Convergence of the likelihood ratio method for linear response of non-equilibrium stationary states
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 55 (2021), pp. S593-S623

We consider numerical schemes for computing the linear response of steady-state averages with respect to a perturbation of the drift part of the stochastic differential equation. The schemes are based on the Girsanov change-of-measure theory in order to reweight trajectories with factors derived from a linearization of the Girsanov weights. The resulting estimator is the product of a time average and a martingale correlated to this time average. We investigate both its discretization and finite-time approximation errors. The designed numerical schemes are shown to be of a bounded variance with respect to the integration time which is desirable feature for long time simulations. We also show how the discretization error can be improved to second-order accuracy in the time step by modifying the weight process in an appropriate way.

DOI : 10.1051/m2an/2020050
Classification : 65C05, 65C20, 65C40, 60J27, 60J75
Keywords: Non-equilibrium steady states, linear response, stochastic differential equations, likelihood ratio method, variance reduction
@article{M2AN_2021__55_S1_S593_0,
     author = {Plech\'a\v{c}, Petr and Stoltz, Gabriel and Wang, Ting},
     title = {Convergence of the likelihood ratio method for linear response of non-equilibrium stationary states},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {S593--S623},
     year = {2021},
     publisher = {EDP-Sciences},
     volume = {55},
     number = {Suppl\'ement},
     doi = {10.1051/m2an/2020050},
     mrnumber = {4221323},
     zbl = {07395682},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/m2an/2020050/}
}
TY  - JOUR
AU  - Plecháč, Petr
AU  - Stoltz, Gabriel
AU  - Wang, Ting
TI  - Convergence of the likelihood ratio method for linear response of non-equilibrium stationary states
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2021
SP  - S593
EP  - S623
VL  - 55
IS  - Supplément
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/m2an/2020050/
DO  - 10.1051/m2an/2020050
LA  - en
ID  - M2AN_2021__55_S1_S593_0
ER  - 
%0 Journal Article
%A Plecháč, Petr
%A Stoltz, Gabriel
%A Wang, Ting
%T Convergence of the likelihood ratio method for linear response of non-equilibrium stationary states
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2021
%P S593-S623
%V 55
%N Supplément
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/m2an/2020050/
%R 10.1051/m2an/2020050
%G en
%F M2AN_2021__55_S1_S593_0
Plecháč, Petr; Stoltz, Gabriel; Wang, Ting. Convergence of the likelihood ratio method for linear response of non-equilibrium stationary states. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 55 (2021), pp. S593-S623. doi: 10.1051/m2an/2020050

[1] S. Asmussen and P. W. Glynn, Stochastic Simulation: Algorithms and Analysis. Springer, New York, NY (2007). | MR | Zbl

[2] R. Assaraf, B. Jourdain, T. Lelièvre and R. Roux, Computation of sensitivities for the invariant measure of a parameter dependent diffusion. Stochastics Part. Differ. Equ.: Anal. Comput. 6 (2018) 125–183. | MR | Zbl

[3] V. Bally and D. Talay, The law of the Euler scheme for stochastic differential equations. I. Convergence rate of the distribution function. Probab. Theory Relat. Fields 104 (1996) 43–60. | MR | Zbl

[4] L. Rey-Bellet, Ergodic properties of Markov processes. In: Open Quantum Systems II. Springer, Berlin-Heidelberg (2006) 1–39. | MR | Zbl

[5] R. N. Bhattacharya, On the functional central limit theorem and the law of the iterated logarithm for Markov processes. Probab. Theory Relat. Fields 60 (1982) 185–201. | MR | Zbl

[6] J.-M. Bismut, Martingales, the Malliavin calculus and hypoellipticity under general Hörmander’s conditions. Z. Wahrsch. Verw. Gebiete 56 (1981) 469–505. | MR | Zbl

[7] N. Bou-Rabee and M. Hairer, Nonasymptotic mixing of the MALA algorithm. IMA J. Numer. Anal. 33 (2013) 80–110. | MR | Zbl

[8] D. J. Evans and G. Morriss, Statistical Mechanics of Nonequilibrium Liquids. Cambridge University Press (2008). | Zbl

[9] M. Fathi, A.-A. Homman and G. Stoltz, Error analysis of the transport properties of Metropolized schemes. ESAIM: Procs. 48 (2015) 341–363. | MR | Zbl

[10] M. Fathi and G. Stoltz, Improving dynamical properties of metropolized discretizations of overdamped Langevin dynamics. Numer. Math. 136 (2017) 1–58. | MR | Zbl | DOI

[11] D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order. Classics in Mathematics. Springer, Berlin-Heidelberg (2001). | MR | Zbl

[12] P. Glasserman. Monte Carlo Methods in Financial Engineering. In: Vol. 53 of Stochastic Modelling and Applied Probability. Springer, New York, NY (2013). | MR | Zbl

[13] P. W. Glynn, Likelihood ratio gradient estimation for stochastic systems. Commun. ACM 33 (1990) 75–84. | DOI

[14] P. W. Glynn and M. Olvera-Cravioto, Likelihood ratio gradient estimation for steady-state parameters. Stochastic Syst. 9 (2019) 83–181. | MR | Zbl | DOI

[15] M. Hairer and J. C. Mattingly, Yet another look at Harris’ ergodic theorem for Markov chains. In: Seminar on Stochastic Analysis, Random Fields and Applications VI, Springer, Berlin-Heidelberg (2011) 109–117. | MR | Zbl | DOI

[16] W. Kliemann, Recurrence and invariant measures for degenerate diffusions. Ann. Probab. 15 (1987) 690–707. | MR | Zbl | DOI

[17] P. E. Kloeden and E. Platen, Numerical Solution of Stochastic Differential Equations. Vol. 23 of Stochastic Modelling and Applied Probability. Springer, Berlin-Heidelberg 23 (2013). | MR | Zbl

[18] M. Kopec, Weak backward error analysis for Langevin process. BIT Numer. Math. 55 (2015) 1057–1103. | MR | Zbl | DOI

[19] B. Leimkuhler, C. Matthews and G. Stoltz, The computation of averages from equilibrium and nonequilibrium Langevin molecular dynamics. IMA J. Numer. Anal. 36 (2016) 13–79. | MR | Zbl

[20] T. Lelièvre and G. Stoltz, Partial differential equations and stochastic methods in molecular dynamics. Acta Numer. 25 (2016) 681–880. | MR | Zbl | DOI

[21] J. C. Mattingly, A. M. Stuart and M. V. Tretyakov, Convergence of numerical time-averaging and stationary measures via Poisson equations. SIAM J. Numer. Anal. 48 (2010) 552–577. | MR | Zbl | DOI

[22] S. P. Meyn and R. L. Tweedie, Markov Chains and Stochastic Stability. Springer, London (2012). | Zbl | MR

[23] B. Øksendal, Stochastic Differential Equations: An Introduction with Applications. Springer, Berlin-Heidelberg (2013). | Zbl | MR

[24] P. E. Protter, Stochastic Integration and Differential Equations. Vol. 21 of Stochastic Modelling and Applied Probability. Springer, Berlin-Heidelberg (2005). | MR | Zbl

[25] S. Redon, G. Stoltz and Z. Trstanova, Error analysis of modified Langevin dynamics. J. Stat. Phys. 164 (2016) 735–771. | MR | Zbl | DOI

[26] R. Y. Rubinstein and D. P. Kroese, Simulation and the Monte Carlo Method. Wiley Series in Probability and Statistics. John Wiley & Sons Inc., Hoboken, NJ (2017). | MR | Zbl

[27] D. Talay, Stochastic Hamiltonian systems: exponential convergence to the invariant measure, and discretization by the implicit Euler scheme. Markov Proc. Rel. Fields 8 (2002) 163–198. | MR | Zbl

[28] M. Tuckerman, Statistical Mechanics: Theory and Molecular Simulation. Oxford University Press (2010). | MR | Zbl

[29] T. Wang and P. Plecháč, Steady-state sensitivity analysis of continuous time Markov chains. SIAM J. Numer. Anal. 57 (2019) 192–217. | MR | Zbl | DOI

[30] T. Wang and M. Rathinam, Efficiency of the Girsanov transformation approach for parametric sensitivity analysis of stochastic chemical kinetics. SIAM/ASA J. Uncertainty Quant. 4 (2016) 1288–1322. | MR | Zbl | DOI

[31] T. Wang and M. Rathinam, On the validity of the Girsanov transformation method for sensitivity analysis of stochastic chemical reaction networks. Preprint: arXiv:1807.09935 (2018).

Cité par Sources :