters scale out of the estimate for the time derivative of an appropriately weighted energy.

As noted in proof of Lemma 3.5 from [6], assumption (1.10) ensures that ‖V𝑡

⃒⃒
𝑡=0
‖𝑛−1 is bounded uniformly

in the small parameters and the PDE (1.1) then yields the estimates ‖𝜕𝑗
𝑡 V
⃒⃒
𝑡=0
‖𝑛−𝑗 ≤ 𝑐 𝜀1−𝑗

A for 1 ≤ 𝑗 ≤ 𝑛.
Therefore, for 1 ≤ 𝑗 ≤ 𝑛,

𝜀𝑗−1
M

(︁
min

(︁
𝜀A
𝜀M

, 1
)︁)︁𝑛−1

‖𝜕𝑗
𝑡 V
⃒⃒
𝑡=0
‖𝑛−𝑗 ≤ 𝜀𝑗−1

M

(︁
min

(︁
𝜀A
𝜀M

, 1
)︁)︁𝑛−1 (︀

𝑐 𝜀1−𝑗
A

)︀
≤ 𝑐

(︁
min

(︁
𝜀A
𝜀M

, 1
)︁)︁𝑛−𝑗

≤ 𝑐,

which shows that the weighted sum of norms in (1.14) is also bounded at time zero uniformly in the small
parameters.

The energy estimate both in [6] and here makes use of the norms

‖𝑓‖ℓ,𝐴0 :=

⎯⎸⎸⎷ ∑︁
0≤|𝛼|≤ℓ

∫︁
(𝐷𝛼𝑓)𝑇 𝐴0(𝜀MV)𝐷𝛼𝑓 d𝑥, (B.2)

where V is a solution to (1.1) and 𝐷𝛼 = 𝜕𝛼1
𝑥1
· · · 𝜕𝛼𝑑

𝑥𝑑
. As shown in [6], in order to prove a weighted energy

estimate like (B.1) or (1.14) it suffices to obtain a uniform bound for

𝐸 := ‖V‖2𝑛,𝐴0
+ ‖V𝑡‖20,𝐴0

+
𝑛∑︁

𝑗=1

𝑤2
𝑗‖𝜕

𝑗
𝑡 V‖2𝑛−𝑗,𝐴0

, (B.3)

where the weights 𝑤𝑗 are 𝜀𝑗
M for the estimate (B.1) or

𝑤𝑗 = 𝜀𝑗−1
M

(︁
min

(︁
𝜀A
𝜀M

, 1
)︁)︁𝑛−1

, 1 ≤ 𝑗 ≤ 𝑛 (B.4)

for the estimate (1.14). Moreover, in the estimates ([6], (3.12), (3.24)) for d
d𝑡𝐸, the only facts used about the

weights 𝑤𝑗 to prove a uniform bound for 𝐸 are that for some finite 𝑐 that may be different in each appearance

𝜀M ≤ 𝑐 𝑤1, (B.5a)
𝜀M𝑤𝑗 ≤ 𝑐 𝑤𝑗+1 for 1 ≤ 𝑗 ≤ 𝑛− 1, (B.5b)

𝑤𝑘 ≤ 𝑐

𝐽∏︁
𝑗=1

𝑤𝑘𝑗
whenever

𝐽∑︁
𝑗=1

𝑘𝑗 = 𝑘, (B.5c)
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𝜀M𝑤𝑘 ≤ 𝑐

𝐽∏︁
𝑗=1

𝑤𝑘𝑗 whenever
𝐽∑︁

𝑗=1

𝑘𝑗 = 𝑘 + 1. (B.5d)

Since (B.5d) can be obtained by substituting (B.5c) with 𝑘 replaced by 𝑘 + 1 into (B.5b) with 𝑗 set equal to
𝑘, it suffices to prove (B.5a)–(B.5c). The definitions (B.4) imply that (B.5b) holds provided that 𝑐 there is at

least one, while both (B.5a) and (B.5c) reduce to the condition 𝜀M ≤ 𝑐
(︁

min
(︁

𝜀A
𝜀M

, 1
)︁)︁𝑛−1

that is equivalent to
(1.13). �

Combining estimate (1.14) with the standard Sobolev interpolation inequality ‖𝑓‖𝑟 ≤ 𝐶𝑟,𝑠‖𝑓‖
𝑟
𝑠
𝑠 ‖𝑓‖

1− 𝑟
𝑠

0 for
0 ≤ 𝑟 ≤ 𝑠 (e.g. [28], (2.32)), yields the following result.

Corollary B.2. When the basic conditions of Theorem 1.1 hold and 𝜇 ≤ 1 then

‖V𝑡‖𝑗 ≤ 𝑐𝜇−𝑗 = 𝑐 𝜀−𝑗𝜈
M 𝑗 = 0, . . . , 𝑛− 1. (B.6)

Appendix C. Convergence and limit

The convergence part of Theorem 1.1 follows from Theorem 4.6 of [6] when 𝜇lim = 0, and from simple
modifications of convergence results for two-scale singular limits when 𝜇lim > 0. Since we need explicit formulas
for the limit equations and will use some of the formulas derived below in Section 3 we indicate a direct unified
proof.

Proof of the convergence part of Theorem 1.1. The uniform bounds on V and V𝑡 provide compactness, which
together with the uniqueness of solutions to the limit equations ensures the convergence of V, in 𝐶0([0, 𝑇 ]; 𝐻𝑛−𝛼)
for any 𝛼 > 0 and weak-* in 𝐿∞([0, 𝑇 ]; 𝐻𝑛), to a limit V as 𝜀A, 𝜀M tend to zero with their ratio converging to
a given limit 𝜇lim, with V𝑡 converging weak-* in 𝐿∞([0, 𝑇 ], 𝐻𝑛−1) to V𝑡.

Multiplying (1.1) by 𝜀A or applying 𝜀MP0 to it, and taking the limit yields

(ℒA + 𝜇limℒM)V = 0 = P0ℒMV. (C.1)

Identities (C.1) and Lemma 2.1 imply that V is independent of 𝑧, the horizontal parts of its velocity and
magnetic field are divergence free, and (1.15e) holds. If the spatial domain is R3 then V must therefore vanish,
so from now on that domain is T3.

By (2.4) and (2.11), P
(︁

1
𝜀A
ℒA + 1

𝜀M
ℒM

)︁
= ( 1

𝜀M
az∇h·uh, 03, 03). Taking the limit of the equations with no

large terms in P applied to (1.4) yields (1.15b), (1.15c), (1.15d).
To determine the limit equation for the density, divide (1.4a) by 𝑎(𝜀M𝑟), which puts it in conservation form,

and apply az to obtain
𝜕𝑡(az 𝑟) + az[∇h·(𝑟uh)] + 1

𝜀M
az(∇h·uh) = 0. (C.2)

To eliminate the large term in (C.2), write the third component of (1.4c) in conservation form as 𝜕𝑡𝑏3+∇·(𝑏3u)−
∇·(𝑢3b) + 𝜀−1

A ∇h·uh = 0, apply 𝜇 az and subtract the result from (C.2), which yields

𝜕𝑡[az(𝑟 − 𝜇𝑏3)] + az{∇h·[(𝑟 − 𝜇𝑏3)uh]}+ 𝜇 az[∇h·(𝑢3bh)] = 0. (C.3)

Taking the limit of (C.3), using facts that V is independent of 𝑧 and that ūh and b̄h are divergence free, and
substituting (1.15e) into the result yields (1.15a). �
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Appendix D. Perturbation theorem

The following perturbation theorem is a variant of Lemma 3.2 from [4], and can be proven by similar methods.

Theorem D.1. Suppose that 𝑢 and 𝑈 are solutions in 𝐶0([0, 𝑇 ]; 𝐻𝑘) of

𝐴0(𝑢)𝑢𝑡 +
𝑑∑︁

𝑖=1

𝐴𝑖(𝑢)𝑢𝑥𝑖
= 𝐹 + 𝐿*𝑣 + 𝐴0(𝑢)𝜕𝑡Ξ𝑢 + 𝜉𝑢, 𝐿𝑢 = 0, (D.1)

𝐴0(𝑈)𝑈𝑡 +
𝑑∑︁

𝑖=1

𝐴𝑖(𝑈)𝑈𝑥𝑖 = 𝐹 + 𝐿*𝑉 + 𝐴0(𝑈)𝜕𝑡Ξ𝑈 + 𝜉𝑈 , 𝐿𝑈 = 0, (D.2)

having the same initial value 𝑢0 ∈ 𝐻𝑘, where 𝑘 ≥ ⌊𝑑
2⌋ + 2, the matrices 𝐴𝑖 are smooth and symmetric and

𝐴0 is positive-definite, 𝐹 is a given function of 𝑡 and 𝑥, 𝐿 is a first-order differential operator with constant
coefficients, with 𝐿* denoting its 𝐿2-adjoint, and Ξ𝑢, Ξ𝑈 , 𝜉𝑢, and 𝜉𝑈 satisfy

‖Ξ𝑢‖𝑘−𝑟 + ‖Ξ𝑈‖𝑘−𝑟 + ‖𝜉𝑢‖𝑘−𝑟−1 + ‖𝜉𝑈‖𝑘−𝑟−1 ≤ 𝑐𝛿 for some 0 ≤ 𝑟 ≤ 𝑘 − 1,
𝐿Ξ𝑢 = 0 = 𝐿Ξ𝑈 , and ‖𝜕𝑡Ξ𝑈‖𝑘−𝑟−1 ≤ 𝑐.

Then max0≤𝑡≤𝑇 ‖𝑢− 𝑈‖𝑘−𝑟−1 ≤ 𝑐𝛿.

Appendix E. Calculus inequalities for vertical averages

The following result is sharper than what would be obtained by the standard product estimate (e.g. [28],
Prop. 2.1A), because the entire product is estimated using the 𝑊 1,1 norm rather than pulling out one factor in
the 𝐿∞ norm, and the Gagliardo-Nirenberg inequalities are used in dimension two rather than three.

Lemma E.1. For all 𝑗 ≥ 1 there exists a constant 𝐶𝑗 such that for 𝑓, 𝑔 ∈ 𝐻𝑗(T3)

‖ az(𝑓𝑔)‖𝐻𝑗−1(T2) ≤ 𝐶𝑗

(︀
‖𝑓‖𝐻𝑗(T3)‖𝑔‖𝐿2(T3) + ‖𝑓‖𝐿2(T3)‖𝑔‖𝐻𝑗(T3)

)︀
. (E.1)

Proof. We first prove (E.1) for 𝑗 = 1: By the Gagliardo-Nirenberg inequality ‖ℎ‖𝐿2(T2) ≤ 𝑐‖ℎ‖𝑊 1,1(T2) and the
Cauchy-Schwartz inequality,

‖ az(𝑓𝑔)‖𝐿2(T2) ≤ 𝑐‖ az(𝑓𝑔)‖𝑊 1,1(T2) ≤ 𝑐
(︀
‖𝑓‖𝐻1(T3)‖𝑔‖𝐿2(T3) + ‖𝑓‖𝐿2(T3)‖𝑔‖𝐻1(T3)

)︀
.

Now let 𝑗 be any integer greater than one. By the definition of the 𝐻𝑗−1 norm, the result for the case 𝑗 = 1,
the Sobolev interpolation inequality, and Young’s inequality for products 𝑎𝜎𝑏1−𝜎 ≤ 𝑎 + 𝑏 for 0 ≤ 𝜎 ≤ 1,

‖ az(𝑓𝑔)‖𝐻𝑗−1(T2) ≤ 𝑐
∑︁

|𝛼|≤𝑗−1

‖ az(𝐷𝛼
𝑥,𝑦(𝑓𝑔))‖𝐿2(T2) (E.2)

≤ 𝑐
∑︁

|𝛽|+|𝛾|≤𝑗−1

‖ az((𝐷𝛽
𝑥,𝑦𝑓)(𝐷𝛾

𝑥,𝑦𝑔))‖𝐿2(T2)

≤ 𝑐
∑︁

|𝛽|+|𝛾|≤𝑗−1

(︀
‖𝑓‖𝐻|𝛽|+1(T3)‖𝑔‖𝐻|𝛾|(T3) + ‖𝑓‖𝐻|𝛽|(T3)‖𝑔‖𝐻|𝛾|+1(T3)

)︀
≤ 𝑐

∑︁
0≤𝑖≤𝑗−1

([‖𝑓‖𝐻𝑖+1‖𝑔‖𝐿2 + ‖𝑔‖𝐻𝑖‖‖𝑓‖𝐻1 ] + [‖𝑓‖𝐻𝑖‖𝑔‖𝐻1 + ‖𝑔‖𝐻𝑖+1‖𝑓‖𝐿2 ])

≤ 𝑐 (‖𝑓‖𝐻𝑗‖𝑔‖𝐿2 + ‖𝑔‖𝐻𝑗−1‖𝑓‖𝐻1 + ‖𝑓‖𝐻𝑗−1‖𝑔‖𝐻1 + ‖𝑔‖𝐻𝑗‖𝑓‖𝐿2)

A second application of the Sobolev interpolation inequality followed by Young’s inequality shows that each of
the terms in the final line of (E.2) in which the 𝐻𝑗−1 and 𝐻1 norms appear is bounded by the sum of the two
terms there in which the 𝐻𝑗 and 𝐿2 norms appear, which yields (E.1) for 𝑗 > 1. �
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Corollary E.2. Consider integer 𝑛 ≥ 3 and a geometric sequence {𝜀𝑗} with common ratio 1
𝜇 ≥ 1 and 𝜀𝑛 ≤ 𝑐.

Suppose 𝑣(𝑥, 𝑦, 𝑧), 𝑤(𝑥, 𝑦, 𝑧) ∈ 𝐻𝑛(T3) satisfy the “interpolative estimates”⃦⃦
(𝑣, 𝑤)

⃦⃦
𝐻𝑗(T3)

≤ 𝑐 𝜀𝑗 , 𝑗 = 0, . . . , 𝑛− 1,
⃦⃦

(𝑣, 𝑤)
⃦⃦

𝐻𝑛(T3)
≤ 𝑐.

Then
‖ az(𝑣𝑤)‖𝐻𝑛−1(T2

𝑥,𝑦) ≤ 𝑐𝜀0, ‖ az(𝑣𝑤)‖𝐻𝑛−2(T2
𝑥,𝑦) ≤ 𝑐𝜀0 𝜇. (E.3)

Proof. By Lemma E.1, ‖ az(𝑣𝑤)‖𝑗−1 ≤ 𝑐(‖𝑣‖𝑗‖𝑤‖0 + ‖𝑣‖0‖𝑣‖𝑗) ≤ 𝑐𝜀𝑗𝜀0. Since 𝜀𝑛 ≤ 𝑐 and 𝜀𝑛−1 ≤ 𝜇𝜀𝑛 ≤ 𝑐𝜇,
this implies (E.3). �

In view of the uniform 𝐻𝑛 estimate (1.14), the static estimates (3.4), (3.6), and the relations (1.13), (1.11)
between the parameters, Corollary E.2 yields the following estimates for products of components of various
modes.

Corollary E.3. Assume that the basic conditions of Theorem 1.1 hold. Let 𝑣𝐹 , 𝑤𝐹 be either (1− az)𝑏𝐹
3 or any

component of V𝐹 except 𝑏𝐹
3 and let 𝑣𝐼 , 𝑤𝐼 be any component of V𝐼 . Then,

sup
0≤𝑡≤𝑇

{︀
‖ az(𝑣𝐹 𝑤𝐹 )‖𝑛−1 + 𝜇‖ az(𝑣𝐼𝑣𝐹 )‖𝑛−1 + 𝜇2‖ az(𝑣𝐼𝑤𝐼)‖𝑛−1 + ‖ az∇·(𝑣𝐼u𝐹

h )‖𝑛−2 + 𝜀M‖𝑣𝐹 ‖𝑛−1

}︀
≤ 𝑐 𝜀A,

and the estimates also hold when 𝜇 or 𝜇2 on the left side is replaced by 𝜀M.

The estimate of 𝜀M‖𝑣𝐹 ‖𝑛−1 does not use Lemma E.1 but is included for convenience.
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