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CONVERGENCE OF AN IMPLICIT SCHEME FOR DIAGONAL
NON-CONSERVATIVE HYPERBOLIC SYSTEMS

RACHIDA BOUDJERADA!, AHMAD EL HAJJ?>* AND AvA OUSSAILY?

Abstract. In this paper, we consider diagonal non-conservative hyperbolic systems in one space
dimension with monotone and large Lipschitz continuous data. Under a certain nonnegativity condition
on the Jacobian matrix of the velocity of the system, global existence and uniqueness results of a
Lipschitz solution for this system, which is not necessarily strictly hyperbolic, was proved in El Hajj
and Monneau (J. Hyperbolic Differ. Equ. 10 (2013) 461-494). We propose a natural implicit scheme
satisfiying a similar Lipschitz estimate at the discrete level. This property allows us to prove the
convergence of the scheme without assuming it strictly hyperbolic.
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1. INTRODUCTION AND MAIN RESULTS

In this paper we present a convergence result for an implicit Upwind scheme considering the framework of
hyperbolic systems, which are not necessarily strictly hyperbolic. Related to this work, it is worth noting that,
in [18] the authors have proved a similar result for a semi-explicit scheme in the case of non-conservative strictly
hyperbolic systems. Moreover, their result was only valid in the class of vanishing viscosity solutions, introduced
by Bianchini and Bressan [1]. Here, we show the convergence taking only Lipschitz continuous solutions, without
any other restriction concerning the class of solutions.

Before presenting our scheme, let us, first, recall in Section 1.1 the setting of the continuous problem. In
particular, we will restate in Section 1.1.2 the existence and uniqueness results of Lipschitz solution for the
continuous problem that was shown in [6].

Keywords and phrases. Implicit upwind scheme, diagonal non-conservative hyperbolic systems, transport systems, discrete
gradient estimates, monotone discrete solutions, Lipschitz discrete solutions.

1 USTHB, Faculté de Mathématiques, Laboratory AMNEDP, BP32 El Alia, Bab Ezzouar, Alger, Algérie.

2 Sorbonne Universités, Université de Technologie de Compiégne, LMAC, 60205 Compiégne Cedex, France.
*Corresponding author: elhajjah@utc.fr

Article published by EDP Sciences © EDP Sciences, SMAI 2021


https://doi.org/10.1051/m2an/2020049
https://www.esaim-m2an.org
mailto:elhajjah@utc.fr
https://www.edpsciences.org

S574 R. BOUDJERADA ET AL.

1.1. The continuous problem

1.1.1. Setting of the problem

In this paper, we will propose an implicit numerical scheme for hyperbolic diagonal systems in non-
conservative form given by

O™ + A% (v) 0,0 = on(0,400) xR, fora=1,...,d, (1.1)
v*(0,2) = v§(x z €R, fora=1,...,d, )
0 0
where v(t, z) = (v*(t,x))a=1,....d, With d > 1 is an integer. Here we use the notation 9; = g and 0, = =5 Such

systems are (sometimes) called (d x d) diagonal hyperbolic systems.
We consider a given function (A%)a=1,...4: R¢ — R, which satisfies the following regularity assumption:

A e CYRY), fora=1,...,d,
(H1)< there exists M; >0 such that fora=1,...,d,
A (u) = A¥(v)| < My|lu—v| forall wu,v€RY

where [w| =" _; |w®], for w = (w', ... ,wh).
We denote

where U is the box defined as follows

d
U= H —M* M*] with M* < 400 is a real number.

a=1
In (1.1), the initial data vy = (v{,...,vd) is assumed to satisfy the following property:

—M* <of < M,
(H2) ¢ v§ is nondecreasing, |for a=1,...,d.
0v§ € L>*(R),

Now, we define the matrix
o o\
Aj(v) = W(v), forall o,8=1,...,d.

Let us introduce various assumptions on the matrix (A§(v)) which will gurantee the existence and

a,f=1,....d
uniqueness of a Lipschitz solution.

(Nonnegative matrices with nonpositive off-diagonal terms)

Ag(v) <0 forall veld and B#a with o,F€{l,...,d},

(K1) App = Hellfl (A3(v)) and Z Anplap >0 forevery €= (&,...,&) € [0, +00)™
v a,B=1,....d

(Diagonally dominant)

(K2) )\z(v)ZZ(Ag(v))_ forall veld and a=1,...,d,

a7
where we note 2~ = max(0, —z).
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(Nonnegative subdiagonal matrices)

(K3) Az(v)>0 forall veld and [>a with «o,f€{l,...,d}.
Before giving main results on the solution of the discrete problem, let us recall some existence and uniqueness
results on the solution of the continuous problem.

1.1.2. Recall of useful results

Theorem 1.1 (Existence and uniqueness of Lipschitz solution, [6], Thm. 1.3).

Assume that (H1) and (H2) are satisfied. Assume also that one of the following assumptions (K1), (K2) or
(K3) holds. Then, there ezists a unique function v € (o o[W1*°([0,T) x R)]? solution of (1.1), in distributional
sense, with v(t,z) € U for all (t,z).

Moreover we have for any t € (0,400):

> ot )o@ < D 020§ L@ i (K1) holds, (1.3)
a=1,...,d a=1,...,d

and
agaxdﬂﬁxva(t,-)HLm(R)Sainladevag‘HLoo(R) if (K2) holds. (1.4)

Notice that Theorem 1.1 is based on the fact that the solution satisfies 9,v* > 0, for « = 1,...,d, and then,
we only have to bound the maximum of the gradient from one side. One of the assumptions (K1), (K2) or
(K3) is a sufficient condition to control the solution of the maximum of the gradient. These a priori bounds
are obtained considering a parabolic regularization of the system and then writing some differential inequalities
satisfied in the sense of viscosity by the maximum of the gradient. The uniqueness is an independent result valid
for Lipschitz solutions.

Let us mention that an application to isentropic gas dynamics was proved in [6].

In the framework of viscosity solutions and motivated by the application to dislocation densities dyamics,
El Hajj and Forcadel [5], have shown the existence and uniqueness of Lipschitz viscosity solution in the case

_11 _11> In a similar framework, in El Hajj [4], the existence and

uniqueness of strong solution Wlicz ([0,T] x R) was proved. Recently, a result of global existence and uniqueness
was proved in El Hajj and Oussaily [7] for continuous solutions satisfying some gradient entropy estimates. We
refer the readers to El Hajj et al. [8] for the discontinuous solutions of this system.

where d = 2 with a matrix ()\g)oz,ﬁ:lﬂ = <

For a generalized (2 x 2) strictly hyperbolic system, in [13], Lax proved the existence and uniqueness of
nondecreasing smooth solutions. In the framework of (d x d) strictly hyperbolic systems, we refer the readers
to [1] where the authors have shown a global existence and uniqueness result assuming that the initial data has
small total variation. Also, a result of existence and uniqueness of continuous solution was proved in [6] for a
(d x d) strictly hyberbolic system.

Now, we will propose a compatible discretization with the continuous problem.

1.2. The discrete problem
1.2.1. Setting of the problem

To recover the properties of the continuous problem on the discrete level, we consider a time step At > 0
and a space step Az > 0. In order to avoid the ambiguity in notations, we denote by v® the continuous solution
and u;"" the discrete associated solution defined as an approximation of v*(nAt, iAx), where n € N and i € Z.
We propose, then, the following implicit discretization of the system
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uq7n+1 —y®n uq7n+1 _ uq,n+1
) A P + A& (u?+1) i+1 A 4 =0if )\a(uZFH) < 07
i
Yo € {1, - 7d}, ant+l _ an ant+l _ antl
U, N U, L\ (u;zle) (Uz X U; 1 ) —0if )\a(u?+1) > 07
X
ud = u(x).

It is a first-order Upwind formulation, with the velocity A*(u) being implicit in time.
We denote
AP = A (T, n e N
We define the positive and the negative parts ()\q’"H) and ()\(.l’"H) as follows:
+ —

(2 (2

1 1
(A?,n+1)+ _ 5 ()\gx,n+1 + |A;1,n+1|) , (A?,n—i-l) — 5 (‘A?,n+1| _ )\?,n+1> )

3 3

Both ()f""“) and ()f’""“) are positive real numbers.
+ —

We can write the scheme in a more compact form:
a,n+1 a,n a,n+1 a,n+1 a,n+1 a,n+1
u; —u (/\g,n+1> Ui — U i <)\q,n+1> U Ui -0
At ¢ - Az k + Az (1.5)

In the sequel, we set
ugl —ug "
0L = = (1.6)

which is a discrete equivalent of d,u®.

Remark 1.2. Here, we choose the implicit scheme since it naturally preserves the Lipschitz estimates (1.3) and
(1.4) at the discrete level, which is neither the case of the explicit scheme nor that of the semi-explicit scheme.

1.3. Main results

First, we set uf = (u{"") _, 4 u" = (u}'),c, and we say that u" € U if u' € U, for all i € Z.

We now introduce the following CFL condition:

A
F; < min(ﬂl,ﬂg), (17)

with
1 1

“egrery ™ R Esmeanoe 1y

We present in this paper three main results. The first one is proving that the implicit scheme (1.5) has a unique
bounded solution at each time-step. Then, we show a gradient estimate decay result. The third one is showing
the convergence of the solution of the scheme.

S

Theorem 1.3 (Resolution of the implicit scheme on one time step). Assume that assumptions (H1), (H2)
and the CFL condition (1.7) are satisfied. Let u™ € U”. Then, we get

(i) Existence
There exists a unique solution u™*t € U” to the implicit scheme (1.5).
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(ii) Monotonicity
Moreover if u™ is nondecreasing, i.e. satisfies
ugly >ug™ forall i€Z, and a=1,...,d,
then u™t! is also nondecreasing.

Theorem 1.4 (Discrete gradient estimates). Suppose that assumptions (H1), (H2) are verified. If u™ is the
solution of the implicit scheme (1.5) given by Theorem 1.3, then, 9?;1 defined in (1.6) is nonnegative for all
2

n € N and verifies the following estimates:

d d
an - a,0 . )
QZZSEIZ)HH% < O;silégGH% if (K1) holds, (1.8)
a,n < «,0 . )
X (ilellz) 0’+§) < max (316112) 9i+§) if (K2) holds, (1.9)
sup (95:1) < Ko (T) (sup 92.0101) for alln >mng if (K3) holds, (1.10)
i€Z 2 iez T2

where IC, is a constant that depends on T, My and (supiEZ 0;,6_;01), forall B < a—1 and nyg € N dependent on
2
T.

Let us mention that estimates (1.8) and (1.9) represent the discrete case of the continuous estimates (1.3)
and (1.4).
Now, we present the convergence result of our implicit scheme.

Theorem 1.5 (Convergence of the solution of the scheme). Assume that assumptions (H1), (H2) and the
CFL condition (1.7) are satisfied. We also suppose that one of the conditions (K1), (K2) or (K3) holds. Let us
consider the solution (u™),>o of the scheme (1.5) for the time step At > 0 and the space step Ax > 0 given by
Theorem 1.3. Let us call e = (At, Az) and u® the function defined by

u(nAt,iAz) =u} for neN, ie€Z.

Then, as € goes to zero, the whole sequence (u). converges to the unique Lipschitz solution v of (1.1). Moreover,
for any compact K C [0,+00) x R, we have

sup |u¢ —v] — 0 as e —(0,0).
KN((AN)x (AxZ))
a=1,....d

1.4. Brief literature

Numerical schemes for hyperbolic systems are mainly written for systems in conservative form which enable
to recover the correct Rankine-Hugoniot shock. We refer to [15] for a review of the main classes of existing
schemes. Among these schemes, convergence results are seldom found for hyperbolic systems.

The Lax—Wendroff theorem [14] shows that if a consistent and conservative numerical scheme converges (in
L' with bounded total variation), its limit is a weak solution to the hyperbolic system. However, in order to
obtain convergence of the scheme, stability is needed, in general in the form of TV-stability. For the scalar
Godunov scheme, convergence is obtained due to its total variation diminishing (TVD) property. This is no
longer the case for systems [15]. Stability can still be proved for certain special systems of two equations, for
instance in [16,19,20]. Similar results can be obtained for a class of nonlinear systems with straight-line fields
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([3], pp- 102, 103). Nonlinear stability can also be assessed through the use of invariant domains and entropy
inequalities [2], for HLL, HLLC and kinetic solvers of Euler equations of gas dynamics.

In the case of conservative systems where the initial data has sufficiently small total variation, Glimm’s ran-
dom choice method [9] is probably convergent. A deterministic variant (replacing random with equidistributed
sampling) has also been proved to converge under the same assumptions [17].

Beside this, for non-conservative forms, recently, Monasse and Monneau proved in [18] a convergence result
of a semi-explicit scheme for diagonal non-conservative hyperbolic systems assuming that the system is strictly
hyperbolic and using a discrete gradient entropy estimate which was proved in the continuous case in [6]. This
result has been established in a restricted class of solutions, which is defined by the vanishing viscosity solutions,
introduced by Bianchini and Bressan [1]. In the present work, we consider the case of hyperbolic systems which
are not necessarily strictly hyperbolic and we prove, basing on some Lipschitz discrete estimates, the convergence
of the scheme in the framework of Lipschitz continuous solutions, without any other restriction concerning the
class of solutions. Note that, the fundamental Lipschitz discrete estimates are proved, at the discrete level,
assuming some nonnegative conditions on the Jacobian matrix (/\g)a, 3, that ensures a L°° bound on the gradient
of the continuous solutions. We also took an implicit scheme since it keeps continuous Lipschitz estimates (1.3)
and (1.4), at the discrete level.

We should recall that in the framework of dislocation densities, it was proved in [5] a convergence result of
an explicit scheme to the Lipschitz continuous solution for a particular (2 x 2) Hamilton—Jacobi system. We
also refer to Jakobsen and Karlsen [11] and Jakobsen et al. [12] where they proved a convergence result for a
weakly coupled Hamilton—-Jacobi system consdering a semi-discrete splitting algorithm that they proposed to
approach the continuous solution.

1.5. Organization of the paper

This paper is organized as follows. In Section 2, we prove some preliminary results on the existence and
monotonicity of the solution of the scheme (Thm. 1.3). Section 3 is devoted to show some discrete gradient
estimates (Thm. 1.4) using conditions (K1), (K2) and (K3) on the Jacobian matrix (A3)a,s=1,..,¢- Finally,
based on these gradient estimates, we prove the convergence result of our scheme (Thm. 1.5) in Section 4.

2. EXISTENCE AND MONOTONICITY OF THE DISCRETE SOLUTION

This section is devoted to prove the existence, the uniqueness and the monotonicity of a bounded solution
for the implicit scheme (1.5). This section is divided into two subsections, in Section 2.1, we prove by a fixed
point argument the existence and uniqueness of the discrete solution. Then, in Section 2.2, we show that the
discrete solution is nondecreasing.

2.1. Proof of Theorem 1.3(i)

We introduce the truncature A* of A* by A® (defined in (1.2)):

. Aw) i A (u)] < A
A (u) =< A“ it A% (u)] > A®
—A* i A% (u)] < —A~.
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For all i € Z, we denote w; = (wf') ,_; 4 and w = (w;);c;. We define, for all w € U and for all o € {1,...,d},
the function F,» = (Flf‘n) ., such that
¢ t /) a=1,...,
« a,n At N « a N « a
F(w) = w4 oo (W) (g —wf) = (W (wi)+ (wf —wfy)). (2.1)

According to (2.1), we can see that the scheme (1.5) can be written as

i 2.2
uf™ = u (xy). 22)

{ ul" T = Fo, (), for i€ Z,n € N and u” € UZ,

Let us now define the mapping
—7 —7
Gur:U — U
w — Fyn(w).
Our goal is to show that the mapping G is a well-defined contraction taking u" € U”. This leads to prove,

first, the existence and uniqueness of a fixed point of (2.2) in u. Then, we will show that the solution belongs
to U”. To do that, we proceed in three steps.

Step 1 (G, is well-defined).

It is sufficient to prove that —M® —1 < Fn(w) < M +1, for all i € Z, if u™ € U”. Indeed, by (2.1), we
have '

Fow) = " = 2[R w))_ + (X (1)), ] w?
* %@a(wi)m&l + %(X“(«uimwf_l.

Then, using the CFL condition (1.7), we obtain
At
|ES (w)] < M+ 4A—A“(M“ +1) < M*+1,
: x
which implies that the mapping G» is well-defined.
Step 2 (G is a contraction).

We equipped HZ with the following norm (l‘x’)d:

d
lll oeya = D sup fuf.
€z

a=1"

We observe that, for all u and v in HZ, for all « € {1,...,d},

d
|Gz (W) = Gup ()| ey = D s9p |Fi () = Fiy (v)]
a=1"
At

~
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At —a At —a
where we have added and subtracted the terms A—()\ (vi))_uiy, and A—()\ (vi)) ui . We obtain
x x
At

(BA™ +3M1 (M + 1)) u — v]] ooy,

which gives by the CFL condition (1.7) that G.,» is a contraction on u.

Banach fixed point theorem yields the existence and uniqueness of a solution w of (2.1) on HZ.
Step 3 (The fixed point belongs to U%).

Our goal is to prove that the fixed point w constructed in the previous steps belongs to UZ, i.e. |w®| < M<.
Indeed, let ¢ € C°(R) be a cut-off function taking values in [0, 1], supported on the interval [—2,2] and
#(r) =1 on [—1,1]. Multiplying (2.1) by ¢r(z;) = ¢(%), for R > 0, with z; = iAx, we get

- At T ~a o .

"on) = o | )+ (3 (), | wier()

+ (A (W) wi i (Or(w:) = dr(@ir1)) + (N (W) 4wty (Pr(7:) — dr(zi-1)  (23)
Al —a At —a

+t ;A (Wi))-widr(icn) + (A (wi)) L wily O (2i-1),

where we have added and subtracted the terms %(Xa (wi)) w1 ¢r(2it1) and %(Xa (w;i))  wit  or(wi—1). We

denote w§¢r(z;) = minjez(wi*¢r(x:)). Then, using (2.3), we obtain, for all i € Z,

Wi On(wi) 2 Wi oR(es) 2 ui" or () - % [(Xa(wj)), + (N (w))) | widr(z;)
+%(Xa(wj))—w?+1(¢1%(ﬂfj) — ¢r(Tj41))
+ %(X“(w)ﬁw;‘,l(qﬁg(%) — ¢r(zi1))

+ %(X%wn)_wﬁmm + %(X"“(wﬂuwﬁ“%(%)

> uy” ¢R($j)—2§/\ (M* + )| [| oo ),

where we have used the fact w € HZ. Now, using the fact that 0 < ¢r < 1 and u™ € U%, we get

—M® < —M*¢r(z;) < uj"¢r(r;) < M*Gr(z;) < M.

Therefore, we obtain

At
wf on(w) = ~M® — 22 AN M + DIl = o)

Now, by passing to the limit as R — +o00, we finally get
w > —-M* forallieZ.
We proceed in a similar manner to show that w* < M¢, for all i € Z. a

2.2. Proof of Theorem 1.3(ii)

In what follows, we derive an evolution in time of the discrete gradient Hf;nl defined by (1.6) from (1.5),

which allows us to prove the monotonicity of discrete solution.
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Let u{"" " be the solution of the implicit scheme (1.5). Using the definition of 0 Tﬁ , we observe that

a,n+1 a,n a,n+1 a,n
904 nt+l — pom + At u Wit —Ujqq . At U; — Uy .
i+3 i+ Ar At Az At

Inserting (1.5) at ¢ and ¢ + 1, allows us to show that H?Jr"l defined in (1.6) satisfies the following relation

2

At
a,n+1 a,n a,n+1 a,n+1 a,n+1
oyt = o - 5 | (), + () oy

o) o 2 e e

2

(2.4)

It is sufficient to show that G?Jﬁﬂ > 0. Indeed, multiplying (2.4) by ¢r(z;) = ¢(3¢), for R > 0, where ¢p is
2
defined in Section 2.1, we get

a,n a,n At a,n a,n a,n
61_‘_1+1¢)R('Ti) = QH’_%(l)R(Jfl) - - |:</\Z+1+1>+ + (/\ ) +1)_:| 61-_;%+1¢R(xi)

Az
At a,n+1 o« n+1 At a,n+1 a,n+1
YA () Oy omlain) + 7 (07) 024 onai) (25)
()‘?ﬁﬂ) 9:1”3“ (i) — dr(wit1)]
S () 0 o) — onlen ),
A a,n+1 a,n+1 At a,n+1 a,n+1
where we have added and subtracted the terms Ay ()\’L"I‘l )JQH s Or(xiy1)and s </\i )JFHF% dr(Ti—1).
Let us now denote Hljg_"j'lbe(xk) = I?%iél (9;1"1“(;53(@)). Then, from (2.5), we deduce that
2 7

9,@;;(;51%(%) 2 0 or(@e) — 1o {MHH - A H} ok;;@%(ﬂfk)

At
+oo (an) 0er (on(n) — dn(ana)]

Az
o () fom(en) ~ oo ).

T Az Ax
Then, we obtain

(1 + 5 e “D 007 ) = 07 dnlen) — 5 AM L~ m.
We argue by contradiction. Assume that GZ,O‘J’FZH < 0 for a certain ¢ € Z. Then, using the CFL condition (1.7),
2

the fact that HZ_Z >0 and ¢r > 0, we obtain
2

1 @, A ,M a,n @,
594;1@(%) > (1+ A [,\kﬂﬂ A +1D 9451@(;@)

At a,n+1 a,n+1 a,n+1
(1 + Ar [Ak-i-l - AL } 9k+1 Pr(zk)
4 At -,
> 0k+1¢R(xk) EFA M|[¢'|| Lo ()
4 A

> —ETAQMOWW | Loo (m)-
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Now, passing to the limit as R — +o00, we obtain

a,n+1
291"'2 =0,

« n+1 n+1

which gives a contradiction and then §;\","" > 0. This is equivalent to u”""" is also nondecreasing. This leads

2

to Theorem 1.3(ii), by applying a recursion on n > 0. O

3. PROOF OF THEOREM 1.4 (DISCRETE GRADIENT ESTIMATES)

a,n+1 .
0" +2
We can see that max07"\"" is reached at an index jo € Z since ;™" is bounded and nondecreasing. From

€L 2
(2.4), we have

Our goal is to show that is uniformly bounded for all i € Z.

At
oa n+1l maxea ,n+1 _ 004 ,n <(>\;3:'3_J£1)+ + <)\]q¢;n+1) ) 904 n+1

jat3 icl it jats Az Jats
At a,n+1 a,n+1 At a,n+1 a,n+1
o ) () + 5 (6), (),

sl s At a,n+1 At a,n+1
By the positivity of s ()\Ja+1 )_ and s ()‘ja )+, we get

ea n+1 oa n ﬁ ()\Qz,nJrl) + ()\q,n+1> ea n+1
+ —

Jat+z jati  Ax Jat1 Jati
+( 55 (o)) o+ (55 (50), ) oy
which impiles that
) Smory - gy (S X e )

In order to prove the discrete gradient estimates given by Theorem 1.4, we distinguish three cases. To do that,
we proceed in three subsections.

3.1. Case where (K1) holds

It is sufficient to prove that the sum over « € {1,...,d} of the second term in the right hand side of (3.1) is
negative using assumption (K1).
We have

At an+l Aa ,n+1 9a7n+1
Az Jat+1 Jo Jat3

_ﬁ i 2% (un+1+7_(un+1 _un+1))_ Pt g Bty g | geentl
- Al‘ = 0 8’11/8 Ja Jat1 Ja Ja+1 Ja ]a+2

a)\a u n n B,n+1 a,n+1
= At Z/ &ﬁ P (i =l U L
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3>\a n—‘,—l n+1 n+1 B8,n+1 a,n+1
= At Z auﬁ (W =) 0 A 68

ﬁ#a

1
oX« n41 n+1 n+1 a,n+1 a,n+1
+At[ [ (e (gt = ) 05 ar | g

Using the fact that A\§ <0 for o # 3, we get

ﬁ ()\q,n+11 )\a n+1> 904 n+1
Ax Ja+ ja+2

n+1 ntl _  ntl Bmn+1 a,n+1
> At Z/ 5 it (i =g th)) 00 | 0
e

Lo«
n+1 n+l _  n+l a,n+1 a,n+1
ou® (uja +7 (U’J +1 7 U5, )) 9](,4-2 dr| 6> Jat3

+At[
0

- PN nl _ontl Bt 1 antl
> At Z (up (W —up)) - 93 +1 dr eya+2

Now, using the fact that 0?{ Ztl is positive and the second statement of the assumption (K1), we deduce that
2

d
At a,n+1 a,n+1 a,n+1 Bn+1 a,n+1
_sz:l</\j.l+l — A5 )0ja+; < At %: Aap oj 5 ]ah <0. (3.2)
a= . =

We deduce inequality (1.8) by combining (3.2) and the sum over a € {1,...,d} of (3.1).
3.2. Case where (K2) holds

We assume that the maximum over « € {1,...,d} of 0?’3_&1 is achieved at some «g € {1,...,d}. In other
@ 2

words, we have

max max §&" ) = grontl
a€{l,.d} \ i€l it3 Jagt3

Then, using (3.1) at this maximum, we obtain

max |max (90‘ nH) < max [max (90‘ " )
a=1,..d | icz \ it3 a=1,...d | iez \ i+3 (3.3)
/s ( apg,n+1 _ )\ao,n—i-l) euo,n+1
Ax Jagt1 Jag Jap+3
We proceed as in Section 3.1. Namely, it is sufficient to prove that the second term in the right hand side of
inequality (3.3) is negative using assumption (K2).
Now, using the fact that 90‘0’”“ >0, we get

2

o At ()\cyo,nJrl _ )\90’n+1) aao,n+1
Az Jogt1 J Jaot+ s
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u Tl n+1 n+1 B,n+1 ao,n+1
T u'; 0 dr |0
Z/ 8uﬁ Yy + (JaoJrl Jag )) Jag+3 Joo+%

ﬁ#ao

' A +1 +1 +1 [¢ n+1 ap,n+1
— At ( n T ( n — " )) o gxo-
0 o cho + Jag +1 Jag Jao+% Jag+3

A0
n+1 n+1 n+1 B,n+1 ao,n+1
u T(u —u 0 dr | 6
Z / <5u5 jao T ( Jao 1 Tag )) Joo+3 Joo+3
7’5040

_ At O\ ( n+1 +T< ,n+1 _un+1)) eao,n+1d 9&0,7’L+1
0 uo ]ao otl Jag Jao+s Jao+3

ON*0 n+1 n+1 n+1 OXT N n+1 n+1
<oy [ (G e =) - () (it
375040
ag,n+1
@°+ )dTgm

Jeg

9B7ﬂ+1 eao,nJrl
. 0+2 a0+2 . . .
Hence, we get the estimate (1.9) by combining the previous inequality and (3.3).

where we have used the fact that and the assumption (K2).
3.3. Case where (K3) holds
We proceed using the same notations as in Sections 3.1 and 3.2.

Using (3.1) for a = 1, we get

1,n+1 1,n At (1 nt1 1,041\ pl,n+1
oLt < max gh ——wi —x’).v.
Jjit+3 1€Z it+3 Ax Jji+1 Jjit+i

Using assumption (K3) and the fact that 95 i+1 and 6% Trl are positives, for all 8 € {1,...,
2 2

_ At (Al,nJrl o )\l,nJrl) 01,n+1
Ax Jj1+1 j1t+3

8)\1
_ E : +1 41 +1 B,n+1 Ln+1
= -At / 3uﬁ uj, T(u?hLl - u;ll )) 9]1+2 dr 9j1+%

<0.
We deduce by combining (3.4) with (3.5) that

1
max 07" < max 91"
i€EZ +2 i€EZ Z+2

We can show using a recursion on n that

max 6" | <max9 0 , VneN.
i€z itz i€Z +3
Now, we consider the case where a = 2.
From (3.1), we have
2,n+1 om At floni1 2041\ 42 el
0 <max0”" —— (A )\ 0
jr+3 T uer 3 Ag \I2HL J2t3

u;:tl)))

(3.5)
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By assumption (K3) and the fact that Hﬁ’”fl and 92 "1 are positives, for all € {1,...,d}, we have

At [ 941 2n+1\ 52,n+1
‘_ZE(AE+1 = )9h+%
o B,n+1 2,n+1
_ n+1 n+1 n+1 n+ n+
= At Z/O oub (u7, +T(“j2+1 Uy, ) 0, +1 dr 67 +3
B=2
Loxt 41 +1 1,041 2,n+1
n n n N ,n
— At |:/O oul (U’jz +T(ujz-‘rl*ujz )) 9] +1 d]@j +1
1 2
8)‘ n+1 n+1 n+1 1,n+1 2,n+1
< —At |: 0 % (u]é +7 (U'j2+1 — Uy, )) '0j2+% dr 9j2+% :
Then, we deduce using assumption (H1) that
At
= ()\527?11 A2 n+1) 02 n+l o ALM, oL n+210J2 7:21 (3.8)

Combining (3.7) and (3.8), we get using (3.6)

*z ek 1J0+§ 1
< max AtM max L
zeaz 9’+1 +AM, a 9""20]2"'2

Then, we obtain

T 1,0 2,n+1
{lan <max¢9ZJr )} 9] +1 <r£1€aZx91+2

Using a recursion on n > n%, we can see that

! = max 0>, < Ko(T) max 6>°,

2,n
max 6" <
€7 +2 1E€EZ +é ’
2

iEZ ity = |:

T
1—-—M; max@l 0
n €L

where Ko(T') = exp <2TM1 (maxH 1
2
Proceeding in a similar manner, for all § < a — 1, a > 3, we have
Bn 3,0
I?eaxﬁ 1 < Ks(T )r?eaZXGH%, V<a-—1.

We prove that the above inequality is true for a.
Indeed, proceeding as in the case where a = 2, we deduce that for all n > ng,

1
max " < max 6"
€L it3 T a—1 €L it3
1—=M;» Ks(T)
B=1
Hence, using a recursion on n, we obtain
1 «a,0 a,0
rfleazxe it3 = p ol " I?eazx (9“‘%) < Ka(T) r?eaix (9”%)7
1—=M» Ks(T)
B=1
a—1
where K, (T') = exp QTMlz Ks(T
B=1
Hence, we get the estimate (1.10) for all « = 1,...,d and for all n > ng = max (ng). (]

<a<d
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4. PROOF OF THEOREM 1.5
This section is devoted to prove Theorem 1.5. The proof is outlined in four subsections.

4.1. Estimates on the Q! extension u¢

Let (t,z) € [0,7] x R. Then, there exist ¢ € Z and n € N such that (¢,2) € [tn,tnt1] X [2:, Ti11], where
x; = iAz and t, = nAt. For € = (At, Az), we define the Q! extension of the function defined on the grid, for
any (t, ) € [tn, tnt1] X [Ti, ¥it1], by

t—tn M n — Lyg n
o= (5) (552 (- 25) )
t—tn, T—m\ r—x\ o
T e (o) = o

In particular, we can see that

(4.1)

u®(tp,x;) =ul forneNjieZ.
4.1.1. Estimate on u®

From Theorem 1.3, we deduce that u”5!, u?T!, ujy, and uj are in U, for all 7 € Z and for all n € N. By

141 %
(4.1), we remark that u° is a convex combination of u;", u*!, u?, ; and u} contained in a convex set /. Then

u® € U, which implies that
[ || Lo (0,7 xR) < M“. (4.2)

4.1.2. Estimate on Oyu®
We have for (¢, z) € [tn, tnt1] X (T4, Tit1)

. t—tn n t—1t, "

Using the fact that 67, , is positive for all n € N and for all ¢ € Z, we deduce that
2

t—1t, a,n+1 t—ty, a,n
sup Ou®%(t,x)| < sup {( >9,’+ +<1 >9,’ }
(m)e[mT]xR' (t,)] neN,iez At its At i3
< G([|10zuoll (Lo ()2, T),

where we have used in the last line the estimates of Theorem 1.4 under one of the assumptions (K1), (K2) or
(K3).
We deduce that

022 oo 0,71 xR) < G- (4.4)
4.1.3. Estimate on Oyu®
Let us define
n+% u;H_l - u?
T. =
v At

We have for (¢,x) € (tn, tnt1) X [Tiy Tit1]

X —x; n41 T —X; n+4i
atuf(t,x):( x >Ti+ﬁ2+<1— x )Ti“. (4.5)

Using the scheme (1.5), we have

a,nti a,n+1 a,n+1 a,n+1 a,n+1
o ()\i +) ot ()\i + )+9i_j. (4.6)

[ i+ L
_ it3 5
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From Theorem 1.3, we know that u?“ € U. Then, we deduce that
AT < A

a,n+1

Using the positivity of 6, L1, we get
2

[T < 2A9G.

Hence, we obtain
[0¢u" || oo (j0, 1) xR) < 2A%G, (4.7)

where we have used in the above inequality estimates of Theorem 1.4 under one of the assumptions (K1), (K2)
or (K3).

4.2. Extraction of a convergent subsequence of u€

Combining estimates (4.2), (4.4) and (4.7), we deduce that u*% is uniformly bounded in W1>°([0,T] x R),
for any T > 0 and satisfies the following estimate

|L°O([0,T]><]R) + |\8tu€’a||Loo([o7T]XR) < é, forall ae {1, .. ,d},

||'Uf€7a||L°°([O,T]><R) + ”azu@a

where C is a constant depending only on M, |0z uoll (00 (r))y2, A* and T

Let K be a compact set in [0,7] x R. By estimates (4.2), (4.4) and (4.7) and using the compact embedding
of WH°(K) — L°°(K), we can show that the sequence (u®?). is relatively compact in L°°(K), for all o €
{1,...,d}. Then, as € goes to 0, we can extract a subsequence still denoted by (u*)., that converges strongly
to some function u® in L*°(K). By standard diagonalization procedure, we can extract a subsequence (u®%).
(independent of K and «) such that

u®Y — u®, uniformly in L°°(K), VK compact and Va€{l,...,d}.

In particular, we see that the limit function u® satisfies the initial data u®(0,-) = ug(-).
By the continuity of A%, we know that A%(u®) converges to A*(u), for all o € {1,...,d}.
Moreover, using (4.4), we deduce that, up to extraction of a subsequence,

Opu®® — Jpu® weakly-+ in L*((0,7) xR), forall aec{l,...,d}. (4.8)

4.3. Passing to the limit in the PDE

4.3.1. Preliminaries

For (t,z) € (tn,tnt1) X (@i, Ti11), We set

r — T;

b =1—ay,.
Az’ “

AY =AY (uE(t, ), ap =
Combining (4.5) and (4.6), we have

Dt (b ) = ap (AT -05 — OO0y 4 e [0 = 0 wo)

a,n+1 a,n+1 a,n+1 a,n+1 €,
=2 @l b0 AT [anf T a0 | et a),
where
e t) = az [ | O = Ag] 05+ [ = Ao

+b, [_ [(/\?,n+1)+ B )\ﬂ 9?;7?1 n [(/\Z_a,n-&-l)_ B Xi} 91(_:,_7?1] .
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In particular, for any test function ¢ with compact support K = [0,T] X [-R, R], where R > 0, we have

d

d
a=1 a=1

d
1
<4RT (Supefﬂ )C|Loo((o,+oo)xR) sup sup
a=1 €L 2 (‘r,y)EK \t"+17‘r|§At, |Ii7y|SA‘/L’

/ C(ry ) (r,y) dr dy / C(ry ) (7, y) dr dy
(0,+00)><]R K

XA (U (s i) — A (u (7, )| + sup AT (U (tn 1, wiga)) = A% (w(7, y)))-

[tnt1—7I<AL,  |@ig1—y|<Az

Then, using the continuity of u® and A* and the uniform convergence of u®, we deduce that

€,

e“* — 0 when €= (At,Az) — (0,0) in D'((0,+0c0) x R).

4.8.2. Introduction of 6°

Our goal is to show that the limit u® verifies dyu® + A% (u)9,u® = 0.
We define the function ¢ as follows

0°(t,x) = 9;3:%17 for (t,z) € [tn,tns1) X [Ti, Tit1)-

Due to estimates of Theorem 1.4, we deduce that 6¢ is uniformly bounded in L*((0,4o00) x R). Then, by the
weakly-* convergence, we know that there exists a limit 6, in the sense of distribution, such that for any test

function ¢ (¢ is smooth of compact support K = [0,7] x [-R, R] C [0,T] x R, where R > 0) we have

/ 0o — / 0.
(0,400) xR (0,+00) xR

From (4.9), we have

Opu®*(t, ) — e (t, ) = A [a,09(t, x + Ax) + b0 (t, )]
—AG [az09%(t, x) + b, 09%(t, x — Ax)],

where a; = 2 {éJ and b, =1 — a,.

T
Let us now introduce the function A%% defined by
Ao = / (O™ (1, ) — €Ot ) (¢, z) dt da.
(0,+00) xR
Then, using (4.11), we can write A% as follows

A5 = / 09 (t, @) [az A (u(t, 2 — Ax))p(t, . — Az) + by A* (u(t,2))p(t, )] dt da
(0,400) xR

- 09 (t, ) [az XS (u(t, 2))p(t, ) + by AT (u(t, z + Az))p(t, x + Az)] dtda.

(0,+00)xR

Let us now define the following function

B = / 09 (t, ) [az A2 (u (t,2))e(t, @) + ba A2 (u(t, 2))p(t, 2)
(0,400) xR
— ag A (us(t, @) (t, x) — b AT (us(t, x))e(t, z)] dtda

= A (uf(t, 2))p(t, x)0°(t, x) dt da.
(0,400) xR

(4.10)

(4.11)
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Then, we have

|Ae7a o Be,a|

< / az0°(t, x) [\ (u(t,z — Ax))p(t,z — Az) — A* (u(t,2))p(t, )] dt d
(0,+00) xR

+ / b 09%(t, 2) [-AS (u(t, 2 + Az))p(t,z + Az) + XY (u (¢, 2))p(t, z)] dtdzx
(0,400) xR

<2TRG sup |A:(u(t,z F Az))p(t, o F Ax) — A& (u®(t,2))p(t, x)],
(t,x)EK

which implies that |[A“* — B““| — 0 when € goes to 0.
On the other hand, using (4.10), we get

pro= [ nE et a)e ) dds — [ Xt )t 06" (4 0) deda.
(0,400) xR (0,400) xR

Therefore, we obtain that
Ou® + A*(w)f* =0 in D'((0,+00) x R), Vae€{l,...,d}. (4.12)

Using (4.3), we can see that

Dput® (¢, ) = (t ;f") 00 (t,) + (1 - t;f") 00 (t — At, ).
We deduce, proceeding in a similar manner, that
Oput® — 0% in D'((0,400) x R).
Moreover, using the weak-+ convergence given by (4.8), we deduce that
0 = Ozu. (4.13)

Combining (4.12) with (4.13), we conclude that

Ou® + A*(u)d,u* =0 in D'((0,4o0) xR), Vae{l,...,d}.

Finally, we deduce that the limit u® is a solution of system (1.1).

4.4. Convergence of the whole sequence when the limit is unique

Due to the uniqueness of the solution of the continuous problem, given by Theorem 1.1, we deduce that the
whole sequence (u®%), converges to the unique limit v* without assuming the strict hyperbolicity of the system
as in [18]. O

5. NUMERICAL SIMULATIONS

We consider in this section a simplified one-dimensional model describing the dynamics of dislocations,
where dislocations are microscopic defects present in materials, especially in metal alloys. The movement of
these defects is the main explanation of plastic and viscoplastic deformations. In a particular geometry, where
dislocations are assumed to be punctual defects, depending on a single variable z and moving in two fixed
directions, according to the vector (1,0) (on the right) or according to the vector —(1,0) (on the left), Groma
and Balogh have modeled in [10] the dynamics of the dislocations densities by a (2 x 2) coupled system of
non-local transport equations. More precisely, it is the following system:
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

2

Figure 1: Evolution of u! — u? over time.

ot (t,x) = — <(u1 —u?)(t, ) + a/o (ut —u?)(t,y) dy + a(t)) dzu'(t,z) in (0,T) x R,

o (t,x) = — ((ul —u?)(t,z) + a/o (u* —u?)(t,y) dy + a(t)) dxu?(t,x) in (0,T) x R.

Here, u' and u? are two scalar valued functions, that represent respectively the dislocations moving on the right
and that moving on the left. Their difference (u' — u?) expresses the plastic and viscoplastic deformation of
the material and their spatial derivatives d,u?, for i = 1,2, are the dislocations densities corresponding to each
type. While, « is a nonnegative constant depending on the elastic coefficients of the material and a(-) is the
exterior shear stress. We can easily see that in the particular case where oo = a(t) = 0, the model is reduced to
the following system:

{@ul(t, z) =— ((u' —u?)(t,2)) dpu' (t,x) in (0,T) x R, (5.1)

ouP(t,z) = ((u' —u?)(t,2)) 0,u’(t,z) in (0,T) x R,

which is well in the form of (1.1).
Now, we calculate the numerical solution of system (5.1), through the Upwind scheme (1.5), choosing dis-
cretization parameters (At, Ax) that satisfy the CFL condition (1.7) and taking the following initial data:

1 1
1 — — gi 2 — ——g]
u (0,z) = 5 S0 (2nrz) +x, u*(0,z) 5 S0 (2mx) + x, Vz € R,

which are nondecreasing and 1-periodic + linear functions. We thus modelize a periodic distribution for the two
dislocations types, with a spatial period of length 1. Note that each type of dislocations has a mean density
equal to 1. In fact, the use of the periodic boundary conditions is a way of regarding what is going on in the
interior of the material away from its boundary. It is enough then to see only what is happening in the interval
[0, 1].

We simulate below the long-time behavior of the function (u!—wu?), which reflects the viscoplastic deformation
(in the absence of shear stress). We can intuitively see from system (5.1) that this function will reach the
stationary state (u! —u?) = 0, in long time, as shown in Figure 1. This is consistent with physical expectations,
since obviously the material will stabilize, if we stop the stress.
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