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CONVERGENCE OF THE LIKELIHOOD RATIO METHOD FOR LINEAR
RESPONSE OF NON-EQUILIBRIUM STATIONARY STATES

Petr Plecháč1, Gabriel Stoltz2 and Ting Wang3,*

Abstract. We consider numerical schemes for computing the linear response of steady-state averages
with respect to a perturbation of the drift part of the stochastic differential equation. The schemes are
based on the Girsanov change-of-measure theory in order to reweight trajectories with factors derived
from a linearization of the Girsanov weights. The resulting estimator is the product of a time average
and a martingale correlated to this time average. We investigate both its discretization and finite-time
approximation errors. The designed numerical schemes are shown to be of a bounded variance with
respect to the integration time which is desirable feature for long time simulations. We also show how
the discretization error can be improved to second-order accuracy in the time step by modifying the
weight process in an appropriate way.
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1. Introduction

In many applications one is interested in estimating the response of the steady-state distribution of a stochastic
dynamical system with respect to a perturbation of the dynamics. For example, an important quantity of
interest in the linear response theory of statistical mechanics is the transport coefficient 𝜌 that relates the
average response of the system at its steady state to the external forcing applied to the system [8, 28], e.g.,
the mobility, the shear viscosity and the thermal conductivity. The problem admits a simple mathematical
formulation: given a stochastic process 𝑋(𝑡) with the invariant measure 𝜇, and the perturbed process 𝑋𝜀(𝑡)
with the corresponding invariant measure 𝜇𝜀, one estimates how the perturbed steady-state average of an
observable 𝜃, i.e., 𝜇𝜀(𝜃) ,

∫︀
𝜃(𝑥)𝜇𝜀(d𝑥), changes under a perturbation with magnitude 𝜀 ∈ R. That is, we are

interested in computing the derivative

𝜌(𝜃) ,
d
d𝜀
𝜇𝜀(𝜃) = lim

𝜀→0

1
𝜀

(︁
𝜇𝜀(𝜃)− 𝜇(𝜃)

)︁
. (1.1)
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Numerically, due to possible high dimensionality of the system, the averages with respect to the invariant
measure are often approximated by time averages with very long integration times appealing to the (assumed)
ergodicity of the underlying stochastic dynamics. Traditional numerical approaches for computing transport
coefficients can be classified into two main categories: (i) reformulating the linear response as an integrated cor-
relation based on the Green–Kubo formula, or (ii) approximating the derivative in (1.1) using finite differences,
see, for example, Chapter 5 of [20] for a review. We also mention another technique proposed recently in [2]
based on coupling 𝑋(𝑡) with its associated tangent process.

The aim of this work is to introduce the likelihood ratio (LR) method for computing the linear response
𝜌(𝜃). The proposed method computes 𝜌(𝜃) by re-weighting the time average of the unperturbed dynamics with
a correlated weight process 𝑍(𝑡), i.e.,

𝜌(𝜃) = lim
𝑡→∞

E
{︂

1
𝑡

∫︁ 𝑡

0

𝜃(𝑋(𝑠)) d𝑠𝑍(𝑡)
}︂
.

This method is in fact reminiscent of Bismut’s approach to Malliavin calculus [6]. However, the method, in this
simple form, is rarely used for long time simulations since it is always numerically observed that the variance
grows rapidly in terms of the integration time and thus the scheme becomes impractical for large time horizon
simulations. However, it has been shown in several works [14, 29, 30], that by taking the advantage of the fact
that the weight process 𝑍(𝑡) is a zero mean martingale, the explosion of the variance in the LR method can be
remedied by centering the estimator at the steady-state average 𝜇(𝜃), i.e.,

𝜌(𝜃) = lim
𝑡→∞

E
{︂

1
𝑡

∫︁ 𝑡

0

(𝜃(𝑋(𝑠))− 𝜇(𝜃)) d𝑠𝑍(𝑡)
}︂
. (1.2)

This simple idea leads to the centered LR (CLR) method. In particular, it has been theoretically shown for
continuous time jump Markov processes that the variance of the CLR estimator is uniformly bounded in terms
of the integration time [29], which suggests that CLR is particularly useful for steady-state sensitivity analysis.

Numerically, the application of CLR to linear response computation involves numerical discretization of the
underlying stochastic differential equation (SDE). We address sources of errors associated with the discretization
scheme of the derived CLR estimator: (i) a systematic bias which stems from the finite time step ℎ used in the
numerical discretization of the continuous time dynamics; (ii) a statistical error arising from the variance of
the CLR estimator and (iii) an error associated with the time averaging up to the (finite) time 𝑇 < ∞ in the
approximation of the steady-state average 𝜇(𝜃).

By analyzing the sources of the error we prove convergence results in the weak sense for the derived CLR
scheme. Furthermore, by appropriately modifying the weight process associated with the CLR estimator, we
introduce a second order CLR estimator that reduces the systematic bias to 𝒪(ℎ2). The variance of both
estimators, the first and second order, remains bounded with respect to the integration time and hence these
estimators are particularly efficient for approximating the linear response of non-equilibrium stationary states.
Relation to previous works. The estimation of (1.1) is also known as the steady-state sensitivity analysis in
the stochastic simulation community [1,12,26]. The LR method offers a natural estimator for sensitivity analysis
[13]. The centering for the LR method in order to reduce the variance has been studied in various works under
different settings. For instance, the steady state CLR estimator is analyzed in [14] for discrete time Markov
processes and later in [29] for continuous time Markov chains.

In this work we develop the CLR method for linear response computation in systems driven by stochastic
differential equations (SDEs). We emphasize that it is not merely a simple extension of [14, 29] to the setting
of SDE since deriving consistent estimators involves particular time discretizations of the processes 𝑋(𝑡) and
𝑍(𝑡), which are correlated. This issue was not studied previously to our knowledge.

From the numerical analysis viewpoint the main contributions of our work include: (i) a consistent dis-
cretization scheme of the continuous time CLR estimator, and (ii) theoretical tools that allow for systematically
improving the order of accuracy of the CLR estimator in ℎ through modifying the correlated weight process 𝑍(𝑡).
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As an example we provide a second order CLR estimator with the systematic bias of order 𝒪(ℎ2). The numer-
ical analysis of approximating the steady-state average 𝜇(𝜃) by time-averaging was studied in [21]. However,
the analytical tools developed there are not directly applicable to our setting since the studied CLR estimator
derived from (1.2) is not in the form of a standard time average. More precisely, we propose the discrete time
CLR estimator

1
𝑁

𝑁−1∑︁
𝑛=0

(𝜃(𝑋𝑛)− 𝜇ℎ(𝜃))𝑍𝑁 , (1.3)

which is the product of a time average and a martingale correlated to it. The discrete process 𝑍𝑛 corresponding
to approximation of the continuous time likelihood ratio process 𝑍(𝑡) is not necessarily the likelihood ratio
process associated with the discrete time process 𝑋𝑛 arising from a discretization of 𝑋(𝑡). In fact, 𝑍𝑛 is derived
from the discretization of 𝑍(𝑡) and can be replaced by a modified weight process 𝑌𝑛 as long as the martingale
structure is preserved. An example of such a modification is presented in Section 4.2 where we construct a
second-order CLR estimator. This structure is particularly useful for deriving higher order schemes and leads to
the use of additional technical tools in order to prove the consistency and the order of the proposed numerical
schemes. Similar to ideas introduced in [19,21] our theoretical analysis uses the continuous time Poisson equation
associated with the continuous dynamics driven by the underlying SDE and the discrete time Poisson equation
associated with the Markov chain generated by the numerical discretization. Poisson equations serve as the key
tool for analysing the convergence and the weak error of the CLR scheme. Based on presented regularity results
for their solutions, asymptotic expansions (in ℎ) of the weak error allow for systematically improving the order
of the CLR estimator.
Scope and organization of the paper. We do not try to address the most general setting in this paper. In
fact we assume that the state space is compact and that the diffusion term is non-degenerate. This simplifying
assumptions allows us to avoid some technical difficulties in the proofs so that we can focus on the design
of the numerical schemes. Although the current setting excludes some important applications such as the
linear response estimation for hypoelliptic systems (e.g., underdamped Langevin dynamics), we emphasize that
the results in this work can be proven in more general setting under additional assumptions. For instance,
for underdamped Langevin dynamics, we can introduce a sequence of smooth bounding functions to handle
unbounded states and obtain estimates on solutions of Poisson equations and their derivatives [18, 19], so that
the same arguments as in the proofs of the current work apply.

In Section 2, we introduce the probabilistic framework for the linear response problem and provide some
preliminaries regarding the steady-state LR method. In particular, we show that the continuous time CLR
estimator is asymptotically unbiased and it has uniformly bounded variance with respect to the integration
time 𝑇 . The weak numerical schemes that discretize the SDE and the ergodicity of the associated Markov
chains are discussed in Section 3. The main results of this work are presented in Section 4. We derive a weak
first order CLR scheme and analyze both the bias and variance of the associated estimator. The order of the
weak error is improved in Section 4.2 where we design a weak second order CLR estimator for a specific second
order discretization scheme by modifying the weight process in an appropriate way. The strategy is generalized
in Section 4.3. Our theoretical results are illustrated by a numerical example in Section 5. Several technical
results are gathered in Section 6. Finally, we comment that for the ease of presentation, most of the proofs in
this work are presented in the scalar setting although the results are stated in the multi-dimensional setting.

2. Continuous time estimator of the linear response

2.1. Linear response for non-equilibrium dynamics

We study dynamics whose evolution is dictated by a stochastic differential equation. Given a probability
space (Ω,ℱ ,P), we denote by 𝑊 (𝑡) = (𝑊 1(𝑡), . . . ,𝑊 𝑑(𝑡))𝑇 the 𝑑-dimensional standard Brownian motion on
this probability space. In order to simplify the mathematical analysis we consider the stochastic process 𝑋(𝑡)
that satisfies a SDE on the following compact state space.
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Assumption 2.1. The state space 𝒳 is the 𝑑-dimensional torus T𝑑 (where T = R/Z).

More precisely, we consider
d𝑋(𝑡) = 𝑏(𝑋(𝑡)) d𝑡+ 𝜎(𝑋(𝑡)) d𝑊 (𝑡), (2.1)

where 𝑏 : 𝒳 → R𝑑 is the drift term and 𝜎 : 𝒳 → R𝑑×𝑑 is the diffusion term. We denote the initial distribution of
𝑋(0) by 𝜇0 and by ℱ𝑡 the natural filtration associated with 𝑋(𝑡). We further assume the following conditions
on the drift and diffusion terms.

Assumption 2.2. The functions 𝑏 and 𝜎 are 𝐶∞, and the diffusion matrix 𝜎𝜎𝑇 is positive definite.

These conditions guarantee that the SDE (2.1) is non-degenerate and has a unique solution. The solution
𝑋(𝑡) of (2.1) is a Markov process with the infinitesimal generator

ℒ = 𝑏 · ∇+
1
2
𝜎𝜎𝑇 : ∇2 =

𝑑∑︁
𝑖=1

𝑏𝑖𝜕𝑖 +
1
2

𝑑∑︁
𝑖=1

𝑑∑︁
𝑗=1

𝑑∑︁
𝑘=1

𝜎𝑖𝑘𝜎𝑗𝑘𝜕𝑖𝑗 .

Assumption 2.2 ensures that ℒ is an elliptic differential operator. For 𝑘 = 1, . . . , 𝑑, we also introduce the
operators

𝒦𝑘 =
𝑑∑︁

𝑖=1

𝜎𝑖𝑘𝜕𝑖,

so that, for any 𝐶∞ test function 𝜃 : 𝒳 → R, the Itô formula reads

𝜃(𝑋(𝑡)) = 𝜃(𝑋(0)) +
∫︁ 𝑡

0

ℒ𝜃(𝑋(𝑠)) d𝑠+
𝑑∑︁

𝑘=1

∫︁ 𝑡

0

𝒦𝑘𝜃(𝑋(𝑠)) d𝑊 𝑘(𝑠).

In view of Assumptions 2.1 and 2.2 the dynamics 𝑋(𝑡) admits a unique invariant measure 𝜇 with a positive
density 𝑓 with respect to the Lebesgue measure, and hence the law of large numbers holds (see for instance [4,16]):
for any initial state 𝑋(0) ∈ 𝒳 and any observable 𝜃 ∈ 𝐿1(𝜇),

lim
𝑡→∞

1
𝑡

∫︁ 𝑡

0

𝜃(𝑋(𝑠)) d𝑡 = 𝜇(𝜃) ,
∫︁
𝒳
𝜃(𝑥)𝜇(d𝑥) P− a.s. (2.2)

Now suppose that there is a small external forcing 𝐹 : 𝒳 → R𝑑, typically non-gradient and assumed to be
𝐶∞, added to the reference drift. This leads to the following perturbed dynamics:

d𝑋𝜀(𝑡) =
(︁
𝑏(𝑋𝜀(𝑡)) + 𝜀𝐹 (𝑋𝜀(𝑡))

)︁
d𝑡+ 𝜎(𝑋𝜀(𝑡)) d𝑊 (𝑡). (2.3)

The infinitesimal generator of the perturbed dynamics, denoted by ℒ𝜀, can be written as

ℒ𝜀 = ℒ+ 𝜀 ̃︀ℒ, ̃︀ℒ = 𝐹 · ∇.

Similar to the discussion for the reference dynamics, the perturbed dynamics (2.3) has a unique solution and
admits a unique invariant measure 𝜇𝜀 with a smooth density function 𝑓𝜀 with respect to the Lebesgue measure.
For a smooth observable 𝜃, we are interested in estimating the linear response

𝜌(𝜃) = lim
𝜀→0

1
𝜀

(𝜇𝜀(𝜃)− 𝜇(𝜃)) = lim
𝜀→0

1
𝜀

∫︁
𝒳
𝜃(𝑥)(𝑓𝜀(𝑥)− 𝑓(𝑥)) d𝑥.

In fact, this linear response can be reformulated in terms of the generator ℒ and the operator ̃︀ℒ, using the
following result which provides an expansion of 𝑓𝜀 in terms of the perturbation magnitude 𝜀 (see for instance [20],
Thm. 5.1). To state it, we introduce the projection operator

Π𝜃 = 𝜃 − 𝜇(𝜃), (2.4)

and denote by 𝐿2
0(𝜇) = Π𝐿2(𝜇) the Hilbert space of square integrable functions with respect to the measure 𝜇

whose average with respect to 𝜇 is zero.
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Theorem 2.3. The operator Π ̃︀ℒℒ−1 is bounded on 𝐿2
0(𝜇), and so is its adjoint (Π ̃︀ℒℒ−1)* = ( ̃︀ℒℒ−1)*. Denoting

by 𝑟 the spectral radius of ( ̃︀ℒℒ−1)*, i.e.,

𝑟 = lim
𝑛→∞

⃦⃦⃦⃦[︁(︁ ̃︀ℒℒ−1
)︁*]︁𝑛 ⃦⃦⃦⃦1/𝑛

ℬ(𝐿2
0(𝜇))

,

the invariant probability measure 𝜇𝜀 can be written, for any 𝜀 < 𝑟−1, as 𝜇𝜀 = 𝑔𝜀𝜇, where 𝑔𝜀 ∈ 𝐿2(𝜇) admits the
following expansion in 𝜀

𝑔𝜀 =
(︁

1 + 𝜀
(︁ ̃︀ℒℒ−1

)︁*)︁−1

1 =

(︃
1 +

∞∑︁
𝑛=1

(−𝜀)𝑛
[︁(︁ ̃︀ℒℒ−1

)︁*]︁𝑛)︃
1.

A direct result of the above theorem is the following formula for the linear response

𝜌(𝜃) = −
∫︁
𝒳
̃︀ℒℒ−1 [𝜃(𝑥)− 𝜇(𝜃)] d𝑥. (2.5)

2.2. The continuous time Poisson equation

Poisson equations are a useful tool to study asymptotic properties of ergodic Markov processes, in particular,
to quantify the bias arising from finite time sampling as in [21], and the asymptotic variance of time averages
[5, 22]. Given a Markov process 𝑋(𝑡) with the generator ℒ, the Poisson equation associated with a given
observable 𝜃 is

−ℒ̂︀𝜃 = 𝜃 − 𝜇(𝜃). (2.6)

We need to provide a functional space to guarantee the well-posedness of this equation. Our analysis requires
the solution ̂︀𝜃 to be sufficiently regular. Specifically, we consider the case when ̂︀𝜃 ∈ 𝐶∞ in order to simplify
the presentation (although a careful inspection of our proofs shows that only a finite number of derivatives is
required). Such regularity holds, for example, when 𝜃 ∈ 𝐶∞(𝒳 ). Indeed, the solution ̂︀𝜃 is then well-defined (for
instance, by considering ℒ on 𝐿2

0(𝜇) and noting that this operator is invertible and has a compact resolvent),
and it is 𝐶∞ by elliptic regularity [11]. For convenience, in the sequel we denote

𝒮 = 𝐶∞(𝒳 ), 𝒮0 = Π𝒮 = {𝜃 ∈ 𝒮 : 𝜇(𝜃) = 0}.

Remark 2.4. Our analysis can be extended to degenerate stochastic dynamics for which the space 𝒮0 is
invariant under the operator ℒ−1 (in the sense that, for any 𝜃 ∈ 𝒮0, it holds ℒ−1𝜃 ∈ 𝒮0). This is the case for
instance for underdamped Langevin dynamics, upon changing the definition of 𝒮 to the space of 𝐶∞ functions
whose derivatives grow at most polynomially at infinity [18,27].

As a direct consequence of (2.5), we are ready to reformulate the linear response using the solution of the
Poisson equation (2.6).

Proposition 2.5. For any 𝜃 ∈ 𝒮, the linear response 𝜌(𝜃) can be written as

𝜌(𝜃) =
∫︁
𝒳
𝐹 (𝑥)𝑇∇̂︀𝜃(𝑥)𝜇(d𝑥),

where 𝐹 (𝑥)𝑇 denotes the transpose of 𝐹 (𝑥).
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2.3. The likelihood ratio method

In the framework of the LR method, it is convenient to interpret the probability measure P as the path-space
probability measure induced by the process 𝑋(𝑡). Similarly, we denote P𝜀 the path-space probability measure
induced by the perturbed process 𝑋𝜀(𝑡). In view of Assumption 2.2, the vector 𝜎(𝑋(𝑡))−1𝐹 (𝑋(𝑡)) is well defined
for all 𝑡 > 0. In the sequel, we denote by 𝑈 the vector 𝜎−1𝐹 , and we note that by the above assumptions 𝑈 ∈ 𝒮.
We emphasize that the invertibility of 𝜎(𝑋(𝑡)) is not necessary for the Girsanov change-of-measure theory (as
long as there is a smooth function 𝑈 such that 𝜎𝑈 = 𝐹 ) but we suppose it holds to simplify the mathematical
analysis.

For fixed 𝑡 > 0, the following stochastic exponential [23]

𝐿𝜀(𝑡) = exp
(︂
𝜀

∫︁ 𝑡

0

𝑈(𝑋(𝑠)) d𝑊 (𝑠)− 𝜀2

2

∫︁ 𝑡

0

𝑈(𝑋(𝑠))𝑇𝑈(𝑋(𝑠)) d𝑠
)︂

is well defined with mean 1 (with respect to P) and hence it is the Radon–Nikodym derivative satisfying

P𝜀(𝐴) =
∫︁

𝐴

𝐿𝜀(𝑡, 𝜔)P(𝑑𝜔)

for any ℱ𝑡 measurable set 𝐴. By the above change-of-measure we immediately have

E𝜀

{︂
1
𝑡

∫︁ 𝑡

0

𝜃(𝑋(𝑠)) d𝑠
}︂

= E
{︂(︂

1
𝑡

∫︁ 𝑡

0

𝜃(𝑋(𝑠)) d𝑠
)︂
𝐿𝜀(𝑡)

}︂
.

Remark 2.6. Throughout this paper the expectation E and the variance Var are taken with respect to the
initial distribution 𝜇0 and over all realizations of the reference dynamics (2.1).

Assuming that we can differentiate with respect to 𝜀 inside the expectation E around 𝜀 = 0 (see for instance
[1, 31]), it holds

d
d𝜀

[︂
E𝜀

{︂
1
𝑡

∫︁ 𝑡

0

𝜃(𝑋(𝑠)) d𝑠
}︂]︂

= E
{︂(︂

1
𝑡

∫︁ 𝑡

0

𝜃(𝑋(𝑠)) d𝑠
)︂
𝑍(𝑡)

}︂
,

where

𝑍(𝑡) ,
d
d𝜀
𝐿𝜀(𝑡) =

∫︁ 𝑡

0

𝑈(𝑋(𝑠)) d𝑊 (𝑠) (2.7)

is referred to as the weight process for the linear response. Note that the weight process 𝑍(𝑡) is a zero mean ℱ𝑡

martingale. The above derivation suggests using the LR estimator(︂
1
𝑡

∫︁ 𝑡

0

𝜃(𝑋(𝑠)) d𝑠
)︂
𝑍(𝑡) (2.8)

in order to approximate the linear response index 𝜌(𝜃) upon choosing 𝑡 large enough. As hinted in the introduc-
tion, there exists a simple modification of the LR estimator which consists in centering it around the steady-state
average 𝜇(𝜃) which results in the variance of this estimator to be bounded. More precisely, we consider the fol-
lowing CLR estimator (︂

1
𝑡

∫︁ 𝑡

0

(𝜃(𝑋(𝑠))− 𝜇(𝜃)) d𝑠
)︂
𝑍(𝑡). (2.9)

The following theorem states the consistency of CLR estimator. Its proof demonstrates the role of the Poisson
equation (2.6) in studying the asymptotic limit of time averages.

Theorem 2.7. For any observable 𝜃 ∈ 𝒮,

lim
𝑡→∞

E
{︂(︂

1
𝑡

∫︁ 𝑡

0

(𝜃(𝑋(𝑠))− 𝜇(𝜃)) d𝑠
)︂
𝑍(𝑡)

}︂
= 𝜌(𝜃).
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In fact, convergence rates in terms of inverse powers of 𝑡 can be stated but we refrain from doing so. We
only prove the result for the one-dimensional case 𝑑 = 1. The generalization to the multi-dimensional case is
straightforward.

Proof. Throughout this proof and the following ones, 𝐶 denotes a generic positive constant which depends
only on 𝜃. In view of the continuous time Poisson equation (2.6) the expectation of the CLR estimator can be
rewritten as

−E
{︂(︂

1
𝑡

∫︁ 𝑡

0

ℒ̂︀𝜃(𝑋(𝑠)) d𝑠
)︂
𝑍(𝑡)

}︂
= −E

{︂
1
𝑡

[︁̂︀𝜃(𝑋(𝑡))− ̂︀𝜃(𝑋(0))
]︁
𝑍(𝑡)

}︂
+

1
𝑡
E
{︂[︂̂︀𝜃(𝑋(𝑡))− ̂︀𝜃(𝑋(0))−

∫︁ 𝑡

0

ℒ̂︀𝜃(𝑋(𝑠)) d𝑠
]︂
𝑍(𝑡)

}︂
.

(2.10)

By the Cauchy–Schwarz inequality and Itô’s isometry,

E{|𝑍(𝑡)|} 6 E{𝑍(𝑡)2}1/2 = E
{︂∫︁ 𝑡

0

𝑈(𝑋(𝑠))2 d𝑠
}︂1/2

6 𝐶
√
𝑡. (2.11)

Since ̂︀𝜃 is bounded (see Sect. 2.2)

E
{︂

1
𝑡

[︁̂︀𝜃(𝑋(𝑡))− ̂︀𝜃(𝑋(0))
]︁
𝑍(𝑡)

}︂
6
𝐶

𝑡
E{|𝑍(𝑡)|} 6 𝐶√

𝑡

which converges to zero as 𝑡 → ∞. Consider now the second term on the right-hand side of (2.10). By Itô’s
formula ̂︀𝜃(𝑋(𝑡))− ̂︀𝜃(𝑋(0))−

∫︁ 𝑡

0

ℒ̂︀𝜃(𝑋(𝑠)) d𝑠 =
∫︁ 𝑡

0

𝒦̂︀𝜃(𝑋(𝑠)) d𝑊 (𝑠)

which is a ℱ𝑡 martingale. Recall that 𝑍(𝑡) =
∫︀ 𝑡

0
𝑈(𝑋(𝑠)) d𝑊 (𝑠) and both 𝒦̂︀𝜃(𝑋(𝑠)) and 𝑈(𝑋(𝑠)) are square

integrable with respect to the product measure d𝑡× P(𝑑𝜔). Therefore

E
{︂∫︁ 𝑡

0

𝒦̂︀𝜃(𝑋(𝑠)) d𝑊 (𝑠)
∫︁ 𝑡

0

𝑈(𝑋(𝑠)) d𝑊 (𝑠)
}︂

= E
{︂∫︁ 𝑡

0

𝐹 (𝑋(𝑠))̂︀𝜃′(𝑋(𝑠)) d𝑠
}︂
.

Now, the continuous time Poisson solution ̂︀𝜃 is in 𝒮0 (see Sect. 2.2), hence the ergodicity of 𝑋(𝑡) implies that

lim
𝑡→∞

1
𝑡

∫︁ 𝑡

0

𝐹 (𝑋(𝑠))̂︀𝜃′(𝑋(𝑠)) d𝑠 =
∫︁
𝒳
𝐹 (𝑥)̂︀𝜃′(𝑥)𝜇(d𝑥)

almost surely. Finally, the desired result follows by dominated convergence and Proposition 2.5. �

The result roughly says that the average response to a perturbation of the dynamics (2.1) can be computed
from the unperturbed dynamics by re-weighting the observable with the weight process 𝑍(𝑡). The next result
shows that the variance of the CLR estimator remains bounded in terms of the integration time which is a
desirable feature for long time simulations.

Theorem 2.8. For any observable 𝜃 ∈ 𝒮 there exists a constant 𝐶 > 0 such that

∀𝑡 > 0, Var
{︂(︂

1
𝑡

∫︁ 𝑡

0

(𝜃(𝑋(𝑠))− 𝜇(𝜃)) d𝑠
)︂
𝑍(𝑡)

}︂
6 𝐶.
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Proof. Using the decomposition (2.10) as in the proof of the last theorem and the Cauchy–Schwarz inequality
we bound the second moment of the CLR estimator by

2
𝑡2

E
{︂[︁̂︀𝜃(𝑋(𝑡))− ̂︀𝜃(𝑋(0))

]︁2
𝑍(𝑡)2

}︂
+

2
𝑡2

E

{︃[︂∫︁ 𝑡

0

𝒦̂︀𝜃(𝑋(𝑠)) d𝑊 (𝑠)
]︂2
𝑍(𝑡)2

}︃
.

In view of (2.11) the first term can be simply further bounded by 𝐶/𝑡. It remains to bound the second term.
We first apply the Cauchy–Schwarz inequality to obtain

E

{︃[︂∫︁ 𝑡

0

𝒦̂︀𝜃(𝑋(𝑠)) d𝑊 (𝑠)
]︂2
𝑍(𝑡)2

}︃
6 E

{︃[︂∫︁ 𝑡

0

𝒦̂︀𝜃(𝑋(𝑠)) d𝑊 (𝑠)
]︂4}︃1/2

E
{︀
𝑍(𝑡)4

}︀1/2
.

By the Burkholder–Davis–Gundy inequality [24],

E

{︃[︂∫︁ 𝑡

0

𝒦̂︀𝜃(𝑋(𝑠)) d𝑊 (𝑠)
]︂4}︃

6 𝐶E

{︃(︂∫︁ 𝑡

0

[︁
𝒦̂︀𝜃(𝑋(𝑠))

]︁2
d𝑠
)︂2
}︃
6 𝐶𝑡2,

where we have used the fact that 𝒦̂︀𝜃 is uniformly bounded on the state space 𝒳 . Similarly, we have

E
{︀
𝑍(𝑡)4

}︀
6 𝐶E

{︃[︂∫︁ 𝑡

0

𝑈(𝑋(𝑠))2 d𝑠
]︂2}︃

6 𝐶𝑡2.

Taking the square root of the above estimates and then re-scaling them by 𝑡2 yields the desired bound. �

3. The discrete dynamics approximation

Theorem 2.7 justifies that both the LR and CLR estimators are asymptotically unbiased. However, in practice,
we need to introduce a time step ℎ to discretize the continuous dynamics 𝑋(𝑡) and obtain a discrete time
dynamics 𝑋𝑛. In this section we present a discrete numerical approximation to the continuous dynamics 𝑋(𝑡).
Furthermore, we establish ergodicity results for the resulting discrete Markov chain.

3.1. Weak numerical schemes

A weak numerical scheme that discretizes the SDE (2.1) generates a discrete time Markov chain 𝑋𝑛 with the
evolution operator

(𝑃ℎ𝜃) (𝑥) , Eℎ{𝜃(𝑋𝑛+1) | 𝑋𝑛 = 𝑥} (3.1)

for any 𝜃 ∈ 𝒮.

Remark 3.1. Throughout this paper, in order to alleviate the notation, we denote by 𝜙𝑛 = 𝜙(𝑋𝑛) for a given
function 𝜙. The expectation Eℎ and the variance Varℎ are taken with respect to the initial distribution 𝜇0 and
over all realizations of the discrete time Markov chain 𝑋𝑛 with time step ℎ.

Furthermore, in order to keep the presentation of calculations in the proofs simple we treat the scalar case
(𝑑 = 1) in analysis of the CLR estimator. We detail the algebraic calculation for the multi-dimensional case in
Appendix A. In the multi-dimensional case the analysis and proofs generalize directly for the weak first-order
CLR estimator. However, in the case of the second-order CLR estimator it is necessary to assume that the noise
coefficient 𝜎 is constant.

For the ease of exposition, we consider particular weak first and second order schemes that approximate the
process 𝑋(𝑡). Specifically, we focus on the Euler–Maruyama scheme

𝑋𝑛+1 = 𝑋𝑛 + 𝑏𝑛ℎ+ 𝜎𝑛∆𝑊𝑛, (3.2)
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for the weak first order scheme, where

∆𝑊𝑛
𝑑= 𝑊 ((𝑛+ 1)ℎ)−𝑊 (𝑛ℎ) ∼ 𝒩 (0, ℎId𝑑),

and 𝑏𝑛 ≡ 𝑏(𝑋𝑛), 𝜎𝑛 ≡ 𝜎(𝑋𝑛). For the weak second order scheme, we consider the scheme

𝑋𝑖
𝑛+1 = 𝑋𝑖

𝑛 + 𝑏𝑖𝑛ℎ+
𝑑∑︁

𝑘=1

𝜎𝑖𝑘
𝑛 ∆𝑊 𝑘

𝑛 +
1
2

𝑑∑︁
𝑘=1

(ℒ𝜎𝑖𝑘
𝑛 +𝒦𝑘𝑏𝑖𝑛)ℎ∆𝑊 𝑘

𝑛

+
1
2

𝑑∑︁
𝑘1,𝑘2=1

𝒦𝑘1𝜎𝑖𝑘2
𝑛

(︀
∆𝑊 𝑘1

𝑛 ∆𝑊 𝑘2
𝑛 + 𝑉 𝑘1𝑘2

𝑛

)︀
+

1
2
ℒ𝑏𝑖𝑛ℎ2, 𝑖 = 1, . . . , 𝑑

(3.3)

derived from the second order Itô–Taylor expansion, where ∆𝑊 𝑘
𝑛 is the 𝑘th component of ∆𝑊𝑛 and 𝑉 𝑘1𝑘2

𝑛 are
independent random variables with

P(𝑉 𝑘1𝑘2
𝑛 = ±ℎ) =

1
2
, 𝑘2 = 1, . . . , 𝑘1 − 1,

𝑉 𝑘1𝑘2
𝑛 = −ℎ, 𝑘2 = 𝑘1,

𝑉 𝑘2𝑘1
𝑛 = −𝑉 𝑘1𝑘2

𝑛 𝑘2 = 𝑘1 + 1, . . . , 𝑑. (3.4)

We refer, for instance, to [17] for a derivation and analysis of the above scheme. In the sequel we denote by Φℎ

the increment function such that
𝑋𝑛+1 = 𝑋𝑛 + Φℎ(𝑋𝑛,∆𝑊𝑛, 𝑉𝑛).

Remark 3.2. In fact, for the first order scheme (3.2) there is no need for considering 𝑉𝑛 in the argument, and
we will therefore simply write 𝑋𝑛+1 = 𝑋𝑛 + Φℎ(𝑋𝑛,∆𝑊𝑛). We will often write Φℎ,𝑛 instead of Φℎ(𝑋𝑛,∆𝑊𝑛)
to further simplify the notation. We also use the same notation (e.g., 𝑋𝑛, 𝑃ℎ, ̂︀𝜃, Φℎ, etc.) both for the first and
second order schemes. The weak order of the corresponding scheme associated with these notations should be
clear from the context.

Next, we provide the consistency of numerical time-averaging using the above two schemes. The proof is
essentially the same as that in [21]. The only difference is that our estimates are uniform for a family of smooth
functions (typically indexed by the time step ℎ), which turns out to be crucial for our analysis of the CLR
estimator in the next section. The norms ‖ · ‖𝐶𝑘 for 𝑘 > 1 are the standard norms associated with the Banach
spaces of 𝐶𝑘 functions on 𝒳 .

Proposition 3.3. There exists a constant ℎ* > 0 and 𝐶 ∈ R+ such that, for any ℎ ∈ (0, ℎ*] and any 𝜙 ∈ 𝒮,⃒⃒⃒⃒
⃒ 1
𝑁

𝑁−1∑︁
𝑛=0

Eℎ {𝜙𝑛} − 𝜇(𝜙)

⃒⃒⃒⃒
⃒ 6 𝐶‖𝜙‖𝐶2𝑝

(︂
ℎ𝑝 +

1
𝑁ℎ

)︂
,

where 𝑝 = 1 for the first order scheme (3.2) and 𝑝 = 2 for the second order scheme (3.3).

We state the estimate for 𝜙 ∈ 𝒮 since the functions we shall manipulate in the proofs will always belong to
the latter functional space, but the above estimate can be obviously extended by density to any function in 𝐶2𝑝.

Proof. We follow the proof of [21]. We denote by 𝐶 ∈ R+ a generic constant that may change line by line. We
first prove the statement for 𝑝 = 1. Recall also that we write the proof in the one-dimensional setting 𝑑 = 1
for simplicity, but it can be extended in a straightforward way to spaces of higher dimensions. Fix 𝜙 ∈ 𝒮 and
denote by ̂︀𝜙 the solution to the continuous time Poisson equation:

−ℒ̂︀𝜙 = 𝜙− 𝜇(𝜙). (3.5)
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We recall that Φℎ,𝑛 = 𝑏𝑛ℎ+ 𝜎𝑛∆𝑊𝑛 for the first order scheme. Since ̂︀𝜙 ∈ 𝒮0 (see Sect. 2.2), we can expand

̂︀𝜙𝑛+1 = ̂︀𝜙𝑛 + ̂︀𝜙′𝑛Φℎ,𝑛 +
1
2
̂︀𝜙(2)

𝑛 Φ2
ℎ,𝑛 +

1
6
̂︀𝜙(3)

𝑛 Φ3
ℎ,𝑛 + 𝑟̂︀𝜙(𝑋𝑛),

where

𝑟̂︀𝜙(𝑋𝑛) =
(︂

1
6

∫︁ 1

0

𝑢3 ̂︀𝜙(4)(𝑋𝑛 + 𝑢Φℎ,𝑛) 𝑑𝑢
)︂

Φ4
ℎ,𝑛.

Taking expectation of both sides and rearranging terms leads to

Eℎ {̂︀𝜙𝑛+1} = Eℎ {̂︀𝜙𝑛}+ Eℎ {ℒ̂︀𝜙𝑛}ℎ+
1
2

Eℎ

{︁̂︀𝜙(2)
𝑛 𝑏2𝑛 + ̂︀𝜙(3)

𝑛 𝑏𝑛𝜎
2
𝑛

}︁
ℎ2

+
1
6

Eℎ

{︁̂︀𝜙(3)
𝑛 𝑏3𝑛

}︁
ℎ3 + Eℎ {𝑟̂︀𝜙(𝑋𝑛)} .

Note that, by elliptic regularity [11], the solution ̂︀𝜙 to (3.5) and its derivatives (up to 4th order here) can be
bounded by 𝐶0‖𝜙‖𝐶2 , where 𝐶0 ∈ R+ depends on the coefficients 𝑏, 𝜎 in the SDE (2.1) but is independent of 𝜙.
Also note that 𝑏, 𝜎 and their derivatives are uniformly bounded. Thus there exists a constant 𝐶, independent
of 𝜙, such that

|Eℎ {̂︀𝜙𝑛+1} − Eℎ {̂︀𝜙𝑛} − Eℎ {ℒ̂︀𝜙𝑛}ℎ| 6 𝐶‖𝜙‖𝐶2ℎ2.

In view of the above inequality and the Poisson equation (3.5) we obtain⃒⃒⃒⃒
Eℎ {𝜙𝑛} − 𝜇(𝜙) +

1
ℎ

Eℎ {̂︀𝜙𝑛+1 − ̂︀𝜙𝑛}
⃒⃒⃒⃒
6 𝐶‖𝜙‖𝐶2ℎ.

Summing the terms between the absolute values of the above inequalities over 𝑛 and dividing by 𝑁 gives⃒⃒⃒⃒
⃒ 1
𝑁

𝑁−1∑︁
𝑛=0

Eℎ {𝜙𝑛} − 𝜇(𝜙) +
1
𝑁ℎ

Eℎ {̂︀𝜙𝑁 − ̂︀𝜙0}

⃒⃒⃒⃒
⃒ 6 𝐶‖𝜙‖𝐶2ℎ. (3.6)

The desired estimate then follows immediately since |̂︀𝜙𝑁 − ̂︀𝜙0| 6 2𝐶0‖𝜙‖𝐶2 (in fact, it is possible to replace
‖𝜙‖𝐶2 by ‖𝜙‖𝐶0 in the latter inequality).

For the case 𝑝 = 2 an estimate similar to (3.6) holds:⃒⃒⃒⃒
Eℎ {̂︀𝜙𝑛+1} − Eℎ {̂︀𝜙𝑛} − Eℎ {ℒ̂︀𝜙𝑛}ℎ−

1
2

Eℎ

{︀
ℒ2 ̂︀𝜙𝑛

}︀
ℎ2

⃒⃒⃒⃒
6 𝐶‖𝜙‖𝐶4ℎ3,

where the remainder is now bounded by derivatives of 𝜙 of order 4 at most (since it involves derivatives of ̂︀𝜙 of
order 6 at most). Combining the above estimate with the Poisson equation leads to⃒⃒⃒⃒

⃒ 1
𝑁

𝑁−1∑︁
𝑛=0

Eℎ {𝜙𝑛} − 𝜇(𝜙) +
ℎ

2𝑁

𝑁−1∑︁
𝑛=0

Eℎ {ℒ𝜙𝑛}

⃒⃒⃒⃒
⃒ 6 𝐶

(︂
ℎ2 +

1
𝑁ℎ

)︂
‖𝜙‖𝐶4 . (3.7)

It remains to estimate the term of order ℎ on the left hand side of the above inequality. To this end we apply
the estimate (3.6) to the function ℒ𝜙 and use the fact that 𝜇(ℒ𝜙) = 0 which implies⃒⃒⃒⃒

⃒ ℎ2𝑁
𝑁−1∑︁
𝑛=0

Eℎ {ℒ𝜙𝑛}

⃒⃒⃒⃒
⃒ 6 𝐶‖ℒ𝜙‖𝐶2

(︂
ℎ2 +

1
𝑁

)︂
6 𝐶 ′‖𝜙‖𝐶4

(︂
ℎ2 +

1
𝑁

)︂
for some constant 𝐶 ′ > 0. The desired error estimate follows by combining the above estimate with (3.7). �

We emphasize that the above result does not rely on the ergodicity of the discrete chain 𝑋𝑛 (see [21]).
However, as will be seen in Section 4, we need some ergodicity to study the CLR estimator for linear response
estimation. We therefore discuss the ergodicity and the discrete Poisson equation associated with the discrete
chain 𝑋𝑛 in the remainder of this section.
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3.2. Ergodicity of the discrete chain

The existence and uniqueness of an invariant probability measure of a Markov chain, and its exponential
ergodicity, can be obtained by assuming that the evolution operator 𝑃ℎ satisfies both a Lyapunov condition
and a minorization condition [15,22]. Here, the Lyapunov condition is trivially satisfied since the configuration
space 𝒳 is compact (the Lyapunov function being the constant function equal to 1). As for the minorization
condition, we need a slightly stronger version than the usual minorization condition, which requires that the
constant and the probability measure are independent of the time step ℎ provided it is sufficiently small.

Assumption 3.4 (Uniform minorization condition). Given the evolution operator 𝑃ℎ associated with either
(3.2) or (3.3) and a fixed final integration time 𝑇 > 0, there exist a maximum time step ℎ* > 0, a constant
𝜂 > 0 and a probability measure 𝜆, such that for any ℎ ∈ (0, ℎ*] and any 𝑥 ∈ 𝒳 ,

𝑃
⌈𝑇/ℎ⌉
ℎ (𝑥, d𝑦) > 𝜂𝜆(d𝑦). (3.8)

We emphasize that the constants 𝜂 and the probability measure 𝜆 are independent of the time step ℎ provided
that ℎ 6 ℎ*. This assumption can be justified for some important cases. See for example [7] for discretizations
of overdamped Langevin dynamics, as well as [3] for results which allow to deduce a minorization condition for
the numerical schemes from a minorization condition from the underlying continuous dynamics. The strategy
of proofs of these works can be straightforwardly adapted to the schemes we consider here since the diffusion
matrix 𝜎𝜎𝑇 is bounded below (in the sense of symmetric matrices) by a positive constant.

We are now in position to state the exponential ergodicity result directly obtained from [15] which also
provides the existence and uniqueness of the invariant probability measure of the Markov chain. We introduce
the space 𝐵∞ of bounded measurable functions endowed with the norm ‖𝜙‖𝐵∞ = sup𝑥∈𝒳 |𝜙(𝑥)|.

Theorem 3.5. There exists a maximum time step ℎ* > 0 such that, for any ℎ ∈ (0, ℎ*], the Markov chain
associated with 𝑃ℎ has a unique invariant measure 𝜇ℎ. Furthermore, there exist constants 𝜅, 𝐶 > 0 that are
independent of ℎ such that, for any function 𝜃 ∈ 𝐵∞,

∀𝑚 ∈ N+, ‖𝑃𝑚
ℎ 𝜃 − 𝜇ℎ(𝜃)‖𝐵∞ 6 𝐶e−𝜅𝑚ℎ‖𝜃‖𝐵∞ . (3.9)

3.3. The discrete time Poisson equation

We present a few useful results on the Poisson equation associated with the discrete chain 𝑋𝑛:[︂
𝐼 − 𝑃ℎ

ℎ

]︂ ̂︀𝜃ℎ = 𝜃 − 𝜇ℎ(𝜃). (3.10)

We first show that the solution ̂︀𝜃ℎ is well defined. We introduce the Banach space 𝐵∞ℎ of bounded measurable
functions with average 0 with respect to 𝜇ℎ. A direct consequence of Theorem 3.5 is that, for any 𝑚 ∈ N+,

‖𝑃𝑚
ℎ ‖ℬ(𝐵∞ℎ ) 6 𝐶e−𝜅𝑚ℎ,

where ‖ · ‖ℬ(𝐵∞ℎ ) is the operator norm on 𝐵∞ℎ . This estimates immediately implies that

(𝐼 − 𝑃ℎ)−1 =
∞∑︁

𝑚=0

𝑃𝑚
ℎ

is a convergent series and the inverse is well defined on ℬ(𝐵∞ℎ ) with

⃦⃦
(𝐼 − 𝑃ℎ)−1

⃦⃦
ℬ(𝐵∞ℎ )

6
∞∑︁

𝑚=0

‖𝑃𝑚
ℎ ‖ℬ(𝐵∞ℎ ) 6

𝐶

1− e−𝜅ℎ
(3.11)
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for ℎ ∈ (0, ℎ*] (with ℎ* as defined in Thm. 3.5). Therefore, the solution to the discrete Poisson equation (3.10)
exists and is unique with the following bound for any ℎ ∈ (0, ℎ*],⃦⃦⃦̂︀𝜃ℎ

⃦⃦⃦
𝐵∞
6 ℎ

⃦⃦
(𝐼 − 𝑃ℎ)−1

⃦⃦
ℬ(𝐵∞ℎ )

‖𝜃 − 𝜇ℎ(𝜃)‖𝐵∞ℎ
6

𝐶ℎ

1− e−𝜅ℎ
‖𝜃 − 𝜇ℎ(𝜃)‖𝐵∞ℎ

. (3.12)

Note that the last term in the above series of inequalities is uniformly bounded for ℎ ∈ (0, ℎ*].
The above estimates provide a control of the discrete Poisson solution. However, this is not sufficient to justify

the consistency of the CLR methods since this requires a control of the derivatives of ̂︀𝜃ℎ as well. Unfortunately,
the regularity of ̂︀𝜃ℎ is not so easy to obtain directly from the Poisson equation. It may even not hold for evolution
operators which are not fully regularizing, as is the case for Metropolis-type evolutions. Nevertheless, we can
overcome this difficulty by using the following technical result whose proof is postponed to Section 6.1. It shows
that the solution to the discrete Poisson equation can be approximated at arbitrary order in powers of ℎ by a
smooth function.

Theorem 3.6. Suppose that 𝑃ℎ admits the following expansion in powers of ℎ: there exists 𝑝 > 1 such that

𝑃ℎ = 𝐼 + ℎ𝒜1 + . . .+ ℎ𝑝+1𝒜𝑝+1 + ℎ𝑝+2ℛ𝑝,ℎ, (3.13)

where 𝒜1, . . . ,𝒜𝑝+1 are differential operators of finite order with smooth coefficients, and ℛ𝑝,ℎ is uniformly
bounded for ℎ bounded in the following sense: for any 𝑘 > 1, there exists ℓ𝑘 > 1, 𝑅𝑘 ∈ R+ and ℎ*𝑘 > 0 such that

∀ℎ ∈ (0, ℎ*𝑘], ∀𝜙 ∈ 𝒮, ‖ℛ𝑝,ℎ𝜙‖𝐶𝑘 6 𝑅𝑘‖𝜙‖𝐶ℓ𝑘 .

Assume also that 𝒜−1
1 maps 𝒮0 to 𝒮0 in the following sense: for any 𝑘 > 1, there exists 𝑚𝑘 > 1, 𝐾𝑘 ∈ R+ and

ℎ*𝑘 > 0 such that
∀ℎ ∈ (0, ℎ*𝑘], ∀𝜙 ∈ 𝒮0,

⃦⃦
𝒜−1

1 𝜙
⃦⃦

𝐶𝑘 6 𝐾𝑘‖𝜙‖𝐶𝑚𝑘 .

Then, for any ℎ > 0, there exists a function ̃︀𝜃ℎ ∈ 𝒮0 which approximates the solution ̂︀𝜃ℎ to the discrete Poisson
in the following sense:

Π
[︂
𝐼 − 𝑃ℎ

ℎ

]︂
Π
(︁̃︀𝜃ℎ − ̂︀𝜃ℎ

)︁
= ℎ𝑝+1𝜑ℎ,𝑝,𝜃, (3.14)

where 𝜑ℎ,𝑝,𝜃 ∈ 𝒮0 is uniformly bounded in the following sense: for any 𝑟 > 1, there exists 𝑀𝑟 ∈ R+ and ℎ𝑟 > 0
such that

∀ℎ ∈ (0, ℎ𝑟], ‖𝜑ℎ,𝑝,𝜃‖𝐶𝑟 6𝑀𝑟. (3.15)

Moreover, when 𝒜1 = ℒ, there exists 𝐶𝜃 ∈ R+ and ℎ* > 0 such that, for any ℎ ∈ (0, ℎ*],⃦⃦⃦̃︀𝜃ℎ − ̂︀𝜃⃦⃦⃦
𝐵∞

+
⃦⃦⃦
∇̃︀𝜃ℎ −∇̂︀𝜃⃦⃦⃦

𝐵∞
6 𝐶𝜃ℎ. (3.16)

Note that an immediate consequence of (3.14) is that

̃︀𝜃ℎ − ̂︀𝜃ℎ = ℎ𝑝+1

[︂
𝐼 − 𝑃ℎ

ℎ

]︂−1

(𝜑ℎ,𝑝,𝜃 − 𝜇ℎ(𝜑ℎ,𝑝,𝜃)), (3.17)

which allows to prove that
⃦⃦⃦̃︀𝜃ℎ − ̂︀𝜃ℎ

⃦⃦⃦
𝐵∞
6 𝐶ℎ𝑝+1. Indeed, (3.14) is equivalent to[︂

𝐼 − 𝑃ℎ

ℎ

]︂
(̃︀𝜃ℎ − ̂︀𝜃ℎ) = 𝐶ℎ + ℎ𝑝+1𝜑ℎ,𝑝,𝜃,

where the constant 𝐶ℎ equals 𝜇
(︁
ℎ−1[𝐼 − 𝑃ℎ](̃︀𝜃ℎ − ̂︀𝜃ℎ)

)︁
. Since the left-hand side of the above equation is of zero

mean with respect to 𝜇ℎ, it holds 𝐶ℎ = −ℎ𝑝+1𝜇ℎ(𝜑ℎ,𝑝,𝜃). Finally, (3.17) follows from (3.11) since the inverse
of ℎ−1(𝐼 − 𝑃ℎ) can be applied to the function 𝜑ℎ,𝑝,𝜃 − 𝜇ℎ(𝜑ℎ,𝑝,𝜃).
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Remark 3.7. Let us comment on the fact we have defined so far solutions to three Poisson equations: the
solution ̂︀𝜃 to the Poisson equation (2.6) associated with the continuous dynamics, the solution ̂︀𝜃ℎ to the Poisson
equation (3.10) associated with the discrete dynamics, and the approximation ̃︀𝜃ℎ of ̂︀𝜃ℎ defined in (3.14). Note
that the actual Monte Carlo estimators in this paper do not involve ̃︀𝜃ℎ, which are defined solely for the purpose
of the mathematical analysis.

4. Linear response estimation based on the CLR scheme

We are now in a position to present numerical schemes for linear response estimation based on the CLR
method.

4.1. Weak first order CLR scheme

In this section we present the weak first order CLR scheme that we propose for estimating the linear response
index 𝜌(𝜃). We recall the continuous time CLR estimator defined in (2.9). The weak first order CLR estimator
we propose is

ℳ[1]
ℎ,𝑁 (𝜃) =

1
𝑁

𝑁−1∑︁
𝑛=0

(𝜃𝑛 − 𝜇ℎ(𝜃))𝑍𝑁 , (4.1)

where

𝑍𝑁 =
𝑁−1∑︁
𝑛=0

(𝜎−1
𝑛 𝐹𝑛)𝑇 ∆𝑊𝑛. (4.2)

Note that ℳ[1]
ℎ,𝑁 (𝜃) is simply a discrete approximation to (2.9). It is important to note that we do not require

the discrete time process 𝑍𝑛 to be the likelihood ratio process associated with the discrete chain 𝑋𝑛. Instead,
𝑍𝑛 is simply a discretization of the continuous time likelihood ratio process 𝑍(𝑡).

Algorithm 1. Pseudo-code of the first order CLR algorithm.
1: Choose integration time 𝑇 , time step ℎ, number of realizations 𝑠
2: Define number of steps 𝑁 = ⌊𝑇/ℎ⌋
3: for 𝑖 = 1 : 𝑠 do
4: Initialize the initial state 𝑋

(𝑖)
0 ∼ 𝜇0, 𝑍

(𝑖)
0 = 0 and the running average 𝛼

(𝑖)
0 = 0

5: for 𝑛 = 1 : 𝑁 do
6: Update 𝛼

(𝑖)
𝑛+1 = 𝛼

(𝑖)
𝑛 + 𝑁−1𝜃

(︁
𝑋

(𝑖)
𝑛

)︁

7: Generate random numbers Δ𝑊
(𝑖)
𝑛 ∼ 𝑁(0, ℎId𝑑)

8: Update 𝑋
(𝑖)
𝑛+1 = 𝑋

(𝑖)
𝑛 + Φℎ

(︁
𝑋

(𝑖)
𝑛 , Δ𝑊

(𝑖)
𝑛

)︁

9: Update 𝑍
(𝑖)
𝑛+1 = 𝑍

(𝑖)
𝑛 + 𝜎

(︁
𝑋

(𝑖)
𝑛

)︁−1

𝐹
(︁
𝑋

(𝑖)
𝑛

)︁
Δ𝑊

(𝑖)
𝑛

10: Increment 𝑛 → 𝑛 + 1
11: end for
12: end for

13: Compute the empirical average 𝛼̄𝑁 = 𝑠−1
𝑠∑︁

𝑖=1

𝛼
(𝑖)
𝑁

14: return 𝑠−1
𝑠∑︁

𝑖=1

(︁
𝛼

(𝑖)
𝑁 − 𝛼̄𝑁

)︁
𝑍

(𝑖)
𝑁

The pseudo-code of the first order CLR algorithm is presented in Algorithm 1. The CLR estimator is an
ensemble average estimator based on multiple trajectories rather than an ergodic average estimator based on a
single long trajectory.
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Remark 4.1. Other centering could be considered, in particular, by finding the value 𝛼*𝑁,𝑠 which minimizes

the empirical variance of 𝑠−1
∑︀𝑠

𝑖=1(𝛼(𝑖)
𝑁 − 𝑎)𝑍(𝑖)

𝑁 with respect to 𝑎. A simple computation shows that

𝛼*𝑁,𝑠 =
Cov𝑠(𝛼𝑁𝑍𝑁 , 𝑍𝑁 )

Cov𝑠(𝑍𝑁 , 𝑍𝑁 )
,

where

Cov𝑠(𝑋,𝑌 ) =
1
𝑠

𝑠∑︁
𝑖=1

𝑋(𝑖)𝑌 (𝑖) −

(︃
1
𝑠

𝑠∑︁
𝑖=1

𝑋(𝑖)

)︃(︃
1
𝑠

𝑠∑︁
𝑖=1

𝑌 (𝑖)

)︃
.

Of course, 𝛼*𝑁,𝑠 converges to 𝜇ℎ(𝜃) as 𝑁, 𝑠 → +∞. However, our numerical experience shows that there is not
much benefit from centering by 𝛼*𝑁,𝑠 rather than by the empirical average 𝛼̄𝑁 , hence we therefore study the
latter one for simplicity.

4.1.1. Consistency of the first order CLR scheme

The following result shows that the estimator (4.1) is consistent in the limits ℎ→ 0 and 𝑇 = 𝑁ℎ→ +∞.

Theorem 4.2. Fix an observable 𝜃 ∈ 𝒮 and consider the weak first order scheme (3.2). There exist ℎ* > 0 and
𝐶 ∈ R+ such that, for any ℎ ∈ (0, ℎ*]⃒⃒⃒

Eℎ

{︁
ℳ[1]

ℎ,𝑁 (𝜃)
}︁
− 𝜌(𝜃)

⃒⃒⃒
6 𝐶

(︂
ℎ+

1√
𝑁ℎ

)︂
· (4.3)

Note that the bias has two origins: one part is related to the time step ℎ, and is proportional to ℎ, as expected
for a scheme of weak order 1; the second part of the bias arises from the fact that the integration time 𝑇 is finite,
and it scales as 𝑇−1/2. The fact that the latter error is larger than the 1/𝑇 error for standard time averages (as
shown in Thm. 3.3) is due to the martingale 𝑍𝑁 .

Proof. We rewrite the CLR estimator using the discrete Poisson equation (3.10)

1
𝑁

𝑁−1∑︁
𝑛=0

Eℎ {(𝜃𝑛 − 𝜇ℎ(𝜃))𝑍𝑁} =
1
𝑁ℎ

𝑁−1∑︁
𝑛=0

Eℎ

{︁
(𝐼 − 𝑃ℎ)̂︀𝜃ℎ,𝑛𝑍𝑁

}︁
,

where 𝑃ℎ
̂︀𝜃ℎ,𝑛 stands for (𝑃ℎ

̂︀𝜃ℎ)(𝑋𝑛). Since 𝑍𝑁 is of mean zero it can be readily verified that the right-hand
side of the above equation equals

1
𝑁ℎ

𝑁−1∑︁
𝑛=0

Eℎ

{︁[︁
Π(𝐼 − 𝑃ℎ)Π̂︀𝜃ℎ,𝑛

]︁
𝑍𝑁

}︁
.

The motivation for introducing the projection operator Π into the estimator is to replace ̂︀𝜃ℎ by its approximatioñ︀𝜃ℎ (see (3.14)) whose derivatives can be controlled. For the Euler–Maruyama scheme (3.2) it can be shown that
the evolution semigroup admits the expansion

𝑃ℎ𝜙 = 𝜙+ ℒ𝜙ℎ+𝒜2𝜙ℎ
2 +ℛ1,ℎ𝜙ℎ

3, (4.4)

where 𝒜2,ℛ1,ℎ satisfy the assumptions of Theorem 3.6; see for instance Section 3.3.2 of [20] for explicit expres-
sions, although the action of the operators 𝒜2 and ℛ1,ℎ on the right-hand side of (4.4) need not be made precise.
By choosing 𝑝 = 1 in Theorem 3.6

1
𝑁ℎ

𝑁−1∑︁
𝑛=0

Eℎ

{︁[︁
Π(𝐼 − 𝑃ℎ)Π̂︀𝜃ℎ,𝑛

]︁
𝑍𝑁

}︁
=

1
𝑁ℎ

𝑁−1∑︁
𝑛=0

Eℎ

{︁[︁
(𝐼 − 𝑃ℎ)̃︀𝜃ℎ,𝑛

]︁
𝑍𝑁

}︁
− ℎ2

𝑁

𝑁−1∑︁
𝑛=0

Eℎ {𝜑ℎ,1,𝜃(𝑋𝑛)𝑍𝑁} ,
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where the remainder term 𝜑ℎ,1,𝜃 is uniformly bounded in 𝐵∞ for ℎ ∈ (0, ℎ*]. Therefore, by reorganizing the
sum for the first term on the right hand side⃒⃒⃒⃒

⃒ 1
𝑁ℎ

𝑁−1∑︁
𝑛=0

Eℎ

{︁
Π(𝐼 − 𝑃ℎ)Π̂︀𝜃ℎ,𝑛𝑍𝑁

}︁
− 𝜌(𝜃)

⃒⃒⃒⃒
⃒ 6

⃒⃒⃒⃒
⃒ 1
𝑁ℎ

𝑁−1∑︁
𝑛=0

Eℎ

{︁(︁̃︀𝜃ℎ,𝑛+1 − 𝑃ℎ
̃︀𝜃ℎ,𝑛

)︁
𝑍𝑁

}︁
− 𝜌(𝜃)

⃒⃒⃒⃒
⃒

+
⃒⃒⃒⃒

1
𝑁ℎ

Eℎ

{︁(︁̃︀𝜃ℎ,𝑁 − ̃︀𝜃ℎ,0

)︁
𝑍𝑁

}︁⃒⃒⃒⃒
+

⃒⃒⃒⃒
⃒ℎ2

𝑁

𝑁−1∑︁
𝑛=0

Eℎ {𝜑ℎ,1,𝜃(𝑋𝑛)𝑍𝑁}

⃒⃒⃒⃒
⃒ .

(4.5)

Next we estimate various terms on the right-hand side of (4.5). The last term of the right-hand side of (4.5)
can be bounded by Lemma 6.1 in Section 6.2 as⃒⃒⃒⃒

⃒ℎ2

𝑁

𝑁−1∑︁
𝑛=0

Eℎ {𝜑ℎ,1,𝜃(𝑋𝑛)𝑍𝑁}

⃒⃒⃒⃒
⃒ 6 𝐶ℎ3/2. (4.6)

As for the second term of the right-hand side of (4.5) a simple application of the Cauchy–Schwarz inequality
gives (using that ̃︀𝜃ℎ is uniformly bounded by (3.16))⃒⃒⃒⃒

1
𝑁ℎ

Eℎ

{︁(︁̃︀𝜃ℎ,𝑁 − ̃︀𝜃ℎ,0

)︁
𝑍𝑁

}︁⃒⃒⃒⃒
6

𝐶

𝑁ℎ

√︁
Eℎ(𝑍2

𝑁 ) 6
𝐶√
𝑁ℎ

· (4.7)

Hence, it remains to estimate the first term on the right hand side of (4.5). By a simple conditioning argument on
the increments of the discrete martingale 𝑍𝑁 , and noting that ̃︀𝜃ℎ,𝑛+1−𝑃ℎ

̃︀𝜃ℎ,𝑛 are discrete martingale increments

1
𝑁ℎ

𝑁−1∑︁
𝑛=0

Eℎ

{︁(︁̃︀𝜃ℎ,𝑛+1 − 𝑃ℎ
̃︀𝜃ℎ,𝑛

)︁
𝑍𝑁

}︁
=

1
𝑁ℎ

𝑁−1∑︁
𝑛=0

Eℎ

{︁(︁̃︀𝜃ℎ,𝑛+1 − 𝑃ℎ
̃︀𝜃ℎ,𝑛

)︁
(𝑍𝑛+1 − 𝑍𝑛)

}︁
.

We next expand ̃︀𝜃ℎ,𝑛+1 in terms of the increment Φℎ,𝑛, i.e.,

̃︀𝜃ℎ,𝑛+1 = ̃︀𝜃ℎ,𝑛 + ̃︀𝜃′ℎ,𝑛Φℎ,𝑛 +
1
2
̃︀𝜃(2)ℎ,𝑛Φ2

ℎ,𝑛 +
1
6
̃︀𝜃(3)ℎ,𝑛Φ3

ℎ,𝑛 + 𝑟ℎ,𝜃,𝑛,

where the remainder term reads

𝑟ℎ,𝜃,𝑛 =
(︂

1
6

∫︁ 1

0

𝑢3̃︀𝜃(4)ℎ (𝑋𝑛 + 𝑢Φℎ,𝑛) 𝑑𝑢
)︂

Φ4
ℎ,𝑛.

Plugging in Φℎ,𝑛 = 𝑏𝑛ℎ+ 𝜎𝑛∆𝑊𝑛 for the Euler–Maruyama scheme (3.2) and rearranging terms leads to

̃︀𝜃ℎ,𝑛+1 = ̃︀𝜃ℎ,𝑛 + ̃︀𝜃′ℎ,𝑛𝜎𝑛∆𝑊𝑛 +
{︂̃︀𝜃′ℎ,𝑛𝑏𝑛ℎ+

1
2
̃︀𝜃(2)ℎ,𝑛𝜎

2
𝑛∆𝑊 2

𝑛

}︂
+
{︂̃︀𝜃(2)ℎ,𝑛𝑏𝑛𝜎𝑛ℎ∆𝑊𝑛 +

1
6
̃︀𝜃(3)ℎ,𝑛𝜎

3
𝑛∆𝑊 3

𝑛

}︂
+ 𝜓ℎ,𝜃,𝑛, (4.8)

where the remainder term is of order ℎ2:

𝜓ℎ,𝜃,𝑛 =
1
2

(︁̃︀𝜃(2)ℎ,𝑛𝑏
2
𝑛ℎ

2 + ̃︀𝜃(3)ℎ,𝑛𝑏𝑛𝜎
2
𝑛ℎ∆𝑊 2

𝑛

)︁
+

1
2
̃︀𝜃(3)ℎ,𝑛𝑏

2
𝑛𝜎𝑛ℎ

2∆𝑊𝑛 +
1
6
̃︀𝜃(3)ℎ,𝑛𝑏

3
𝑛ℎ

3 + 𝑟ℎ,𝜃,𝑛.
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Gathering the expansions (4.4) and (4.8) a simple calculation shows that

̃︀𝜃ℎ,𝑛+1 − 𝑃ℎ
̃︀𝜃ℎ,𝑛 = ̃︀𝜃′ℎ,𝑛𝜎𝑛∆𝑊𝑛 +

{︂̃︀𝜃′ℎ,𝑛𝑏𝑛ℎ+
1
2
̃︀𝜃(2)ℎ,𝑛𝜎

2
𝑛∆𝑊 2

𝑛 − ℎℒ̃︀𝜃ℎ,𝑛

}︂
+
{︂̃︀𝜃(2)ℎ,𝑛𝑏𝑛𝜎𝑛ℎ∆𝑊𝑛 +

1
6
̃︀𝜃(3)ℎ,𝑛𝜎

3
𝑛∆𝑊 3

𝑛

}︂
+ ̃︀𝜓ℎ,𝜃,𝑛,

(4.9)

where the remainder term ̃︀𝜓ℎ,𝜃,𝑛 is of order ℎ2, so that, recalling 𝑍𝑛+1 − 𝑍𝑛 = 𝜎−1
𝑛 𝐹𝑛∆𝑊𝑛,

1
ℎ

Eℎ

{︁(︁̃︀𝜃ℎ,𝑛+1 − 𝑃ℎ
̃︀𝜃ℎ,𝑛

)︁
(𝑍𝑛+1 − 𝑍𝑛)

}︁
= Eℎ

{︁̃︀𝜃′ℎ,𝑛𝐹𝑛

}︁
+ Eℎ

{︂̃︀𝜃(2)ℎ,𝑛𝑏𝑛𝐹𝑛 +
1
2
̃︀𝜃(3)ℎ,𝑛𝜎

2
𝑛𝐹𝑛

}︂
ℎ+ ̃︀Ψℎ,𝜃,𝑛ℎ

2

for some ̃︀Ψℎ,𝜃,𝑛 uniformly bounded in 𝐵∞ for ℎ sufficiently small. Summing the above equality over 𝑛 and then
bounding the ℎ and ℎ2 terms give⃒⃒⃒⃒

⃒ 1
𝑁ℎ

𝑁−1∑︁
𝑛=0

Eℎ

{︁(︁̃︀𝜃ℎ,𝑛+1 − 𝑃ℎ
̃︀𝜃ℎ,𝑛

)︁
(𝑍𝑛+1 − 𝑍𝑛)

}︁
− 𝜌(𝜃)

⃒⃒⃒⃒
⃒ 6

⃒⃒⃒⃒
⃒ 1
𝑁

𝑁−1∑︁
𝑛=0

Eℎ

{︁̃︀𝜃′ℎ,𝑛𝐹𝑛

}︁
− 𝜌(𝜃)

⃒⃒⃒⃒
⃒+ 𝐶ℎ

for some constant 𝐶 > 0. Since ̃︀𝜃′ℎ𝐹 ∈ 𝒮 and ‖̃︀𝜃′ℎ𝐹‖𝐵∞ is uniformly bounded for sufficiently small ℎ (see (3.16)),
Proposition 3.3 shows that ⃒⃒⃒⃒

⃒ 1
𝑁

𝑁−1∑︁
𝑛=0

Eℎ

{︁̃︀𝜃′ℎ,𝑛𝐹𝑛

}︁
− 𝜇

(︁̃︀𝜃′ℎ𝐹)︁
⃒⃒⃒⃒
⃒ 6 𝐶

(︂
ℎ+

1
𝑁ℎ

)︂

for some constant 𝐶 ∈ R+ that is independent of ℎ. Since
⃒⃒⃒
𝜇(̃︀𝜃′ℎ𝐹 )− 𝜇(̂︀𝜃′𝐹 )

⃒⃒⃒
6 𝐶ℎ by Theorem 3.6, and

𝜇(̂︀𝜃′𝐹 ) = 𝜌(𝜃) by Proposition 2.5, we immediately have⃒⃒⃒⃒
⃒ 1
𝑁ℎ

𝑁−1∑︁
𝑛=0

Eℎ

{︁(︁̃︀𝜃ℎ,𝑛+1 − 𝑃ℎ
̃︀𝜃ℎ,𝑛

)︁
𝑍𝑁

}︁
− 𝜌(𝜃)

⃒⃒⃒⃒
⃒ 6 𝐶

(︂
ℎ+

1
𝑁ℎ

)︂
· (4.10)

Finally, combining the estimates (4.6), (4.7), and (4.10) leads to the result. �

4.1.2. Variance analysis of the first order CLR scheme

The following result shows that the variance of the estimator (4.1) is bounded uniformly with respect to the
integration time for sufficiently small time steps.

Theorem 4.3. Fix an observable 𝜃 ∈ 𝒮 and consider the weak first order scheme (3.2). There exist ℎ* > 0 and
𝐶1, 𝐶2 ∈ R+ such that, for any ℎ ∈ (0, ℎ*],

Varℎ

{︁
ℳ[1]

ℎ,𝑁 (𝜃)
}︁
6 𝐶1 + 𝐶2

(︂
ℎ+

1
𝑁ℎ

)︂
· (4.11)

In essence, the dominant part of the variance 𝐶1 is due to the asymptotic variance of the CLR estimator
associated with the underlying continuous dynamics as given by Theorem 2.8. The extra term 𝐶2(ℎ+ (𝑁ℎ)−1)
comes from the discretization error and the finiteness of the integration time.
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Remark 4.4. The results of Theorems 4.2 and 4.3 provide a guide to choosing the parameters for the simulation
by equilibrating the various sources of errors. More precisely, the bias is the sum of a term of order 1/(𝑁ℎ)
and a term of order ℎ𝛼 (with 𝛼 = 1 for the first order scheme, but we will see below in Thm. 4.5 that a second
order accuracy 𝛼 = 2 can be achieved), while the statistical error scales at the dominant order as 𝑠−1/2 when
𝑠 realizations are considered (as in Algorithm 1). The computational cost scales on the other hand as 𝑁𝑠,
where 𝑁 is the number of time steps to reach the integration time 𝑇 = 𝑁ℎ. Therefore, the optimization of the
parameters amounts to minimizing a function of the form

𝑎ℎ𝛼 +
𝑏

𝑁ℎ
+

𝑐√
𝑠
, 𝑁𝑠 = 𝐾,

with the computational cost 𝐾 fixed. The Euler–Lagrange equations with respect to ℎ, 𝑁 show that

𝑁ℎ𝛼+1 =
𝑏

𝑎𝛼
, 𝑁3/2ℎ =

2𝑏
√
𝐾

𝑐
,

which allows us to choose the values of 𝑁 , 𝑠, ℎ as a function of 𝐾 provided estimates of 𝑎, 𝑏, 𝑐 are available.

Proof. We bound the second moment of the estimator ℳ[1]
ℎ,𝑁 (𝜃). First, using the discrete Poisson equation (3.10)

and the equality
𝑁−1∑︁
𝑛=0

(𝐼 − 𝑃ℎ)̂︀𝜃ℎ,𝑛 = ̂︀𝜃ℎ,0 − ̂︀𝜃ℎ,𝑁 +
𝑁−1∑︁
𝑛=0

̂︀𝜃ℎ,𝑛+1 − 𝑃ℎ
̂︀𝜃ℎ,𝑛,

we immediately have

Eℎ

{︂(︁
ℳ[1]

ℎ,𝑁 (𝜃)
)︁2
}︂

= Eℎ

⎧⎨⎩
(︃[︃

1
𝑁ℎ

𝑁−1∑︁
𝑛=0

(𝐼 − 𝑃ℎ)̂︀𝜃ℎ,𝑛

]︃
𝑍𝑁

)︃2
⎫⎬⎭

6
2

𝑁2ℎ2
Eℎ

⎧⎨⎩
(︃

𝑁−1∑︁
𝑛=0

(︁̂︀𝜃ℎ,𝑛+1 − 𝑃ℎ
̂︀𝜃ℎ,𝑛

)︁
𝑍𝑁

)︃2
⎫⎬⎭+

2
𝑁2ℎ2

Eℎ

{︂(︁
(̂︀𝜃ℎ,𝑁 − ̂︀𝜃ℎ,0)𝑍𝑁

)︁2
}︂
.

Since ̂︀𝜃ℎ,𝑁 − ̂︀𝜃ℎ,0 is uniformly bounded in ℎ and Eℎ(𝑍2
𝑁 ) 6 𝐶𝑁ℎ, it is easy to verify that the second term on the

right-hand side of the above inequality is bounded by 𝐶𝑇−1 with 𝑇 = 𝑁ℎ. Hence, it only remains to estimate
the first term on the right-hand side of the above inequality. For each 𝑛 = 0, 1, . . . , 𝑁 − 1 it is convenient to
denote the martingale increments by

𝜉𝑛 = ̂︀𝜃ℎ,𝑛+1 − 𝑃ℎ
̂︀𝜃ℎ,𝑛, 𝜂𝑛 = 𝑍𝑛+1 − 𝑍𝑛.

We can then write

Eℎ

⎧⎨⎩
(︃

𝑁−1∑︁
𝑛=0

(︁̂︀𝜃ℎ,𝑛+1 − 𝑃ℎ
̂︀𝜃ℎ,𝑛

)︁
𝑍𝑁

)︃2
⎫⎬⎭ =

𝑁−1∑︁
𝑛1,𝑛2,𝑛3,𝑛4=0

Eℎ {𝜉𝑛1𝜉𝑛2𝜂𝑛3𝜂𝑛4} .

Note that both 𝜉𝑛 and 𝜂𝑛 depend on ∆𝑊𝑛. Since the sequence of normal random variables ∆𝑊𝑛 are indepen-
dently and identically distributed we can verify that

𝑁−1∑︁
𝑛1,𝑛2,𝑛3,𝑛4=0

Eℎ {𝜉𝑛1𝜉𝑛2𝜂𝑛3𝜂𝑛4} =
𝑁−1∑︁
𝑛1=0

𝑁−1∑︁
𝑛2=0

Eℎ{𝜉2𝑛1
𝜂2

𝑛2
}+ 2

𝑁−1∑︁
06𝑛1<𝑛26𝑁−1

Eℎ{𝜉𝑛1𝜉𝑛2𝜂𝑛1𝜂𝑛2}. (4.12)

In order to estimate the two terms on the right-hand side of the above equation we need to expand 𝜉𝑛 in terms of
ℎ. However, recall that ̂︀𝜃ℎ is not necessarily in 𝒮. Thus the strategy is to replace ̂︀𝜃ℎ by ̃︀𝜃ℎ using the approximate
inverse argument. To this end we consider the trivial decomposition

𝜉𝑛 = ̃︀𝜉𝑛 + (𝜉𝑛 − ̃︀𝜉𝑛), ̃︀𝜉𝑛 = ̃︀𝜃ℎ,𝑛+1 − 𝑃ℎ
̃︀𝜃ℎ,𝑛.
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A crude estimate for 𝜉𝑛 − ̃︀𝜉𝑛 is obtained with (3.17). Indeed,

𝜉𝑛 − ̃︀𝜉𝑛 = −ℎ3 [𝐼 − 𝑃ℎ]−1 (𝜑ℎ,1,𝜃(𝑋𝑛+1)− 𝜇ℎ(𝜑ℎ,1,𝜃)) + ℎ3 [𝐼 − 𝑃ℎ]−1
𝑃ℎ(𝜑ℎ,1,𝜃(𝑋𝑛)− 𝜇ℎ(𝜑ℎ,1,𝜃)).

Since 𝜑ℎ,1,𝜃 is uniformly bounded in 𝐵∞ and ‖ [𝐼 − 𝑃ℎ]−1 ‖ℬ(𝐵∞ℎ ) 6 2𝜅−1ℎ−1𝐶 for ℎ sufficiently small by (3.11),
we immediately have

∀𝑛 > 0, |𝜉𝑛 − ̃︀𝜉𝑛| 6 𝐶ℎ2 a.s. (4.13)

Next we state some moment estimates involving ̃︀𝜉𝑛 and 𝜂𝑛

Eℎ

{︁̃︀𝜉2𝑛𝜂2
𝑛

}︁
6 Eℎ

{︂(︁̃︀𝜃′ℎ,𝑛𝐹𝑛

)︁2
}︂
ℎ2 + 𝐶ℎ3,

Eℎ

{︁̃︀𝜉2𝑛1
𝜂2

𝑛2

}︁
6 Eℎ

{︂(︁̃︀𝜃′ℎ,𝑛1
𝜎𝑛1𝑈𝑛2

)︁2
}︂
ℎ2 + 𝐶ℎ3, 𝑛1 ̸= 𝑛2,

Eℎ

{︁̃︀𝜉𝑛1
̃︀𝜉𝑛2𝜂𝑛1𝜂𝑛2

}︁
6 Eℎ

{︁̃︀𝜃′ℎ,𝑛1
𝐹𝑛1

̃︀𝜃′ℎ,𝑛2
𝐹𝑛2

}︁
ℎ2 + 𝐶ℎ3, 𝑛1 ̸= 𝑛2,

which can be easily derived from the expansion (4.9). Note that all the coefficients of the ℎ2 terms in the above
estimates are uniformly bounded in both ℎ and 𝑛 since we assume that the state space is compact. Combining
the above moment estimates with (4.12) and (4.13) a simple estimation shows that there exist positive constants
𝐶1, 𝐶2 such that, for ℎ sufficiently small,⃒⃒⃒⃒

⃒ 1
𝑁2ℎ2

𝑁−1∑︁
𝑛1,𝑛2,𝑛3,𝑛4=0

Eℎ {𝜉𝑛1𝜉𝑛2𝜂𝑛3𝜂𝑛4}

⃒⃒⃒⃒
⃒ 6 𝐶1 + 𝐶2ℎ.

The final estimate follows by taking the error 𝐶 𝑇−1 into account. �

4.2. Weak second order CLR scheme

In this section we study a weak second order CLR scheme based on the numerical discretization scheme (3.3).
We show that in the scalar case, 𝑑 = 1, an appropriate modification of the original weight process 𝑍𝑛 is

𝑌𝑛+1 = 𝑌𝑛 + (𝜎−1
𝑛 𝐹𝑛)

(︂
∆𝑊𝑛 +

1
2

(−ℒ𝜎𝑛 +𝒦𝑏𝑛)𝜎−1
𝑛 ∆𝑊𝑛ℎ

)︂
. (4.14)

In the multi-dimensional case we are only able to treat the case when the diffusion 𝜎(𝑥) is state independent,
i.e., 𝜎𝑛 = 𝜎 for all 𝑛 and a given constant matrix 𝜎. In this case of an additive noise the term ℒ𝜎 in (4.14)
vanishes and an appropriate choice of the modified weight process is

𝑌𝑛+1 = 𝑌𝑛 + (𝜎−1𝐹𝑛)𝑇

(︂
∆𝑊𝑛 +

1
2

(𝒦𝑏𝑛)𝑇
𝜎−𝑇 ∆𝑊𝑛ℎ

)︂
, (4.15)

where 𝒦𝑏 is a matrix with columns 𝒦𝑘𝑏 for 𝑘 = 1, . . . , 𝑑. In order to keep the notation simple we present the
calculations for the scalar case and refer to Appendix A for details about algebraic derivations in the multi-
dimensional case with an additive noise. It is easy to verify that the modified process 𝑌𝑛 is still a zero-mean
martingale. With the definition (4.15) the second order CLR estimator is

ℳ[2]
ℎ,𝑁 (𝜃) =

1
𝑁

[︃
𝑁−1∑︁
𝑛=0

𝜃𝑛 − 𝜇ℎ(𝜃)

]︃
𝑌𝑁 +

ℎ

2𝑁

𝑁−1∑︁
𝑛=0

∇𝜃𝑇
𝑛𝐹𝑛, (4.16)

where the extra term at the end is a correction term specific for the second-order scheme. We present the weak
second order CLR algorithm in Algorithm 2.
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Algorithm 2. Pseudo-code for the weak second order CLR algorithm.
1: Choose an integration time 𝑇 , a time step ℎ, a number of realizations 𝑠
2: Define the number of steps 𝑁 = ⌊𝑇/ℎ⌋
3: for 𝑖 = 1 : 𝑠 do
4: Initialize the initial state 𝑋

(𝑖)
0 ∼ 𝜇0, 𝑌

(𝑖)
0 = 0 and running averages 𝛼

(𝑖)
0 = 0, 𝛽

(𝑖)
0 = 0

5: for 𝑛 = 1 : 𝑁 do
6: Update 𝛼

(𝑖)
𝑛+1 = 𝛼

(𝑖)
𝑛 + 𝑁−1𝜃

(︁
𝑋

(𝑖)
𝑛

)︁

7: Update 𝛽
(𝑖)
𝑛+1 = 𝛽

(𝑖)
𝑛 + 𝑁−1∇𝜃

(︁
𝑋

(𝑖)
𝑁

)︁𝑇

𝐹
(︁
𝑋

(𝑖)
𝑁

)︁

8: Generate random numbers Δ𝑊
(𝑖)
𝑛 ∼ 𝒩 (0, ℎ𝐼𝑑) and 𝑉

(𝑖)
𝑛 according to (3.4)

9: Update 𝑋
(𝑖)
𝑛+1 = 𝑋

(𝑖)
𝑛 + Φℎ

(︁
𝑋

(𝑖)
𝑛 , Δ𝑤

(𝑖)
𝑛 , 𝑉

(𝑖)
𝑛

)︁

10: Update 𝑌
(𝑖)

𝑛+1 according to (4.14) in the scalar case or (4.15) in the multi-dimensional setting
11: Increment 𝑛 → 𝑛 + 1
12: end for
13: end for

14: Compute the empirical average 𝛼̄𝑁 = 𝑠−1
𝑠∑︁

𝑖=1

𝛼
(𝑖)
𝑁

15: return 𝑠−1
𝑠∑︁

𝑖=1

(︁
𝛼

(𝑖)
𝑁 − 𝛼̄𝑁

)︁
𝑌

(𝑖)
𝑁 +

ℎ

2𝑠

𝑠∑︁

𝑖=1

𝛽
(𝑖)
𝑁

4.2.1. Consistency of the second order CLR scheme

The following result is a counterpart of Theorem 4.2 for the weak second order CLR scheme (3.3).

Theorem 4.5. Consider an observable 𝜃 ∈ 𝒮 and the weak second order scheme (3.3). There exist ℎ* > 0 and
𝐶 ∈ R+ such that, for any ℎ ∈ (0, ℎ*],

⃒⃒⃒
Eℎ

(︁
ℳ[2]

ℎ,𝑁 (𝜃)
)︁
− 𝜌(𝜃)

⃒⃒⃒
6 𝐶

(︂
ℎ2 +

1√
𝑁ℎ

)︂
· (4.17)

The proof provided below assumes the modified martingale (4.14) and only works for the scalar setting.
For the multi-dimensional case the modified martingale (4.15) leads to a second order CLR scheme under the
additional assumption that the noise is additive. Nevertheless, the result is already relevant for applications
such as molecular dynamics where the noise is often considered to be additive. For the sake of completeness, we
provide the algebraic calculations for justifying the correctness of (4.15) in Appendix A.

Proof. The strategy of the proof is the same as for the weak first order scheme. We present it as in the other
proofs for the scalar case (𝑑 = 1). The second order discretization scheme then reads

𝑋𝑛+1 = 𝑋𝑛 + 𝜎𝑛∆𝑊𝑛 + 𝑏𝑛ℎ+
1
2
𝒦𝜎𝑛

(︀
(∆𝑊𝑛)2 − ℎ

)︀
+

1
2

(𝒦𝑏𝑛 + ℒ𝜎𝑛) ∆𝑊𝑛ℎ+
1
2
ℒ𝑏𝑛ℎ2,

together with the modified weight

𝑌𝑛+1 = 𝑌𝑛 + 𝜎−1
𝑛 𝐹𝑛∆𝑊𝑛 +

1
2
𝜎−2

𝑛 𝐹𝑛 (−ℒ𝜎𝑛 +𝒦𝑏𝑛) ∆𝑊𝑛ℎ. (4.18)
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We can split the estimator into three separate terms⃒⃒⃒⃒
⃒ 1
𝑁

𝑁−1∑︁
𝑛=0

Eℎ {(𝜃𝑛 − 𝜇ℎ(𝜃))𝑌𝑁}+
ℎ

2𝑁

𝑁−1∑︁
𝑛=0

Eℎ{𝜃′𝑛𝐹𝑛} − 𝜌(𝜃)

⃒⃒⃒⃒
⃒

6

⃒⃒⃒⃒
⃒ 1
𝑁ℎ

𝑁−1∑︁
𝑛=0

Eℎ

{︁(︁̃︀𝜃ℎ,𝑛+1 − 𝑃ℎ
̃︀𝜃ℎ,𝑛

)︁
𝑌𝑁

}︁
+

ℎ

2𝑁

𝑁−1∑︁
𝑛=0

Eℎ{𝜃′𝑛𝐹𝑛} − 𝜌(𝜃)

⃒⃒⃒⃒
⃒

+
⃒⃒⃒⃒

1
𝑁ℎ

Eℎ

{︁(︁̃︀𝜃ℎ,𝑁 − ̃︀𝜃ℎ,0

)︁
𝑌𝑁

}︁⃒⃒⃒⃒
+

⃒⃒⃒⃒
⃒ℎ3

𝑁

𝑁−1∑︁
𝑛=0

Eℎ {𝜑ℎ,2,𝜃(𝑋𝑛)𝑌𝑁}

⃒⃒⃒⃒
⃒ ,

(4.19)

where 𝜑ℎ,2,𝜃 is the function obtained from Theorem 3.6 with 𝑝 = 2. Using the same argument as for the proof
of Theorem 4.2 the second and last terms on the right-hand side of (4.19) can be bounded by 𝐶𝑁−1/2ℎ−1/2

and 𝐶ℎ5/2, respectively.
It remains to estimate the first term on the right-hand side of (4.19). First, denoting by Φℎ,𝑛 = 𝑋𝑛+1−𝑋𝑛 =

Φℎ(𝑋𝑛,∆𝑊𝑛, 𝑉𝑛), we expand

̃︀𝜃ℎ,𝑛+1 = ̃︀𝜃ℎ,𝑛 + ̃︀𝜃′ℎ,𝑛Φℎ,𝑛 +
1
2
̃︀𝜃(2)ℎ,𝑛Φ2

ℎ,𝑛 +
1
6
̃︀𝜃(3)ℎ,𝑛Φ3

ℎ,𝑛 + 𝑟ℎ,𝜃,𝑛,

with the remainder

𝑟ℎ,𝜃,𝑛 =
(︂

1
6

∫︁ 1

0

𝑢3̃︀𝜃(4)ℎ (𝑋𝑛 + 𝑢Φℎ,𝑛) 𝑑𝑢
)︂

Φ4
ℎ,𝑛.

Gathering the terms with the same powers of ℎ gives

̃︀𝜃ℎ,𝑛+1 = ̃︀𝜃ℎ,𝑛 + ̃︀𝜃′ℎ,𝑛𝜎𝑛∆𝑊𝑛 +
{︂̃︀𝜃′ℎ,𝑛

(︂
𝑏𝑛ℎ+

1
2
𝜎𝑛𝜎

′
𝑛((∆𝑊𝑛)2 − ℎ)

)︂
+

1
2
̃︀𝜃(2)ℎ,𝑛𝜎

2
𝑛(∆𝑊𝑛)2

}︂
+
{︂

1
2
̃︀𝜃′ℎ,𝑛(𝒦𝑏𝑛 + ℒ𝜎𝑛)∆𝑊𝑛ℎ+ ̃︀𝜃(2)ℎ,𝑛𝜎𝑛

(︂
𝑏𝑛ℎ+

1
2
𝒦𝜎𝑛((∆𝑊𝑛)2 − ℎ)

)︂
∆𝑊𝑛 +

1
6
̃︀𝜃(3)ℎ,𝑛𝜎

3
𝑛(∆𝑊𝑛)3

}︂
+ 𝜓ℎ,𝜃,𝑛,

where 𝜓ℎ,𝜃,𝑛 is a remainder term of order ℎ2 in the following sense: for all 𝑘 > 1, there exists 𝐶𝑘 ∈ R+ such

that Eℎ

(︁
|𝜓ℎ,𝜃,𝑛|𝑘

)︁
6 𝐶𝑘ℎ

2𝑘. We recall that the second order scheme (3.3) admits the expansion

𝑃ℎ
̃︀𝜃ℎ,𝑛 = ̃︀𝜃ℎ,𝑛 + ℒ̃︀𝜃ℎ,𝑛ℎ+

1
2
ℒ2̃︀𝜃ℎ,𝑛ℎ

2 +𝒜3
̃︀𝜃ℎ,𝑛ℎ

3 +ℛ2,ℎ
̃︀𝜃ℎ,𝑛ℎ

4

for some operators 𝒜3, ℛ2,ℎ. Multiplying ̃︀𝜃ℎ,𝑛+1 − 𝑃ℎ
̃︀𝜃ℎ,𝑛 by 𝑌𝑛+1 − 𝑌𝑛, a simple calculation leads to

1
ℎ

Eℎ

{︁(︁̃︀𝜃ℎ,𝑛+1 − 𝑃ℎ
̃︀𝜃ℎ,𝑛

)︁
𝑌𝑁

}︁
=

1
ℎ

Eℎ

{︁(︁̃︀𝜃ℎ,𝑛+1 − 𝑃ℎ
̃︀𝜃ℎ,𝑛

)︁
(𝑌𝑛+1 − 𝑌𝑛)

}︁
= Eℎ

{︁̃︀𝜃′ℎ,𝑛𝐹𝑛

}︁
+ Eℎ

{︂(︂̃︀𝜃′ℎ,𝑛𝜎
−1
𝑛 𝒦𝑏𝑛 + ̃︀𝜃(2)ℎ,𝑛(𝑏𝑛 +𝒦𝜎𝑛) +

1
2
̃︀𝜃(3)ℎ,𝑛𝜎

2
𝑛

)︂
𝐹𝑛

}︂
ℎ

+ ̃︀Ψℎ,𝜃,𝑛ℎ
2,

where ̃︀Ψℎ,𝜃,𝑛 is uniformly bounded for ℎ ∈ (0, ℎ*]. Now, the key observation is that

̃︀𝜃′ℎ𝜎−1𝒦𝑏+ ̃︀𝜃(2)ℎ (𝑏+𝒦𝜎) +
1
2
̃︀𝜃(3)ℎ 𝜎2 =

(︁
ℒ̃︀𝜃ℎ

)︁′
.
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Hence,

1
ℎ

Eℎ

{︁(︁̃︀𝜃ℎ,𝑛+1 − 𝑃ℎ
̃︀𝜃ℎ,𝑛

)︁
(𝑌𝑛+1 − 𝑌𝑛)

}︁
= Eℎ

{︁̃︀𝜃′ℎ,𝑛𝐹𝑛

}︁
+ Eℎ

{︂(︁
ℒ̃︀𝜃ℎ,𝑛

)︁′
𝐹𝑛

}︂
ℎ+ ̃︀Ψℎ,𝜃,𝑛ℎ

2.

Taking the average of the above equation over 𝑛 and collecting the remainder terms we obtain the following
estimate for the first term of the right-hand side of (4.19)⃒⃒⃒⃒

⃒ 1
𝑁ℎ

𝑁−1∑︁
𝑛=0

Eℎ

{︁(︁̃︀𝜃ℎ,𝑛+1 − 𝑃ℎ
̃︀𝜃ℎ,𝑛

)︁
𝑌𝑁

}︁
+

ℎ

2𝑁

𝑁−1∑︁
𝑛=0

Eℎ{𝜃′𝑛𝐹𝑛} − 𝜌(𝜃)

⃒⃒⃒⃒
⃒

6

⃒⃒⃒⃒
⃒ 1
𝑁

𝑁−1∑︁
𝑛=0

Eℎ

{︁̃︀𝜃′ℎ,𝑛𝐹𝑛

}︁
− 𝜌(𝜃) +

ℎ

𝑁

𝑁−1∑︁
𝑛=0

Eℎ

{︂(︁
ℒ̃︀𝜃ℎ,𝑛

)︁′
𝐹𝑛 +

1
2
𝜃′𝑛𝐹𝑛

}︂⃒⃒⃒⃒
⃒+ 𝐶ℎ2

for some constant 𝐶 > 0. Note that here there exists, by Proposition 3.3 and Theorem 3.6, a constant 𝐶 ∈ R+

independent of ℎ such that ⃒⃒⃒⃒
⃒ 1
𝑁

𝑁−1∑︁
𝑛=0

Eℎ

{︁̃︀𝜃′ℎ,𝑛𝐹𝑛

}︁
− 𝜇

(︁̃︀𝜃′ℎ𝐹)︁
⃒⃒⃒⃒
⃒ 6 𝐶

(︂
ℎ2 +

1
𝑁ℎ

)︂
,⃒⃒⃒⃒

⃒ 1
𝑁

𝑁−1∑︁
𝑛=0

Eℎ

{︂(︁
ℒ̃︀𝜃ℎ,𝑛

)︁′
𝐹𝑛 +

1
2
𝜃′𝑛𝐹𝑛

}︂
− 𝜇

(︂(︁
ℒ̃︀𝜃ℎ

)︁′
𝐹 +

1
2
𝜃′𝐹

)︂⃒⃒⃒⃒
⃒ 6 𝐶

(︂
ℎ2 +

1
𝑁ℎ

)︂
·

Therefore, ⃒⃒⃒⃒
⃒ 1
𝑁ℎ

𝑁−1∑︁
𝑛=0

Eℎ

{︁(︁̃︀𝜃ℎ,𝑛+1 − 𝑃ℎ
̃︀𝜃ℎ,𝑛

)︁
𝑌𝑁

}︁
+

ℎ

2𝑁

𝑁−1∑︁
𝑛=0

Eℎ{𝜃′𝑛𝐹𝑛} − 𝜌(𝜃)

⃒⃒⃒⃒
⃒

6

⃒⃒⃒⃒
𝜇
(︁̃︀𝜃′ℎ𝐹)︁− 𝜌(𝜃) + 𝜇

(︂
(ℒ̃︀𝜃ℎ)′𝐹 +

1
2
𝜃′𝐹

)︂
ℎ

⃒⃒⃒⃒
+ 𝐶

(︂
ℎ2 +

1
𝑁ℎ

)︂
6

⃒⃒⃒⃒
𝜇(̃︀𝜃′ℎ𝐹 )− 𝜌(𝜃)− 1

2
𝜇(𝜃′𝐹 )ℎ

⃒⃒⃒⃒
+
⃒⃒⃒
𝜇
(︁

(ℒ̃︀𝜃ℎ)′𝐹 − (ℒ̂︀𝜃)′𝐹)︁ℎ⃒⃒⃒+ 𝐶

(︂
ℎ2 +

1
𝑁ℎ

)︂
,

(4.20)

where we have used the continuous time Poisson equation (2.6) for the last inequality. Next we show that ̃︀𝜃ℎ on
the right-hand side of the above inequality can be replaced by ̂︀𝜃 with a controllable error. To this end we set
𝑝 = 2 in (6.3) and note that 𝒜1 = ℒ and 𝒜2 = ℒ2/2 for the second order scheme (3.3) so that

̃︀𝜃ℎ − ̂︀𝜃 =
1
2

(𝜃 − 𝜇(𝜃))ℎ−
(︁ ̃︀𝒜−1

1
̃︀𝒜2
̃︀𝒜−1
1
̃︀𝒜2
̃︀𝒜−1
1 − ̃︀𝒜−1

1
̃︀𝒜3
̃︀𝒜−1
1

)︁
(𝜃 − 𝜇(𝜃))ℎ2. (4.21)

Since 𝜇(̂︀𝜃′𝐹 ) = 𝜌(𝜃) by Theorem 2.5 we can easily verify that⃒⃒⃒⃒
𝜇
(︁̃︀𝜃′ℎ𝐹)︁− 𝜌(𝜃)− 1

2
𝜇(𝜃′𝐹 )ℎ

⃒⃒⃒⃒
6 𝐶ℎ2

for some constant 𝐶. Similarly, we can also deduce from (4.21) that⃒⃒⃒
𝜇
(︁

(ℒ̃︀𝜃ℎ)′𝐹 − (ℒ̂︀𝜃)′𝐹)︁⃒⃒⃒ 6 𝐶ℎ
for some constant 𝐶. Substituting the above two estimates into the right-hand side of (4.20) gives⃒⃒⃒⃒

⃒ 1
𝑁ℎ

𝑁−1∑︁
𝑛=0

Eℎ

{︁(︁̃︀𝜃ℎ,𝑛+1 − 𝑃ℎ
̃︀𝜃ℎ,𝑛

)︁
𝑌𝑁

}︁
+

ℎ

2𝑁

𝑁−1∑︁
𝑛=0

Eℎ{𝜃′𝑛𝐹𝑛} − 𝜌(𝜃)

⃒⃒⃒⃒
⃒ 6 𝐶

(︂
ℎ2 +

1
𝑁ℎ

)︂
· (4.22)

The error estimate (4.17) now follows by combining the above estimate with the estimates for the second and
third terms on the right-hand side of (4.19). �
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4.2.2. Variance analysis of second order CLR scheme

The following result is a counterpart of Theorem 4.3 for the weak second order scheme (3.3).

Theorem 4.6. Consider an observable 𝜃 ∈ 𝒮 and the weak second order scheme (3.3). There exist ℎ* > 0 and
𝐶1, 𝐶2 ∈ R+ such that, for any ℎ ∈ (0, ℎ*],

Varℎ

{︁
ℳ[2]

ℎ,𝑁 (𝜃)
}︁
6 𝐶1 + 𝐶2

(︂
ℎ+

1
𝑁ℎ

)︂
· (4.23)

Proof. We write as usual the proof in the scalar case in which case the weak second order estimator reads

ℳ[2]
ℎ,𝑁 (𝜃) =

1
𝑁

[︃
𝑁−1∑︁
𝑛=0

𝜃𝑛 − 𝜇ℎ(𝜃)

]︃
𝑌𝑁 +

ℎ

2𝑁

𝑁−1∑︁
𝑛=0

𝜃′𝑛𝐹𝑛,

with 𝑌𝑁 defined in (4.18). We bound the variance of the estimator by two separate terms

Varℎ

{︁
ℳ[2]

ℎ,𝑁 (𝜃)
}︁
6 2Varℎ

{︃
1
𝑁

𝑁−1∑︁
𝑛=0

(𝜃𝑛 − 𝜇ℎ(𝜃))𝑌𝑁

}︃
+ 2Varℎ

{︃
ℎ

2𝑁

𝑁−1∑︁
𝑛=0

𝜃′𝑛𝐹𝑛

}︃
.

The estimate of the first term of the right-hand side of the above inequality is similar to that of the first order
estimator and hence can be shown to be bounded by 𝐶1 +𝐶2(ℎ+ (𝑁ℎ)−1) for some constants 𝐶1, 𝐶2 > 0. The
second term can be directly bounded by 𝐶ℎ2 since 𝜃 and 𝐹 are bounded. �

4.3. General weak second order CLR scheme

The proof of Theorem 4.5 suggests a general strategy for constructing a second order CLR estimator on top of
an arbitrarily given second order discretization scheme. The key point is to remove all the 𝒪(ℎ) errors from the
one step increment ℎ−1Eℎ{(̃︀𝜃ℎ(𝑋𝑛+1)−𝑃ℎ

̃︀𝜃ℎ(𝑋𝑛))(𝑌𝑛+1−𝑌𝑛)}. We present the strategy in the one-dimensional
case for dynamics with a multiplicative noise.

Suppose that a given weak second order discretization scheme satisfies a one-step formula

𝑋𝑛+1 = 𝑋𝑛 + 𝑐0(𝑋𝑛;𝐺𝑛)ℎ1/2 + 𝑐1(𝑋𝑛;𝐺𝑛)ℎ+ 𝑐2(𝑋𝑛;𝐺𝑛)ℎ3/2 +𝑅ℎ(𝑋𝑛;𝐺𝑛)ℎ2,

where the coefficients 𝑐𝑖 depend on 𝑋𝑛, the random vectors 𝐺𝑛 are used to generate the increments ∆𝑊𝑛 and
𝑅ℎ is a remainder term. This can be generalized to account for a dependence on additional random numbers,
as in (3.3) or Metropolis-type schemes. Note also that 𝐺𝑛 are not necessarily Gaussian as long as they satisfy
some moment conditions which are made precise below. We require that

𝑐0(𝑋𝑛;𝐺𝑛) = 𝜎𝑛𝐺𝑛,

E(𝑐1(𝑋𝑛;𝐺𝑛)𝐺𝑛) = 0, E
(︀
𝑐20(𝑋𝑛;𝐺𝑛)𝐺𝑛

)︀
= 0, (4.24)

and that 𝑐1, 𝑐2, 𝑅ℎ are uniformly bounded in the sense that for any 𝑘 > 1, there exists 𝐶𝑘 ∈ R+ and ℎ*𝑘 > 0
such that E(|𝑅ℎ(𝑋𝑛;𝐺𝑛)|𝑘) 6 𝐶𝑘 for any 0 < ℎ 6 ℎ*𝑘 (and similar estimates for 𝑐1, 𝑐2). Following the proof of
Theorem 4.5 we expand ̃︀𝜃ℎ,𝑛+1 − 𝑃ℎ

̃︀𝜃ℎ,𝑛 in powers of ℎ

̃︀𝜃ℎ,𝑛+1 − 𝑃ℎ
̃︀𝜃ℎ,𝑛

= ̃︀𝜃′ℎ,𝑛𝑐0(𝑋𝑛;𝐺𝑛)ℎ1/2 +
(︂̃︀𝜃′ℎ,𝑛𝑐1(𝑋𝑛;𝐺𝑛) +

1
2
̃︀𝜃(2)ℎ,𝑛𝑐

2
0(𝑋𝑛;𝐺𝑛)− ℒ̃︀𝜃ℎ,𝑛

)︂
ℎ

+
(︂̃︀𝜃′ℎ,𝑛𝑐2(𝑋𝑛;𝐺𝑛) + ̃︀𝜃(2)ℎ,𝑛𝑐0(𝑋𝑛;𝐺𝑛)𝑐1(𝑋𝑛;𝐺𝑛) +

1
6
̃︀𝜃(3)ℎ,𝑛𝑐

3
0(𝑋𝑛;𝐺𝑛)

)︂
ℎ3/2 +𝒪(ℎ2).
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Next we consider a modification of the weight process in the form

𝑌𝑛+1 = 𝑌𝑛 + 𝜎−1
𝑛 𝐹𝑛 (𝐺𝑛 + 𝛾(𝑋𝑛;𝐺𝑛)ℎ)ℎ1/2,

with 𝛾(𝑋𝑛;𝐺𝑛) to be determined. Hence, the expansion of ℎ−1Eℎ{(̃︀𝜃ℎ(𝑋𝑛+1)−𝑃ℎ
̃︀𝜃ℎ(𝑋𝑛))(𝑌𝑛+1−𝑌𝑛)} in powers

of ℎ is

Eℎ

{︁̃︀𝜃′ℎ,𝑛𝑐0(𝑋𝑛;𝐺𝑛)𝜎−1
𝑛 𝐹𝑛𝐺𝑛

}︁
+ Eℎ

{︁(︁̃︀𝜃′ℎ,𝑛𝑐0(𝑋𝑛;𝐺𝑛)𝛾(𝑋𝑛;𝐺𝑛) + ̃︀𝜃′ℎ,𝑛𝑐2(𝑋𝑛;𝐺𝑛)𝐺𝑛

+ ̃︀𝜃(2)ℎ,𝑛𝑐0(𝑋𝑛;𝐺𝑛)𝑐1(𝑋𝑛;𝐺𝑛)𝐺𝑛 +
1
6
̃︀𝜃(3)ℎ,𝑛𝑐

3
0(𝑋𝑛;𝐺𝑛)𝐺𝑛

)︂
𝜎−1

𝑛 𝐹𝑛

}︂
ℎ+𝒪(ℎ2), (4.25)

where we used (4.24) to eliminate the terms of order ℎ1/2 in the above expansion. Similar conditions guarantee
that the terms of order ℎ3/2 vanish.

In order to achieve a second order accuracy for linear response we need to remove the 𝒪(ℎ) errors from (4.25).
As shown in the proof of Theorem 4.5 both the first and second terms of (4.25) contain terms of order ℎ.
Indeed, since we explicitly assume that 𝑐0(𝑋𝑛;𝐺𝑛) = 𝜎𝑛𝐺𝑛, the first term of (4.25) becomes Eℎ{̃︀𝜃′ℎ,𝑛𝐹𝑛}, so
that, by (6.3),

Eℎ{̃︀𝜃′ℎ,𝑛𝐹𝑛} = Eℎ{̂︀𝜃′𝑛𝐹𝑛}+
1
2

Eℎ{𝜃′𝑛𝐹𝑛}ℎ+𝒪(ℎ2),

where the 𝒪(ℎ) error can be removed a posteriori by a correction term (as provided by the second term of (4.16)).
We next choose an appropriate correction 𝛾(𝑋𝑛;𝐺𝑛) for the second term of (4.25) to vanish at a dominant order
in ℎ. However, such a correction function 𝛾(𝑋𝑛;𝐺𝑛) may involve the solution to the discrete Poisson solution̂︀𝜃ℎ or its approximation ̃︀𝜃ℎ, which would make it impossible to compute the modified weight process in practice.
A more practical alternative is to look for functions 𝑑1(𝑋𝑛) and 𝑑2(𝑋𝑛) such that the term of order ℎ in (4.25)
is equal to

Eℎ

{︂
𝑑1(𝑋𝑛)

(︁
ℒ̃︀𝜃ℎ,𝑛

)︁′
+ 𝑑2(𝑋𝑛)ℒ̃︀𝜃ℎ,𝑛

}︂
ℎ. (4.26)

The approximate discrete Poisson solution ̃︀𝜃ℎ(𝑋𝑛) can then be replaced at the dominant order in ℎ by the
solution of the continuous time Poisson equation in view of (6.3). Comparing the above formula with the second
term of (4.25) and matching the terms that involve the same order of derivatives of ̃︀𝜃ℎ we end up with the
following system of equations

Eℎ

{︂
1
6
̃︀𝜃(3)ℎ,𝑛𝑐

3
0(𝑋𝑛;𝐺𝑛)𝜎−1

𝑛 𝐹𝑛𝐺𝑛

}︂
= Eℎ

{︂
1
2
̃︀𝜃(3)ℎ,𝑛𝑑1(𝑋𝑛)𝜎2

𝑛

}︂
,

Eℎ

{︁̃︀𝜃(2)ℎ,𝑛𝑐0(𝑋𝑛;𝐺𝑛)𝑐1(𝑋𝑛;𝐺𝑛)𝜎−1
𝑛 𝐹𝑛𝐺𝑛

}︁
= Eℎ

{︂̃︀𝜃(2)ℎ,𝑛

(︂
𝑑1(𝑋𝑛) (𝑏𝑛 + 𝜎𝑛𝜎

′
𝑛) +

1
2
𝑑2(𝑋𝑛)𝜎2

𝑛

)︂}︂
,

Eℎ

{︁̃︀𝜃′ℎ,𝑛 (𝑐0(𝑋𝑛;𝐺𝑛)𝛾(𝑋𝑛;𝐺𝑛) + 𝑐2(𝑋𝑛;𝐺𝑛)𝐺𝑛)𝜎−1
𝑛 𝐹𝑛

}︁
= Eℎ

{︁̃︀𝜃′ℎ,𝑛 (𝑑2(𝑋𝑛)𝑏𝑛 + 𝑑1(𝑋𝑛)𝑏′𝑛)
}︁
. (4.27)

Note that 𝑑1(𝑋𝑛) can be identified from the first equation, then 𝑑2(𝑋𝑛) from the second, and finally 𝛾(𝑋𝑛;𝐺𝑛)
from the third one. We mention that these factors are independent of ̃︀𝜃ℎ and hence are computable. More
precisely, the first equality holds for

𝑑1(𝑋𝑛) =
1
3

E𝐺𝑛

[︀
𝑐30(𝑋𝑛;𝐺𝑛)𝜎−1

𝑛 𝐹𝑛𝐺𝑛

]︀
, (4.28)

the second for

𝑑2(𝑋𝑛) = 2𝜎−2
𝑛

(︀
E𝐺𝑛

[︀
𝑐0(𝑋𝑛;𝐺𝑛)𝑐1(𝑋𝑛;𝐺𝑛)𝜎−1

𝑛 𝐹𝑛𝐺𝑛

]︀
− (𝑏𝑛 + 𝜎𝑛𝜎

′
𝑛)𝑑1(𝑋𝑛)

)︀
, (4.29)
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so that 𝛾 is found by solving

𝐹𝑛E𝐺𝑛 [𝛾(𝑋𝑛;𝐺𝑛)𝐺𝑛] = 𝑑2(𝑋𝑛)𝑏𝑛 + 𝑑1(𝑋𝑛)𝑏′𝑛 − 𝜎−1
𝑛 𝐹𝑛E𝐺𝑛 [𝑐2(𝑋𝑛;𝐺𝑛)𝐺𝑛] . (4.30)

It remains to rewrite (4.26) in a computable form. To this end, we use the estimate (6.3) and the continuous
time Poisson equation to rewrite (4.25) as

Eℎ

{︂
𝑑1(𝑋𝑛)

(︁
ℒ̂︀𝜃𝑛

)︁′
+ 𝑑2(𝑋𝑛)ℒ̂︀𝜃𝑛

}︂
ℎ+𝒪(ℎ2)

= −E {𝑑1(𝑋𝑛)𝜃′𝑛 + 𝑑2(𝑋𝑛) (𝜃𝑛 − 𝜇(𝜃))}ℎ+𝒪(ℎ2).

The dominant contribution of order ℎ can be corrected a posteriori (as done in (4.16)) since it does not involve
the solution to the discrete Poisson equation or its approximation.

We follow the above strategy to recover the modified weight process of Theorem 4.5. The coefficients 𝑐𝑖 for
the second order discretization (3.3) are

𝑐0(𝑋𝑛;𝐺𝑛) = 𝜎𝑛𝐺𝑛, 𝑐1(𝑋𝑛;𝐺𝑛) = 𝑏𝑛 +
1
2
𝒦𝜎𝑛(𝐺2

𝑛 − 1), 𝑐2(𝑋𝑛;𝐺𝑛) =
1
2

(𝒦𝑏𝑛 + ℒ𝜎𝑛)𝐺𝑛.

Plugging them into (4.28) and (4.29) leads to 𝑑1 = 𝐹 and 𝑑2 = 0. A possible solution for (4.30) is then

𝛾(𝑋𝑛;𝐺𝑛) =
1
2
𝜎−1

𝑛 (𝒦𝑏𝑛 − ℒ𝜎𝑛)𝐺𝑛,

which allows to recover (4.14).

5. Computational benchmark

We present an example demonstrating that the derived estimates are sharp and reliable for the weak first
and second order schemes described in the previous sections. At the same time this example also indicates that
for some observables the first order scheme can be sufficiently accurate and it can computationally outperform
the second order scheme for a certain range of time steps ℎ. The benchmark example is defined on the periodic
domain T = R∖Z for the gradient dynamics defined by the potential 𝑉 (𝑥) = 1

2 cos(2𝜋𝑥), i.e., the drift function
𝑏(𝑥) = −𝑉 ′(𝑥), with the additive noise 𝜎(𝑥) =

√
2, hence

d𝑋(𝑡) = 𝜋 sin(2𝜋𝑋(𝑡)) d𝑡+
√

2 d𝑊 (𝑡).

We have chosen the observable as 𝜃(𝑥) = 𝑏(𝑥) and the external forcing 𝐹 (𝑥) = 1 (which is indeed not the
gradient of a smooth periodic function).

Estimating the bias of the estimators (4.1) and (4.16) with respect to the time step ℎ is computationally
expensive as it requires independent sampling over long trajectories in order to achieve a good approximation
to the stationary distribution and to control the variance of the estimator. In our simulations we used the time
horizon 𝑇 = 102 for equilibration and 𝑠 = 5× 107 independent samples in Algorithms 1 and 2 in order for the
statistical error to be sufficiently small. The 95% confidence intervals, while plotted in Figure 1, are at the limit
of the figure resolution. Estimated values of the sensitivity index 𝜌(𝜃) are depicted in Figure 1. The importance
of a properly corrected second order estimator (4.16) is demonstrated by including values computed from the
estimator without the correction term.

The convergence rates are estimated from error values obtained at the beginning of the asymptotic regime
in ℎ. The observed convergence rate for the first order scheme was estimated as 1.40± 0.06 and for the second
order scheme as 1.80± 0.05. The error convergence is depicted in Figure 2. The error convergence plot for the
CLR estimator also clearly demonstrates the necessity of the correcting term (see (4.16)) for the second order
CLR sensitivity estimator.
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Figure 1. The sensitivity 𝜌(𝜃) estimated for different values of the time step ℎ. The estimates
are obtained from the first order scheme (marked by ∘) and the second order scheme (marked
by �). The estimates marked by ∙ are obtained from the second order estimator without the
correction term. The inset depicts a detail for a range of smaller time steps ℎ. The reference
value 𝜌(𝜃) has been computed by solving Fokker–Planck equation using numerical quadratures.
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Figure 2. Convergence of the sensitivity estimators: the error for the estimated 𝜌(𝜃) obtained
for different values of the time step ℎ (the log–log scale). The estimates are obtained from
the first order scheme (marked by ∘) and the second order scheme (marked by �). The error
estimates marked by ∙ are obtained from the second order estimator without the correction
term. The reference value 𝜌(𝜃) has been computed by solving Fokker–Planck equation using
numerical quadratures.
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Figure 3. The mean and variance of the second order CLR estimator ℳ[2]
ℎ,𝑁 for the finite

time-horizon trajectories 𝑇 ≡ 𝑁ℎ estimated for each time horizon from 𝑠 = 106 independent
samples.

An important feature of the proposed sensitivity estimator is the variance behavior of the CLR estimator
ℳ[𝑘]

ℎ,𝑁 as stated in Theorem 4.3 for 𝑘 = 1 and in Theorem 4.6 for 𝑘 = 2. As the time horizon 𝑇 ≡ 𝑁ℎ tends
to infinity the variance is bounded by a constant. This result is demonstrated in Figure 3 which depicts, for
the fixed time steps ℎ = 10−2 and ℎ = 10−3, the convergence of the estimated sensitivity 𝜌ℎ(𝜃) as well as the
estimated variance Varℎ[ℳ[2]

ℎ,𝑁 ] of the CLR estimator when increasing the time horizon 𝑇 ≡ 𝑁ℎ. The estimates

in both cases
(︁
Eℎ[ℳ[2]

ℎ,𝑁 ],Varℎ[ℳ[2]
ℎ,𝑁 ]

)︁
are obtained by averaging over 𝑠 = 106 independent sample trajectories

of the physical time 𝑇 . The first order estimator (𝑘 = 1) exhibits a similar behaviour.

6. Technical results

We provide in this section two technical results to facilitate the proofs of the results presented in this paper.

6.1. Approximate inverse operator

We present here the proof of Theorem 3.6 which gives error bounds for an approximate solution to the discrete
Poisson equation (3.10). We follow the construction of the approximate inverse operator discussed in [19,20]. As
in these works we provide in fact an explicit construction of the approximate solution whose derivatives we can
control. We recall that the interest in working with an approximate solution is that the solution ̂︀𝜃 to the Poisson
equation defined via the operator ℎ−1[𝐼 − 𝑃ℎ] is well defined on 𝐵∞ℎ . However, we do not have control of its
derivatives. This is however of paramount importance for establishing the convergence result of the numerical
schemes through Taylor-like expansions.

We recall that we consider evolution operators admitting the following expansion in powers of ℎ (see (3.13))

𝑃ℎ = 𝐼 + ℎ𝒜1 + . . .+ ℎ𝑝+1𝒜𝑝+1 + ℎ𝑝+2ℛ𝑝,ℎ,
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where the explicit expression of the operators 𝒜𝑛 for 𝑛 = 1, . . . , 𝑝+ 1 and ℛ𝑝,ℎ can be identified systematically
by Taylor expansions. Note first that ̂︀𝜃ℎ satisfies

Π
[︂
𝐼 − 𝑃ℎ

ℎ

]︂
Π̂︀𝜃ℎ = 𝜃 − 𝜇(𝜃). (6.1)

In order to find an approximation to ̂︀𝜃ℎ we expand the operator ℎ−1Π[𝐼 − 𝑃ℎ]Π in powers of ℎ as

Π
[︂
𝐼 − 𝑃ℎ

ℎ

]︂
Π = −

(︁ ̃︀𝒜1 + ℎ ̃︀𝒜2 + . . .+ ℎ𝑝 ̃︀𝒜𝑝+1

)︁
− ℎ𝑝+1Πℛ𝑝,ℎΠ,

where ̃︀𝒜𝑛 = Π𝒜𝑛Π for 𝑛 = 1, 2, . . . , 𝑝+ 1. Defining ℬ = ̃︀𝒜2 + ℎ ̃︀𝒜3 + . . .+ ℎ𝑝−1 ̃︀𝒜𝑝+1 it holds

̃︀𝒜1 + ℎ ̃︀𝒜2 + . . .+ ℎ𝑝 ̃︀𝒜𝑝+1 = ̃︀𝒜1 + ℎℬ.

Recalling that ̃︀𝒜−1
1 is by assumption well defined from 𝒮0 to 𝒮0 the formal series expansion of the inverse of̃︀𝒜1 + ℎℬ is ̃︀𝒜−1

1 − ℎ ̃︀𝒜−1
1 ℬ ̃︀𝒜−1

1 + ℎ2 ̃︀𝒜−1
1 ℬ ̃︀𝒜−1

1 ℬ ̃︀𝒜−1
1 + . . . .

Truncating the above formal series expansion up to terms involving at most 𝑝 instances of ℬ we end up with
the operator ̃︀𝑄ℎ , ̃︀𝒜−1

1

𝑝∑︁
𝑛=0

(−ℎ)𝑛
(︁
ℬ ̃︀𝒜−1

1

)︁𝑛

,

which is such that the following equality holds on 𝒮0(︁ ̃︀𝒜1 + ℎℬ
)︁ ̃︀𝑄ℎ = Π + (−1)𝑝ℎ𝑝+1

(︁
ℬ ̃︀𝒜−1

1

)︁𝑝+1

.

We are now ready to define the approximate inverse operator 𝑄ℎ by expanding ̃︀𝑄ℎ and keeping terms up to
order ℎ𝑝, i.e.,

𝑄ℎ , ̃︀𝒜−1
1 − ℎ ̃︀𝒜−1

1
̃︀𝒜2
̃︀𝒜−1
1 + ℎ2

(︁ ̃︀𝒜−1
1
̃︀𝒜2
̃︀𝒜−1
1
̃︀𝒜2
̃︀𝒜−1
1 − ̃︀𝒜−1

1
̃︀𝒜3
̃︀𝒜−1
1

)︁
+ . . .+ ℎ𝑝−1𝒬𝑝−1 + ℎ𝑝𝒬𝑝,

where 𝒬𝑛 for 𝑛 = 1, . . . , 𝑝 are operators mapping 𝒮0 to 𝒮0. Note that the approximate inverse operator 𝑄ℎ

leaves 𝒮0 invariant. Finally, we define the approximate discrete Poisson solution by

̃︀𝜃ℎ = −𝑄ℎ(𝜃 − 𝜇(𝜃)). (6.2)

The function ̃︀𝜃ℎ indeed belongs to 𝒮0. Moreover, it can be readily verified that

Π
[︂
𝐼 − 𝑃ℎ

ℎ

]︂
Π̃︀𝜃ℎ = 𝜃 − 𝜇(𝜃) + ℎ𝑝+1𝜑ℎ,𝑝,𝜃,

for some function 𝜑ℎ,𝑝,𝜃 ∈ 𝒮0 that is uniformly bounded with respect to ℎ (in the sense of (3.15)).
Finally, to obtain the estimates on ̃︀𝜃ℎ − ̂︀𝜃 we note that, from the definition (2.6) and (6.2), the following

equality holds, when 𝒜1 = ℒ,

̃︀𝜃ℎ − ̂︀𝜃 = ℎ
[︁ ̃︀𝒜−1

1
̃︀𝒜2
̃︀𝒜−1
1 − ℎ

(︁ ̃︀𝒜−1
1
̃︀𝒜2
̃︀𝒜−1
1
̃︀𝒜2
̃︀𝒜−1
1 − ̃︀𝒜−1

1
̃︀𝒜3
̃︀𝒜−1
1

)︁
+ . . . −ℎ𝑝−2𝒬𝑝−1 − ℎ𝑝−1𝒬𝑝

]︀
(𝜃− 𝜇(𝜃)). (6.3)

Theorem 3.6 follows immediately from the above discussion.
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6.2. An estimate of the elementary term

Given an observable 𝜑 ∈ 𝐵∞ we refer to the average

1
𝑁

𝑁−1∑︁
𝑛=0

Eℎ{𝜑𝑛𝑍𝑁}

as an “elementary term” since quantities of this form are of fundamental importance in establishing the results
in this work. Note that the LR sensitivity estimator is of this form. In this section we establish bounds on such
elementary terms which allow us to estimate remainders when performing Taylor expansions as in Theorem 4.2.
The following bound is crude, but its strength is that it is uniform with respect to the test function. This is
crucial since remainder functions, although uniformly bounded in 𝐵∞, depend on the time step ℎ.

Lemma 6.1. Consider a discrete martingale 𝑍𝑁 , and assume that there exists a constant 𝐾 ∈ R+ such that
𝜂𝑛 = 𝑍𝑛+1 −𝑍𝑛 satisfies Eℎ(𝜂2

𝑛) 6 𝐾ℎ. Then there exist ℎ* > 0 and 𝐶 ∈ R+ such that, for any ℎ ∈ (0, ℎ*] and
any 𝜑 ∈ 𝐵∞, ⃒⃒⃒⃒

⃒ 1
𝑁

𝑁−1∑︁
𝑛=0

Eℎ{𝜑𝑛𝑍𝑁}

⃒⃒⃒⃒
⃒ 6 𝐶√

ℎ
‖𝜑‖𝐵∞ .

This estimate can be used with the martingale increments obtained from (4.2) and (4.14) of the schemes we
consider in this work.

Proof. Throughout the proof we denote by 𝐶 > 0 a generic constant which may change from line to line. Note
first that Eℎ{𝜑𝑛𝑍𝑁} = Eℎ{[𝜑𝑛 − 𝜇ℎ(𝜑)]𝑍𝑁}. We use the discrete Poisson equation[︂

𝐼 − 𝑃ℎ

ℎ

]︂ ̂︀𝜑ℎ = 𝜑− 𝜇ℎ(𝜑).

By (3.11) there exist ℎ* and 𝑅 > 0 such that ‖̂︀𝜑ℎ‖𝐵∞ 6 𝑅‖𝜑‖𝐵∞ for ℎ ∈ (0, ℎ*]. We next rewrite the left-hand
side of the desired inequality as

1
𝑁ℎ

𝑁−1∑︁
𝑛=0

Eℎ

{︁(︁̂︀𝜑ℎ,𝑛 − 𝑃ℎ
̂︀𝜑ℎ,𝑛

)︁
𝑍𝑁

}︁
=

1
𝑁ℎ

𝑁−1∑︁
𝑛=0

Eℎ

{︁(︁̂︀𝜑ℎ,𝑛+1 − 𝑃ℎ
̂︀𝜑ℎ,𝑛

)︁
𝑍𝑁

}︁
− 1
𝑁ℎ

Eℎ

{︁(︁̂︀𝜑ℎ,𝑁 − ̂︀𝜑ℎ,0

)︁
𝑍𝑁

}︁
.

(6.4)

For convenience, we denote the martingale differences by 𝜉𝑛 = ̂︀𝜑ℎ,𝑛+1 − 𝑃ℎ
̂︀𝜑ℎ,𝑛, and hence

1
𝑁ℎ

𝑁−1∑︁
𝑛=0

Eℎ

{︁(︁̂︀𝜑ℎ,𝑛+1 − 𝑃ℎ
̂︀𝜑ℎ,𝑛

)︁
𝑍𝑁

}︁
=

1
𝑁ℎ

𝑁−1∑︁
𝑛=0

Eℎ{𝜉𝑛𝜂𝑛}.

Note that by the Cauchy–Schwarz inequality

|Eℎ{𝜉𝑛𝜂𝑛}| 6 Eℎ{𝜉2𝑛}1/2Eℎ{𝜂2
𝑛}1/2 6

√
𝐾ℎEℎ{𝜉2𝑛}1/2.

Since |𝜉𝑛| 6 2‖̂︀𝜑ℎ‖𝐵∞ 6 2𝑅‖𝜑‖𝐵∞ , we can conclude that⃒⃒⃒⃒
⃒ 1
𝑁ℎ

𝑁−1∑︁
𝑛=0

Eℎ{𝜉𝑛𝜂𝑛}

⃒⃒⃒⃒
⃒ 6 𝐶√

ℎ
‖𝜑‖𝐵∞ . (6.5)
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Now, for the second term on the right hand side of (6.4), the Cauchy–Schwarz inequality gives⃒⃒⃒⃒
1
𝑁ℎ

Eℎ

{︁(︁̂︀𝜑ℎ,𝑁 − ̂︀𝜑ℎ,0

)︁
𝑍𝑁

}︁⃒⃒⃒⃒
6

1
𝑁ℎ

Eℎ

{︂(︁̂︀𝜑ℎ,𝑁 − ̂︀𝜑ℎ,0

)︁2
}︂1/2

Eℎ{𝑍2
𝑁}1/2

6
𝐶‖𝜑‖𝐵∞

𝑁ℎ

[︃
𝑁−1∑︁
𝑛=0

Eℎ{𝜂2
𝑛}

]︃1/2

6
𝐶‖𝜑‖𝐵∞√

𝑁ℎ
·

(6.6)

Finally, the result follows by combining the estimates (6.5) and (6.6). �

Appendix A. Derivation of the modified martingale for the additive noise in
the multi-dimensional case

We have shown in the proof of Theorem 4.5 that the modified martingale (4.14) leads to the correct second
order CLR scheme in the scalar setting. For the sake of completeness we provide a detailed algebraic calculation
to justify that, under the additional assumption that the noise is additive (i.e., 𝜎(𝑥) is independent of 𝑥), the
formula (4.15) leads to the second order CLR scheme in the multi-dimensional setting.

Similar to the proof of Theorem 4.5 the multivariate expansion (in ℎ) of the Poisson solution ̃︀𝜃ℎ,𝑛+1 reads

̃︀𝜃ℎ,𝑛+1 = ̃︀𝜃ℎ,𝑛 +𝐷1̃︀𝜃𝑇
ℎ,𝑛Φℎ,𝑛 +

1
2
𝐷2̃︀𝜃ℎ,𝑛 : Φ⊗2

ℎ,𝑛 +
1
6
𝐷3̃︀𝜃ℎ,𝑛 : Φ⊗3

ℎ,𝑛 + 𝑟ℎ,𝜃,𝑛,

with the remainder

𝑟ℎ,𝜃,𝑛 =
(︂

1
6

∫︁ 1

0

𝑢3𝐷4̃︀𝜃ℎ(𝑋𝑛 + 𝑢Φℎ,𝑛) 𝑑𝑢
)︂

: Φ⊗4
ℎ,𝑛,

where 𝐷𝑘 denotes the 𝑘-th order differential, i.e., for 𝑣1, . . . , 𝑣𝑘 ∈ R𝑑,

𝐷𝑘𝑓(𝑋) : (𝑣1 ⊗ · · · ⊗ 𝑣𝑘) =
∑︁

𝑖1+···+𝑖𝑑=𝑘

𝜕𝑘𝑓

𝜕𝑖1
𝑥1 . . . 𝜕

𝑖𝑑
𝑥𝑑

(𝑋)𝑣𝑖1
1 . . . 𝑣𝑖𝑑

𝑑 .

In the presentation of formulas below we use a matrix notation in which the gradient ∇̃︀𝜃 is viewed as a column
vector with components 𝜕𝑥𝑖

̃︀𝜃 and the second order differential 𝐷2̃︀𝜃 is represented by the Hessian matrix ∇2̃︀𝜃
of the second derivatives 𝜕2

𝑥𝑖,𝑥𝑗
̃︀𝜃. We recall the increment function Φℎ,𝑛 for the second order discretization as

defined in (3.3), the corresponding induced semigroup 𝑃ℎ and the modified martingale 𝑌𝑛 as defined in (4.14).
After expanding ̃︀𝜃ℎ,𝑛+1 − 𝑃ℎ

̃︀𝜃ℎ,𝑛 in powers of ℎ1/2, the resulting terms of order ℎ1/2 and order ℎ3/2 are

∇̃︀𝜃𝑇
ℎ,𝑛𝜎∆𝑊𝑛 (A.1)

and
1
2
∇̃︀𝜃𝑇

ℎ,𝑛(𝒦𝑏𝑛)∆𝑊𝑛ℎ+ (𝜎∆𝑊𝑛)𝑇∇2̃︀𝜃ℎ,𝑛𝑏𝑛ℎ+
1
6
𝐷3̃︀𝜃ℎ,𝑛 : (𝜎𝛥𝑊𝑛)⊗3, (A.2)

respectively, where ∇𝑏𝑛 = [∇𝑏1𝑛, . . . ,∇𝑏𝑑𝑛] ∈ R𝑑×𝑑. Similarly, for the increment 𝑌𝑛+1 − 𝑌𝑛, the terms of order
ℎ1/2 and order ℎ3/2 are

(𝜎−1𝐹𝑛)𝑇 ∆𝑊𝑛, (A.3)

and
1
2

(𝜎−1𝐹𝑛)𝑇 (𝒦𝑏𝑛)𝑇𝜎−𝑇 ∆𝑊𝑛ℎ, (A.4)

respectively.
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Next we expand the product ℎ−1Eℎ{(̃︀𝜃ℎ,𝑛+1−𝑃ℎ
̃︀𝜃ℎ,𝑛)(𝑌𝑛+1−𝑌𝑛)} and compute the terms of order 1 and ℎ.

By multiplying (A.1) and (A.3) together we obtain the term of order 1

Eℎ

[︁
∇̃︀𝜃𝑇

ℎ,𝑛𝜎∆𝑊𝑛∆𝑊𝑇
𝑛 (𝜎−1𝐹𝑛)

]︁
= Eℎ

[︁
∇̃︀𝜃𝑇

ℎ,𝑛𝐹𝑛

]︁
, (A.5)

which is consistent with the univariate case. The computation of the order ℎ terms is more involved. First, the
product of (A.1) and (A.4) leads to

ℎ

2
Eℎ

[︁
(𝜎−1𝐹𝑛)𝑇 (𝒦𝑏𝑛)𝑇

𝜎−𝑇 ∆𝑊𝑛∆𝑊𝑇
𝑛 𝜎

𝑇∇̃︀𝜃ℎ,𝑛

]︁
=
ℎ

2
Eℎ

[︁
(𝜎−1𝐹𝑛)𝑇 (𝒦𝑏𝑛)𝑇 ∇̃︀𝜃ℎ,𝑛

]︁
. (A.6)

There are additional terms of order ℎ coming from the product of (A.2) and (A.3). The multiplication of the
first term of (A.2) and (A.3) leads to

ℎ

2
Eℎ

[︁
(𝜎−1𝐹𝑛)𝑇 ∆𝑊𝑛∆𝑊𝑇

𝑛 (𝒦𝑏𝑛)𝑇∇̃︀𝜃ℎ,𝑛

]︁
=
ℎ

2
Eℎ

[︁
(𝜎−1𝐹𝑛)𝑇 (𝒦𝑏𝑛)𝑇∇̃︀𝜃ℎ,𝑛

]︁
. (A.7)

Note that the sum of (A.6) and (A.7) is

ℎEℎ

[︁
(𝜎−1

𝑛 𝐹𝑛)𝑇 (𝒦𝑏𝑛)𝑇∇̃︀𝜃ℎ,𝑛

]︁
= ℎEℎ

[︁
(∇𝑏𝑛∇̃︀𝜃ℎ,𝑛)𝑇𝐹𝑛

]︁
. (A.8)

Similarly, multiplying the second term of (A.2) by (A.3) leads to

ℎE
[︁
𝐹𝑇

𝑛 𝜎
−𝑇 ∆𝑊𝑛∆𝑊𝑇

𝑛 𝜎
𝑇∇2̃︀𝜃ℎ,𝑛𝑏𝑛

]︁
= ℎEℎ

[︂(︁
∇2̃︀𝜃ℎ,𝑛𝑏𝑛

)︁𝑇

𝐹𝑛

]︂
. (A.9)

It only remains to compute the product of the last term of (A.2) and (A.3). Note that

ℎ

6
Eℎ

[︁
𝐷3̃︀𝜃ℎ,𝑛 : (𝜎𝑛∆𝑊𝑛)⊗3(𝜎−𝑇

𝑛 ∆𝑊𝑛)𝑇𝐹𝑛

]︁
=
ℎ

6

𝑑∑︁
𝑖,𝑗,𝑘,𝑙=1

Eℎ

[︁
𝜕3

𝑥𝑖,𝑥𝑗 ,𝑥𝑘
̃︀𝜃ℎ,𝑛(𝜎∆𝑊𝑛)𝑖(𝜎∆𝑊𝑛)𝑗(𝜎∆𝑊𝑛)𝑘(𝜎−𝑇 ∆𝑊𝑛)𝑙𝐹 𝑙

𝑛

]︁

=
ℎ

2

𝑑∑︁
𝑖,𝑗,𝑘,𝑙=1

Eℎ

⎡⎣𝜕3
𝑥𝑖,𝑥𝑗 ,𝑥𝑘

̃︀𝜃ℎ,𝑛

𝑑∑︁
𝛼=1

𝜎𝑖𝛼𝜎𝑗𝛼
𝑑∑︁

𝛽=1

𝜎𝑘𝛽(𝜎−1)𝛽𝑙𝐹 𝑙
𝑛

⎤⎦
=
ℎ

2

𝑑∑︁
𝑖,𝑗,𝑘=1

Eℎ

[︁(︀
𝜎𝜎𝑇

)︀𝑖𝑗
𝜕3

𝑥𝑖,𝑥𝑗 ,𝑥𝑘
̃︀𝜃ℎ,𝑛𝐹

𝑘
𝑛

]︁
,

(A.10)

where we have used the fact that (with the usual definition of the Kronecker symbol 𝛿𝛼𝛽)

EΔ𝑊𝑛
[∆𝑊𝛼

𝑛 ∆𝑊 𝛽
𝑛 ∆𝑊 𝛾

𝑛 ∆𝑊 𝛿
𝑛 ] = 𝛿𝛼𝛽𝛿𝛾𝛿 + 𝛿𝛼𝛾𝛿𝛽𝛿 + 𝛿𝛼𝛿𝛿𝛽𝛾 .

Finally, combining (A.8) to (A.10) we obtain (recalling that 𝜎 is constant)

ℎEℎ

⎡⎣𝐹𝑇
𝑛 ∇𝑏𝑛∇̃︀𝜃ℎ,𝑛𝐹𝑛 + 𝐹𝑇

𝑛 ∇2̃︀𝜃ℎ,𝑛𝑏𝑛 +
1
2
𝐹𝑇

𝑛 ∇

⎛⎝ 𝑑∑︁
𝑖,𝑗=1

(︀
𝜎𝜎𝑇

)︀𝑖𝑗
𝜕2

𝑥𝑖,𝑥𝑗
̃︀𝜃ℎ,𝑛

⎞⎠⎤⎦ = ℎEℎ

[︁
𝐹𝑇

𝑛 ∇ℒ̃︀𝜃ℎ,𝑛

]︁
,

which leads to the order ℎ correction term −ℎEℎ[𝐹𝑇
𝑛 ∇𝜃𝑛] by the same argument as in the proof of Theorem 4.5.
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