Convergence of an implicit scheme for diagonal non-conservative hyperbolic systems
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 55 (2021), pp. S573-S591

In this paper, we consider diagonal non-conservative hyperbolic systems in one space dimension with monotone and large Lipschitz continuous data. Under a certain nonnegativity condition on the Jacobian matrix of the velocity of the system, global existence and uniqueness results of a Lipschitz solution for this system, which is not necessarily strictly hyperbolic, was proved in El Hajj and Monneau (J. Hyperbolic Differ. Equ. 10 (2013) 461–494). We propose a natural implicit scheme satisfiying a similar Lipschitz estimate at the discrete level. This property allows us to prove the convergence of the scheme without assuming it strictly hyperbolic.

DOI : 10.1051/m2an/2020049
Classification : 35A01, 74G25, 35F20, 35F21, 70H20, 35Q74
Keywords: Implicit upwind scheme, diagonal non-conservative hyperbolic systems, transport systems, discrete gradient estimates, monotone discrete solutions, Lipschitz discrete solutions
@article{M2AN_2021__55_S1_S573_0,
     author = {Boudjerada, Rachida and El Hajj, Ahmad and Oussaily, Aya},
     title = {Convergence of an implicit scheme for diagonal non-conservative hyperbolic systems},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {S573--S591},
     year = {2021},
     publisher = {EDP-Sciences},
     volume = {55},
     number = {Suppl\'ement},
     doi = {10.1051/m2an/2020049},
     mrnumber = {4221324},
     zbl = {1501.65028},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/m2an/2020049/}
}
TY  - JOUR
AU  - Boudjerada, Rachida
AU  - El Hajj, Ahmad
AU  - Oussaily, Aya
TI  - Convergence of an implicit scheme for diagonal non-conservative hyperbolic systems
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2021
SP  - S573
EP  - S591
VL  - 55
IS  - Supplément
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/m2an/2020049/
DO  - 10.1051/m2an/2020049
LA  - en
ID  - M2AN_2021__55_S1_S573_0
ER  - 
%0 Journal Article
%A Boudjerada, Rachida
%A El Hajj, Ahmad
%A Oussaily, Aya
%T Convergence of an implicit scheme for diagonal non-conservative hyperbolic systems
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2021
%P S573-S591
%V 55
%N Supplément
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/m2an/2020049/
%R 10.1051/m2an/2020049
%G en
%F M2AN_2021__55_S1_S573_0
Boudjerada, Rachida; El Hajj, Ahmad; Oussaily, Aya. Convergence of an implicit scheme for diagonal non-conservative hyperbolic systems. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 55 (2021), pp. S573-S591. doi: 10.1051/m2an/2020049

[1] S. Bianchini and A. Bressan, Vanishing viscosity solutions of nonlinear hyperbolic systems. Ann. Math. 161 (2005) 223–342. | MR | Zbl | DOI

[2] F. Bouchut, Nonlinear stability of finite volume methods for hyperbolic conservation laws and well-balanced schemes for sources. In: Frontiers in Mathematics. Birkhäuser Verlag, Basel (2004). | MR | Zbl | DOI

[3] A. Bressan, Hyperbolic systems of conservation laws. In: Vol. 20 of Oxford Lecture Series in Mathematics and its Applications. Oxford University Press, Oxford (2000). | MR | Zbl

[4] A. El Hajj, Well-posedness theory for a nonconservative Burgers-type system arising in dislocation dynamics. SIAM J. Math. Anal. 39 (2007) 965–986. | MR | Zbl | DOI

[5] A. El Hajj and N. Forcadel, A convergent scheme for a non-local coupled system modelling dislocations densities dynamics. Math. Comput. 77 (2008) 789–812. | MR | Zbl | DOI

[6] A. El Hajj and R. Monneau, Uniqueness results for diagonal hyperbolic systems with large and monotone data. J. Hyperbolic Differ. Equ. 10 (2013) 461–494. | MR | Zbl | DOI

[7] A. El Hajj and A. Oussaily, Existence and uniqueness of continuous solution for a non-local coupled system modeling the dynamics of dislocation densities. Submitted. | MR

[8] A. El Hajj, H. Ibrahim and V. Rizik, Global BV solution for a non-local coupled system modeling the dynamics of dislocation densities. J. Differ. Equ. 264 (2018) 1750–1785. | MR | Zbl | DOI

[9] J. Glimm, Solutions in the large for nonlinear hyperbolic systems of equations. Comm. Pure Appl. Math. 18 (1965) 697–715. | MR | Zbl | DOI

[10] I. Groma and P. Balogh, Investigation of dislocation pattern formation in a two-dimensional self-consistent field approximation. Acta Mater. 47 (1999) 3647–3654. | DOI

[11] E. R. Jakobsen and K. H. Karlsen, Convergence rates for semi-discrete splitting approximations for degenerate parabolic equations with source terms. BIT 45 (2005) 37–67. | MR | Zbl | DOI

[12] E. R. Jakobsen, K. H. Karlsen and N. H. Risebro, On the convergence rate of operator splitting for Hamilton-Jacobi equations with source terms. SIAM J. Numer. Anal. 39 (2001) 499–518. | MR | Zbl | DOI

[13] P. D. Lax, Hyperbolic Systems of Conservation Laws and the Mathematical Theory of Shock Waves. Society for Industrial and Applied Mathematics, Philadelphia, PA (1973). | MR | Zbl | DOI

[14] P. Lax and B. Wendroff, Systems of conservation laws. Comm. Pure Appl. Math. 13 (1960) 217–237. | MR | Zbl | DOI

[15] R. J. Leveque, Finite Volume Methods for Hyperbolic Problems. Cambridge Texts in Applied Mathematics, Cambridge University Press, Cambridge (2002). | MR | Zbl

[16] R. J. Leveque and B. Temple, Stability of Godunov’s method for a class of 2 × 2 systems of conservation laws. Trans. Amer. Math. Soc. 288 (1985) 115–123. | MR | Zbl

[17] T. P. Liu, The deterministic version of the Glimm scheme. Comm. Math. Phys. 57 (1977) 135–148. | MR | Zbl | DOI

[18] L. Monasse and R. Monneau, Gradient entropy estimate and convergence of a semi-explicit scheme for diagonal hyperbolic systems. SIAM J. Numer. Anal. 52 (2014) 2792–2814. | MR | Zbl | DOI

[19] B. Temple, Systems of conservation laws with coinciding shock and rarefaction cruves. Contemp. Math. 17 (1983) 143–151. | Zbl | DOI

[20] B. Temple, Systems of conservation laws with invariant submanifolds. Trans. Amer. Math. Soc. 280 (1983) 781–795. | MR | Zbl | DOI

Cité par Sources :