General polytopal H ( div ) -conformal finite elements and their discretisation spaces
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 55 (2021), pp. S677-S704

We present a class of discretisation spaces and H(div)-conformal elements that can be built on any polytope. Bridging the flexibility of the Virtual Element spaces towards the element’s shape with the divergence properties of the Raviart–Thomas elements on the boundaries, the designed frameworks offer a wide range of H(div)-conformal discretisations. As those elements are set up through degrees of freedom, their definitions are easily amenable to the properties the approximated quantities are wished to fulfil. Furthermore, we show that one straightforward restriction of this general setting share its properties with the classical Raviart–Thomas elements at each interface, for any order and any polytopal shape. Then, to close the introduction of those new elements by an example, we investigate the shape of the basis functions corresponding to particular elements in the two dimensional case.

DOI : 10.1051/m2an/2020048
Classification : 65N30
Keywords: $$(div)-conformity, finite elements, Raviart–Thomas elements, polytopal elements
@article{M2AN_2021__55_S1_S677_0,
     author = {Abgrall, R\'emi and Le M\'el\'edo, \'Elise and \"Offner, Philipp},
     title = {General polytopal $H (\mathrm{div})$-conformal finite elements and their discretisation spaces},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {S677--S704},
     year = {2021},
     publisher = {EDP-Sciences},
     volume = {55},
     number = {Suppl\'ement},
     doi = {10.1051/m2an/2020048},
     mrnumber = {4221315},
     zbl = {1477.65184},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/m2an/2020048/}
}
TY  - JOUR
AU  - Abgrall, Rémi
AU  - Le Mélédo, Élise
AU  - Öffner, Philipp
TI  - General polytopal $H (\mathrm{div})$-conformal finite elements and their discretisation spaces
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2021
SP  - S677
EP  - S704
VL  - 55
IS  - Supplément
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/m2an/2020048/
DO  - 10.1051/m2an/2020048
LA  - en
ID  - M2AN_2021__55_S1_S677_0
ER  - 
%0 Journal Article
%A Abgrall, Rémi
%A Le Mélédo, Élise
%A Öffner, Philipp
%T General polytopal $H (\mathrm{div})$-conformal finite elements and their discretisation spaces
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2021
%P S677-S704
%V 55
%N Supplément
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/m2an/2020048/
%R 10.1051/m2an/2020048
%G en
%F M2AN_2021__55_S1_S677_0
Abgrall, Rémi; Le Mélédo, Élise; Öffner, Philipp. General polytopal $H (\mathrm{div})$-conformal finite elements and their discretisation spaces. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 55 (2021), pp. S677-S704. doi: 10.1051/m2an/2020048

[1] R. Abgrall, E. Le Mélédo and P. Öffner, On the connection between residual distribution schemes and flux reconstruction. Preprint: 1807.01261 (2018).

[2] R. Abgrall, É. Le Mélédo and P. Öffner, A class of finite dimensional spaces and H-(div) conformal elements on general polytopes. Preprint: 1907.08678 (2019).

[3] J. Aghili, D. Di Pietro and B. Ruffini, An h p -hybrid high-order method for variable diffusion on general meshes. Comput. Methods Appl. Math. 17 (2017) 359–376. | MR | Zbl

[4] L. Beirão Da Veiga, F. Brezzi, L. D. Marini and A. Russo, Mixed virtual element methods for general second order elliptic problems on polygonal meshes. ESAIM:M2AN 50 (2016) 727–747. | MR | Zbl | Numdam

[5] F. Bonaldi, D. Di Pietro, G. Geymonat and F. Krasucki, A hybrid high-order method for kirchhoff-love plate bending problems. ESAIM:M2AN 52 (2018) 393–421. | MR | Zbl | Numdam

[6] L. Botti, D. Di Pietro and J. Droniou, A hybrid high-order method for the incompressible navier-stokes equations based on temam’s device. J. Comput. Phys. 376 (2019) 786–816. | MR | Zbl

[7] F. Brezzi, J. Douglas and L. D. Marini, Two families of mixed finite elements for second order elliptic problems. Numer. Math. 47 (1985) 217–235. | MR | Zbl

[8] J. Chabrowski, The Dirichlet Problem with L 2 -boundary Data for Elliptic Linear Equations. Springer (2006). | Zbl | MR

[9] W. Chen and Y. Wang, Minimal degree H ( curl ) and H ( div ) conforming finite elements on polytopal meshes. Math. Comput. 86 (2017) 2053–2087. | MR | Zbl

[10] B. Cockburn, G. E. Karniadakis and C. W. Shu, Discontinuous Galerkin Methods: Theory, Computation and Applications. Springer Science & Business Media 11 (2012). | MR | Zbl

[11] L. B. Da Veiga, F. Brezzi, A. Cangiani, G. Manzini, L. D. Marini and A. Russo, Basic principles of virtual element methods. Math. Models Methods Appl. Sci. 23 (2013) 199–214. | MR | Zbl

[12] L. B. Da Veiga, F. Brezzi, L. D. Marini and A. Russo, H ( div ) and H ( curl ) -conforming virtual element methods. Numer. Math. 133 (2016) 303–332. | MR | Zbl

[13] L. B. Da Veiga, F. Brezzi, L. D. Marini and A. Russo, Mixed virtual element methods for general second order elliptic problems on polygonal meshes. ESAIM: M2AN 50 (2016) 727–747. | MR | Zbl | Numdam

[14] D. Di Pietro and S. Lemaire, An extension of the Crouzeix-Raviart space to general meshes with application to quasi-incompressible linear elasticity and stokes flow. Math. Comput. 84 (2015) 1–31. | MR | Zbl

[15] D. A. Di Pietro and A. Ern, Arbitrary-order mixed methods for heterogeneous anisotropic diffusion on general meshes. IMA J. Numer. Anal. 37 (2016) 40–63. | MR | Zbl

[16] F. Dubois, I. Greff and C. Pierre, Raviart-Thomas finite elements of petrov-galerkin type. ESAIM:M2AN 53 (2017) 1553–1576. | MR | Zbl | Numdam

[17] A. Gillette, A. Rand and C. Bajaj, Construction of scalar and vector finite element families on polygonal and polyhedral meshes. Comput. Methods Appl. Math. 16 (2016) 667–683. | MR | Zbl

[18] H. T. Huynh, A flux reconstruction approach to high-order schemes including discontinuous galerkin methods. In: 18th AIAA Computational Fluid Dynamics Conference (2007) 4079.

[19] P. Lesaint and P. Raviart, On a finite element method for solving the neutron transport equation, edited by C. De Boor. Mathematical Aspects of Finite Element in Partial Differential Equations. Academic Press (1974) 89–123. | MR | Zbl

[20] K. Lipnikov, G. Manzini and M. Shashkov, Mimetic finite difference method. J. Comput. Phys. 257 (2014) 1163–1227. | MR | Zbl | DOI

[21] R. Loubère, P. H. Maire and M. Shashkov, ReALE: a reconnection arbitrary-lagrangian-eulerian method in cylindrical geometry. Comput. Fluids 46 (2011) 59–69. | MR | Zbl | DOI

[22] J. Nédélec, Mixed finite elements in 3 . Numer. Math. 35 (1980) 315–341. | MR | Zbl | DOI

[23] H. Ranocha, P. Öffner and T. Sonar, Summation-by-parts operators for correction procedure via reconstruction. J. Comput. Phys. 311 (2016) 299–328. | MR | Zbl | DOI

[24] P. A. Raviart and J. M. Thomas, A mixed finite element method for 2-nd order elliptic problems. Mathematical Aspects of Finite Element Methods. Springer, Berlin Heidelberg, Berlin, Heidelberg (1977) 292–315. | MR | Zbl | DOI

[25] W. Reeds and T. Hill, Triangular mesh methods for the neutron transport equation. Technical Report LA-UR-73-479. Los Alamos (1973).

[26] N. Sukumar and E. A. Malsch, Recent advances in the construction of polygonal finite element interpolants. Arch. Comput. Methods Eng. 13 (2006) 129. | MR | Zbl | DOI

[27] C. Talischi, A. Pereira, G. H. Paulino, I. F. M. Menezes and M. S. Carvalho, Polygonal finite elements for incompressible fluid flow. Int. J. Numer. Methods Fluids 74 (2013) 134–151. | MR | Zbl | DOI

[28] P. Vincent, P. Castonguay and A. Jameson, A new class of high-order energy stable flux reconstruction schemes. J. Sci. Comput. 47 (2011) 50–72. | MR | Zbl | DOI

Cité par Sources :