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CONVERGENCE OF AN IMPLICIT SCHEME FOR DIAGONAL
NON-CONSERVATIVE HYPERBOLIC SYSTEMS

Rachida Boudjerada1, Ahmad El Hajj2,* and Aya Oussaily2

Abstract. In this paper, we consider diagonal non-conservative hyperbolic systems in one space
dimension with monotone and large Lipschitz continuous data. Under a certain nonnegativity condition
on the Jacobian matrix of the velocity of the system, global existence and uniqueness results of a
Lipschitz solution for this system, which is not necessarily strictly hyperbolic, was proved in El Hajj
and Monneau (J. Hyperbolic Differ. Equ. 10 (2013) 461–494). We propose a natural implicit scheme
satisfiying a similar Lipschitz estimate at the discrete level. This property allows us to prove the
convergence of the scheme without assuming it strictly hyperbolic.
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1. Introduction and main results

In this paper we present a convergence result for an implicit Upwind scheme considering the framework of
hyperbolic systems, which are not necessarily strictly hyperbolic. Related to this work, it is worth noting that,
in [18] the authors have proved a similar result for a semi-explicit scheme in the case of non-conservative strictly
hyperbolic systems. Moreover, their result was only valid in the class of vanishing viscosity solutions, introduced
by Bianchini and Bressan [1]. Here, we show the convergence taking only Lipschitz continuous solutions, without
any other restriction concerning the class of solutions.

Before presenting our scheme, let us, first, recall in Section 1.1 the setting of the continuous problem. In
particular, we will restate in Section 1.1.2 the existence and uniqueness results of Lipschitz solution for the
continuous problem that was shown in [6].
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1 USTHB, Faculté de Mathématiques, Laboratory AMNEDP, BP32 El Alia, Bab Ezzouar, Alger, Algérie.
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1.1. The continuous problem

1.1.1. Setting of the problem

In this paper, we will propose an implicit numerical scheme for hyperbolic diagonal systems in non-
conservative form given by{︂

𝜕𝑡𝑣
𝛼 + 𝜆𝛼(𝑣)𝜕𝑥𝑣𝛼 = 0 on (0, +∞)× R, for 𝛼 = 1, . . . , 𝑑,

𝑣𝛼(0, 𝑥) = 𝑣𝛼
0 (𝑥) 𝑥 ∈ R, for 𝛼 = 1, . . . , 𝑑,

(1.1)

where 𝑣(𝑡, 𝑥) = (𝑣𝛼(𝑡, 𝑥))𝛼=1,...,𝑑, with 𝑑 ≥ 1 is an integer. Here we use the notation 𝜕𝑡 =
𝜕

𝜕𝑡
and 𝜕𝑥 =

𝜕

𝜕𝑥
. Such

systems are (sometimes) called (𝑑× 𝑑) diagonal hyperbolic systems.
We consider a given function (𝜆𝛼)𝛼=1,...,𝑑 : R𝑑 → R, which satisfies the following regularity assumption:

(𝐻1)

⎧⎨⎩𝜆𝛼 ∈ 𝐶1(R𝑑), for 𝛼 = 1, . . . , 𝑑,
there exists 𝑀1 > 0 such that for 𝛼 = 1, . . . , 𝑑,
|𝜆𝛼(𝑢)− 𝜆𝛼(𝑣)| ≤ 𝑀1|𝑢− 𝑣| for all 𝑢, 𝑣 ∈ R𝑑,

where |𝑤| =
∑︀

𝛼=1,...,𝑑 |𝑤𝛼|, for 𝑤 = (𝑤1, . . . , 𝑤𝑑).
We denote

Λ𝛼 = sup
𝑢∈𝒰

|𝜆𝛼(𝑢)|, (1.2)

where 𝒰 is the box defined as follows

𝒰 =
𝑑∏︁

𝛼=1

[−𝑀𝛼, 𝑀𝛼] with 𝑀𝛼 < +∞ is a real number.

In (1.1), the initial data 𝑣0 = (𝑣1
0 , . . . , 𝑣𝑑

0) is assumed to satisfy the following property:

(𝐻2)

⎧⎨⎩−𝑀𝛼 ≤ 𝑣𝛼
0 ≤ 𝑀𝛼,

𝑣𝛼
0 is nondecreasing,

𝜕𝑥𝑣𝛼
0 ∈ 𝐿∞(R),

⃒⃒⃒⃒
⃒⃒ for 𝛼 = 1, . . . , 𝑑.

Now, we define the matrix

𝜆𝛼
𝛽(𝑣) =

𝜕𝜆𝛼

𝜕𝑣𝛽
(𝑣), for all 𝛼, 𝛽 = 1, . . . , 𝑑.

Let us introduce various assumptions on the matrix (𝜆𝛼
𝛽(𝑣))

𝛼,𝛽=1,...,𝑑
which will gurantee the existence and

uniqueness of a Lipschitz solution.

(Nonnegative matrices with nonpositive off-diagonal terms)

(𝐾1)

⎧⎨⎩
𝜆𝛼

𝛽(𝑣) ≤ 0 for all 𝑣 ∈ 𝒰 and 𝛽 ̸= 𝛼 with 𝛼, 𝛽 ∈ {1, . . . , 𝑑},
𝐴𝛼,𝛽 = inf

𝑣∈𝒰

(︀
𝜆𝛼

𝛽(𝑣)
)︀

and
∑︁

𝛼,𝛽=1,...,𝑑

𝐴𝛼,𝛽𝜉𝛼𝜉𝛽 ≥ 0 for every 𝜉 = (𝜉1, . . . , 𝜉𝑑) ∈ [0, +∞)𝑑.

(Diagonally dominant)

(𝐾2) 𝜆𝛼
𝛼(𝑣) ≥

∑︁
𝛼 ̸=𝛽

(𝜆𝛼
𝛽(𝑣))− for all 𝑣 ∈ 𝒰 and 𝛼 = 1, . . . , 𝑑,

where we note 𝑥− = max(0,−𝑥).



CONVERGENCE OF AN IMPLICIT SCHEME S575

(Nonnegative subdiagonal matrices)

(𝐾3) 𝜆𝛼
𝛽(𝑣) ≥ 0 for all 𝑣 ∈ 𝒰 and 𝛽 ≥ 𝛼 with 𝛼, 𝛽 ∈ {1, . . . , 𝑑}.

Before giving main results on the solution of the discrete problem, let us recall some existence and uniqueness
results on the solution of the continuous problem.

1.1.2. Recall of useful results

Theorem 1.1 (Existence and uniqueness of Lipschitz solution, [6], Thm. 1.3).
Assume that (𝐻1) and (𝐻2) are satisfied. Assume also that one of the following assumptions (𝐾1), (𝐾2) or

(𝐾3) holds. Then, there exists a unique function 𝑣 ∈
⋂︀

𝑇>0[𝑊 1,∞([0, 𝑇 )× R)]𝑑 solution of (1.1), in distributional
sense, with 𝑣(𝑡, 𝑥) ∈ 𝒰 for all (𝑡, 𝑥).

Moreover we have for any 𝑡 ∈ (0, +∞):∑︁
𝛼=1,...,𝑑

‖𝜕𝑥𝑣𝛼(𝑡, ·)‖𝐿∞(R) ≤
∑︁

𝛼=1,...,𝑑

‖𝜕𝑥𝑣𝛼
0 ‖𝐿∞(R) if (𝐾1) holds, (1.3)

and

max
𝛼=1,...,𝑑

‖𝜕𝑥𝑣𝛼(𝑡, ·)‖𝐿∞(R) ≤ max
𝛼=1,...,𝑑

‖𝜕𝑥𝑣𝛼
0 ‖𝐿∞(R) if (𝐾2) holds. (1.4)

Notice that Theorem 1.1 is based on the fact that the solution satisfies 𝜕𝑥𝑣𝛼 ≥ 0, for 𝛼 = 1, . . . , 𝑑, and then,
we only have to bound the maximum of the gradient from one side. One of the assumptions (𝐾1), (𝐾2) or
(𝐾3) is a sufficient condition to control the solution of the maximum of the gradient. These a priori bounds
are obtained considering a parabolic regularization of the system and then writing some differential inequalities
satisfied in the sense of viscosity by the maximum of the gradient. The uniqueness is an independent result valid
for Lipschitz solutions.

Let us mention that an application to isentropic gas dynamics was proved in [6].
In the framework of viscosity solutions and motivated by the application to dislocation densities dyamics,

El Hajj and Forcadel [5], have shown the existence and uniqueness of Lipschitz viscosity solution in the case

where 𝑑 = 2 with a matrix (𝜆𝛼
𝛽)𝛼,𝛽=1,2 =

(︂
1 −1
−1 1

)︂
. In a similar framework, in El Hajj [4], the existence and

uniqueness of strong solution 𝑊 1,2
loc ([0, 𝑇 ]×R) was proved. Recently, a result of global existence and uniqueness

was proved in El Hajj and Oussaily [7] for continuous solutions satisfying some gradient entropy estimates. We
refer the readers to El Hajj et al. [8] for the discontinuous solutions of this system.

For a generalized (2 × 2) strictly hyperbolic system, in [13], Lax proved the existence and uniqueness of
nondecreasing smooth solutions. In the framework of (𝑑 × 𝑑) strictly hyperbolic systems, we refer the readers
to [1] where the authors have shown a global existence and uniqueness result assuming that the initial data has
small total variation. Also, a result of existence and uniqueness of continuous solution was proved in [6] for a
(𝑑× 𝑑) strictly hyberbolic system.

Now, we will propose a compatible discretization with the continuous problem.

1.2. The discrete problem

1.2.1. Setting of the problem

To recover the properties of the continuous problem on the discrete level, we consider a time step ∆𝑡 > 0
and a space step ∆𝑥 > 0. In order to avoid the ambiguity in notations, we denote by 𝑣𝛼 the continuous solution
and 𝑢𝛼,𝑛

𝑖 the discrete associated solution defined as an approximation of 𝑣𝛼(𝑛∆𝑡, 𝑖∆𝑥), where 𝑛 ∈ N and 𝑖 ∈ Z.
We propose, then, the following implicit discretization of the system
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∀𝛼 ∈ {1, . . . , 𝑑},

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

𝑢𝛼,𝑛+1
𝑖 − 𝑢𝛼,𝑛

𝑖

∆𝑡
+ 𝜆𝛼

(︀
𝑢𝑛+1

𝑖

)︀(︃𝑢𝛼,𝑛+1
𝑖+1 − 𝑢𝛼,𝑛+1

𝑖

∆𝑥

)︃
= 0 if 𝜆𝛼(𝑢𝑛+1

𝑖 ) ≤ 0,

𝑢𝛼,𝑛+1
𝑖 − 𝑢𝛼,𝑛

𝑖

∆𝑡
+ 𝜆𝛼

(︀
𝑢𝑛+1

𝑖

)︀(︃𝑢𝛼,𝑛+1
𝑖 − 𝑢𝛼,𝑛+1

𝑖−1

∆𝑥

)︃
= 0 if 𝜆𝛼(𝑢𝑛+1

𝑖 ) ≥ 0,

𝑢𝛼,0
𝑖 = 𝑢𝛼

0 (𝑥𝑖).

It is a first-order Upwind formulation, with the velocity 𝜆𝛼(𝑢) being implicit in time.
We denote

𝜆𝛼,𝑛+1
𝑖 = 𝜆𝛼(𝑢𝑛+1

𝑖 ), 𝑛 ∈ N.

We define the positive and the negative parts
(︁
𝜆𝛼,𝑛+1

𝑖

)︁
+

and
(︁
𝜆𝛼,𝑛+1

𝑖

)︁
−

as follows:

(︁
𝜆𝛼,𝑛+1

𝑖

)︁
+

=
1
2

(︁
𝜆𝛼,𝑛+1

𝑖 + |𝜆𝛼,𝑛+1
𝑖 |

)︁
,
(︁
𝜆𝛼,𝑛+1

𝑖

)︁
−

=
1
2

(︁
|𝜆𝛼,𝑛+1

𝑖 | − 𝜆𝛼,𝑛+1
𝑖

)︁
.

Both
(︁
𝜆𝛼,𝑛+1

𝑖

)︁
+

and
(︁
𝜆𝛼,𝑛+1

𝑖

)︁
−

are positive real numbers.

We can write the scheme in a more compact form:⎧⎪⎨⎪⎩
𝑢𝛼,𝑛+1

𝑖 − 𝑢𝛼,𝑛
𝑖

∆𝑡
−
(︁
𝜆𝛼,𝑛+1

𝑖

)︁
−

(︃
𝑢𝛼,𝑛+1

𝑖+1 − 𝑢𝛼,𝑛+1
𝑖

∆𝑥

)︃
+
(︁
𝜆𝛼,𝑛+1

𝑖

)︁
+

(︃
𝑢𝛼,𝑛+1

𝑖 − 𝑢𝛼,𝑛+1
𝑖−1

∆𝑥

)︃
= 0

𝑢𝛼,0
𝑖 = 𝑢𝛼

0 (𝑥𝑖).

(1.5)

In the sequel, we set

𝜃𝛼,𝑛

𝑖+ 1
2

=
𝑢𝛼,𝑛

𝑖+1 − 𝑢𝛼,𝑛
𝑖

∆𝑥
, (1.6)

which is a discrete equivalent of 𝜕𝑥𝑢𝛼.

Remark 1.2. Here, we choose the implicit scheme since it naturally preserves the Lipschitz estimates (1.3) and
(1.4) at the discrete level, which is neither the case of the explicit scheme nor that of the semi-explicit scheme.

1.3. Main results

First, we set 𝑢𝑛
𝑖 = (𝑢𝛼,𝑛

𝑖 )𝛼=1,...,𝑑, 𝑢𝑛 = (𝑢𝑛
𝑖 )𝑖∈Z and we say that 𝑢𝑛 ∈ 𝒰Z if 𝑢𝑛

𝑖 ∈ 𝒰 , for all 𝑖 ∈ Z.
We now introduce the following CFL condition:

∆𝑡

∆𝑥
< min(𝛽1, 𝛽2), (1.7)

with
𝛽1 =

1
4Λ𝛼(𝑀𝛼 + 1)

and 𝛽2 =
1

3(Λ𝛼 + 𝑀1(𝑀𝛼 + 1))
·

We present in this paper three main results. The first one is proving that the implicit scheme (1.5) has a unique
bounded solution at each time-step. Then, we show a gradient estimate decay result. The third one is showing
the convergence of the solution of the scheme.

Theorem 1.3 (Resolution of the implicit scheme on one time step). Assume that assumptions (𝐻1), (𝐻2)
and the CFL condition (1.7) are satisfied. Let 𝑢𝑛 ∈ 𝒰Z. Then, we get

(i) Existence
There exists a unique solution 𝑢𝑛+1 ∈ 𝒰Z to the implicit scheme (1.5).
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(ii) Monotonicity

Moreover if 𝑢𝑛 is nondecreasing, i.e. satisfies

𝑢𝛼,𝑛
𝑖+1 ≥ 𝑢𝛼,𝑛

𝑖 for all 𝑖 ∈ Z, and 𝛼 = 1, . . . , 𝑑,

then 𝑢𝑛+1 is also nondecreasing.

Theorem 1.4 (Discrete gradient estimates). Suppose that assumptions (𝐻1), (𝐻2) are verified. If 𝑢𝑛 is the
solution of the implicit scheme (1.5) given by Theorem 1.3, then, 𝜃𝛼,𝑛

𝑖+ 1
2

defined in (1.6) is nonnegative for all
𝑛 ∈ N and verifies the following estimates:

𝑑∑︁
𝛼=1

sup
𝑖∈Z

𝜃𝛼,𝑛

𝑖+ 1
2
≤

𝑑∑︁
𝛼=1

sup
𝑖∈Z

𝜃𝛼,0

𝑖+ 1
2

if (𝐾1) holds, (1.8)

max
𝛼=1,...,𝑑

(︂
sup
𝑖∈Z

𝜃𝛼,𝑛

𝑖+ 1
2

)︂
≤ max

𝛼=1,...,𝑑

(︂
sup
𝑖∈Z

𝜃𝛼,0

𝑖+ 1
2

)︂
if (𝐾2) holds, (1.9)

sup
𝑖∈Z

(︁
𝜃𝛼,𝑛

𝑖+ 1
2

)︁
≤ 𝒦𝛼(𝑇 )

(︂
sup
𝑖∈Z

𝜃𝛼,0

𝑖+ 1
2

)︂
for all 𝑛 ≥ 𝑛0 if (𝐾3) holds, (1.10)

where 𝒦𝛼 is a constant that depends on 𝑇 , 𝑀1 and
(︁

sup𝑖∈Z 𝜃𝛽,0

𝑖+ 1
2

)︁
, for all 𝛽 ≤ 𝛼− 1 and 𝑛0 ∈ N dependent on

𝑇 .

Let us mention that estimates (1.8) and (1.9) represent the discrete case of the continuous estimates (1.3)
and (1.4).

Now, we present the convergence result of our implicit scheme.

Theorem 1.5 (Convergence of the solution of the scheme). Assume that assumptions (𝐻1), (𝐻2) and the
CFL condition (1.7) are satisfied. We also suppose that one of the conditions (𝐾1), (𝐾2) or (𝐾3) holds. Let us
consider the solution (𝑢𝑛)𝑛≥0 of the scheme (1.5) for the time step ∆𝑡 > 0 and the space step ∆𝑥 > 0 given by
Theorem 1.3. Let us call 𝜖 = (∆𝑡, ∆𝑥) and 𝑢𝜖 the function defined by

𝑢𝜖(𝑛∆𝑡, 𝑖∆𝑥) = 𝑢𝑛
𝑖 for 𝑛 ∈ N, 𝑖 ∈ Z.

Then, as 𝜖 goes to zero, the whole sequence (𝑢𝜖)𝜖 converges to the unique Lipschitz solution v of (1.1). Moreover,
for any compact 𝐾 ⊂ [0, +∞)× R, we have

sup
𝐾∩((Δ𝑡N)×(Δ𝑥Z))

𝛼=1,...,𝑑

|𝑢𝜖 − 𝑣| −→ 0 as 𝜖 −→ (0, 0).

1.4. Brief literature

Numerical schemes for hyperbolic systems are mainly written for systems in conservative form which enable
to recover the correct Rankine-Hugoniot shock. We refer to [15] for a review of the main classes of existing
schemes. Among these schemes, convergence results are seldom found for hyperbolic systems.

The Lax–Wendroff theorem [14] shows that if a consistent and conservative numerical scheme converges (in
𝐿1 with bounded total variation), its limit is a weak solution to the hyperbolic system. However, in order to
obtain convergence of the scheme, stability is needed, in general in the form of TV-stability. For the scalar
Godunov scheme, convergence is obtained due to its total variation diminishing (TVD) property. This is no
longer the case for systems [15]. Stability can still be proved for certain special systems of two equations, for
instance in [16, 19, 20]. Similar results can be obtained for a class of nonlinear systems with straight-line fields
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([3], pp. 102, 103). Nonlinear stability can also be assessed through the use of invariant domains and entropy
inequalities [2], for HLL, HLLC and kinetic solvers of Euler equations of gas dynamics.

In the case of conservative systems where the initial data has sufficiently small total variation, Glimm’s ran-
dom choice method [9] is probably convergent. A deterministic variant (replacing random with equidistributed
sampling) has also been proved to converge under the same assumptions [17].

Beside this, for non-conservative forms, recently, Monasse and Monneau proved in [18] a convergence result
of a semi-explicit scheme for diagonal non-conservative hyperbolic systems assuming that the system is strictly
hyperbolic and using a discrete gradient entropy estimate which was proved in the continuous case in [6]. This
result has been established in a restricted class of solutions, which is defined by the vanishing viscosity solutions,
introduced by Bianchini and Bressan [1]. In the present work, we consider the case of hyperbolic systems which
are not necessarily strictly hyperbolic and we prove, basing on some Lipschitz discrete estimates, the convergence
of the scheme in the framework of Lipschitz continuous solutions, without any other restriction concerning the
class of solutions. Note that, the fundamental Lipschitz discrete estimates are proved, at the discrete level,
assuming some nonnegative conditions on the Jacobian matrix (𝜆𝛼

𝛽)𝛼,𝛽 , that ensures a 𝐿∞ bound on the gradient
of the continuous solutions. We also took an implicit scheme since it keeps continuous Lipschitz estimates (1.3)
and (1.4), at the discrete level.

We should recall that in the framework of dislocation densities, it was proved in [5] a convergence result of
an explicit scheme to the Lipschitz continuous solution for a particular (2 × 2) Hamilton–Jacobi system. We
also refer to Jakobsen and Karlsen [11] and Jakobsen et al. [12] where they proved a convergence result for a
weakly coupled Hamilton–Jacobi system consdering a semi-discrete splitting algorithm that they proposed to
approach the continuous solution.

1.5. Organization of the paper

This paper is organized as follows. In Section 2, we prove some preliminary results on the existence and
monotonicity of the solution of the scheme (Thm. 1.3). Section 3 is devoted to show some discrete gradient
estimates (Thm. 1.4) using conditions (𝐾1), (𝐾2) and (𝐾3) on the Jacobian matrix (𝜆𝛼

𝛽)𝛼,𝛽=1,...,𝑑. Finally,
based on these gradient estimates, we prove the convergence result of our scheme (Thm. 1.5) in Section 4.

2. Existence and monotonicity of the discrete solution

This section is devoted to prove the existence, the uniqueness and the monotonicity of a bounded solution
for the implicit scheme (1.5). This section is divided into two subsections, in Section 2.1, we prove by a fixed
point argument the existence and uniqueness of the discrete solution. Then, in Section 2.2, we show that the
discrete solution is nondecreasing.

2.1. Proof of Theorem 1.3(i)

We introduce the truncature 𝜆
𝛼

of 𝜆𝛼 by Λ𝛼 (defined in (1.2)):

𝜆
𝛼

(𝑢) =

⎧⎨⎩𝜆𝛼(𝑢) if |𝜆𝛼(𝑢)| ≤ Λ𝛼

Λ𝛼 if |𝜆𝛼(𝑢)| > Λ𝛼

−Λ𝛼 if |𝜆𝛼(𝑢)| < −Λ𝛼.

For the real number 𝑀𝛼 < +∞, let us consider the box

𝒰 =
𝑑∏︁

𝛼=1

[−𝑀𝛼 − 1, 𝑀𝛼 + 1].
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For all 𝑖 ∈ Z, we denote 𝑤𝑖 = (𝑤𝛼
𝑖 )𝛼=1,...,𝑑 and 𝑤 = (𝑤𝑖)𝑖∈Z. We define, for all 𝑤 ∈ 𝒰Z

and for all 𝛼 ∈ {1, . . . , 𝑑},
the function 𝐹𝑢𝑛

𝑖
=
(︁
𝐹𝛼

𝑢𝑛
𝑖

)︁
𝛼=1,...,𝑑

such that

𝐹𝛼
𝑢𝑛

𝑖
(𝑤) = 𝑢𝛼,𝑛

𝑖 +
∆𝑡

∆𝑥

(︁
(𝜆

𝛼
(𝑤𝑖))−

(︀
𝑤𝛼

𝑖+1 − 𝑤𝛼
𝑖

)︀
− (𝜆

𝛼
(𝑤𝑖))+

(︀
𝑤𝛼

𝑖 − 𝑤𝛼
𝑖−1

)︀)︁
. (2.1)

According to (2.1), we can see that the scheme (1.5) can be written as{︃
𝑢𝛼,𝑛+1

𝑖 = 𝐹𝛼
𝑢𝑛

𝑖
(𝑢𝑛+1), for 𝑖 ∈ Z, 𝑛 ∈ N and 𝑢𝑛 ∈ 𝒰Z,

𝑢𝛼,0
𝑖 = 𝑢𝛼

0 (𝑥𝑖).
(2.2)

Let us now define the mapping
𝐺𝑢𝑛

𝑖
: 𝒰Z −→ 𝒰Z

𝑤 −→ 𝐹𝑢𝑛
𝑖
(𝑤).

Our goal is to show that the mapping 𝐺𝑢𝑛
𝑖

is a well-defined contraction taking 𝑢𝑛 ∈ 𝒰Z. This leads to prove,

first, the existence and uniqueness of a fixed point of (2.2) in 𝒰Z
. Then, we will show that the solution belongs

to 𝒰Z. To do that, we proceed in three steps.

Step 1 (𝐺𝑢𝑛
𝑖

is well-defined).

It is sufficient to prove that −𝑀𝛼 − 1 ≤ 𝐹𝛼
𝑢𝑛

𝑖
(𝑤) ≤ 𝑀𝛼 + 1, for all 𝑖 ∈ Z, if 𝑢𝑛 ∈ 𝒰Z. Indeed, by (2.1), we

have
𝐹𝛼

𝑢𝑛
𝑖
(𝑤) = 𝑢𝛼,𝑛

𝑖 − ∆𝑡

∆𝑥

[︁
(𝜆

𝛼
(𝑤𝑖))− + (𝜆

𝛼
(𝑤𝑖))+

]︁
𝑤𝛼

𝑖

+
∆𝑡

∆𝑥
(𝜆

𝛼
(𝑤𝑖))−𝑤𝛼

𝑖+1 +
∆𝑡

∆𝑥
(𝜆

𝛼
(𝑤𝑖))+𝑤𝛼

𝑖−1.

Then, using the CFL condition (1.7), we obtain

|𝐹𝛼
𝑢𝑛

𝑖
(𝑤)| ≤ 𝑀𝛼 + 4

∆𝑡

∆𝑥
Λ𝛼(𝑀𝛼 + 1) ≤ 𝑀𝛼 + 1,

which implies that the mapping 𝐺𝑢𝑛
𝑖

is well-defined.

Step 2 (𝐺𝑢𝑛
𝑖

is a contraction).

We equipped 𝒰Z
with the following norm (𝑙∞)𝑑:

‖𝑢‖(𝑙∞)𝑑 =
𝑑∑︁

𝛼=1

sup
𝑖∈Z

|𝑢𝛼
𝑖 |.

We observe that, for all 𝑢 and 𝑣 in 𝒰Z
, for all 𝛼 ∈ {1, . . . , 𝑑},

⃦⃦
𝐺𝑢𝑛

𝑖
(𝑢)−𝐺𝑢𝑛

𝑖
(𝑣)
⃦⃦

(𝑙∞)𝑑 =
𝑑∑︁

𝛼=1

sup
𝑖∈Z

⃒⃒⃒
𝐹𝛼

𝑢𝑛
𝑖
(𝑢)− 𝐹𝛼

𝑢𝑛
𝑖
(𝑣)
⃒⃒⃒

=
∆𝑡

∆𝑥

𝑑∑︁
𝛼=1

sup
𝑖∈Z

⃒⃒⃒[︁
(𝜆

𝛼
(𝑢𝑖))− − (𝜆

𝛼
(𝑣𝑖))−

]︁ (︀
𝑢𝛼

𝑖+1 − 𝑢𝛼
𝑖

)︀
−
[︁
(𝜆

𝛼
(𝑢𝑖))+ − (𝜆

𝛼
(𝑣𝑖))+

]︁ (︀
𝑢𝛼

𝑖 − 𝑢𝛼
𝑖−1

)︀
+ (𝜆

𝛼
(𝑣𝑖))−

[︀
(𝑢𝛼

𝑖+1 − 𝑣𝛼
𝑖+1)− (𝑢𝛼

𝑖 − 𝑣𝛼
𝑖 )
]︀

+ (𝜆
𝛼

(𝑣𝑖))+
[︀
(𝑢𝛼

𝑖 − 𝑣𝛼
𝑖 )− (𝑢𝛼

𝑖−1 − 𝑣𝛼
𝑖−1)

]︀⃒⃒⃒
,
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where we have added and subtracted the terms
∆𝑡

∆𝑥
(𝜆

𝛼
(𝑣𝑖))−𝑢𝛼

𝑖+1 and
∆𝑡

∆𝑥
(𝜆

𝛼
(𝑣𝑖))+𝑢𝛼

𝑖−1. We obtain

⃦⃦
𝐺𝑢𝑛

𝑖
(𝑢)−𝐺𝑢𝑛

𝑖
(𝑣)
⃦⃦

(𝑙∞)𝑑 ≤
∆𝑡

∆𝑥
(3Λ𝛼 + 3𝑀1(𝑀𝛼 + 1)) ‖𝑢− 𝑣‖(𝑙∞)𝑑 ,

which gives by the CFL condition (1.7) that 𝐺𝑢𝑛
𝑖

is a contraction on 𝒰Z
.

Banach fixed point theorem yields the existence and uniqueness of a solution 𝑤 of (2.1) on 𝒰Z
.

Step 3 (The fixed point belongs to 𝒰Z).

Our goal is to prove that the fixed point 𝑤 constructed in the previous steps belongs to 𝒰Z, i.e. |𝑤𝛼
𝑖 | ≤ 𝑀𝛼.

Indeed, let 𝜑 ∈ 𝐶∞(R) be a cut-off function taking values in [0, 1], supported on the interval [−2, 2] and
𝜑(𝑥) ≡ 1 on [−1, 1]. Multiplying (2.1) by 𝜑𝑅(𝑥𝑖) = 𝜑(𝑥𝑖

𝑅 ), for 𝑅 > 0, with 𝑥𝑖 = 𝑖∆𝑥, we get

𝑤𝛼
𝑖 𝜑𝑅(𝑥𝑖) = 𝑢𝛼,𝑛

𝑖 𝜑𝑅(𝑥𝑖)−
∆𝑡

∆𝑥

[︁
(𝜆

𝛼
(𝑤𝑖))− + (𝜆

𝛼
(𝑤𝑖))+

]︁
𝑤𝛼

𝑖 𝜑𝑅(𝑥𝑖)

+
∆𝑡

∆𝑥
(𝜆

𝛼
(𝑤𝑖))−𝑤𝛼

𝑖+1(𝜑𝑅(𝑥𝑖)− 𝜑𝑅(𝑥𝑖+1)) +
∆𝑡

∆𝑥
(𝜆

𝛼
(𝑤𝑖))+𝑤𝛼

𝑖−1(𝜑𝑅(𝑥𝑖)− 𝜑𝑅(𝑥𝑖−1))

+
∆𝑡

∆𝑥
(𝜆

𝛼
(𝑤𝑖))−𝑤𝛼

𝑖+1𝜑𝑅(𝑥𝑖+1) +
∆𝑡

∆𝑥
(𝜆

𝛼
(𝑤𝑖))+𝑤𝛼

𝑖−1𝜑𝑅(𝑥𝑖−1),

(2.3)

where we have added and subtracted the terms Δ𝑡
Δ𝑥 (𝜆

𝛼
(𝑤𝑖))−𝑤𝛼

𝑖+1𝜑𝑅(𝑥𝑖+1) and Δ𝑡
Δ𝑥 (𝜆

𝛼
(𝑤𝑖))+𝑤𝛼

𝑖−1𝜑𝑅(𝑥𝑖−1). We
denote 𝑤𝛼

𝑗 𝜑𝑅(𝑥𝑗) = min𝑖∈Z(𝑤𝛼
𝑖 𝜑𝑅(𝑥𝑖)). Then, using (2.3), we obtain, for all 𝑖 ∈ Z,

𝑤𝛼
𝑖 𝜑𝑅(𝑥𝑖) ≥ 𝑤𝛼

𝑗 𝜑𝑅(𝑥𝑗) ≥ 𝑢𝛼,𝑛
𝑗 𝜑𝑅(𝑥𝑗)− ∆𝑡

∆𝑥

[︁
(𝜆

𝛼
(𝑤𝑗))− + (𝜆

𝛼
(𝑤𝑗))+

]︁
𝑤𝛼

𝑗 𝜑𝑅(𝑥𝑗)

+
∆𝑡

∆𝑥
(𝜆

𝛼
(𝑤𝑗))−𝑤𝛼

𝑗+1(𝜑𝑅(𝑥𝑗)− 𝜑𝑅(𝑥𝑗+1))

+
∆𝑡

∆𝑥
(𝜆

𝛼
(𝑤𝑗))+𝑤𝛼

𝑗−1(𝜑𝑅(𝑥𝑗)− 𝜑𝑅(𝑥𝑗−1))

+
∆𝑡

∆𝑥
(𝜆

𝛼
(𝑤𝑗))−𝑤𝛼

𝑗 𝜑𝑅(𝑥𝑗) +
∆𝑡

∆𝑥
(𝜆

𝛼
(𝑤𝑗))+𝑤𝛼

𝑗 𝜑𝑅(𝑥𝑗)

≥ 𝑢𝛼,𝑛
𝑗 𝜑𝑅(𝑥𝑗)− 2

∆𝑡

𝑅
Λ𝛼(𝑀𝛼 + 1)‖𝜑′‖𝐿∞(R),

where we have used the fact 𝑤 ∈ 𝒰Z
. Now, using the fact that 0 ≤ 𝜑𝑅 ≤ 1 and 𝑢𝑛 ∈ 𝒰Z, we get

−𝑀𝛼 ≤ −𝑀𝛼𝜑𝑅(𝑥𝑗) ≤ 𝑢𝛼,𝑛
𝑗 𝜑𝑅(𝑥𝑗) ≤ 𝑀𝛼𝜑𝑅(𝑥𝑗) ≤ 𝑀𝛼.

Therefore, we obtain

𝑤𝛼
𝑖 𝜑𝑅(𝑥𝑖) ≥ −𝑀𝛼 − 2

∆𝑡

𝑅
Λ𝛼(𝑀𝛼 + 1)‖𝜑′‖𝐿∞(R).

Now, by passing to the limit as 𝑅 −→ +∞, we finally get

𝑤𝛼
𝑖 ≥ −𝑀𝛼 for all 𝑖 ∈ Z.

We proceed in a similar manner to show that 𝑤𝛼
𝑖 ≤ 𝑀𝛼, for all 𝑖 ∈ Z. �

2.2. Proof of Theorem 1.3(ii)

In what follows, we derive an evolution in time of the discrete gradient 𝜃𝛼,𝑛

𝑖+ 1
2

defined by (1.6) from (1.5),
which allows us to prove the monotonicity of discrete solution.
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Let 𝑢𝛼,𝑛+1
𝑖 be the solution of the implicit scheme (1.5). Using the definition of 𝜃𝛼,𝑛

𝑖+ 1
2
, we observe that

𝜃𝛼,𝑛+1

𝑖+ 1
2

= 𝜃𝛼,𝑛

𝑖+ 1
2

+
∆𝑡

∆𝑥

𝑢𝛼,𝑛+1
𝑖+1 − 𝑢𝛼,𝑛

𝑖+1

∆𝑡
− ∆𝑡

∆𝑥

𝑢𝛼,𝑛+1
𝑖 − 𝑢𝛼,𝑛

𝑖

∆𝑡
·

Inserting (1.5) at 𝑖 and 𝑖 + 1, allows us to show that 𝜃𝛼,𝑛

𝑖+ 1
2

defined in (1.6) satisfies the following relation

𝜃𝛼,𝑛+1

𝑖+ 1
2

= 𝜃𝛼,𝑛

𝑖+ 1
2
− ∆𝑡

∆𝑥

[︂(︁
𝜆𝛼,𝑛+1

𝑖+1

)︁
+

+
(︁
𝜆𝛼,𝑛+1

𝑖

)︁
−

]︂
𝜃𝛼,𝑛+1

𝑖+ 1
2

+
∆𝑡

∆𝑥

(︁
𝜆𝛼,𝑛+1

𝑖+1

)︁
−

𝜃𝛼,𝑛+1

𝑖+ 3
2

+
∆𝑡

∆𝑥

(︁
𝜆𝛼,𝑛+1

𝑖

)︁
+

𝜃𝛼,𝑛+1

𝑖− 1
2

.
(2.4)

It is sufficient to show that 𝜃𝛼,𝑛+1

𝑖+ 1
2

≥ 0. Indeed, multiplying (2.4) by 𝜑𝑅(𝑥𝑖) = 𝜑(𝑥𝑖

𝑅 ), for 𝑅 > 0, where 𝜑𝑅 is
defined in Section 2.1, we get

𝜃𝛼,𝑛+1

𝑖+ 1
2

𝜑𝑅(𝑥𝑖) = 𝜃𝛼,𝑛

𝑖+ 1
2
𝜑𝑅(𝑥𝑖)−

∆𝑡

∆𝑥

[︂(︁
𝜆𝛼,𝑛+1

𝑖+1

)︁
+

+
(︁
𝜆𝛼,𝑛+1

𝑖

)︁
−

]︂
𝜃𝛼,𝑛+1

𝑖+ 1
2

𝜑𝑅(𝑥𝑖)

+
∆𝑡

∆𝑥

(︁
𝜆𝛼,𝑛+1

𝑖+1

)︁
−

𝜃𝛼,𝑛+1

𝑖+ 3
2

𝜑𝑅(𝑥𝑖+1) +
∆𝑡

∆𝑥

(︁
𝜆𝛼,𝑛+1

𝑖

)︁
+

𝜃𝛼,𝑛+1

𝑖− 1
2

𝜑𝑅(𝑥𝑖−1)

+
∆𝑡

∆𝑥

(︁
𝜆𝛼,𝑛+1

𝑖+1

)︁
−

𝜃𝛼,𝑛+1

𝑖+ 3
2

[𝜑𝑅(𝑥𝑖)− 𝜑𝑅(𝑥𝑖+1)]

+
∆𝑡

∆𝑥

(︁
𝜆𝛼,𝑛+1

𝑖

)︁
+

𝜃𝛼,𝑛+1

𝑖− 1
2

[𝜑𝑅(𝑥𝑖)− 𝜑𝑅(𝑥𝑖−1)] ,

(2.5)

where we have added and subtracted the terms
∆𝑡

∆𝑥

(︁
𝜆𝛼,𝑛+1

𝑖+1

)︁
−

𝜃𝛼,𝑛+1

𝑖+ 3
2

𝜑𝑅(𝑥𝑖+1) and
∆𝑡

∆𝑥

(︁
𝜆𝛼,𝑛+1

𝑖

)︁
+
𝜃𝛼,𝑛+1

𝑖− 1
2

𝜑𝑅(𝑥𝑖−1).

Let us now denote 𝜃𝛼,𝑛+1

𝑘+ 1
2

𝜑𝑅(𝑥𝑘) = min
𝑖∈Z

(︁
𝜃𝛼,𝑛+1

𝑖+ 1
2

𝜑𝑅(𝑥𝑖)
)︁

. Then, from (2.5), we deduce that

𝜃𝛼,𝑛+1

𝑘+ 1
2

𝜑𝑅(𝑥𝑘) ≥ 𝜃𝛼,𝑛

𝑘+ 1
2
𝜑𝑅(𝑥𝑘)− ∆𝑡

∆𝑥

[︁
𝜆𝛼,𝑛+1

𝑘+1 − 𝜆𝛼,𝑛+1
𝑘

]︁
𝜃𝛼,𝑛+1

𝑘+ 1
2

𝜑𝑅(𝑥𝑘)

+
∆𝑡

∆𝑥

(︁
𝜆𝛼,𝑛+1

𝑘+1

)︁
−

𝜃𝛼,𝑛+1

𝑘+ 3
2

[𝜑𝑅(𝑥𝑘)− 𝜑𝑅(𝑥𝑘+1)]

+
∆𝑡

∆𝑥

(︁
𝜆𝛼,𝑛+1

𝑘

)︁
+

𝜃𝛼,𝑛+1

𝑘− 1
2

[𝜑𝑅(𝑥𝑘)− 𝜑𝑅(𝑥𝑘−1)] .

Then, we obtain(︂
1 +

∆𝑡

∆𝑥

[︁
𝜆𝛼,𝑛+1

𝑘+1 − 𝜆𝛼,𝑛+1
𝑘

]︁)︂
𝜃𝛼,𝑛+1

𝑘+ 1
2

𝜑𝑅(𝑥𝑘) ≥ 𝜃𝛼,𝑛

𝑘+ 1
2
𝜑𝑅(𝑥𝑘)− 4

𝑅

∆𝑡

∆𝑥
Λ𝛼𝑀𝛼‖𝜑′‖𝐿∞(R).

We argue by contradiction. Assume that 𝜃𝛼,𝑛+1

𝑖+ 1
2

< 0 for a certain 𝑖 ∈ Z. Then, using the CFL condition (1.7),

the fact that 𝜃𝛼,𝑛

𝑖+ 1
2
≥ 0 and 𝜑𝑅 ≥ 0, we obtain

1
2
𝜃𝛼,𝑛+1

𝑖+ 1
2

𝜑𝑅(𝑥𝑖) ≥
(︂

1 +
∆𝑡

∆𝑥

[︁
𝜆𝛼,𝑛+1

𝑘+1 − 𝜆𝛼,𝑛+1
𝑘

]︁)︂
𝜃𝛼,𝑛+1

𝑖+ 1
2

𝜑𝑅(𝑥𝑖)

≥
(︂

1 +
∆𝑡

∆𝑥

[︁
𝜆𝛼,𝑛+1

𝑘+1 − 𝜆𝛼,𝑛+1
𝑘

]︁)︂
𝜃𝛼,𝑛+1

𝑘+ 1
2

𝜑𝑅(𝑥𝑘)

≥ 𝜃𝛼,𝑛

𝑘+ 1
2
𝜑𝑅(𝑥𝑘)− 4

𝑅

∆𝑡

∆𝑥
Λ𝛼𝑀𝛼‖𝜑′‖𝐿∞(R)

≥ − 4
𝑅

∆𝑡

∆𝑥
Λ𝛼𝑀𝛼‖𝜑′‖𝐿∞(R).
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Now, passing to the limit as 𝑅 −→ +∞, we obtain

1
2
𝜃𝛼,𝑛+1

𝑖+ 1
2

≥ 0,

which gives a contradiction and then 𝜃𝛼,𝑛+1

𝑖+ 1
2

≥ 0. This is equivalent to 𝑢𝛼,𝑛+1
𝑖 is also nondecreasing. This leads

to Theorem 1.3(ii), by applying a recursion on 𝑛 ≥ 0. �

3. Proof of Theorem 1.4 (Discrete gradient estimates)

Our goal is to show that 𝜃𝛼,𝑛+1

𝑖+ 1
2

is uniformly bounded for all 𝑖 ∈ Z.

We can see that max
𝑖∈Z

𝜃𝛼,𝑛+1

𝑖+ 1
2

is reached at an index 𝑗𝛼 ∈ Z since 𝑢𝛼,𝑛
𝑖 is bounded and nondecreasing. From

(2.4), we have

𝜃𝛼,𝑛+1

𝑗𝛼+ 1
2

= max
𝑖∈Z

𝜃𝛼,𝑛+1

𝑖+ 1
2

= 𝜃𝛼,𝑛

𝑗𝛼+ 1
2
−∆𝑡

∆𝑥

(︂(︁
𝜆𝛼,𝑛+1

𝑗𝛼+1

)︁
+

+
(︁
𝜆𝛼,𝑛+1

𝑗𝛼

)︁
−

)︂
𝜃𝛼,𝑛+1

𝑗𝛼+ 1
2

+
∆𝑡

∆𝑥

(︁
𝜆𝛼,𝑛+1

𝑗𝛼+1

)︁
−

(︁
𝜃𝛼,𝑛+1

𝑗𝛼+ 3
2

)︁
+

∆𝑡

∆𝑥

(︁
𝜆𝛼,𝑛+1

𝑗𝛼

)︁
+

(︁
𝜃𝛼,𝑛+1

𝑗𝛼− 1
2

)︁
.

By the positivity of
∆𝑡

∆𝑥

(︁
𝜆𝛼,𝑛+1

𝑗𝛼+1

)︁
−

and
∆𝑡

∆𝑥

(︁
𝜆𝛼,𝑛+1

𝑗𝛼

)︁
+

, we get

𝜃𝛼,𝑛+1

𝑗𝛼+ 1
2
≤ 𝜃𝛼,𝑛

𝑗𝛼+ 1
2
− ∆𝑡

∆𝑥

(︂(︁
𝜆𝛼,𝑛+1

𝑗𝛼+1

)︁
+

+
(︁
𝜆𝛼,𝑛+1

𝑗𝛼

)︁
−

)︂
𝜃𝛼,𝑛+1

𝑗𝛼+ 1
2

+
(︂

∆𝑡

∆𝑥

(︁
𝜆𝛼,𝑛+1

𝑗𝛼+1

)︁
−

)︂
𝜃𝛼,𝑛+1

𝑗𝛼+ 1
2

+
(︂

∆𝑡

∆𝑥

(︁
𝜆𝛼,𝑛+1

𝑗𝛼

)︁
+

)︂
𝜃𝛼,𝑛+1

𝑗𝛼+ 1
2

,

which impiles that

𝜃𝛼,𝑛+1

𝑗𝛼+ 1
2
≤ max

𝑖∈Z
𝜃𝛼,𝑛

𝑖+ 1
2
− ∆𝑡

∆𝑥

(︁
𝜆𝛼,𝑛+1

𝑗𝛼+1 − 𝜆𝛼,𝑛+1
𝑗𝛼

)︁
𝜃𝛼,𝑛+1

𝑗𝛼+ 1
2

. (3.1)

In order to prove the discrete gradient estimates given by Theorem 1.4, we distinguish three cases. To do that,
we proceed in three subsections.

3.1. Case where (𝐾1) holds

It is sufficient to prove that the sum over 𝛼 ∈ {1, . . . , 𝑑} of the second term in the right hand side of (3.1) is
negative using assumption (𝐾1).

We have

∆𝑡

∆𝑥

(︁
𝜆𝛼,𝑛+1

𝑗𝛼+1 − 𝜆𝛼,𝑛+1
𝑗𝛼

)︁
𝜃𝛼,𝑛+1

𝑗𝛼+ 1
2

=
∆𝑡

∆𝑥

⎡⎣ 𝑑∑︁
𝛽=1

∫︁ 1

0

𝜕𝜆𝛼

𝜕𝑢𝛽

(︀
𝑢𝑛+1

𝑗𝛼
+ 𝜏

(︀
𝑢𝑛+1

𝑗𝛼+1 − 𝑢𝑛+1
𝑗𝛼

)︀)︀
·
(︁
𝑢𝛽,𝑛+1

𝑗𝛼+1 − 𝑢𝛽,𝑛+1
𝑗𝛼

)︁
d𝜏

⎤⎦ 𝜃𝛼,𝑛+1

𝑗𝛼+ 1
2

= ∆𝑡

⎡⎣ 𝑑∑︁
𝛽=1

∫︁ 1

0

𝜕𝜆𝛼

𝜕𝑢𝛽

(︀
𝑢𝑛+1

𝑗𝛼
+ 𝜏

(︀
𝑢𝑛+1

𝑗𝛼+1 − 𝑢𝑛+1
𝑗𝛼

)︀)︀
· 𝜃𝛽,𝑛+1

𝑗𝛼+ 1
2

d𝜏

⎤⎦ 𝜃𝛼,𝑛+1

𝑗𝛼+ 1
2
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= ∆𝑡

⎡⎢⎢⎣ 𝑑∑︁
𝛽=1

𝛽 ̸=𝛼

∫︁ 1

0

𝜕𝜆𝛼

𝜕𝑢𝛽

(︀
𝑢𝑛+1

𝑗𝛼
+ 𝜏

(︀
𝑢𝑛+1

𝑗𝛼+1 − 𝑢𝑛+1
𝑗𝛼

)︀)︀
· 𝜃𝛽,𝑛+1

𝑗𝛼+ 1
2

d𝜏

⎤⎥⎥⎦ 𝜃𝛼,𝑛+1

𝑗𝛼+ 1
2

+ ∆𝑡

[︂∫︁ 1

0

𝜕𝜆𝛼

𝜕𝑢𝛼

(︀
𝑢𝑛+1

𝑗𝛼
+ 𝜏

(︀
𝑢𝑛+1

𝑗𝛼+1 − 𝑢𝑛+1
𝑗𝛼

)︀)︀
· 𝜃𝛼,𝑛+1

𝑗𝛼+ 1
2

d𝜏

]︂
𝜃𝛼,𝑛+1

𝑗𝛼+ 1
2

.

Using the fact that 𝜆𝛼
𝛽 ≤ 0 for 𝛼 ̸= 𝛽, we get

∆𝑡

∆𝑥

(︁
𝜆𝛼,𝑛+1

𝑗𝛼+1 − 𝜆𝛼,𝑛+1
𝑗𝛼

)︁
𝜃𝛼,𝑛+1

𝑗𝛼+ 1
2

≥ ∆𝑡

⎡⎢⎢⎣ 𝑑∑︁
𝛽=1

𝛽 ̸=𝛼

∫︁ 1

0

𝜕𝜆𝛼

𝜕𝑢𝛽

(︀
𝑢𝑛+1

𝑗𝛼
+ 𝜏

(︀
𝑢𝑛+1

𝑗𝛼+1 − 𝑢𝑛+1
𝑗𝛼

)︀)︀
· 𝜃𝛽,𝑛+1

𝑗𝛽+ 1
2

d𝜏

⎤⎥⎥⎦ 𝜃𝛼,𝑛+1

𝑗𝛼+ 1
2

+ ∆𝑡

[︂∫︁ 1

0

𝜕𝜆𝛼

𝜕𝑢𝛼

(︀
𝑢𝑛+1

𝑗𝛼
+ 𝜏

(︀
𝑢𝑛+1

𝑗𝛼+1 − 𝑢𝑛+1
𝑗𝛼

)︀)︀
· 𝜃𝛼,𝑛+1

𝑗𝛼+ 1
2

d𝜏

]︂
𝜃𝛼,𝑛+1

𝑗𝛼+ 1
2

≥ ∆𝑡

⎡⎣ 𝑑∑︁
𝛽=1

∫︁ 1

0

𝜕𝜆𝛼

𝜕𝑢𝛽

(︀
𝑢𝑛+1

𝑗𝛼
+ 𝜏

(︀
𝑢𝑛+1

𝑗𝛼+1 − 𝑢𝑛+1
𝑗𝛼

)︀)︀
· 𝜃𝛽,𝑛+1

𝑗𝛽+ 1
2

d𝜏

⎤⎦ 𝜃𝛼,𝑛+1

𝑗𝛼+ 1
2

.

Now, using the fact that 𝜃𝛽,𝑛+1

𝑗𝛽+ 1
2

is positive and the second statement of the assumption (𝐾1), we deduce that

−∆𝑡

∆𝑥

𝑑∑︁
𝛼=1

(︁
𝜆𝛼,𝑛+1

𝑗𝛼+1 − 𝜆𝛼,𝑛+1
𝑗𝛼

)︁
𝜃𝛼,𝑛+1

𝑗𝛼+ 1
2
≤ −∆𝑡

𝑑∑︁
𝛼,𝛽=1

𝐴𝛼,𝛽𝜃𝛽,𝑛+1

𝑗𝛽+ 1
2

𝜃𝛼,𝑛+1

𝑗𝛼+ 1
2
≤ 0. (3.2)

We deduce inequality (1.8) by combining (3.2) and the sum over 𝛼 ∈ {1, . . . , 𝑑} of (3.1).

3.2. Case where (𝐾2) holds

We assume that the maximum over 𝛼 ∈ {1, . . . , 𝑑} of 𝜃𝛼,𝑛+1

𝑗𝛼+ 1
2

is achieved at some 𝛼0 ∈ {1, . . . , 𝑑}. In other
words, we have

max
𝛼∈{1,...,𝑑}

(︂
max
𝑖∈Z

𝜃𝛼,𝑛+1

𝑖+ 1
2

)︂
= 𝜃𝛼0,𝑛+1

𝑗𝛼0+ 1
2

.

Then, using (3.1) at this maximum, we obtain

max
𝛼=1,...,𝑑

[︂
max
𝑖∈Z

(︁
𝜃𝛼,𝑛+1

𝑖+ 1
2

)︁]︂
≤ max

𝛼=1,...,𝑑

[︂
max
𝑖∈Z

(︁
𝜃𝛼,𝑛

𝑖+ 1
2

)︁]︂
− ∆𝑡

∆𝑥

(︁
𝜆𝛼0,𝑛+1

𝑗𝛼0+1 − 𝜆𝛼0,𝑛+1
𝑗𝛼0

)︁
𝜃𝛼0,𝑛+1

𝑗𝛼0+ 1
2

.

(3.3)

We proceed as in Section 3.1. Namely, it is sufficient to prove that the second term in the right hand side of
inequality (3.3) is negative using assumption (𝐾2).

Now, using the fact that 𝜃𝛼0,𝑛+1

𝑗𝛼0+ 1
2
≥ 0, we get

− ∆𝑡

∆𝑥

(︁
𝜆𝛼0,𝑛+1

𝑗𝛼0+1 − 𝜆𝛼0,𝑛+1
𝑗𝛼0

)︁
𝜃𝛼0,𝑛+1

𝑗𝛼0+ 1
2
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≤ −∆𝑡

⎛⎜⎜⎝ 𝑑∑︁
𝛽=1

𝛽 ̸=𝛼0

∫︁ 1

0

𝜕𝜆𝛼0

𝜕𝑢𝛽

(︁
𝑢𝑛+1

𝑗𝛼0
+ 𝜏

(︁
𝑢𝑛+1

𝑗𝛼0+1 − 𝑢𝑛+1
𝑗𝛼0

)︁)︁
· 𝜃𝛽,𝑛+1

𝑗𝛼0+ 1
2

d𝜏

⎞⎟⎟⎠ 𝜃𝛼0,𝑛+1

𝑗𝛼0+ 1
2

− ∆𝑡

∫︁ 1

0

(︂
𝜕𝜆𝛼0

𝜕𝑢𝛼0

(︁
𝑢𝑛+1

𝑗𝛼0
+ 𝜏

(︁
𝑢𝑛+1

𝑗𝛼0+1 − 𝑢𝑛+1
𝑗𝛼0

)︁)︁
· 𝜃𝛼0,𝑛+1

𝑗𝛼0+ 1
2

d𝜏

)︂
𝜃𝛼0,𝑛+1

𝑗𝛼0+ 1
2

≤ ∆𝑡

⎛⎜⎜⎝ 𝑑∑︁
𝛽=1

𝛽 ̸=𝛼0

∫︁ 1

0

(︂
𝜕𝜆𝛼0

𝜕𝑢𝛽

)︂− (︁
𝑢𝑛+1

𝑗𝛼0
+ 𝜏

(︁
𝑢𝑛+1

𝑗𝛼0+1 − 𝑢𝑛+1
𝑗𝛼0

)︁)︁
· 𝜃𝛽,𝑛+1

𝑗𝛼0+ 1
2

d𝜏

⎞⎟⎟⎠ 𝜃𝛼0,𝑛+1

𝑗𝛼0+ 1
2

− ∆𝑡

∫︁ 1

0

(︂
𝜕𝜆𝛼0

𝜕𝑢𝛼0

(︁
𝑢𝑛+1

𝑗𝛼0
+ 𝜏

(︁
𝑢𝑛+1

𝑗𝛼0+1 − 𝑢𝑛+1
𝑗𝛼0

)︁)︁
· 𝜃𝛼0,𝑛+1

𝑗𝛼0+ 1
2

d𝜏

)︂
𝜃𝛼0,𝑛+1

𝑗𝛼0+ 1
2

≤ −∆𝑡

𝑑∑︁
𝛽=1

𝛽 ̸=𝛼0

∫︁ 1

0

(︃
𝜕𝜆𝛼0

𝜕𝑢𝛼0

(︁
𝑢𝑛+1

𝑗𝛼0
+ 𝜏

(︁
𝑢𝑛+1

𝑗𝛼0+1 − 𝑢𝑛+1
𝑗𝛼0

)︁)︁
−
(︂

𝜕𝜆𝛼0

𝜕𝑢𝛽

)︂− (︁
𝑢𝑛+1

𝑗𝛼0
+ 𝜏

(︁
𝑢𝑛+1

𝑗𝛼0+1 − 𝑢𝑛+1
𝑗𝛼0

)︁)︁)︃

×
(︁
𝜃𝛼0,𝑛+1

𝑗𝛼0+ 1
2

)︁2

d𝜏 ≤ 0,

where we have used the fact that 𝜃𝛽,𝑛+1

𝑗𝛼0+ 1
2
≤ 𝜃𝛼0,𝑛+1

𝑗𝛼0+ 1
2

and the assumption (𝐾2).
Hence, we get the estimate (1.9) by combining the previous inequality and (3.3).

3.3. Case where (𝐾3) holds

We proceed using the same notations as in Sections 3.1 and 3.2.
Using (3.1) for 𝛼 = 1, we get

𝜃1,𝑛+1

𝑗1+
1
2
≤ max

𝑖∈Z
𝜃1,𝑛

𝑖+ 1
2
− ∆𝑡

∆𝑥

(︁
𝜆1,𝑛+1

𝑗1+1 − 𝜆1,𝑛+1
𝑗1

)︁
𝜃1,𝑛+1

𝑗1+
1
2

. (3.4)

Using assumption (𝐾3) and the fact that 𝜃𝛽,𝑛+1

𝑗1+
1
2

and 𝜃1,𝑛+1

𝑗1+
1
2

are positives, for all 𝛽 ∈ {1, . . . , 𝑑}, we have

−∆𝑡

∆𝑥

(︁
𝜆1,𝑛+1

𝑗1+1 − 𝜆1,𝑛+1
𝑗1

)︁
𝜃1,𝑛+1

𝑗1+
1
2

= −∆𝑡

⎡⎣ 𝑑∑︁
𝛽=1

∫︁ 1

0

𝜕𝜆1

𝜕𝑢𝛽
(𝑢𝑛+1

𝑗1
+ 𝜏(𝑢𝑛+1

𝑗1+1 − 𝑢𝑛+1
𝑗1

)) · 𝜃𝛽,𝑛+1

𝑗1+
1
2

d𝜏

⎤⎦ 𝜃1,𝑛+1

𝑗1+
1
2

≤ 0.

(3.5)

We deduce by combining (3.4) with (3.5) that

max
𝑖∈Z

𝜃1,𝑛+1

𝑖+ 1
2

≤ max
𝑖∈Z

𝜃1,𝑛

𝑖+ 1
2
.

We can show using a recursion on 𝑛 that

max
𝑖∈Z

𝜃1,𝑛

𝑖+ 1
2
≤ max

𝑖∈Z
𝜃1,0

𝑖+ 1
2
, ∀𝑛 ∈ N. (3.6)

Now, we consider the case where 𝛼 = 2.
From (3.1), we have

𝜃2,𝑛+1

𝑗2+
1
2
≤ max

𝑖∈Z
𝜃2,𝑛

𝑖+ 1
2
− ∆𝑡

∆𝑥

(︁
𝜆2,𝑛+1

𝑗2+1 − 𝜆2,𝑛+1
𝑗2

)︁
𝜃2,𝑛+1

𝑗2+
1
2

. (3.7)
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By assumption (𝐾3) and the fact that 𝜃𝛽,𝑛+1

𝑗2+
1
2

and 𝜃2,𝑛+1

𝑗2+
1
2

are positives, for all 𝛽 ∈ {1, . . . , 𝑑}, we have

−∆𝑡

∆𝑥

(︁
𝜆2,𝑛+1

𝑗2+1 − 𝜆2,𝑛+1
𝑗2

)︁
𝜃2,𝑛+1

𝑗2+
1
2

= −∆𝑡

⎡⎣ 𝑑∑︁
𝛽=2

∫︁ 1

0

𝜕𝜆2

𝜕𝑢𝛽

(︀
𝑢𝑛+1

𝑗2
+ 𝜏

(︀
𝑢𝑛+1

𝑗2+1 − 𝑢𝑛+1
𝑗2

)︀)︀
· 𝜃𝛽,𝑛+1

𝑗2+
1
2

d𝜏

⎤⎦𝜃2,𝑛+1

𝑗2+
1
2

−∆𝑡

[︂∫︁ 1

0

𝜕𝜆2

𝜕𝑢1

(︀
𝑢𝑛+1

𝑗2
+ 𝜏

(︀
𝑢𝑛+1

𝑗2+1 − 𝑢𝑛+1
𝑗2

)︀)︀
· 𝜃1,𝑛+1

𝑗2+
1
2

d𝜏

]︂
𝜃2,𝑛+1

𝑗2+
1
2

≤ −∆𝑡

[︂∫︁ 1

0

𝜕𝜆2

𝜕𝑢1

(︀
𝑢𝑛+1

𝑗2
+ 𝜏

(︀
𝑢𝑛+1

𝑗2+1 − 𝑢𝑛+1
𝑗2

)︀)︀
· 𝜃1,𝑛+1

𝑗2+
1
2

d𝜏

]︂
𝜃2,𝑛+1

𝑗2+
1
2

.

Then, we deduce using assumption (𝐻1) that

−∆𝑡

∆𝑥

(︁
𝜆2,𝑛+1

𝑗2+1 − 𝜆2,𝑛+1
𝑗2

)︁
𝜃2,𝑛+1

𝑗2+
1
2
≤ ∆𝑡𝑀1𝜃

1,𝑛+1

𝑗1+
1
2

𝜃2,𝑛+1

𝑗2+
1
2

. (3.8)

Combining (3.7) and (3.8), we get using (3.6)

𝜃2,𝑛+1

𝑗2+
1
2
≤ max

𝑖∈Z
𝜃2,𝑛

𝑖+ 1
2

+ ∆𝑡𝑀1𝜃
1,𝑛+1

𝑗1+
1
2

𝜃2,𝑛+1

𝑗2+
1
2

≤ max
𝑖∈Z

𝜃2,𝑛

𝑖+ 1
2

+ ∆𝑡𝑀1 max
𝑖∈Z

𝜃1,0

𝑖+ 1
2
𝜃2,𝑛+1

𝑗2+
1
2

.

Then, we obtain [︂
1− 𝑇

𝑛
𝑀1

(︂
max
𝑖∈Z

𝜃1,0

𝑖+ 1
2

)︂]︂
𝜃2,𝑛+1

𝑗2+
1
2
≤ max

𝑖∈Z
𝜃2,𝑛

𝑖+ 1
2
.

Using a recursion on 𝑛 ≥ 𝑛2
0, we can see that

max
𝑖∈Z

𝜃2,𝑛

𝑖+ 1
2
≤ 1[︂

1− 𝑇

𝑛
𝑀1 max

𝑖∈Z
𝜃1,0

𝑖+ 1
2

]︂𝑛 max
𝑖∈Z

𝜃2,0

𝑖+ 1
2
≤ 𝒦2(𝑇 ) max

𝑖∈Z
𝜃2,0

𝑖+ 1
2
,

where 𝒦2(𝑇 ) = exp
(︂

2𝑇𝑀1

(︂
max
𝑖∈Z

𝜃1,0

𝑖+ 1
2

)︂)︂
.

Proceeding in a similar manner, for all 𝛽 ≤ 𝛼− 1, 𝛼 ≥ 3, we have

max
𝑖∈Z

𝜃𝛽,𝑛

𝑖+ 1
2
≤ 𝒦𝛽(𝑇 ) max

𝑖∈Z
𝜃𝛽,0

𝑖+ 1
2
, ∀𝛽 ≤ 𝛼− 1.

We prove that the above inequality is true for 𝛼.
Indeed, proceeding as in the case where 𝛼 = 2, we deduce that for all 𝑛 ≥ 𝑛𝛼

0 ,

max
𝑖∈Z

𝜃𝛼,𝑛+1

𝑖+ 1
2

≤ 1⎡⎣1− 𝑇

𝑛
𝑀1

𝛼−1∑︁
𝛽=1

𝒦𝛽(𝑇 )

⎤⎦ max
𝑖∈Z

𝜃𝛼,𝑛

𝑖+ 1
2
.

Hence, using a recursion on n, we obtain

max
𝑖∈Z

𝜃𝛼,𝑛

𝑖+ 1
2
≤ 1⎡⎣1− 𝑇

𝑛
𝑀1

𝛼−1∑︁
𝛽=1

𝒦𝛽(𝑇 )

⎤⎦𝑛 max
𝑖∈Z

(︁
𝜃𝛼,0

𝑖+ 1
2

)︁
≤ 𝒦𝛼(𝑇 ) max

𝑖∈Z

(︁
𝜃𝛼,0

𝑖+ 1
2

)︁
,

where 𝒦𝛼(𝑇 ) = exp

⎛⎝2𝑇𝑀1

𝛼−1∑︁
𝛽=1

𝒦𝛽(𝑇 )

⎞⎠.

Hence, we get the estimate (1.10) for all 𝛼 = 1, . . . , 𝑑 and for all 𝑛 ≥ 𝑛0 = max
2≤𝛼≤𝑑

(𝑛𝛼
0 ). �
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4. Proof of Theorem 1.5

This section is devoted to prove Theorem 1.5. The proof is outlined in four subsections.

4.1. Estimates on the 𝑄1 extension 𝑢𝜖

Let (𝑡, 𝑥) ∈ [0, 𝑇 ] × R. Then, there exist 𝑖 ∈ Z and 𝑛 ∈ N such that (𝑡, 𝑥) ∈ [𝑡𝑛, 𝑡𝑛+1] × [𝑥𝑖, 𝑥𝑖+1], where
𝑥𝑖 = 𝑖∆𝑥 and 𝑡𝑛 = 𝑛∆𝑡. For 𝜖 = (∆𝑡, ∆𝑥), we define the 𝑄1 extension of the function defined on the grid, for
any (𝑡, 𝑥) ∈ [𝑡𝑛, 𝑡𝑛+1]× [𝑥𝑖, 𝑥𝑖+1], by

𝑢𝜖(𝑡, 𝑥) =
(︂

𝑡− 𝑡𝑛
∆𝑡

)︂{︂(︂
𝑥− 𝑥𝑖

∆𝑥

)︂
𝑢𝑛+1

𝑖+1 +
(︂

1− 𝑥− 𝑥𝑖

∆𝑥

)︂
𝑢𝑛+1

𝑖

}︂
+
(︂

1− 𝑡− 𝑡𝑛
∆𝑡

)︂{︂(︂
𝑥− 𝑥𝑖

∆𝑥

)︂
𝑢𝑛

𝑖+1 +
(︂

1− 𝑥− 𝑥𝑖

∆𝑥

)︂
𝑢𝑛

𝑖

}︂
= (𝑢𝜀,𝛼(𝑡, 𝑥))𝛼=1,...,𝑑.

(4.1)

In particular, we can see that
𝑢𝜀(𝑡𝑛, 𝑥𝑖) = 𝑢𝑛

𝑖 for 𝑛 ∈ N, 𝑖 ∈ Z.

4.1.1. Estimate on 𝑢𝜖

From Theorem 1.3, we deduce that 𝑢𝑛+1
𝑖+1 , 𝑢𝑛+1

𝑖 , 𝑢𝑛
𝑖+1 and 𝑢𝑛

𝑖 are in 𝒰 , for all 𝑖 ∈ Z and for all 𝑛 ∈ N. By
(4.1), we remark that 𝑢𝜖 is a convex combination of 𝑢𝑛+1

𝑖+1 , 𝑢𝑛+1
𝑖 , 𝑢𝑛

𝑖+1 and 𝑢𝑛
𝑖 contained in a convex set 𝒰 . Then

𝑢𝜖 ∈ 𝒰 , which implies that
‖𝑢𝜖,𝛼‖𝐿∞([0,𝑇 ]×R) ≤ 𝑀𝛼. (4.2)

4.1.2. Estimate on 𝜕𝑥𝑢𝜀

We have for (𝑡, 𝑥) ∈ [𝑡𝑛, 𝑡𝑛+1]× (𝑥𝑖, 𝑥𝑖+1)

𝜕𝑥𝑢𝜖(𝑡, 𝑥) =
(︂

𝑡− 𝑡𝑛
∆𝑡

)︂
𝜃𝑛+1

𝑖+ 1
2

+
(︂

1− 𝑡− 𝑡𝑛
∆𝑡

)︂
𝜃𝑛

𝑖+ 1
2
. (4.3)

Using the fact that 𝜃𝑛
𝑖+ 1

2
is positive for all 𝑛 ∈ N and for all 𝑖 ∈ Z, we deduce that

sup
(𝑡,𝑥)∈[0,𝑇 ]×R

|𝜕𝑥𝑢𝜖,𝛼(𝑡, 𝑥)| ≤ sup
𝑛∈N,𝑖∈Z

{︂(︂
𝑡− 𝑡𝑛

∆𝑡

)︂
𝜃𝛼,𝑛+1

𝑖+ 1
2

+
(︂

1− 𝑡− 𝑡𝑛
∆𝑡

)︂
𝜃𝛼,𝑛

𝑖+ 1
2

}︂
≤ 𝒢(‖𝜕𝑥𝑢0‖(𝐿∞(R))𝑑 , 𝑇 ),

where we have used in the last line the estimates of Theorem 1.4 under one of the assumptions (𝐾1), (𝐾2) or
(𝐾3).

We deduce that
‖𝜕𝑥𝑢𝜖,𝛼‖𝐿∞([0,𝑇 ]×R) ≤ 𝒢. (4.4)

4.1.3. Estimate on 𝜕𝑡𝑢
𝜀

Let us define

𝜏
𝑛+ 1

2
𝑖 =

𝑢𝑛+1
𝑖 − 𝑢𝑛

𝑖

∆𝑡
·

We have for (𝑡, 𝑥) ∈ (𝑡𝑛, 𝑡𝑛+1)× [𝑥𝑖, 𝑥𝑖+1]

𝜕𝑡𝑢
𝜖(𝑡, 𝑥) =

(︂
𝑥− 𝑥𝑖

∆𝑥

)︂
𝜏

𝑛+ 1
2

𝑖+1 +
(︂

1− 𝑥− 𝑥𝑖

∆𝑥

)︂
𝜏

𝑛+ 1
2

𝑖 . (4.5)

Using the scheme (1.5), we have

𝜏
𝛼,𝑛+ 1

2
𝑖 =

(︁
𝜆𝛼,𝑛+1

𝑖

)︁
−

𝜃𝛼,𝑛+1

𝑖+ 1
2

−
(︁
𝜆𝛼,𝑛+1

𝑖

)︁
+

𝜃𝛼,𝑛+1

𝑖− 1
2

. (4.6)
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From Theorem 1.3, we know that 𝑢𝑛+1
𝑖 ∈ 𝒰 . Then, we deduce that

|𝜆𝛼,𝑛+1
𝑖 | ≤ Λ𝛼.

Using the positivity of 𝜃𝛼,𝑛+1

𝑖+ 1
2

, we get

|𝜏𝛼,𝑛+1
𝑖 | ≤ 2Λ𝛼𝒢.

Hence, we obtain
‖𝜕𝑡𝑢

𝜖,𝛼‖𝐿∞([0,𝑇 ]×R) ≤ 2Λ𝛼𝒢, (4.7)

where we have used in the above inequality estimates of Theorem 1.4 under one of the assumptions (𝐾1), (𝐾2)
or (𝐾3).

4.2. Extraction of a convergent subsequence of 𝑢𝜖

Combining estimates (4.2), (4.4) and (4.7), we deduce that 𝑢𝜀,𝛼 is uniformly bounded in 𝑊 1,∞([0, 𝑇 ] × R),
for any 𝑇 > 0 and satisfies the following estimate

‖𝑢𝜖,𝛼‖𝐿∞([0,𝑇 ]×R) + ‖𝜕𝑥𝑢𝜖,𝛼‖𝐿∞([0,𝑇 ]×R) + ‖𝜕𝑡𝑢
𝜖,𝛼‖𝐿∞([0,𝑇 ]×R) ≤ 𝐶, for all 𝛼 ∈ {1, . . . , 𝑑},

where 𝐶 is a constant depending only on 𝑀𝛼, ‖𝜕𝑥𝑢0‖(𝐿∞(R))𝑑 , Λ𝛼 and 𝑇 .
Let 𝐾 be a compact set in [0, 𝑇 ]× R. By estimates (4.2), (4.4) and (4.7) and using the compact embedding

of 𝑊 1,∞(𝐾) →˓ 𝐿∞(𝐾), we can show that the sequence (𝑢𝜀,𝛼)𝜖 is relatively compact in 𝐿∞(𝐾), for all 𝛼 ∈
{1, . . . , 𝑑}. Then, as 𝜖 goes to 0, we can extract a subsequence still denoted by (𝑢𝜖𝑘,𝛼)𝜖𝑘

that converges strongly
to some function 𝑢𝛼 in 𝐿∞(𝐾). By standard diagonalization procedure, we can extract a subsequence (𝑢𝜖,𝛼)𝜖

(independent of 𝐾 and 𝛼) such that

𝑢𝜖,𝛼 −→ 𝑢𝛼, uniformly in 𝐿∞(𝐾), ∀𝐾 compact and ∀𝛼 ∈ {1, . . . , 𝑑}.

In particular, we see that the limit function 𝑢𝛼 satisfies the initial data 𝑢𝛼(0, ·) = 𝑢𝛼
0 (·).

By the continuity of 𝜆𝛼, we know that 𝜆𝛼(𝑢𝜀) converges to 𝜆𝛼(𝑢), for all 𝛼 ∈ {1, . . . , 𝑑}.
Moreover, using (4.4), we deduce that, up to extraction of a subsequence,

𝜕𝑥𝑢𝜖,𝛼 → 𝜕𝑥𝑢𝛼 weakly- ⋆ in 𝐿∞((0, 𝑇 )× R), for all 𝛼 ∈ {1, . . . , 𝑑}. (4.8)

4.3. Passing to the limit in the PDE

4.3.1. Preliminaries

For (𝑡, 𝑥) ∈ (𝑡𝑛, 𝑡𝑛+1)× (𝑥𝑖, 𝑥𝑖+1), we set

𝜆𝛼 = 𝜆𝛼(𝑢𝜀(𝑡, 𝑥)), 𝑎𝑥 =
𝑥− 𝑥𝑖

∆𝑥
, 𝑏𝑥 = 1− 𝑎𝑥.

Combining (4.5) and (4.6), we have

𝜕𝑡𝑢
𝜖,𝛼(𝑡, 𝑥) = 𝑎𝑥

[︁
(𝜆𝛼,𝑛+1

𝑖+1 )−𝜃𝛼,𝑛+1

𝑖+ 3
2

− (𝜆𝛼,𝑛+1
𝑖+1 )+𝜃𝛼,𝑛+1

𝑖+ 1
2

]︁
+ 𝑏𝑥

[︁
(𝜆𝛼,𝑛+1

𝑖 )−𝜃𝛼,𝑛+1

𝑖+ 1
2

− (𝜆𝛼,𝑛+1
𝑖 )+𝜃𝛼,𝑛+1

𝑖− 1
2

]︁
= 𝜆𝛼

−

[︁
𝑎𝑥𝜃𝛼,𝑛+1

𝑖+ 3
2

+ 𝑏𝑥𝜃𝛼,𝑛+1

𝑖+ 1
2

]︁
− 𝜆𝛼

+

[︁
𝑎𝑥𝜃𝛼,𝑛+1

𝑖+ 1
2

+ 𝑏𝑥𝜃𝛼,𝑛+1

𝑖− 1
2

]︁
+ 𝑒𝜖,𝛼(𝑡, 𝑥),

(4.9)

where
𝑒𝜖,𝛼(𝑡, 𝑥) = 𝑎𝑥

[︁
−
[︁
(𝜆𝛼,𝑛+1

𝑖+1 )+ − 𝜆𝛼
+

]︁
𝜃𝛼,𝑛+1

𝑖+ 1
2

+
[︁
(𝜆𝛼,𝑛+1

𝑖+1 )− − 𝜆𝛼
−

]︁
𝜃𝛼,𝑛+1

𝑖+ 3
2

]︁
+ 𝑏𝑥

[︁
−
[︁
(𝜆𝛼,𝑛+1

𝑖 )+ − 𝜆𝛼
+

]︁
𝜃𝛼,𝑛+1

𝑖− 1
2

+
[︁
(𝜆𝛼,𝑛+1

𝑖 )− − 𝜆𝛼
−

]︁
𝜃𝛼,𝑛+1

𝑖+ 1
2

]︁
.
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In particular, for any test function 𝜁 with compact support 𝐾 = [0, 𝑇 ]× [−𝑅,𝑅], where 𝑅 > 0, we have

𝑑∑︁
𝛼=1

⃒⃒⃒⃒
⃒
∫︁

(0,+∞)×R
𝜁(𝜏, 𝑦)𝑒𝜖,𝛼(𝜏, 𝑦) d𝜏 d𝑦

⃒⃒⃒⃒
⃒ =

𝑑∑︁
𝛼=1

⃒⃒⃒⃒∫︁
𝐾

𝜁(𝜏, 𝑦)𝑒𝜖,𝛼(𝜏, 𝑦) d𝜏 d𝑦

⃒⃒⃒⃒
≤ 4𝑅𝑇

𝑑∑︁
𝛼=1

(︂
sup
𝑖∈Z

𝜃𝛼,𝑛+1

𝑖+ 1
2

)︂
‖𝜁‖𝐿∞((0,+∞)×R) sup

(𝜏,𝑦)∈𝐾

(︃
sup

|𝑡𝑛+1−𝜏 |≤Δ𝑡, |𝑥𝑖−𝑦|≤Δ𝑥

× |𝜆𝛼(𝑢𝜖(𝑡𝑛+1, 𝑥𝑖))− 𝜆𝛼(𝑢𝜖(𝜏, 𝑦))|+ sup
|𝑡𝑛+1−𝜏 |≤Δ𝑡, |𝑥𝑖+1−𝑦|≤Δ𝑥

|𝜆𝛼(𝑢𝜖(𝑡𝑛+1, 𝑥𝑖+1))− 𝜆𝛼(𝑢𝜖(𝜏, 𝑦))|

)︃
.

Then, using the continuity of 𝑢𝜀 and 𝜆𝛼 and the uniform convergence of 𝑢𝜀, we deduce that

𝑒𝜖,𝛼 −→ 0 when 𝜖 = (∆𝑡, ∆𝑥) −→ (0, 0) in 𝒟′((0, +∞)× R).

4.3.2. Introduction of 𝜃𝜖

Our goal is to show that the limit 𝑢𝛼 verifies 𝜕𝑡𝑢
𝛼 + 𝜆𝛼(𝑢)𝜕𝑥𝑢𝛼 = 0.

We define the function 𝜃𝜖 as follows

𝜃𝜖(𝑡, 𝑥) = 𝜃𝑛+1
𝑖+ 1

2
, for (𝑡, 𝑥) ∈ [𝑡𝑛, 𝑡𝑛+1)× [𝑥𝑖, 𝑥𝑖+1).

Due to estimates of Theorem 1.4, we deduce that 𝜃𝜖 is uniformly bounded in 𝐿∞((0, +∞) × R). Then, by the
weakly-⋆ convergence, we know that there exists a limit 𝜃, in the sense of distribution, such that for any test
function 𝜙 (𝜙 is smooth of compact support 𝐾 = [0, 𝑇 ]× [−𝑅,𝑅] ⊂ [0, 𝑇 ]× R, where 𝑅 > 0) we have∫︁

(0,+∞)×R
𝜃𝜖 · 𝜙 −→

∫︁
(0,+∞)×R

𝜃 · 𝜙. (4.10)

From (4.9), we have

𝜕𝑡𝑢
𝜖,𝛼(𝑡, 𝑥)− 𝑒𝜖,𝛼(𝑡, 𝑥) = 𝜆𝛼

− [𝑎𝑥𝜃𝜖,𝛼(𝑡, 𝑥 + ∆𝑥) + 𝑏𝑥𝜃𝜖,𝛼(𝑡, 𝑥)]
−𝜆𝛼

+ [𝑎𝑥𝜃𝜖,𝛼(𝑡, 𝑥) + 𝑏𝑥𝜃𝜖,𝛼(𝑡, 𝑥−∆𝑥)] , (4.11)

where 𝑎𝑥 =
𝑥

∆𝑥
−
⌊︁ 𝑥

∆𝑥

⌋︁
and 𝑏𝑥 = 1− 𝑎𝑥.

Let us now introduce the function 𝐴𝜀,𝛼 defined by

𝐴𝜖,𝛼 =
∫︁

(0,+∞)×R
(𝜕𝑡𝑢

𝜖,𝛼(𝑡, 𝑥)− 𝑒𝜖,𝛼(𝑡, 𝑥)) 𝜙(𝑡, 𝑥) d𝑡 d𝑥.

Then, using (4.11), we can write 𝐴𝜀,𝛼 as follows

𝐴𝜖,𝛼 =
∫︁

(0,+∞)×R
𝜃𝜖,𝛼(𝑡, 𝑥)

[︀
𝑎𝑥𝜆𝛼

−(𝑢𝜖(𝑡, 𝑥−∆𝑥))𝜙(𝑡, 𝑥−∆𝑥) + 𝑏𝑥𝜆𝛼
−(𝑢𝜖(𝑡, 𝑥))𝜙(𝑡, 𝑥)

]︀
d𝑡 d𝑥

−
∫︁

(0,+∞)×R
𝜃𝜖,𝛼(𝑡, 𝑥)

[︀
𝑎𝑥𝜆𝛼

+(𝑢𝜖(𝑡, 𝑥))𝜙(𝑡, 𝑥) + 𝑏𝑥𝜆𝛼
+(𝑢𝜖(𝑡, 𝑥 + ∆𝑥))𝜙(𝑡, 𝑥 + ∆𝑥)

]︀
d𝑡 d𝑥.

Let us now define the following function

𝐵𝜖,𝛼 =
∫︁

(0,+∞)×R
𝜃𝜖,𝛼(𝑡, 𝑥)

[︀
𝑎𝑥𝜆𝛼

−(𝑢𝜀(𝑡, 𝑥))𝜙(𝑡, 𝑥) + 𝑏𝑥𝜆𝛼
−(𝑢𝜀(𝑡, 𝑥))𝜙(𝑡, 𝑥)

− 𝑎𝑥𝜆𝛼
+(𝑢𝜀(𝑡, 𝑥))𝜙(𝑡, 𝑥)− 𝑏𝑥𝜆𝛼

+(𝑢𝜀(𝑡, 𝑥))𝜙(𝑡, 𝑥)
]︀

d𝑡 d𝑥

=
∫︁

(0,+∞)×R
−𝜆𝛼(𝑢𝜀(𝑡, 𝑥))𝜙(𝑡, 𝑥)𝜃𝜖,𝛼(𝑡, 𝑥) d𝑡 d𝑥.
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Then, we have

|𝐴𝜖,𝛼 −𝐵𝜖,𝛼|

≤

⃒⃒⃒⃒
⃒
∫︁

(0,+∞)×R
𝑎𝑥𝜃𝜖,𝛼(𝑡, 𝑥)

[︀
𝜆𝛼
−(𝑢𝜖(𝑡, 𝑥−∆𝑥))𝜙(𝑡, 𝑥−∆𝑥)− 𝜆𝛼

−(𝑢𝜖(𝑡, 𝑥))𝜙(𝑡, 𝑥)
]︀

d𝑡 d𝑥

⃒⃒⃒⃒
⃒

+

⃒⃒⃒⃒
⃒
∫︁

(0,+∞)×R
𝑏𝑥𝜃𝜖,𝛼(𝑡, 𝑥)

[︀
−𝜆𝛼

+(𝑢𝜖(𝑡, 𝑥 + ∆𝑥))𝜙(𝑡, 𝑥 + ∆𝑥) + 𝜆𝛼
+(𝑢𝜖(𝑡, 𝑥))𝜙(𝑡, 𝑥)

]︀
d𝑡 d𝑥

⃒⃒⃒⃒
⃒

≤ 2𝑇𝑅𝒢 sup
(𝑡,𝑥)∈𝐾

⃒⃒
𝜆𝛼
∓(𝑢𝜀(𝑡, 𝑥∓∆𝑥))𝜙(𝑡, 𝑥∓∆𝑥)− 𝜆𝛼

∓(𝑢𝜀(𝑡, 𝑥))𝜙(𝑡, 𝑥)
⃒⃒
,

which implies that |𝐴𝜖,𝛼 −𝐵𝜖,𝛼| −→ 0 when 𝜖 goes to 0.
On the other hand, using (4.10), we get

𝐵𝜖,𝛼 =
∫︁

(0,+∞)×R
−𝜆𝛼(𝑢𝜀(𝑡, 𝑥))𝜙(𝑡, 𝑥)𝜃𝜖,𝛼(𝑡, 𝑥) d𝑡 d𝑥 −→

∫︁
(0,+∞)×R

−𝜆𝛼(𝑢(𝑡, 𝑥))𝜙(𝑡, 𝑥)𝜃𝛼(𝑡, 𝑥) d𝑡 d𝑥.

Therefore, we obtain that

𝜕𝑡𝑢
𝛼 + 𝜆𝛼(𝑢)𝜃𝛼 = 0 in 𝒟′((0, +∞)× R), ∀𝛼 ∈ {1, . . . , 𝑑}. (4.12)

Using (4.3), we can see that

𝜕𝑥𝑢𝜖,𝛼(𝑡, 𝑥) =
(︂

𝑡− 𝑡𝑛
∆𝑡

)︂
𝜃𝜖,𝛼(𝑡, 𝑥) +

(︂
1− 𝑡− 𝑡𝑛

∆𝑡

)︂
𝜃𝜖,𝛼(𝑡−∆𝑡, 𝑥).

We deduce, proceeding in a similar manner, that

𝜕𝑥𝑢𝜖,𝛼 −→ 𝜃𝛼 in 𝒟′((0, +∞)× R).

Moreover, using the weak-⋆ convergence given by (4.8), we deduce that

𝜃 = 𝜕𝑥𝑢. (4.13)

Combining (4.12) with (4.13), we conclude that

𝜕𝑡𝑢
𝛼 + 𝜆𝛼(𝑢)𝜕𝑥𝑢𝛼 = 0 in 𝒟′((0, +∞)× R), ∀𝛼 ∈ {1, . . . , 𝑑}.

Finally, we deduce that the limit 𝑢𝛼 is a solution of system (1.1).

4.4. Convergence of the whole sequence when the limit is unique

Due to the uniqueness of the solution of the continuous problem, given by Theorem 1.1, we deduce that the
whole sequence (𝑢𝜀,𝛼)𝜖 converges to the unique limit 𝑣𝛼 without assuming the strict hyperbolicity of the system
as in [18]. �

5. Numerical simulations

We consider in this section a simplified one-dimensional model describing the dynamics of dislocations,
where dislocations are microscopic defects present in materials, especially in metal alloys. The movement of
these defects is the main explanation of plastic and viscoplastic deformations. In a particular geometry, where
dislocations are assumed to be punctual defects, depending on a single variable 𝑥 and moving in two fixed
directions, according to the vector (1, 0) (on the right) or according to the vector −(1, 0) (on the left), Groma
and Balogh have modeled in [10] the dynamics of the dislocations densities by a (2 × 2) coupled system of
non-local transport equations. More precisely, it is the following system:
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Figure 1: Evolution of 𝑢1 − 𝑢2 over time.

⎧⎪⎪⎨⎪⎪⎩
𝜕𝑡𝑢

1(𝑡, 𝑥) = −
(︂

(𝑢1 − 𝑢2)(𝑡, 𝑥) + 𝛼

∫︁ 1

0

(𝑢1 − 𝑢2)(𝑡, 𝑦) d𝑦 + 𝑎(𝑡)
)︂

𝜕𝑥𝑢1(𝑡, 𝑥) in (0, 𝑇 )× R,

𝜕𝑡𝑢
2(𝑡, 𝑥) = −

(︂
(𝑢1 − 𝑢2)(𝑡, 𝑥) + 𝛼

∫︁ 1

0

(𝑢1 − 𝑢2)(𝑡, 𝑦) d𝑦 + 𝑎(𝑡)
)︂

𝜕𝑥𝑢2(𝑡, 𝑥) in (0, 𝑇 )× R.

Here, 𝑢1 and 𝑢2 are two scalar valued functions, that represent respectively the dislocations moving on the right
and that moving on the left. Their difference (𝑢1 − 𝑢2) expresses the plastic and viscoplastic deformation of
the material and their spatial derivatives 𝜕𝑥𝑢𝑖, for 𝑖 = 1, 2, are the dislocations densities corresponding to each
type. While, 𝛼 is a nonnegative constant depending on the elastic coefficients of the material and 𝑎(·) is the
exterior shear stress. We can easily see that in the particular case where 𝛼 = 𝑎(𝑡) = 0, the model is reduced to
the following system: {︂

𝜕𝑡𝑢
1(𝑡, 𝑥) = −

(︀
(𝑢1 − 𝑢2)(𝑡, 𝑥)

)︀
𝜕𝑥𝑢1(𝑡, 𝑥) in (0, 𝑇 )× R,

𝜕𝑡𝑢
2(𝑡, 𝑥) =

(︀
(𝑢1 − 𝑢2)(𝑡, 𝑥)

)︀
𝜕𝑥𝑢2(𝑡, 𝑥) in (0, 𝑇 )× R,

(5.1)

which is well in the form of (1.1).
Now, we calculate the numerical solution of system (5.1), through the Upwind scheme (1.5), choosing dis-

cretization parameters (∆𝑡, ∆𝑥) that satisfy the CFL condition (1.7) and taking the following initial data:

𝑢1(0, 𝑥) =
1

2𝜋
sin (2𝜋𝑥) + 𝑥, 𝑢2(0, 𝑥) = − 1

2𝜋
sin (2𝜋𝑥) + 𝑥, ∀𝑥 ∈ R,

which are nondecreasing and 1-periodic + linear functions. We thus modelize a periodic distribution for the two
dislocations types, with a spatial period of length 1. Note that each type of dislocations has a mean density
equal to 1. In fact, the use of the periodic boundary conditions is a way of regarding what is going on in the
interior of the material away from its boundary. It is enough then to see only what is happening in the interval
[0, 1].

We simulate below the long-time behavior of the function (𝑢1−𝑢2), which reflects the viscoplastic deformation
(in the absence of shear stress). We can intuitively see from system (5.1) that this function will reach the
stationary state (𝑢1−𝑢2) = 0, in long time, as shown in Figure 1. This is consistent with physical expectations,
since obviously the material will stabilize, if we stop the stress.
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