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GENERAL POLYTOPAL 𝐻(div)-CONFORMAL FINITE ELEMENTS AND
THEIR DISCRETISATION SPACES

Rémi Abgrall, Élise Le Mélédo* and Philipp Öffner

Abstract. We present a class of discretisation spaces and 𝐻(div)-conformal elements that can be
built on any polytope. Bridging the flexibility of the Virtual Element spaces towards the element’s
shape with the divergence properties of the Raviart–Thomas elements on the boundaries, the designed
frameworks offer a wide range of 𝐻(div)-conformal discretisations. As those elements are set up through
degrees of freedom, their definitions are easily amenable to the properties the approximated quantities
are wished to fulfil. Furthermore, we show that one straightforward restriction of this general setting
share its properties with the classical Raviart–Thomas elements at each interface, for any order and any
polytopal shape. Then, to close the introduction of those new elements by an example, we investigate
the shape of the basis functions corresponding to particular elements in the two dimensional case.
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1. Introduction

There has been recently a lot of activity in the design of methods able to deal with polygonal meshes. In the
case of elliptic PDEs, one can mention [3, 5, 11,13,20]. One may also mention [6, 21,27] for fluid problems, both
for compressible and incompressible flow. These are very partial lists only. In the case of hyperbolic problems, the
flexibility of the discontinuous Galerkin method also enables, a priori, to deal with polygonal meshes, see [10],
one of the very first papers after the seminal works of Reeds and Hill [25] and Lesaint–Raviart [19]. There are
several reasons for this interest of the scientific community: it allows more flexibility in the geometry description
and facilitate mesh adaptation, and several other reasons such as the status of hanging nodes.

There are many variants of the discontinuous Galerkin method, and one family of algorithms that has received
a lot of attention recently is the so-called Flux Reconstruction methods [18,23,28].

The classical simplicial Flux Reconstruction approach involves a point-wise approximation of the flux in a
finite-differece framework, modified by a term living only on the boundary in order to retrieve stability and local
conservation. Up to some involved modifications, this method can be adapted to quadrangles and hexaheda.
In any of those cases, the Flux Reconstruction technique can be rewritten as a Galerkin method applied to
a perturbed flux, perturbation guaranteeing the local conservation and stability. The perturbation term is
determined by a lifting technique involving a Raviart–Thomas [24] polynomial.
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Going further and using the Residual Distribution framework, we have shown in [1] how to construct schemes
analogous to Flux Reconstruction for arbitrary polytopes, convex or non-convex. By using an entropy correction
term, this method benefits from a non-linear entropy stability property.

In this paper, our primary motivation is to construct a Raviart–Thomas like approximation, so that we can
reinterpret the correction term we introduce in [1] exactly as it is done for simplices in [28]. We are also interested
in providing new 𝐻(div)-conformal discretisation spaces on arbitrary polytopes which we believe has its interest
by itself.

The theory of 𝐻(div)-conformal element has already been studied by Raviart and Thomas [24] and later
generalized by Nédélec [22] or Brezzi et al. in the context of mixed finite element method [7]. More recently, a
mixed Petrov-Galerkin scheme using Raviart–Thomas elements has also been investigated in [16]. However, up
to the authors knowledge, those elements are limited to simplicial and quadrangular shapes.

Several attempts to use general polygons have been made [9, 17,26], but they usually make use of generalized
barycentric coordinates and are delicate to handle in distorted non-convex elements. A first polygonal 𝐻(div)-
conformal element has been proposed in [14] using gradient reconstruction and pyramidal sub-meshes tessellation.
However, their construction requires some shape regularity within the mesh and the parallel with Raviart–Thomas
spaces is limited to the lowest order space. Another approach using stabilisation techniques has been later
investigated in [15], where if more flexibility on the element’s shape has been achieved the parallel with the
Raviart–Thomas elements is still limited to lowest-order simplicial shapes.

Some other approaches as Virtual Elements Method [11] introduced approximation spaces based on Poisson’s
solutions. Although more flexible towards the element’s shape, those are scalar and not 𝐻(div)-conformal. A first
promising shape-flexible 𝐻(div)-conformal discretisation has been recently proposed in [12], where the conformity
property is enforced directly at the level of the boundaries normal components. As it therefore leaves on each
boundary face only a scalar representation of the normal component, the boundary setting may appear quite
restrictive, especially in applications for which a direct component-wise characterisation or tangential information
is suitable. Therefore, its usage may be delicate when one targets a discretisation enhancing the representation
of boundary’s quantities. We rather focus on creating spaces enhancing a boundary characterisation of the
discretised quantity itself, that links to the setting presented in [11]. The quantity of information available on an
element is maximized at the boundary, while the 𝐻(div)-conformity is preserved.

In this paper, we propose a construction enhancing a boundary characterisation, that inherits the interface
properties of the Raviart–Thomas elements and benefits from the shape flexibility of the Virtual Element
discretisation. Moreover, rather than defining a basis on which the correction functions can be decomposed, this
new setting offers a new element class that can be used as such in the construction of further numerical schemes.
Note also that in [1], we do not need the explicit construction of this new elements, we only need the knowledge
of degrees of freedom. In that sense, this construction is also in the spirit of VEM.

After briefly recalling the key ideas of the Raviart–Thomas elements, we introduce our new class of discretisation
spaces. In a second time, we detail a possible definition of 𝐻(div)-conformal element to finally test them through
the behaviour of their corresponding basis functions in the numerical results. For the sake of readability, proofs and
further element examples will be given in the appendix. For interested readers, more details on the construction
can be found in the extended technical report [2] and an application of those elements can be found in [1].

Notations

Throughout the paper, our notation will be the following:

Geometrical notations

– 𝑥: spatial variable 𝑥 = (𝑥1, . . . , 𝑥𝑑)𝑇 ∈ R𝑑.
– 𝐾: polytopal shape with interior 𝐾 and boundary 𝜕𝐾.
– n: number of faces of the polytope 𝐾.
– 𝑓 : generic face 𝑓 of the boundary 𝜕𝐾.
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– 𝑛: generic normal to a generic face 𝑓 .
– 𝑓𝑗 : 𝑗th face of the boundary 𝜕𝐾, where 𝑗 ∈ J1, 𝑛K.
– 𝜕𝑗𝐾: hyper-face of 𝑓 ∈ 𝜕𝐾 for which the variable 𝑥𝑗 is fixed.

Monomials and polynomial spaces

– 𝛼: multi-index 𝛼 = (𝛼1, . . . , 𝛼𝑑) defining the monomial 𝑥𝛼 = 𝑥𝛼1
1 . . . 𝑥𝛼𝑑

𝑑 .
– Q𝑘: space of polynomials of degree max

𝑖
(𝛼𝑖) is at most 𝑘, of dimension (𝑘 + 1)𝑑.

– P𝑘: space of polynomials of degree
∑︀𝑑

𝑖=1 𝛼𝑖 ≤ 𝑘, of dimension
(︂

𝑘 + 𝑑
𝑘

)︂
.

– Q[𝑘]: space of polynomials of degree max
𝑖

(𝛼𝑖) = 𝑘.

– P[𝑘]: space of polynomials of degree
∑︀𝑑

𝑖=1 𝛼𝑖 = 𝑘.
– P𝑘1, 𝑘2, ..., 𝑘𝑑

: space of polynomials with degree in 𝑥𝑖 ≤ 𝑘𝑖.
– P𝑘1, ...,[𝑘𝑖], ..., 𝑘𝑑

: space of polynomials with degree 𝑘𝑖 in 𝑥𝑖.
– Q−1 = P−1 = {0}.

For example, when considering an element in 2D, a face is one-dimensional and can be parametrised as
𝑥2 = 𝑎𝑥1 + 𝑏 for some constant 𝑎 and 𝑏. The space 𝜕1𝐾 is then the hyper-face of the line for which the variable
𝑥1 is fixed, and Q𝑘(𝜕1𝐾) is reduced to the space of constants. In 3D, 𝜕1𝐾 would reduce to the line driven by
𝑥2 and 𝜕2𝐾 to the line driven by 𝑥1. There, Q𝑘(𝜕1𝐾) would be the space of polynomials of degree 𝑘 whose
monomials are only involving the terms 𝑥2.

Functional spaces

– ℛ𝑘(𝜕𝐾) = {𝑝 ∈ 𝐿2(𝐾), 𝑝|𝑓𝑖 ∈ P𝑘(𝑓𝑖) for every face 𝑓𝑖 ∈ 𝜕𝐾}.
– 𝐻(div, 𝐾) = {𝑢 ∈

(︀
𝐿2(𝐾)

)︀𝑑
, div 𝑢 ∈ 𝐿2(𝐾)}.

Operators

–×𝑑

𝑖=1
: Cartesian product:×𝑑

𝑖=1
(𝑥𝑖) = 𝑥 = (𝑥1, . . . , 𝑥𝑑).

– {𝜁𝑖}𝑖: set containing the 𝑑 cyclic permutations of {𝑘 + 1, 𝑘, . . . , 𝑘⏟  ⏞  
𝑑−1 times

}.

– 1: indicator function.
– ∘: Hadamard product.

2. Classical Raviart–Thomas elements

The spirit of the Raviart–Thomas elements is to work in a vectorial polynomial discretisation subspace of
𝐻(div, 𝐾) in which the functions are characterised separately on the boundary and within the elements. Doing
so, the enforcement of the 𝐻(div)-conformity can be done at the interfaces by a specific choice of moment-based
degrees of freedom acting only on the boundaries. As formalised by Nédelec [22], its definition on any simplicial
reference shape 𝐾 contained in R𝑑 reads

RT𝑘(𝐾) = (P𝑘(𝐾))𝑑 ⊕ 𝑥 P[𝑘](𝐾). (2.1)

There, any element 𝑝 ∈ RT𝑘(𝐾) ⊂ (P𝑘+1(𝐾))𝑑 writes under the form

𝑝 =

⎛⎜⎜⎝
𝑝1 + 𝑥1 𝑞
𝑝2 + 𝑥2 𝑞

...
𝑝𝑑 + 𝑥𝑑 𝑞

⎞⎟⎟⎠ :=
𝑑×

𝑖=1

(𝑝𝑖 + 𝑥𝑖 𝑞) =
𝑑×

𝑖=1

𝑝𝑖 +
𝑑×

𝑖=1

𝑥𝑖 𝑞 (2.2)

for some 𝑝𝑖 ∈ P𝑘(𝐾), 𝑖 ∈ J1, 𝑑K and 𝑞 ∈ P[𝑘](𝐾). Up to some straightforward computations, the dimension of
RT𝑘(𝐾) can be formulated as

dim RT𝑘(𝐾) = dim(P𝑘−1(𝐾)𝑑) + (𝑑 + 1) dim P𝑘(𝑓). (2.3)
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Therefore, the definition of the element is done by setting internal and normal moments projecting respectively
on the spaces P𝑘−1(𝐾)𝑑 and ℛ𝑘(𝜕𝐾).

Definition 2.1 (Degrees of freedom). Any 𝑞 ∈ RT𝑘(𝐾) is determined by

Normal moments: 𝑞 ↦−→
∫︁

𝜕𝐾

𝑞 · 𝑛 𝑝𝑘 d𝛾(𝑥), ∀𝑝𝑘 ∈ ℛ𝑘(𝜕𝐾), (2.4a)

Internal moments: 𝑞 ↦−→
∫︁

𝐾

𝑞 · 𝑝𝑘−1 d𝑥, ∀𝑝𝑘−1 ∈ (P𝑘−1(𝐾))𝑑, (2.4b)

where d𝛾 represents the Lebesgue measure on the faces.

The basis functions of RT𝑘(𝐾) that are dual to those degrees of freedom verify

𝑞 · 𝑛|𝜕𝐾 ∈ P𝑘(𝜕𝐾) or 𝑞 · 𝑛|𝜕𝐾 ≡ 0 (2.5)

and are classified respectively as normal and internal basis functions. One can observe the 𝐻(div)-conformity
property: it reduces here to the continuity of the normal component across the boundary. Further divergence
properties also hold directly by the nature of the approximation space [24], being a subspace of 𝐻(div, 𝐾).

Property 2.2 (Divergence properties). For any 𝑞 ∈ RT𝑘(𝐾), it holds:{︃
div 𝑞 ∈ P𝑘(𝐾)
𝑞 · 𝑛|𝜕𝐾 ∈ ℛ𝑘(𝜕𝐾).

(2.6)

However, as the relation (𝑑 + 1) dim P𝑘(𝑓) = dimℛ𝑘(𝜕𝐾) is only valid when the number of edges is 𝑑 + 1,
this definition is very specific to the simplicial case. Therefore, when going to quads, the definition is changed by
modifying the meaning of the polynomial degree, i.e. using Q𝑘 spaces instead of P𝑘 spaces. The RT𝑘(𝐾) space
then reads

RT𝑘(𝐾) = (Q𝑘(𝐾))𝑑 + 𝑥 Q[𝑘](𝐾) =
𝑑×

𝑖=1

P𝜁𝑖(𝑘+1, 𝑘,..., 𝑘)

and benefits from a dimensional split similar to (2.3);

dim RT𝑘(𝐾) = 2𝑑 dim Q𝑘(𝑓) + dim
𝑑×

𝑖=1

P𝜁𝑖({𝑘−1, 𝑘,..., 𝑘})(𝐾).

A definition of degrees of freedom analogous to (2.4) can then be set up. However, this extension is very specific
to quads and cannot be adapted to offer a discretisation framework for arbitrary polytopes (see Abgrall et al. [2]
for details).

3. A framework for arbitrary polytopes

In order to build a unifying discretisation framework, we have to define spaces H𝑘(𝐾) that fulfil the following
property:

Requirement 3.1 (Requirements on the discretisation space). The space H𝑘(𝐾) is a finite dimensional vectorial
subspace of 𝐻(div, 𝐾) whose dimension adapts to both the number of the polygon’s faces and the discretisation
order.

In addition, to be able to endow 𝐻(div, 𝐾)-conformal elements 𝐸𝑘(𝐾) through definitions of degrees of
freedom, we further ask the Requirement 3.2.

Requirement 3.2 (Requirements on the elements).

(1) For any space H𝑘(𝐾), there exists a unisolvent set of degrees of freedom {𝜎} that can be split into internal
and normal subsets so that both the number of internal degrees of freedom and of the normal degrees of
freedom per face do not depend on the shape of 𝐾.
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(2) The number of internal and normal degrees of freedom both increase strictly monotonically with the
discretisation order.

Lastly, to ensure the existence of a split into internal and normal subsets of degrees of freedom that matches
the classification (2.5) at the level of the dual basis functions, the feasibility of the Requirement 3.3 in H𝑘(𝐾) is
also needed.

Requirement 3.3 (Requirement on the basis functions). For any polytope 𝐾, the internal basis functions
vanish on every face of the element.

One may possibly ask for one further requirement ensuring a parallel with the Raviart–Thomas setting from
the lowest order on.

Requirement 3.4 (Optional requirement on the basis functions). The lowest order element has no internal
degrees of freedom.

3.1. A class of admissible approximation spaces.

Construction of spaces of discretisation

In order to design a subspace of 𝐻(div, 𝐾) that satisfies Requirement 3.1 we are led to define a space
H𝑘(𝐾) with the same architecture as the classical Raviart–Thomas space. Thus, we look for spaces in the form
H𝑘(𝐾) = (𝐴𝑘)𝑑 + 𝑥 𝐵𝑘 for two given functional sets 𝐴𝑘 and 𝐵𝑘. In order to design those two sets, we start
by observing that the use of polynomial spaces is excluded by the Requirement 3.3, being required for any
number of edges. Therefore, we consider the spaces 𝐴𝑘 and 𝐵𝑘 based on solutions to Poisson’s problems as in
the context of the VEM method [11]. There, a way to allow the existence in H𝑘(𝐾) of smooth internal basis
functions is to use the set of solutions to the boundary problems {𝑢|𝜕𝐾 = 0, ∆𝑢 = 𝑝𝑘} for any 𝑝𝑘 belonging to
Q𝑚(𝐾), 𝑚 ∈ N ∪ {−1}.

In addition, as the 𝐻(div, 𝐾)-conformity will be enforced by normal quantities that are tested only on the
boundaries, we also consider the set of Poisson’s problems {𝑢|𝜕𝐾 = 𝑝𝑘1𝑓 , ∆𝑢 = 0} defined from polynomial
boundary functions 𝑝𝑘 ∈ Q𝑙(𝑓), 𝑙 ∈ N ∪ {−1} for each face 𝑓 of 𝜕𝐾. Thus, seeing the boundary 𝜕𝐾 face-wise,
we define the set

ℋ𝑘(𝜕𝐾) = {𝑢|𝜕𝐾 ∈ 𝐿2(𝜕𝐾), 𝑢|𝑓 ∈ Q𝑘(𝑓), ∀𝑓 ∈ 𝜕𝐾} (3.1)

and build the space H𝑘(𝐾), for integers 𝑙1, 𝑙2, 𝑚1 and 𝑚2, as follows.

Definition 3.5 (H𝑘(𝐾) space).

H𝑘(𝐾) = {𝑢 ∈ 𝐻1(𝐾), 𝑢|𝜕𝐾 ∈ ℋ𝑙1(𝜕𝐾), ∆𝑢 ∈ Q𝑚1(𝐾)}𝑑

+ 𝑥 {𝑢 ∈ 𝐻1(𝐾), 𝑢|𝜕𝐾 ∈ ℋ𝑙2(𝜕𝐾), ∆𝑢 ∈ Q[𝑚2](𝐾)}. (3.2)

The choice of 𝑙1, 𝑙2, 𝑚1 and 𝑚2 is related to 𝑘 and will be discussed below.

Remark 3.6.

– The two subspaces in the definitions of H𝑘(𝐾) are in direct sum whenever 𝑙1 ≤ 0.
– The presented space is based on polynomial spaces Q𝑘(𝐾) rather than P𝑘(𝐾) for the sake of consistency

with the definition of the Raviart–Thomas space built on quads. This is also a more natural choice when
considering mappings to elements of reference, as the monomials involved in the transformations a more
coherent with a Q𝑘(𝐾) based discretisation (especially for the lower order discretisation where the monomial
𝑥𝑦 is not part of P1(𝐾) but already belongs to Q1(𝐾)).
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Properties of H𝑘(𝐾) spaces

The space H𝑘(𝐾) is constructed from four independent blocks whose definitions are driven by the independent
coefficients 𝑙1, 𝑙2, 𝑚1 and 𝑚2. The couple (𝑚1, 𝑚2) drives the discretisation quality exclusively within the cell
while (𝑙1, 𝑙2) takes care only of the boundary. Thus, the separation between internal and normal basis functions
is natural. Furthermore, the Property 3.7 holds, emphasising that the 𝐻(div, 𝐾)-conformity is ensured by the
definition of ℋ𝑘(𝜕𝐾), while the inner smoothness is provided through the Laplacian.

Proposition 3.7. For any function 𝑞 belonging to any space H𝑘(𝐾), it holds:

𝑞 · 𝑛|𝜕𝐾 ∈ ℋmax{𝑙1, 𝑙2}(𝜕𝐾) and div 𝑞 ∈ 𝐿2(𝐾). (3.3)

It comes the following inclusion allowing 𝐻(div)-conformity.

Corollary 3.8. For any couples (𝑙1, 𝑙2) and (𝑚1, 𝑚2),

H𝑘(𝐾) ⊂ 𝐻(div, 𝐾).

When selecting 𝑙1 ≤ 0, those spaces are of dimension

dim H𝑘(𝐾) = n
(︀
𝑑(𝑙1 + 1)𝑑−1 + (𝑙2 + 1)𝑑−1

)︀
+
(︀
𝑑(𝑚1 + 1)𝑑 + (𝑚2 + 1)𝑑 −𝑚𝑑

2

)︀
, (3.4)

making their structure a priori suitable to be used as discretisation spaces endowing 𝐻(div, 𝐾)-conformal
elements.

Example 3.9. When 𝐾 is a two-dimensional simplex and when 𝑙1, 𝑙2 are chosen as (𝑙1, 𝑙2) = (−1, 𝑘), the
discretisation quality of the normal component matches the one of the Raviart–Thomas setting.

Admissibility of the spaces for building 𝐻(div)-conformal elements

In order to define elements in the spirit of Raviart–Thomas, we need to set (𝑑(𝑙1 + 1)𝑑−1 + (𝑙2 + 1)𝑑−1) normal
degrees of freedom per face and 𝑑(𝑚1 + 1)𝑑 + (𝑚2 + 1)𝑑 −𝑚𝑑

2 internal degrees of freedom. While this splitting
does not impact the set of admissible coefficients (𝑚1, 𝑚2), it reduces the range of coefficients (𝑙1, 𝑙2) that can be
used. Indeed, the space H𝑘(𝐾) is constructed from four independent blocks providing two distinct discretisations:
on the boundary and within the element. Thus, when testing a function of H𝑘(𝐾) through normal degrees of
freedom, one can only retrieve the polynomial obtained from the two boundary conditions defining the sets 𝐴𝑘

and 𝐵𝑘. On each face, this polynomial is of the form 𝑝 = 𝑝𝑘, 𝐴 + 𝑝𝑘, 𝐵 , where the function 𝑝𝑘, 𝐴 ∈ (𝐴𝑘)𝑑|𝑓 reads

𝑝𝑘, 𝐴 =
𝑑×

𝑗=1

⎛⎝ ∑︁
|𝛼𝑖|≤𝑙1

𝑎𝑖𝑗𝑥
𝛼𝑖

⎞⎠ (3.5)

for a given set of multi-index {𝛼𝑖}𝑖 and coefficients {𝑎𝑖, 𝑗}𝑖, 𝑗 depending on the coordinates 𝑥𝑗 . The function
𝑝𝑘, 𝐵 ∈ 𝑥 𝐵𝑘|𝑓 reads however

𝑝𝑘, 𝐵 =
𝑑×

𝑗=1

⎛⎝𝑥𝑗

∑︁
|𝛽𝑖|≤𝑙2

𝑏𝑖𝑥
𝛽𝑖

⎞⎠ (3.6)

for a given set of multi-indices {𝛽𝑖}𝑖 and coefficients {𝑏𝑖}𝑖 independent of the coordinates 𝑥𝑗 . Therefore, denoting
by {𝜉𝑗}𝑗∈J1, 𝑑K the coordinates permutation that allows to shift the lowest orders terms of 𝑥 𝐵𝑘|𝑓 to (𝐴𝑘)𝑑|𝑓 ,
𝑝 ∈ H𝑘(𝐾)|𝑓 can be written as follows:

If 𝑙2 ≥ 𝑙1, 𝑝 =
𝑑×

𝑗=1

⎛⎝ ∑︁
|𝛼𝑖|≤𝑙1

𝑎𝑖𝑗𝑥
𝛼𝑖

⎞⎠+
𝑑×

𝑗=1

⎛⎝𝑥𝑗

∑︁
|𝛽𝑖|≤𝑙2

𝑏𝑖𝑥
𝛽𝑖

⎞⎠

=
𝑑×

𝑗=1

⎛⎜⎜⎝ ∑︁
|𝛼𝑖|≤𝑙1
|𝛼𝑖|̸=0

(𝑎𝑖𝑗 + 𝑏𝜉𝑗(𝑖))𝑥
𝛼𝑖 + 𝑥𝑗

∑︁
𝑙1≤|𝛽𝑖|≤𝑙2

𝑏𝑖𝑥
𝛽𝑖

⎞⎟⎟⎠+
𝑑×

𝑗=1

𝑎0𝑗𝑥
0
𝑗 . (3.7)
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If 𝑙1 ≥ 𝑙2 + 1, 𝑝 =
𝑑×

𝑗=1

⎛⎜⎜⎝ ∑︁
|𝛼𝑖|≤𝑙1
|𝛼𝑖 ̸=0|

(𝑎𝑖𝑗 + 𝑏𝜉𝑗(𝑖))𝑥
𝛼𝑖 + 𝑎0𝑗𝑥

0
𝑗

⎞⎟⎟⎠ . (3.8)

The structure of those relations implies that the terms 𝑎𝑖𝑗 and 𝑏𝜉𝑗(𝑖) are combined into a single coefficient and
cannot be specified individually from further normal degrees of freedom. Indeed, the remaining freedom can only
be seen inside the polytope, as a consequence of the boundary conditions on the Poisson’s solutions in either 𝐴𝑘

or 𝑥 𝐵𝑘. To prevent any over-determination by the normal degrees of freedom in H𝑘(𝐾)|𝑓 , we therefore have to
make sure that the dimension of the boundary part (3.7) and (3.8) of any function living in H𝑘(𝐾) is larger
than the number of wished normal degrees of freedom per face. By reading out the structure of (3.7) and (3.8) it
comes

dim H𝑘(𝐾)|𝑓 =

⎧⎪⎨⎪⎩
(𝑙2 + 1)𝑑−1 if 𝑙1 = −1,

𝑑(𝑙1 + 1)𝑑−1 + (𝑙2 + 1)𝑑−1 − 𝑙𝑑−1
1 if 𝑙2 ≥ 𝑙1,

𝑑(𝑙1 + 1)𝑑−1 otherwise.
(3.9)

We thus restrict the admissible couples (𝑙1, 𝑙2) to those verifying the Admissibility conditions 3.10, preventing
any over-determination.

Admissibility conditions 3.10 (Necessary condition for using conformal elements). If dim𝒩 is the number
of normal moments per face that we wish, and dim H𝑘(𝐾)|𝑓 is the number of coefficient we can tune for the face
𝑓 , we should have:

dim𝒩 ≤ dim H𝑘(𝐾)|𝑓 .

In the case 𝑙2 ≥ 𝑙1, it reduces to:

𝑑(𝑙1 + 1)𝑑−1 + (𝑙2 + 1)𝑑−1 ≤ 𝑑(𝑙1 + 1)𝑑−1 + (𝑙2 + 1)𝑑−1 − 𝑙𝑑−1
1 (⇔ 𝑙𝑑−1

1 ≤ 0)

while otherwise it comes

𝑑(𝑙1 + 1)𝑑−1 + (𝑙2 + 1)𝑑−1 ≤ 𝑑(𝑙1 + 1)𝑑−1 (⇔ 𝑙2 = −1).

Regarding the internal characterisation, any couple of coefficients (𝑚1, 𝑚2) is allowed.

Definition of series of spaces

While fulfilling the above conditions, one can set a specific discretisation framework within which the spaces
share a predefined structure. By example, defining the four coefficients 𝑙1, 𝑙2, 𝑚1 and 𝑚2 through affine relations
of the type 𝑙 = 𝑎𝑘 + 𝑏 for some index 𝑘 ∈ N, the range of discretisation qualities achievable within the framework
is predetermined by a refinement sequence in each block, and the order of each space can be simply defined
as the index 𝑘 generating each of the four coefficients. A typical working example is obtained by defining
𝑚1 = 𝑚2 = 𝑘−1, 𝑙1 = 0 and 𝑙2 = 𝑘, leading to a series of discretisation spaces of order 𝑘. This case is specifically
detailed in the Section 3.4.

3.2. Definition of admissible elements

Under the Admissibility condition 3.10, the spaces H𝑘(𝐾) allow the construction of 𝐻(div)-conformal elements
through the definition of normal degrees of freedom enforcing the conformity and internal ones preserving it. We
propose here a possible construction of such sets.

Definition of admissible normal degrees of freedom

The role of the normal degrees of freedom is to determine vectorial polynomials on the boundaries and to
enforce the 𝐻(div)-conformity of the element. We define them as the normal component of the tested quantities
projected against polynomials of H𝑘(𝐾)|𝑓 . We focus on the following possibilities:
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Available types of degrees of freedom. For any 𝑞 ∈ H𝑘(𝐾), we define:

(1) The face integral of coordinate-wise components tested against projection polynomials p:

𝑞 ↦→
∫︁

𝑓

𝑞𝑖 𝑛𝑖𝑥 𝑝 d𝛾(𝑥), ∀ 𝑝 ∈ Qmax{𝑙1, 𝑙2}(𝑓). (3.10a)

(2) The face integral of a function in H𝑘(𝐾) projected onto the face normal, and tested against polynomials:

𝑞 ↦→
∫︁

𝑓

𝑞 · 𝑛 𝑝 d𝛾(𝑥), ∀ 𝑝 ∈ Qmax{𝑙1, 𝑙2}(𝑓), (3.10b)

𝑞 ↦→
∫︁

𝑓

𝑞 · 𝑛 𝑝 d𝛾(𝑥), ∀ 𝑝 ∈ {𝑥𝑖 𝑝𝑖, 𝑝𝑖 ∈ Q𝜁𝑖([𝑙2], 𝑙2, ..., 𝑙2)(𝑓), 𝑖 ∈ J1, 𝑑− 1K}. (3.10c)

(3) The pointwise values of the discretised quantity tested against the face’s normal:

𝑞 ↦→ 𝑞(𝑥𝑖𝑚) · 𝑛𝑖, for sampling points {𝑥𝑖𝑚}𝑚 on the face 𝑓𝑖. (3.10d)

Defining the normal degrees of freedom then reduces to choosing 𝑑(𝑙1 + 1)𝑑−1 + (𝑙2 + 1)𝑑−1 of them among the
possibilities (3.10) so that their set is unisolvent for H𝑘(𝐾)|𝑓 . To ensure this, preventing any under-determination
is sufficient. Therefore, we need to avoid the selection of projectors that are linearly dependent, and pay attention
to determining both global and coordinate-wise behaviours of any vector polynomial 𝑞 ∈ H𝑘(𝐾)|𝑓 .

Example 3.11. In two dimensions and for 𝑙1 = 𝑙2 = 0, any 𝑝 ∈ H𝑘(𝐾)|𝑓 reads

𝑞 =
(︂

𝐴
𝐵

)︂
+ 𝐶

(︂
𝑥
𝑦

)︂
for some constants 𝐴, 𝐵 and 𝐶. The characterisation of 𝑞 can be done by selecting two component-wise moments
involving 𝐴 𝑛𝑖𝑥 or 𝐵 𝑛𝑖𝑦 tested against the constant polynomial 𝑝 = 1 and one global moment that tests
𝑞 · 𝑛 = 𝐶 (𝑛𝑖𝑥 + 𝑛𝑖𝑦) + 𝐴 𝑛𝑖𝑥 + 𝐵 𝑛𝑖𝑦 against the polynomial 𝑝 = 𝑥. One could also choose two global moments
and one coordinate-wise.

In practice, the selection of degrees of freedom reduces to choosing the polynomials 𝑝 on which the function 𝑞
will be tested coordinate-wise. The other polynomials 𝑝 play the role of test functions for the global normal
component 𝑞 · 𝑛. The unisolvence of the set is then ensured by the following admissibility conditions.

Admissibility conditions 3.12.

(1) The projection polynomials 𝑝 involved in (3.10a), (3.10b) and (3.10c), and all the forms (3.10d) that define
the point values must be linearly independent.

(2) When using a coordinate-wise degree of freedom of the type (3.10a), polygonal shapes 𝐾 containing a face
parallel to any axis are not allowed. The term 𝑛𝑖𝑥 or 𝑛𝑖𝑦 would indeed always vanish for some 𝑖 ∈ J1, 𝑛K,
thus not describing any function of H𝑘(𝐾)|𝑓 .

Note. The second point of the admissibility conditions may seem unreasonable as it may prevent the use of
some shapes for specific orientations. However, it is always possible to easily modify the incriminated moments
element-wise or to select other moments that make the element robust with respect to rotation while still yielding
𝐻(div)-conformity. See Abgrall et al. [2] for more details.

To help the construction of an element on 𝐾 through the selection of degrees of freedom among those fulfilling
the Admissibility condition 3.12, we recall that the chosen set of degrees of freedom imposes the shape of the
dual basis functions. We can therefore select the degrees of freedom depending on the wished properties of the
basis functions.

More crucially, the selection of global and/or coordinate-wise normal degrees of freedom leads to the reclassi-
fication of some basis functions as internal ones. Indeed, as the face-wise normal component of any function
𝑞 in H𝑘(𝐾)|𝑓 is only of degree max{𝑙1, 𝑙2}, the term 𝑞 · 𝑛|𝑓 requires only (max{𝑙1, 𝑙2}+ 1)𝑑−1 basis functions
to be decomposed on. Therefore, up to 𝑑 (𝑙1 + 1)𝑑−1 basis functions may see their global normal component
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vanishing on every face. Their coordinate-wise components will however not vanish, as they take care of the
coordinate-wise behaviours that cannot be determined solely through the expression of 𝑞 · 𝑛|𝑓 .

Remark 3.13. Typically, the more global degrees of freedom are designed, the more the representation of 𝑞 · 𝑛
is completed globally. As a consequence, more basis functions have a vanishing normal component as they are
forced to take care only of coordinate-wise behaviours, forcing them to be reclassified into internal basis function.
The reverse scenario may also be considered.

To avoid this reclassification and allow a parallel with the Raviart–Thomas elements from the lowest order
space, we ask the Requirement 3.4. This will be discussed in the Section 3.4.2.

An example of a possible definition of normal degrees of freedom

As an example, we detail one selection of normal degrees of freedom in the case 𝑙2 ≥ 𝑙1 where every function in
H𝑘(𝐾)|𝑓 is of the form (3.7). For interested readers, other possibilities are presented in the technical report [2].

Here, we select moments from the set (3.10) so that the elements of H𝑘(𝐾)|𝑓 are determined as much as
possible by testing only their normal component. The remaining freedom is characterised by few coordinate-wise
moments. We consider:

𝜎 : 𝑞 ↦→
∫︁

𝑓𝑗

𝑞𝑖 𝑛𝑥𝑖
𝑥𝑙1+1

𝑖 d𝛾(𝑥), for all 𝑗 ∈ J1, nK and all 𝑖 ∈ J1, 𝑑K, (3.11a)

𝜎 : 𝑞 ↦→
∫︁

𝑓𝑗

𝑞 · 𝑛 𝑝𝑘 d𝛾(𝑥), for all 𝑗 ∈ J1, nK and all 𝑝𝑘 ∈ Q𝑙2(𝑓𝑗) ∖Q𝑙1(𝑓𝑗), (3.11b)

𝜎 : 𝑞 ↦→
∫︁

𝑓𝑗

𝑞 · 𝑛 𝑥𝑗 𝑥𝑙2
𝑗 𝑥̃ d𝛾(𝑥), for all 𝑗 ∈ J1, nK and any 𝑥̃ ∈ Q𝑙2(𝜕𝑗𝐾), (3.11c)

where 𝑥̃ ∈ Q𝑙2(R𝑑−2) is not involving the variable 𝑥𝑗 so that the moment (3.11c) has for integrands the second
terms of the right hand side of (3.7) when |𝛽𝑖| = 𝑙2. Note that the set (3.11) is of dimension 𝑑(𝑙1 + 1)𝑑−1 +
(𝑙2 + 1)𝑑−1 − (𝑙1 + 1)𝑑−1 + (𝑑− 1)(𝑙2 + 1)𝑑−2 though we require 𝑑(𝑙1 + 1)𝑑−1 + (𝑙2 + 1)𝑑−1 moments. Thus, this
configuration can only be used when 𝑙1 and 𝑙2 verify the feasibility condition:

(𝑙1 + 1)𝑑−1 ≤ (𝑑− 1)(𝑙2 + 1)𝑑−2, (3.12)

which is a reduction of the Admissibility conditions 3.10. In two dimensions the above relation reduces to an
equality, and all the degrees of freedom presented in (3.11) are considered. In higher dimensions, a further
selection from the set (3.11) is required. There, we consider the sets (3.11a) and (3.11b) fully and select any
(𝑙1 + 1)𝑑−1 moments from (3.11c).

Definition 3.14. Any choice of (𝑙1 + 1)𝑑−1 moments among (3.11c) is denoted as the “configuration Ia”.
Associated with any admissible internal degrees of freedom, its unisolvence is given by the Lemma B.1.

Up to the additional coordinate-wise moments, the configuration Ia is close to the Raviart–Thomas setting.
However, the scaling of the dual basis functions does not match the one of the Raviart–Thomas basis. In order
to obtain a similar scaling, one should rather scale the above degrees of freedom with respect to each edge’s
length and orientation, or consider in place of the moments (3.11c) the point-wise values

𝑞 ↦→ 𝑞(𝑥𝑖𝑚) · 𝑛, (3.13)

where 𝑖 ∈ J1, 𝑑K, 𝑚 ∈ J1, (1 + 𝑙1)𝑑−1K and 𝑥𝑖𝑚 is any sampling point on the face 𝑓𝑖.

Definition 3.15. Any selection of (𝑙1 + 1)𝑑−1 degrees of freedom among the sets (3.11a), (3.11b) and (3.13) is
labelled as the “configuration Ib”. Associated with any admissible internal degrees of freedom, its unisolvence is
given by the Lemma B.1.

Remark 3.16. As we assume in this example that 𝑙2 ≥ 𝑙1, the choice of 𝑙1 is restricted to either 𝑙1 = 0 or
𝑙1 = −1. Thus, in the Definitions 3.14 and 3.15, one would only need to select respectively one or none degrees
of freedom from the set (3.11c) or (3.13).
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Definition of admissible internal degrees of freedom

In order to define admissible internal degrees of freedom, we have to make sure that the corresponding internal
basis functions vanish on every face. We therefore stick to the idea of Raviart–Thomas and define moment based
degrees of freedom that read for any 𝑞 ∈ H𝑘(𝐾)

𝜎(𝑞) ↦→
∫︁

𝐾

𝑞 · 𝑝𝑘 d𝑥, for all 𝑝𝑘 ∈ 𝒫(𝐾) (3.14)

for some function space 𝒫(𝐾) of dimension
(︀
(𝑚1 + 1)𝑑 + (𝑚2 + 1)𝑑

)︀
. Considered as a test space, 𝒫(𝐾) may

simply gather polynomial functions used in the definition of the Poisson’s problems generating H𝑘(𝐾). The
discretised quantities would then be determined through their polynomial projections. Another choice is to test
against the set of Poisson’s solutions to the problems {∆𝑝𝑘 ∈ 𝒫, 𝑝𝑘|𝜕𝐾 = 0}.

Using one or the other possibility for 𝒫(𝐾), the unisolvence of the set of internal degrees of freedom in
H𝑘(𝐾)|𝐾 is ensured by the following admissibility conditions (see the proof B.1, Part 3):

Admissibility conditions 3.17.

(1) The polynomials {𝑝𝑙}𝑙 generating 𝒫(𝐾) are linearly independent.
(2) No polynomial 𝑝𝑙 is of degree larger than max{𝑚1, 𝑚2 + 1}.

Definition of the elements

Combining the two previous paragraphs with the definition of the space H𝑘(𝐾), 𝐻(div, 𝐾)-conformal elements
can be set up.

Proposition 3.18. Let 𝐾 be any polytope satisfying the second item of the Admissibility conditions 3.12 and
H𝑘(𝐾) be any admissible space built on it. Let also {𝜎𝑁} be any selection of 𝑑(𝑙1 + 1)𝑑−1 + (𝑙2 + 1)𝑑−1 degrees of
freedom from the set (3.10) fulfilling the first item of the Admissibility conditions 3.12, and {𝜎𝐼} the set of internal
moments built through the expression (3.14) for any of the projection sets 𝒫(𝐾) fulfilling the Admissibility
conditions 3.17. Then, the set {𝜎𝑁} ∪ {𝜎𝐼} is unisolvent for H𝑘(𝐾) and defines a 𝐻(div, 𝐾)-conformal element.

This well-possessedness property is an immediate corollary of the following proposition, proven in the
Appendix B.

Proposition 3.19. Let 𝑞 ∈ H𝑘(𝐾), and denote 𝜎𝑁 (𝑞) the 𝑛-tuple of normal degrees of freedom extracted from
the set (3.10). If

𝜎𝑁 (𝑞) = 0 and
∫︁

𝐾

𝑞 · 𝑝𝑘 d𝑥 = 0 for all 𝑝𝑘 ∈ 𝒫

then 𝑞 = 0.

At this point, any admissible definition leads to 𝐻(div, 𝐾)-conformal elements.

3.3. Summary of the construction

Let us summarize the spaces construction and the example of normal degrees of freedom that has been detailed
above. To begin with, the class of discretisation spaces reads

H𝑘(𝐾) = {𝑢 ∈ 𝐻1(𝐾), 𝑢|𝜕𝐾 ∈ ℋ𝑙1(𝜕𝐾), ∆𝑢 ∈ Q𝑚1(𝐾)}𝑑

⊕ 𝑥 {𝑢 ∈ 𝐻1(𝐾), 𝑢|𝜕𝐾 ∈ ℋ𝑙2(𝜕𝐾), ∆𝑢 ∈ Q[𝑚2](𝐾)},
with the convention that Q−1 = {0} and where the integers 𝑙1, 𝑙2, 𝑚1 and 𝑚2 verify

𝑚1, 𝑚2, 𝑙2 ≥ −1 and − 1 ≤ 𝑙1 ≤ 0.

So defined, it holds:

– dim H𝑘(𝐾) = n(𝑑(𝑙1 + 1)𝑑−1 + (𝑙2 + 1)𝑑−1) + ((𝑚1 + 1)𝑑 + (𝑚2 + 1)𝑑 −𝑚2
2)

– For all 𝑞 ∈ H𝑘(𝐾), 𝑞 · 𝑛|𝜕𝐾 ∈ ℋmax{𝑙1, 𝑙2}(𝜕𝐾) and H𝑘(𝐾) ⊂ 𝐻(div, 𝐾).
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Table 1. Summary of the used degrees of freedom for the configurations Ia.

Representation Of low order Of (𝐴𝑘 ∩𝐵𝑘)|𝜕𝐾 Of higher orders

Available when
(𝑑− 1)(𝑙2 + 1)𝑑−2

≥ (𝑙1 + 1)𝑑−1
.

Select (𝑙1 + 1)𝑑−1

moments per face
from the bold ones.

Inherited from
the highest order rep-
resentation

∫︀

𝑓𝑗

𝑞𝑖 𝑛𝑥𝑖𝑥
𝑙1+1
𝑖

∀𝑖 ∈ J1, 𝑑K,
∀𝑗 ∈ J1, nK

∫︀

𝑓𝑗

𝑞 · 𝑛 𝑝𝑘

∫︀∫︀∫︀

𝑓𝑗

𝑞 · 𝑛𝑥𝑖𝑥
𝑙2
𝑖 𝑥̃

∀𝑝𝑘 ∈ Q𝑙2(𝑓𝑗) ∖
Q𝑙1(𝑓𝑗),
∀𝑥̃ ∈ Q𝑙2(𝜕𝑖𝐾)

Thus, conformal elements can be defined through normal degrees of freedom enforcing the 𝐻(div)-conformity
and internal ones preserving it, provided that the polytope 𝐾 satisfies the two conditions

– The polytope 𝐾 has a reasonable aspect ratio, so that the Poisson problem (required by the definition of the
underlying VEM spaces) is well posed.

– No face is parallel to any axis, ensuring the unisolvence of the presented degrees of freedom (when using
component-wise degrees of freedom).

Note that when selecting component-wise degrees of freedom, the above condition on the orientation of the
face with respect to the axis raises stability issues when dealing with element whose faces are almost parallel to
the axis. This issue is easily avoidable by selecting at least a global degree of freedom involving the term 𝑝 · 𝑛 in
the moment’s integrand and changing the testing vector in the coordinate-wise degrees of freedom to any vector
𝑣 ̸= 𝑛.

Internal degrees of freedom. It is set

𝜎 : 𝑞 ↦→
∫︁

𝐾

𝑞 · 𝑝𝑘 d𝑥, ∀𝑝𝑘 ∈ 𝒫 (3.15)

for any space 𝒫 defined either as a polynomial space or as any subspace of Poisson’s solutions, having for
dimension (𝑚1 + 1)𝑑 + (𝑚2 + 1)𝑑 −𝑚𝑑

2 and fulfilling the Assumption 3.17.

Normal degrees of freedom. Though in two dimensions the above setting is fixed and all the mentioned
degrees of freedom have to be considered, in three dimensions the selection of degrees of freedom among the bold
ones is a matter of taste, possibly directed by properties of the discretised quantities that are known a priori.
Note also that one could project on any other polynomial basis rather than using projections over monomials
(Table 1).

3.4. Two examples in two dimensions

We first detail an example of a discretisation framework contained in the previously presented setting for
which a parallel with the Raviart–Thomas elements can be drawn from the order 𝑘 = 1 on. In a second time, we
present an example of a reduced framework where a parallel with the Raviart–Thomas is achieved at any order.

3.4.1. An example of a general setting

We consider a series of discretisation spaces by indexing the coefficients 𝑙1 = 0, 𝑙2 = 𝑘, 𝑚1 = 𝑘 − 1 and
𝑚2 = 𝑘 − 1 for any 𝑘 ∈ N, seen here as the space order. The space H𝑘(𝐾) is then defined as

H𝑘(𝐾) = {𝑢 ∈ 𝐻1(𝐾), 𝑢|𝜕𝐾 ∈ ℋ0(𝜕𝐾), ∆𝑢 ∈ Q𝑘−1(𝐾)}2

⊕ 𝑥 {𝑢 ∈ 𝐻1(𝐾), 𝑢|𝜕𝐾 ∈ ℋ𝑘(𝜕𝐾), ∆𝑢 ∈ Q[𝑘−1](𝐾)}. (3.16)
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Table 2. Definition of the degrees of freedom in the 2D case for the configuration Ia.

Representation Of low order Of (𝐴𝑘 ∩𝐵𝑘)|𝜕𝐾 Of higher orders

Moments
∫︀

𝑓𝑗

𝑞 · 𝑛

∀𝑗 ∈ J1, nK

∫︀

𝑓𝑗

𝑞𝑖 𝑛𝑥𝑖𝑥𝑖

∀𝑖 ∈ J1, 2K, ∀ 𝑗 ∈
J1, nK

∫︀

𝑓𝑗

𝑞 · 𝑛 𝑝𝑘

∀𝑗 ∈ J1, nK,
∀𝑝𝑘 ∈ Q𝑘(𝑓𝑗)∖Q0(𝑓𝑗)

By a straightforward application of the previous section, it comes

dim H𝑘(𝐾) = n(𝑘 + 3) + 2𝑘(𝑘 + 1)− 1𝑘>0. (3.17)

Example of a two dimensional element

The example of selected normal degrees of freedom defining the elements 𝐸𝑘 = (𝐾, H𝑘(𝐾), {𝜎}) presented in
the previous section then reduces to the expressions given in the Table 2. The internal degrees of freedom are set
as

𝜎(𝑞) ↦→
∫︁
𝐾

𝑞 · 𝑝𝑘 d𝑥, for all 𝑝𝑘 ∈ 𝒫, (3.18)

where 𝒫 is chosen as the space

𝒫 = P𝑘, 𝑘−1 × P𝑘−1, 𝑘 ∖
(︀
P[𝑘], [𝑘−1] × P[𝑘−1], [𝑘]

)︀
∪
{︂

(𝑥, 𝑦)𝑇 ↦→
(︂

𝑥𝑘𝑦𝑘−1

𝑥𝑘−1𝑦𝑘

)︂}︂
.

Though the internal projection space is less refined than the one set on the edges, this is not bothersome as the
impact of the divergence within the cell is less dramatic. Note also that in practice, for defining the projections
(3.18) one can work with any basis of 𝒫.

Link to another class of elements

As pointed out in the introduction, this contribution can be linked to a discretisation setting presented in [12],
where the considered space reads

𝒱𝑓𝑎𝑐𝑒
2, 𝑘 (𝐾) = {𝑣 ∈𝐻(div, 𝐾) ∩𝐻(curl, 𝐾) s.t. 𝑣 · 𝑛|𝑓 ∈ P𝑘(𝑓)∀𝑓 ∈ 𝜕𝐾,

grad(div(𝑣)) ∈ ∇P𝑘−1(𝐾), and curl 𝑣 ∈ P𝑘−1(𝐾)}.
Restricting the setting on the boundary to polynomial functions, that is introducing

𝒱2, 𝑘(𝐾) = {𝑣 ∈𝐻(div, 𝐾) ∩𝐻(curl, 𝐾) s.t. 𝑣 · 𝑛|𝑓 ∈ P𝑘(𝑓) and 𝑣|𝑓 ∈
𝑑×

𝑖=1

Q𝜁𝑖(𝑘+1, 𝑘, ..., 𝑘)(𝑓) ∀𝑓 ∈ 𝜕𝐾,

grad(div(𝑣)) ∈ ∇P𝑘−1(𝐾), and curl 𝑣 ∈ P𝑘−1(𝐾)}.
It can in particular be shown that

𝑣 ∈ 𝒱2, 𝑘 ⇒ 𝑣 ∈ H𝑘(𝐾), (3.19)

for the space H𝑘(𝐾) is constructed from the coefficients (𝑙1, 𝑙2) = (0, 𝑘) and (𝑚1, 𝑚2) = (𝑘, −1) as

H𝑘(𝐾) = {𝑢 ∈ 𝐻1(𝐾), 𝑢|𝜕𝐾 ∈ ℋ0(𝜕𝐾), ∆𝑢 ∈ Q𝑘(𝐾)}𝑑

+ 𝑥 {𝑢 ∈ 𝐻1(𝐾), 𝑢|𝜕𝐾 ∈ ℋ𝑘(𝜕𝐾), ∆𝑢 ∈ Q[−1](𝐾)}.

Indeed, any element 𝑣 ∈ 𝒱2, 𝑘(𝐾) belongs to 𝐻1(𝐾), and can be written as 𝑣 = 𝑣1 + 𝑣2, where 𝑣1 lives in 𝐴𝑘 and
𝑣2 lives in 𝑥 𝐵𝑘 (see the Appendix for a sketch of the proof).
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Table 3. Degrees of freedom of the element Ia defined within the reduced setting.

Core normal Moments Misc moment Core internal moment Misc internal moment∫︀
𝑓𝑗

𝑥𝑖 𝑞·𝑛d𝛾,

∀𝑗∈J1, nK, 𝑖∈J1, 𝑘K

∫︀
𝑓𝑗

𝑞·𝑛d𝛾

𝑗∈J1, nK

∫︀
𝐾

⎛

⎝𝑥𝑙𝑦𝑚

0

⎞

⎠·𝑞d𝑥d𝑦 and
∫︀

𝐾

⎛

⎝ 0
𝑥𝑚𝑦𝑙

⎞

⎠·𝑞 d𝑥d𝑦,

∀𝑙∈J0, 𝑘K, 𝑚∈J0, 𝑘−1K
𝑠.𝑡. (𝑙, 𝑚)̸=(𝑘, 𝑘−1)

∫︀
𝐾

⎛

⎝𝑥𝑘𝑦𝑘−1

𝑥𝑘−1𝑦𝑘

⎞

⎠·𝑞d𝑥d𝑦

The degrees of freedom selected in the framework of [12] are however different from what we do here. We
allow more freedom in the inner characterisation while preserving the desired properties on the boundary. Note
also that contrarily to the more general setting presented in this section, the lowest order elements of [12] cannot
be natively defined. As the normal component on the boundary belongs at least to P1(𝐾) for any admissible
space, the setting of [12] has to be slightly modified (see e.g. [4]).

3.4.2. An example of a reduced setting

As quickly addressed in the Section 3.2 and as it will be shown in the numerical results, a classical construction
of the space H𝑘(𝐾) implies the degeneration of some normal functions into internal ones. This is a consequence
of the coordinate-wise freedom provided on the boundary from the definition of the set 𝐴𝑘. Therefore, to allow a
parallel with the Raviart–Thomas elements from the lowest order on and to fulfil the optional Condition 3.4, one
can consider replacing the boundary conditions 𝑢|𝜕𝐾 ∈ ℋ𝑙1(𝜕𝐾) in 𝐴𝑘 to obtain the reduced space

H𝑘(𝐾) = {𝑢 ∈ 𝐻1(𝐾), 𝑢|𝜕𝐾 ≡ 1, ∆𝑢 ∈ Q𝑚1(𝐾)}𝑑

⊕ 𝑥 {𝑢 ∈ 𝐻1(𝐾), 𝑢|𝜕𝐾 ∈ ℋ𝑙2(𝜕𝐾), ∆𝑢 ∈ Q[𝑚2](𝐾)}. (3.20)

There, the coordinate-wise freedom on the boundary is reduced and the normal degrees of freedom can be set as
in the classical Raviart–Thomas setting. Furthermore, contrarily to the general case, any definition of 𝑙2, 𝑚1 and
𝑚2 leads to an 𝐻(div)-conformity ready space.

Example of a reduced two dimensional element

To emphasise the parallel with the Raviart–Thomas setting on the boundary, we reduce the previous example
and derive the corresponding reduced discretisation framework.

Definition 3.20 (Reduced space).

H𝑘(𝐾) =
{︀
𝑢 ∈ 𝐻1(𝐾), 𝑢|𝜕𝐾 ≡ 1, ∆𝑢 ∈ Q𝑘−1(𝐾)

}︀2

⊕
(︂

𝑥1

𝑥2

)︂{︀
𝑢 ∈ 𝐻1(𝐾), 𝑢|𝜕𝐾 ∈ ℋ𝑘(𝜕𝐾), ∆𝑢 ∈ Q[𝑘−1](𝐾)

}︀
.

Its dimension then naturally reads:

dim H𝑘(𝐾) = n(𝑘 + 1) + 2𝑘(𝑘 − 1)− 1𝑘>0.

Therefore, exactly 𝑘 + 1 normal functions per edge can be designed, fitting the framework of Raviart–Thomas.
As this matches the dimension of Q𝑘(𝑓), all the freedom is required to entirely determine the global normal
component. Thus, as a straightforward reduction of the general case, the 𝐻(div, 𝐾)-conformal element presented
in the Section 3.4 simplify to the following degrees of freedom (Table 3).

Note that here too, for defining the projections (3.18) one can work with any basis of 𝒫 instead of the
presented canonical basis.
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Figure 1. Left: considered polygon. Right: normal component of a representative internal basis
functions plotted on every edge.

4. Numerical results

We explore the properties of the main element Ia and its variant Ib presented in the previous section by
investigating their basis functions, for both the general framework and the reduced one. We particularly focus on
the normal component 𝜙 · 𝑛|𝜕𝐾 of representative basis functions 𝜙 on the boundary of the element 𝐾. Those
basis functions have been constructed by tuning a natural basis of the space H𝑘(𝐾) towards the selected sets of
degrees of freedom through a transfer matrix.

As an example, we consider the non-convex nine-edges polygon presented in the Figure 1 on which the elements
are built. In all the results, the polynomial projectors used in the definition of the degrees of freedom were
chosen as Hermite polynomials: experimentally we have observed that this improves the conditioning of the
linear system.

4.1. General setting

We start by considering the spaces and elements described in the Section 3.4.1. First of all, we have investigated
the behaviour of the internal basis functions. The normal component of them is shown in the right of Figure 1.
As wished, the basis functions corresponding to internal degrees of freedom vanish on the boundary. This can
been seen on the right figure where the function is plotted in the plane 𝑧 = 0.

In order to study the behaviour of the normal basis functions on the boundaries, we have considered the case
𝑘 = 2 where we expect five basis functions to have a quadratic normal component. We have plotted in the left
most side of the Figure 2 the normal component of one of the normal basis functions associated to the element
Ib. One can observe that its support is contained on one single edge.

We then have plotted all the basis functions associated to the edge number 5 on the Figure 2, for both the
configurations Ib (middle) and Ia (right). One can first notice that their normal components, plotted in the
middle graph of the Figure 2, are polynomial of degree 𝑘 ≤ 2, that together generate the space P2(R). Observing
further, it appears that the normal component of two basis are vanishing, that is 𝜙 · 𝑛 = 𝜙1 · 𝑛5, 𝑥 + 𝜙2 · 𝑛5, 𝑦 = 0.
This generates this straight line equal to zero in the graph. Indeed, those two basis functions characterise the
coordinate-wise freedom 𝜙1 · 𝑛5, 𝑥 ≠ 0 and 𝜙2 · 𝑛5, 𝑦 ≠ 0. This additional freedom is not reflected through the
global term 𝜙 · 𝑛 as addressed in the Example 3.11 and in the Remark 3.13. This comes from the fact that only
three basis functions are required to generate P2(R), where the global component 𝜙 ·𝑛 lives. The two components
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Figure 2. Left: normal component of one representative of the normal basis functions for the
element Ib and 𝑘 = 2 along the edges. Middle: normal component of all the functions generated
from the edge number 5, plotted on the edge number 5. Right: as middle, for the element Ia.

Figure 3. Degeneration of a degenerating normal basis functions’ representative in the case
𝑘 = 2, for the element Ib. Left: normal component on all the boundaries. Right: internal behaviour
of the basis functions.

𝜙1𝑛5, 𝑥 and 𝜙2𝑛5, 𝑦 of the vector 𝜙 ∘ 𝑛 are compensating themselves. Those functions are nevertheless regular
within the polygon 𝐾 and not identically vanishing on 𝐾 (see Fig. 3, where the left graph represents the value of
the normal component 𝜙 ·𝑛 on the boundary and where the right graph represents the components 𝜙1 and 𝜙2 on
the element 𝐾). They can therefore be reclassified as internal basis functions. Note that this can be suppressed
when using the reduced setting, as one can observe below in the Section 4.2.

Finaly, one can consider the scaling of the basis functions by plotting the normal basis functions corresponding
to the configurations Ia and Ib in the lowest order case, i.e. for 𝑘 = 0 (see Fig. 4). There, only the configuration
Ib using a point value scales to one. The fully moment-based configuration Ia scales to another constant that
depends on the edge’s length and orientation with respect to the axes. This example emphasises that the
configuration Ib leads to basis functions which share similar properties like the Raviart–Thomas elements.

4.2. Reduced setting

As a last example, we derive some results obtained for the reduced element Ib, offering a complete parallel
with the Raviart–Thomas elements on the boundary by suppressing the further coordinate-wise liberty provided
by the general setting. The internal basis functions being unchanged from the general setting, they are not
represented.
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Figure 4. Scaling of the non-vanishing basis functions generated from the edge number 5 when
𝑘 = 0. From left to right: Ia and Ib.

Figure 5. Top left: regularity of the components of one representative of the basis functions for
the reduced element Ib and 𝑘 = 2 within the element. Top right: its normal component along
the boundary. Bottom: normal component of all the functions generated from the edge number
5, plot on the edge number 5. From left to right: 𝑘 = 0, 𝑘 = 1, 𝑘 = 2.

Indeed, one can observe on the bottom of the Figure 5 that there is no more degenerating normal basis
functions. Therefore, all normal basis functions are acting globally to characterise the polynomial behaviour of
functions of the reduced H𝑘(𝐾) space on the boundary. Furthermore, one can observe that the scaling of the
basis functions corresponding to lowest order element, as well as the amplitude of the basis functions describing
the higher order ones, make the discretisation framework reliable.
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Remark 4.1. The shape of the normal component of the basis functions is driven by the definition of the
projectors 𝑝 in the normal degrees of freedom. Changing the basis of the projectors then allows to enforce wished
shape of the basis functions of H𝑘(𝐾) while keeping the regularity and order of the discretisation. Shifting them
by modulating the offset directly from the definition of the degrees of freedom to enforce their positivity is
equally possible.

5. Conclusion

Motivated by defining a flux reconstruction scheme on general polytopes [1], we have developed a new 𝐻(div)-
conformal discretisation framework that can be set up on any polytope, not necessarily convex. It merges the
flexibility of the Virtual Element setting with the properties of the Raviart–Thomas elements on the boundaries.

The introduced finite dimensional spaces are vectorial and allow a lot of flexibility in the definition of the
degrees of freedom. In particular, the choices of discretisation quality and degrees of freedom on the boundary
are independent from the ones made within the element.

The discretised quantities benefit from an extensive coordinate-wise freedom. Therefore, upon the choice made
while selecting the degrees of freedom, some dual normal basis functions may be reclassified into internal ones.
Thus, to allow a complete parallel with the Raviart–Thomas setting on the boundary from the lowest order on,
one may construct straightforwardly a reduced space, along with reduced elements.

Last, we detailed a particular example of a discretisation framework through a series of spaces and the
definition of a particular element. It could be observed that in both general and reduced frameworks, the type of
degrees of freedom (point-wise values or moments) impacts the scaling of the dual basis functions. This can
typically be observed in the lowest order case of the given examples, where only the dual basis functions of the
element Ib scale to one.

An important topic for further research is the exploration of projectors from the introduced spaces onto
polynomial ones, in a way similar to those already constructed in [12] and used in the Virtual Elements Methods.
Especially, a suitable extension of those projectors to the spaces introduced here may be inferred from a close
investigation of those projectors. Once the projectors have been defined, we can apply those discretisation spaces
in a more practical context, as by example employing the introduced spaces in a finite element framework.

To conclude, let us point out again that the results presented here are already useful from a theoretical point
of view. Indeed, they first guarantee that the considerations about FR schemes on general polytopes hold, and
guarantee that the conjecture about the correction functions made in [1] is correct. Secondly, it opens the door
to a more general framework in context of FE, direction that will be further investigated in the future.

Appendix A. A note on further possible configurations

As example, we only detail in this paper two declinations of one possible configuration of degrees of freedom.
There exists many more possibilities, and their choice impact the properties of the elements. In particular, it
is possible to focus on a coordinate-wise boundary characterisation of the quantities living in a general space
H𝑘(𝐾), rather than the global focus presented here. In the general setting, this choice yields a degeneracy of
only one normal basis function, thus moving a bit away from the Raviart–Thomas spirit. For interested readers,
a presentation of this possibility for both the general and the reduced space is available in [2], along with further
investigations on various configurations.

Note also that different choices also have a very strong impact on the conditionning number of the linear
systems to solve. The solution we have shown in this paper is the one that offers the best compromise. It is also
the one that is the closest from the classical RT framework.

Appendix B. Proofs

Proof of Proposition 3.7. We start by deriving the first statement. By construction, any 𝑞 ∈ H𝑘(𝐾) can be
decomposed into 𝑞 = 𝑞0 + 𝑥 𝑞1 for some 𝑞0 ∈ (𝐴𝑘)𝑑 and 𝑞1 ∈ 𝐵𝑘. Therefore, on the boundary of 𝐾 one
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has 𝑞 · 𝑛|𝜕𝐾 = 𝑞0 · 𝑛|𝜕𝐾 + (𝑥𝑞1 · 𝑛)|𝜕𝐾 . As the functions 𝑞1 is scalar, this quantity can also read 𝑞 · 𝑛|𝜕𝐾 =
𝑞0 · 𝑛|𝜕𝐾 + 𝑞1(𝑥 · 𝑛)|𝜕𝐾 by linearity and commutativity of the dot product.

Since for every face 𝑓 of 𝐾 the term 𝑥 · 𝑛|𝑓 is constant, it reduces to 𝑞 · 𝑛|𝑓 = 𝑞0 · 𝑛|𝑓 + 𝑐𝑓 𝑞1|𝑓 on each face
𝑓 for a constant 𝑐𝑓 ∈ R depending only on the face layout and position with respect to the axes and origin.
Therefore, since 𝑞0|𝑓 ∈ (Q𝑙1(𝑓))𝑑 and 𝑞1|𝑓 ∈ Q𝑙2(𝑓), 𝑞 · 𝑛|𝑓 ∈ Qmax{𝑙1, 𝑙2}(𝑓). And since it is valid for any face
𝑓 ∈ 𝜕𝐾, we finally get that 𝑞 · 𝑛|𝜕𝐾 ∈ Hmax{𝑙1, 𝑙2}(𝜕𝐾)

Let us now derive the divergence property within the cell. Any 𝑢 ∈ H𝑘(𝐾) can be written under the form
𝑢 = 𝑞 + 𝑥 𝑞 for some functions 𝑞 ∈ 𝐻1(𝐾) and 𝑞 = (𝑞1, . . . , 𝑞𝑑)𝑇 ∈ (𝐻1(𝐾))𝑑 such that{︂

∆𝑞 ∈ Q[𝑚2](𝐾)
𝑞|𝜕𝐾 ∈ Q𝑙2(𝜕𝐾)

and
{︂

∆𝑞𝑖 ∈ Q𝑚1(𝐾)
𝑞𝑖|𝜕𝐾 ∈ Q𝑙1(𝜕𝐾),

∀𝑖 ∈ J1, 𝑑K. (B.1)

We have

div(𝑢) =
𝑑∑︁

𝑖=1

𝜕𝑥𝑖
(𝑥𝑖 𝑞) +

𝑑∑︁
𝑖=1

𝜕𝑥𝑖
𝑞𝑖 =

𝑑∑︁
𝑖=1

(𝑞 + 𝑥𝑖𝜕𝑥𝑖
𝑞) +

𝑑∑︁
𝑖=1

𝜕𝑥𝑖
𝑞𝑖

= 𝑑 𝑞⏟ ⏞ 
∈𝐿2(𝐾)

+
𝑑∑︁

𝑖=1

(︀
𝑥𝑖 𝜕𝑥𝑖𝑞⏟ ⏞ 
∈𝐿2(𝐾)

)︀
+

𝑑∑︁
𝑖=1

𝜕𝑥𝑖𝑞𝑖⏟  ⏞  
∈𝐿2(𝐾)

.

Since by (B.1) we have ∇ · 𝑞 ∈ 𝐿2(𝐾), it comes that for any 𝑖 ∈ J1, 𝑑K; 𝑥𝑖 𝜕𝑥𝑖𝑞 ∈ 𝐿2
loc(𝐾). As 𝐾 is compact

and bounded, we have 𝐿2
loc(𝐾) = 𝐿2(𝐾) and div 𝑞 ∈ 𝐿2(𝐾). As a by-product, note that we can derive

∇ · (𝑥∇𝑞) = ∇ · 𝑞 + 𝑥∆𝑞, where ∆𝑞 ∈ Qmax [𝑚1, 𝑚2+1] and 𝑥∆𝑞 ∈ 𝒞∞(𝐾). �

Lemma B.1. The configurations Ia and Ib are sets of degrees of freedom leading to unisolvent elements when
endowed in H𝑘(𝐾).

Proof of the Lemma B.1. We refer to the functions 𝑝𝑘 by the term “kernel”, while using the term “integrand”
to represent the term 𝑞 · 𝑝𝑘. Immediate transfer of this designation apply to the normal moment based degrees of
freedom.

We first sketch the proof. To begin with, let us point out that the key lies in the Assumption 3.12 ensuring
the linear independence of the set of point-wise values and moment’s integrands. The linearity of the integral
operators transfers then this independence to the moments themselves, characterising any function of H𝑘(𝐾)
independently on the boundary and within the cell. We proceed in three steps.

(1) First, we show that the internal characterisation of the function does not impact the normal one, allowing
the determination to be done distinctively within the element and on the boundary.

(2) Then, we show that selecting the appropriate number of degrees of freedom in any of the sets Ia or Ib
ensures a unique characterisation on the boundary. We use the fact that the kernels are scalar polynomials
while the functions of H𝑘(𝐾) are vector polynomials.

(3) Lastly, we consider the interior of the element where the characterisation is done through projections over
linearly independent sets. Those projections of functions in H𝑘(𝐾) are indeed neither identically null nor
identically identical (i.e. they differ at least on a subset of non-zero measure).

Let us detail this determination process more in details.

Step 1. Let us first recall that the space H𝑘(𝐾) is built from blocks of independent functions. In particular,
the boundary behaviour of functions living in H𝑘(𝐾) is independent of their behaviour within the inner cell.
Therefore, by the structure of H𝑘(𝐾) and making use of the superposition theorem, any function 𝑞 ∈ H𝑘(𝐾)
reads

𝑞 = 𝑓1𝜕𝐾 + 𝑔1𝐾 (B.2)

for two functions 𝑓 and 𝑔 belonging to H𝑘(𝐾). As a consequence, characterising a function 𝑞 ∈ H𝑘(𝐾)
comes down to characterising the independent functions 𝑓 and 𝑔 on the distinct supports 𝜕𝐾 and 𝐾,
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respectively. Note also that necessarily, 𝑓 |𝑓𝑗 ∈×𝑑

𝑖=1
Qmax{𝑙1, 𝑙2+1}(R𝑑−1) for any face 𝑓𝑗 ∈ 𝜕𝐾. We show that

any admissible extraction (in the sense of the Admissibility conditions 3.12) from either of the two sets of
degrees of freedom (Ia, internal), (Ib, internal) fully characterises the functions 𝑓 and 𝑔, independently. In
all the following, the notation Ia or Ib refers to the corresponding set of normal degrees of freedom while
“internal” refers to the set (3.14) and is identical to any of the two configurations under consideration.

We first show that any above defined set of degrees of freedom preserve the independence of the boundary
and inner characterisations. To this aim, we combine the relation (B.2) with the all possible definitions of the
degrees of freedom. It comes that all global normal moments lead to an expression of the form

𝜎(𝑞) =
∫︁
𝑓𝑗

𝑞 · 𝑛 𝑝𝑘 =
∫︁
𝑓𝑗

(𝑓1𝑓𝑗
+ 𝑔1𝐾) · 𝑛 𝑝𝑘 =

∫︁
𝑓𝑗

𝑓 · 𝑛 𝑝𝑘

for some polynomial function 𝑝𝑘 living on 𝜕𝐾. On the other side, as 𝑥𝑗𝑚 ∈ 𝑓𝑗 , the global degrees of freedom
that are built from point-wise values read

𝜎(𝑞) = 𝑞(𝑥𝑗𝑚) · 𝑛 = 𝑓(𝑥𝑗𝑚) · 𝑛1𝑓𝑗
(𝑥𝑗𝑚) + 𝑔(𝑥𝑗𝑚) · 𝑛1𝐾(𝑥𝑗𝑚) = 𝑓(𝑥𝑗𝑚) · 𝑛.

Similar relations for coordinate – wise degrees of freedom can be derived, that is;

𝜎(𝑞) =
∫︁
𝑓𝑗

𝑞𝑥𝑖
𝑛𝑥𝑖

𝑝𝑘 =
∫︁
𝑓𝑗

(𝑓𝑥𝑖
1𝑓𝑗

+ 𝑔𝑥𝑖
1𝐾)𝑛𝑥𝑖

𝑝𝑘 =
∫︁
𝑓𝑗

𝑓𝑥𝑖
𝑛𝑥𝑖

𝑝𝑘

and 𝜎(𝑞) = 𝑞𝑥𝑖
(𝑥𝑗𝑚)𝑛𝑥𝑖

= 𝑓𝑥𝑖
(𝑥𝑗𝑚)𝑛𝑥𝑖

1𝑓𝑗
(𝑥𝑗𝑚) + 𝑔𝑥𝑖

(𝑥𝑗𝑚)𝑛𝑥𝑖
1𝐾(𝑥𝑗𝑚)

= 𝑓𝑥𝑖
(𝑥𝑗𝑚)𝑛𝑥𝑖

,

where here the terms 𝑓𝑥𝑖 simply represent the 𝑖th component of the function 𝑓 . Therefore, in any of
the configurations Ia and Ib no contribution of the function 𝑔 representing the inner part of the cell is
involved in the normal degrees of freedom. The mirror case is obtained with the internal moments, leading
via (B.2) to

𝜎(𝑞) =
∫︁
𝐾

𝑞 · 𝑝𝑘 =
∫︁
𝐾

(𝑓1𝜕𝐾 + 𝑔1𝐾) · 𝑝𝑘 =
∫︁
𝐾

𝑔 · 𝑝𝑘,

where 𝑝𝑘 stands for any Poisson’s function living in H𝑘(𝐾) or any polynomial function defining the second
member of a Poisson’s problem involved in the definition of H𝑘(𝐾). There, the function 𝑓 representing the
boundary part of the function 𝑞 is not involved, that for any definition of the space 𝒫𝑘 generating the internal
moments. Thus, by linearity we can decompose the degrees of freedom {𝑞 ↦→ 𝜎𝑖(𝑞)}𝑖 in the following matrix.

𝜎1

...
𝜎𝑁𝑁

𝜎𝑁𝑁+1

...
𝜎𝑁𝐼

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Normal moments

applied to 𝑓

Internal moments

applied to 𝑔

⎛⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎠

𝑓

𝑔

⎛⎜⎜⎝
⎞⎟⎟⎠=

0

0

Normal Dofs
values

Internal Dofs
values

Clearly, there is no interconnection between the function’s characterisation on the boundaries and the one
performed within the element. Thus, showing the Proposition 3.19 reduces to show independently that Ia =
0 or Ib = 0 implies 𝑓 |𝜕𝐾 = 0 and

∫︀
𝐾

𝑔 · 𝑝𝑘𝑥 = 0, for all 𝑝𝑘 ∈ 𝒫𝑘 implies 𝑔|𝐾 = 0.

Step 2. Let us now consider the boundary characterisation. There, by definition of the spaces ℋ𝑙1 and ℋ𝑙2 , the
function 𝑓 |𝜕𝐾 is discontinuous at the polytope’s vertices and can be decomposed into 𝑛 vectorial polynomial
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functions {𝑓𝑗}𝑗 with distinct supports, each of them matching one particular face of the polytope. Thus, we
can write

𝑓 |𝜕𝐾 =
𝑛∑︁

𝑗=1

𝑟𝑗1𝑓𝑗

with 𝑟𝑗 ∈×𝑑

𝑖=1
Qmax{𝑙1, 𝑙2+1}(𝑓𝑗) and 𝑓𝑗 any face belonging to 𝜕𝐾. With a similar argument than in the

previous point, the characterisation of 𝑓 |𝜕𝐾 can therefore be done edge-wise, and the determination matrix
becomes block – diagonal. We discuss here the characterisation on one particular edge 𝑓𝑗 by showing the
invertibility of the corresponding matrix block. The arguments naturally transpose to the other ones.
In this perspective, let us show that for any 𝑟𝑗 ∈×𝑑

𝑖=1
Qmax{𝑙1, 𝑙2+1}(𝑓𝑗), it holds {(𝐼𝑎)|𝑓𝑗

= 0 or (𝐼𝑏)|𝑓𝑗
=

0} ⇒ 𝑟𝑗 = 0, where (·)|𝑓𝑗
represents the subset of the degrees of freedom (·) whose support (or evaluation

point for point-values) matches (or lies on) 𝑓𝑗 .
First of all, we recall that on the face 𝑓𝑗 the function 𝑟𝑗 is a multi-valued polynomial of the form

𝑟𝑗 |𝑓𝑗 =

⎛⎜⎝𝑎0, 1

...
𝑎0, 𝑑

⎞⎟⎠+
dim(ℋ𝑙1∩ℋ𝑙2 )∑︁

𝑖=dim(ℋ0)

⎛⎜⎝𝑏𝜉1(𝑖) + 𝑎𝑖, 1

...
𝑏𝜉𝑑(𝑖) + 𝑎𝑖, 𝑑

⎞⎟⎠𝑚𝛼𝑖(𝑥) +
dim(ℋ𝑙2 )∑︁

𝑖=dim(ℋ𝑙1∩ℋ𝑙2 )

⎛⎜⎝𝑥1𝑏𝑖

...
𝑥𝑑𝑏𝑖

⎞⎟⎠𝑚𝛼𝑖(𝑥),

where 𝑚𝛼𝑖
represents a monomial of Qmax{𝑙1, 𝑙2} of multi-index degree 𝛼𝑖 such that the set {𝑚𝛼𝑖

}dim(ℋ𝑚)
𝑖=dim(ℋ𝑙)

forms a base of ℋ𝑚 ∖ ℋ𝑙. Note that the coefficients {𝑎𝑖𝑗}𝑖, 𝑗 are defined coordinate-wise while the coefficients
{𝑏𝑖}𝑖 are identical for all the components. The function 𝑟𝑗 is therefore determined by

dim({{𝑎𝑖, 𝑚}𝑖∈J0, dim(ℋ𝑙1∖ℋ0)K
𝑚∈J1, 𝑑K

, {𝑏𝑖} 𝑖∈Jdim(ℋ𝑙1∖ℋ0),

dim(ℋ𝑙2 )K
})

coefficients.
As in all configurations the function 𝑟𝑗 is determined only through its normal components, let us use the

above expression to derive them more specifically. With the normal 𝑛𝑗 = (𝑛𝑗𝑥1, ..., 𝑛𝑗𝑥𝑑
) to the face 𝑓𝑗 , it

comes

𝑟𝑗 · 𝑛𝑗 |𝑓𝑗
=

𝑑∑︁
𝑚=1

𝑎0, 𝑚𝑛𝑗𝑥𝑚
+

dim(ℋ𝑙1∩ℋ𝑙2 )∑︁
𝑖=dim(ℋ0)

𝑑∑︁
𝑚=1

(𝑏𝜉𝑚(𝑖) + 𝑎𝑖, 𝑚)𝑛𝑗𝑥𝑚
𝑚𝛼𝑖

(𝑥) +
dim(ℋ𝑙2 )∑︁

𝑖=dim(ℋ𝑙1∩ℋ𝑙2 )

𝑐𝑗 𝑏𝑖 𝑚𝛼𝑖
(𝑥),

where 𝑐𝑗 = 𝑥 · 𝑛𝑗 is a constant term on the face 𝑓𝑗 . Reordering the terms, we end up with the formulation

𝑟𝑗 · 𝑛|𝑓𝑗
=

𝑑∑︁
𝑚=1

⎛⎝⎛⎝𝑎0, 𝑚 +
dim(ℋ𝑙1∩ℋ𝑙2 )∑︁

𝑖=dim(ℋ0)

𝑎𝑖, 𝑚𝑚𝛼𝑖(𝑥)

⎞⎠𝑛𝑗𝑥𝑚

⎞⎠
+

(︃
𝑑∑︁

𝑚=1

𝑛𝑗𝑥𝑚

)︃ dim(ℋ𝑙1∩ℋ𝑙2 )∑︁
𝑖=1

𝑏𝜉𝑚(𝑖)𝑚𝛼𝑖
(𝑥) + 𝑐𝑗

⎛⎝ dim(ℋ𝑙2 )∑︁
𝑖=dim(ℋ𝑙1∩ℋ𝑙2 )

𝑏𝑖 𝑚𝛼𝑖
(𝑥)

⎞⎠ .

(B.3)

The structure of the retrieved form makes clearly emerge the coefficients that should be used depending on
the coordinate-wise behaviour of the polygon.

In addition, as all the coefficients determining 𝑟𝑗 appear in this expression, using degrees of freedom defined
only from the normal components of tested functions is admissible. Thus, the two configurations fitting this
framework, we only have to make sure that the set of extracted degrees of freedom are uniquely characterising
each of the involved coefficients. To this aim, we explicit all the possible degrees of freedom when applied to
the function 𝑟𝑗 . For the sake of clarity, we denote by {𝜎𝑀𝑖,𝑙

}𝑖𝑙 the moments designed coordinate-wise, being
of the form

𝜎𝑀𝑖,𝑙
: 𝑞 ↦→ 𝑞𝑥𝑖

(𝑥𝑗𝑙)𝑛𝑗𝑥𝑖
or 𝜎𝑀𝑖,𝑙

: 𝑞 ↦→
∫︁

𝑓𝑗

𝑞𝑥𝑖
𝑛𝑗𝑥𝑖

𝑝𝑙
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for some scalar polynomial 𝑝𝑙, and by {𝜎𝑇𝑙
}𝑙 the ones acting globally, reading

𝜎𝑇𝑙
: 𝑞 ↦→ 𝑞(𝑥𝑙) · 𝑛 or 𝜎𝑇𝑙

: 𝑞 ↦→
∫︁

𝑓𝑗

𝑞 · 𝑛 𝑝𝑙

for some scalar polynomial 𝑝𝑙. Further, for convenience we denote by {𝜎𝑉𝑙
}𝑙 the global degrees of freedom

that comes into play to determining the coordinate – wise coefficients, whose expressions are done in the
same way as {𝜎𝑇𝑙

}𝑙. We now express those degrees of freedom depending on the coefficients {𝑏𝑖, 𝑚}𝑖𝑚 and
{𝑎𝑖}𝑖. Using the linearity of the degrees of freedom, plugging the expression (B.3) in place of 𝑞 and setting
the permutation operator directly on the multi – indices 𝛼𝑖 instead of the coefficients 𝑎𝑖, we can rewrite the
moments as follows.

𝜎𝑀𝑚,𝑙
: ({𝑎𝑖, 𝑚}, {𝑏𝑖}) ↦−→ 𝑏0, 𝑚

∫︁
𝑓𝑗

𝑛𝑗𝑥𝑚
𝑝𝑙 +
dim(ℋ𝑙1∩ℋ𝑙2 )∑︁

𝑖=ℋ0

𝑎𝑖, 𝑚

∫︁
𝑓𝑗

𝑚𝛼𝑖
(𝑥)𝑛𝑗𝑥𝑚

𝑝𝑙

+
dim(ℋ𝑙1∩ℋ𝑙2 )∑︁

𝑖=ℋ0

𝑏𝑖

∫︁
𝑓𝑗

𝑛𝑗𝑥𝑚
𝑚𝜉𝑚(𝛼𝑖)(𝑥)𝑝𝑙 +

dim(ℋ𝑙2 )∑︁
𝑖=dim(ℋ𝑙1∩ℋ𝑙2 )

𝑏𝑖

∫︁
𝑓𝑗

(𝑥𝑚 𝑛𝑗𝑥𝑚
𝑚𝛼𝑖

(𝑥))𝑝𝑙

𝜎𝑇𝑙
: ({𝑎𝑖, 𝑚}, {𝑏𝑖}) ↦−→

𝑑∑︁
𝑚=1

𝑎0, 𝑚

∫︁
𝑓𝑗

𝑛𝑗𝑥𝑚
𝑝𝑙 +

𝑑∑︁
𝑚=1

dim(ℋ𝑙1∩ℋ𝑙2 )∑︁
𝑖=dim(ℋ0)

𝑎𝑖, 𝑚

∫︁
𝑓𝑗

𝑚𝛼𝑖
(𝑥)𝑛𝑗𝑥𝑚

𝑝𝑙

+
dim(ℋ𝑙1∩ℋ𝑙2 )∑︁

𝑖=ℋ0

𝑏𝑖

𝑑∑︁
𝑚=1

(︃∫︁
𝑓𝑗

𝑛𝑗𝑥𝑚
𝑚𝜉𝑚(𝛼𝑖)(𝑥)𝑝𝑙

)︃
+

dim(ℋ𝑙2 )∑︁
𝑖=dim(ℋ𝑙1∩ℋ𝑙2 )

𝑏𝑖

∫︁
𝑓𝑗

(︀
𝑐𝑗𝑚𝛼𝑖

(𝑥)𝑝𝑙

)︀
.

Thus, defining the component-wise parts of the global moments 𝜎𝑇𝑙
by 𝜎𝑇𝑚,𝑙

(𝑞) =
∫︀

𝑓𝑗
𝑛𝑗𝑥𝑚

𝑞 𝑝𝑙 such that

𝜎𝑇𝑙
=
∑︀𝑑

𝑚=1 𝜎𝑇𝑚,𝑙
, one can express any degrees of freedom of the two considered sets as

𝜎𝑀𝑚,𝑙
: 𝑞 ↦−→ 𝑎0, 𝑚𝜎𝑀𝑚,𝑙

(1) +
dim(ℋ𝑙1∩ℋ𝑙2 )∑︁

𝑖=ℋ0

𝑎𝑖, 𝑚𝜎𝑀𝑚,𝑙
(𝑚𝛼𝑖

)

+
dim(ℋ𝑙1∩ℋ𝑙2 )∑︁

𝑖=ℋ0

𝑏𝑖 𝜎𝑀𝑚,𝑙
(𝑚𝜉𝑚(𝛼𝑖)) +

dim(ℋ𝑙2 )∑︁
𝑖=dim(ℋ𝑙1∩ℋ𝑙2 )

𝑏𝑖 𝜎𝑀𝑚,𝑙
(𝑥𝑚𝑚𝛼𝑖

)

and 𝜎𝑇𝑙
: 𝑞 ↦−→

𝑑∑︁
𝑚=1

𝑎0, 𝑚𝜎𝑇𝑚,𝑙
(1) +

dim(ℋ𝑙1∩ℋ𝑙2 )∑︁
𝑖=ℋ0

𝑑∑︁
𝑚=1

𝑎𝑖, 𝑚𝜎𝑇𝑚,𝑙
(𝑚𝛼𝑖

)

+
dim(ℋ𝑙1∩ℋ𝑙2 )∑︁

𝑖=ℋ0

𝑏𝑖

𝑑∑︁
𝑚=1

𝜎𝑇𝑚,𝑙
(𝑚𝜉𝑚(𝛼𝑖)) +

dim(ℋ𝑙2 )∑︁
𝑖=dim(ℋ𝑙1∩ℋ𝑙2 )

𝑎𝑖𝑐𝑗 𝜎𝑇𝑙
(𝑚𝛼𝑖

).

Note that in view of deriving the determination matrix, the last term can also be decomposed as follows.
dim(ℋ𝑙2 )∑︁

𝑖=dim(ℋ𝑙1∩ℋ𝑙2 )

𝑏𝑖𝑐𝑗 𝜎𝑇𝑙
(𝑚𝛼𝑖) =

dim(ℋ𝑙2 )∑︁
𝑖=dim(ℋ𝑙1∩ℋ𝑙2 )

𝑏𝑖

𝑑∑︁
𝑚=1

𝜎𝑇𝑙,𝑚
(𝑥𝑚𝑚𝛼𝑖).

Similar relations for 𝜎𝑉 can ve derived from the expression of 𝜎𝑇 . Thus, we can rewrite the degrees of freedom
as a dot product and derive the characterisation matrix Σ

(𝜎𝑀1,1 , . . . , 𝜎𝑀𝑑,𝑙
, 𝜎𝑉1 , . . . , 𝜎𝑉𝑙

, 𝜎𝑇1 , . . . , 𝜎𝑇𝑙
, )𝑇 = Σ({𝑎𝑖, 𝑚}𝑖𝑚, {𝑏𝑖}𝑖)𝑇

which shape is given in the Figure B.1. We now investigate its structure.
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First of all, as the number of extracted degrees of freedom from the two sets Ia and Ib matches the number
of coefficients determining 𝑟𝑗 , the matrix Σ is a square matrix.

Let us focus on the top two-by-two left blocks, surrounded in blue. They correspond to the coefficients that
should be determined coordinate-wise. Thus, by construction, there are dim({𝑎𝑖𝑚}𝑖𝑚) = 𝑑(𝑙1 + 1)𝑑−1 columns.
And by the definition of the configurations II and I, we have dim({𝜎𝑀𝑖, 𝑗}𝑖𝑗) = 𝑑 + 𝑑((𝑙1 + 1)𝑑−1 − 1) =
𝑑(𝑙1 + 1)𝑑−1. Therefore, this submatrix is a square matrix. Furthermore, each subblock corresponds to one
member of the decomposition of 𝑞 tested through coordinate – wise degrees of freedom whose kernels are built
on the same monomial. Therefore, as the degrees of freedom {𝜎𝑀𝑖, 𝑗

} consider one normal component only,
the coefficients {𝑎𝑖𝑚}𝑖𝑚 for 𝑚 ̸= 𝑗 are not involved, and the subblocks are diagonal. Thus, those submatrices
are invertible and in particular their columns and rows are linearly independent.

On the other side of the matrix, the last bottom block surrounded in deep red matches the Raviart–Thomas
moments tuning members of H𝑘(𝐾)|𝜕𝐾 living exclusively in 𝑥𝐵𝑘|𝑓𝑗 . It is then a submatrix of the classical
Raviart–Thomas’ one, and is thus invertible. In particular, its rows and columns are linearly independent.

The extended bottom right submatrix highlighted in dashed red corresponds to the previously described
high-order submatrix of the Raviart–Thomas’s setting, enriched by the moments {𝜎𝑉 } tuning the behaviour
of members of H𝑘(𝐾)|𝑓𝑗

falling in the intersection ℋ𝑙1 ∩ℋ𝑙2(𝑓𝑗).
This matrix is equivalent to the full Raviart–Thomas setting. Indeed, even if the moments {𝜎𝑉 } have to

be slightly modified from the Raviart–Thomas setting in the configuration 𝐼, this modification leaves the
projection order unchanged and the integrand still belongs to H𝑘(𝐾)|𝑓𝑗 . Therefore, the dashed line block is
invertible and its columns and rows are linearly independent.

There is only left to show that there is no linear dependence between rows of different row blocks. As the
degrees of freedom are linear forms, it is enough to show that the integrand of moments (or polynomials
constructing the point – wise values) that involve the same monomial are linearly independent.

Indeed, being linear forms whose kernels are polynomials, the degrees of freedom can combine each other
only if their integrand (𝑞 tested against the kernel) involve – up to constants – the same monomials. We then
have to show that in both configurations, the rows involving terms whose projection onto the kernel can be
expressed from a same monomial are linearly independent.

In the configurations Ia and Ib, this property comes automatically. Indeed, the only interaction between
degrees of freedom having integrands sharing the same monomial order (and then possibly being based on
the same monomial) is possible between (3.11a) and (3.11b) when |𝑝𝑘| = 𝑙1 + 1. Indeed, by definition of
H𝑘(𝐾), the polynomial 𝑝𝑘 · 𝑛 in (3.11a) is only of order 𝑙1. However, no combination of (3.11b) can form the
moments (3.11a). Indeed, for any real coefficients 𝑐𝑖 it holds∑︁

𝑐𝑖𝑞𝑥𝑖
𝑛𝑥𝑖

𝑥𝑙1+1
𝑖 ̸≡ 𝑞 · 𝑛𝑝𝑘

for any monomial 𝑝𝑘 such that |𝑝𝑘| = 𝑙1 + 1. Note that in the left hand side, all the 𝑐𝑖 should be non-null to
reconstruct the term 𝑝 · 𝑛. However, doing so no factorisation by a single monomial such that

𝑑∑︁
𝑖=1

𝑐𝑖𝑞𝑥𝑖
𝑛𝑥𝑖

𝑥𝑙1+1
𝑖 =

(︃
𝑑∑︁

𝑖=1

𝑐𝑖𝑞𝑥𝑖
𝑛𝑥𝑖

)︃
𝑝𝑘

is possible.
Thus, the designed moments are linearly independent, and no row combination can occur for any tested

polynomial belonging to H𝑘(𝐾)|𝜕𝐾 .
All in all, for both configurations all the rows are linearly independent. As by construction we have as

many relations as unknowns, the matrix is invertible. Thus, we get a null kernel, meaningly

𝐼𝑎 = 0 or 𝐼𝑏 = 0 implies 𝑓 |𝜕𝐾 = 0.

Step 3. Let us now consider the internal characterisation of functions living in H𝑘(𝐾). From the first point of
the proof, it is enough to study the characterisation of 𝑔 within the inner cell. By definition of H𝑘(𝐾), any
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Figure B.1. Disposition of the degrees of freedom.
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function 𝑔 ∈ H𝑘(𝐾)|𝐾 can be decomposed over a set of Poisson’s solutions as follows:

𝑔 =
𝑑∑︁

𝑖=1

dim 𝐴𝑘∑︁
𝑖=1

𝑎𝑖, 𝑗𝑒𝑗𝑢𝑖 +
dim 𝐵𝑘∑︁

𝑖=1

𝑏𝑗𝑥𝑢̃𝑖.

Here, the vector 𝑒𝑗 stands for 𝑒𝑗 = (0, . . . , 1, 0, . . . , 0)𝑇 where the 1 is in the 𝑗th position. The functions 𝑢𝑖

and 𝑢̃𝑖 represents the Poisson’s solutions of the problems{︃
∆𝑢𝑖 = 𝑝𝑖, 𝑝𝑖 ∈ Q𝑚1(𝐾)
𝑢𝑖|𝜕𝐾 = 0

and

{︃
∆𝑢𝑖 = 𝑝𝑖, 𝑝𝑖 ∈ Q[𝑚2](𝐾)
𝑢𝑖|𝜕𝐾 = 0

(B.4)

where {𝑝𝑖}𝑖 and {𝑝𝑖}𝑖 form respectively a basis of Q𝑚1(𝐾) and Q[𝑚2](𝐾). In any presented definition of the
degrees of freedom, the internal characterisation is done through moment – based degrees of freedom of the
form

𝜎𝐼𝑘
: 𝑞 ↦→

∫︁
𝐾

𝑞 · 𝑝𝑘 d𝑥

where the kernels 𝑝𝑘 ∈ 𝒫𝑘 consist of linearly independent polynomials belonging to Qmax{𝑚1, 𝑚2+1}(𝐾), or of
the solution of their corresponding problems of the form (B.4). Therefore, we can derive a characterisation
matrix in the same spirit as in the case of the normal characterisation.

𝜎𝐼1

𝜎𝐼𝑃

⎛⎜⎜⎝
⎞⎟⎟⎠

∫︀
𝑒𝑖𝑢1 · 𝑝1, 𝑖

∫︀
𝑒𝑖𝑢𝐴 · 𝑝1, 𝑖

∫︀
𝑥𝑢1 · 𝑝1

∫︀
𝑥𝑢𝐵 · 𝑝1

∫︀
𝑒𝑖𝑢1 · 𝑝𝑃, 𝑖

∫︀
𝑒𝑖𝑢𝐴 · 𝑝𝑃, 𝑖

∫︀
𝑥𝑢1 · 𝑝𝑃

∫︀
𝑥𝑢𝐵 · 𝑝𝑃

⎛⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎠

Block repeats as many time as coordinates;
𝑖∈J1, 𝑑K Single block

𝑎𝑖, 1

𝑎𝑖, 𝐴

𝑏1

𝑏𝑃

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Repeats
𝑑 times

=

(B.5)
Let us consider the case where 𝒫𝑘 forms a polynomial projection space. There, none of the 𝑝𝑘 ∈ 𝒫𝑘 is the

zero function. In the same time, the functions {{𝑢𝑖}𝑖, {𝑥𝑢𝑖}𝑖} are linearly independent, and being solutions
to some Poisson’s problem with non-zero second member, they are by construction not identically vanishing
on 𝐾. Indeed, even when 𝑚2 < 𝑚1 where second members of the problems (B.4) lives both in Q𝑚1 and
Q[𝑚2], it holds ∆(𝑥 𝑢𝑖) = 2∇ · 𝑢𝑖 + ∆(𝑢𝑖). Thus, it is impossible to combine linearly the function 𝑥 𝑢𝑖 with
functions of the set {𝑢𝑖}𝑖.

Furthermore, the degrees of the polynomials belonging to the space 𝒫𝑘 are lower or equal than the highest
degree of the second members of the Poisson’s problem defining the space H𝑘(𝐾). Thus, every projection of
function of H𝑘(𝐾) onto the space 𝒫𝑘 is not null. And as the internal moments are linear forms, any linear
combination of those moments at fixed 𝑝𝑘 could have its integrand factorised by the kernel 𝑝𝑘 for any 𝑝𝑘 ∈ 𝒫𝑘,
transferring the linear independency of the set {{𝑢𝑖}𝑖, {𝑥𝑢𝑖}𝑖} to the terms {

∫︀
𝑢𝑖 · 𝑝𝑘}𝑖 for any fixed 𝑝𝑘 ∈ 𝒫𝑘.

Lastly, as the space 𝒫𝑘 contains only linearly independent functions the previous argument can be repeated
for each row of the matrix defined in (B.5). And as by construction the number of internal degrees of freedom
matches the dimension of the space H𝑘(𝐾)|𝐾 , the linear independence of functions of 𝒫𝑘 combined with the
linear independence of the tested functions transfer automatically to the moments tested against a basis
of H𝑘(𝐾)|𝐾 . Thus, the internal submatrix is invertible. The same reasoning can be applied when 𝒫𝑘 is
built from the Poisson’s solutions themselves, as the projections of functions would decompose the functions
directly.

Merging the above points together, we get that 𝐼𝑎 = 0 or 𝐼𝑏 = 0 implies 𝑓 |𝜕𝐾 = 0 and
∫︀

𝐾
𝑔 · 𝑝𝑘𝑥 = 0 for

all 𝑝𝑘 ∈ 𝒫𝑘 implies 𝑔|𝐾 = 0. From this, we get that for 𝑞 ∈ H𝑘(𝐾) 𝐼𝑎 = 0 or 𝐼𝑏 = 0 and
∫︀

𝐾
𝑞 · 𝑝𝑘𝑥 = 0 for

all 𝑝𝑘 ∈ 𝒫𝑘 implies 𝑞 = 0. �



GENERAL POLYTOPAL 𝐻(DIV) ELEMENTS S701

Proof of the Propositions 3.18 and 3.19. The proof of the Proposition 3.18 is a straightforward generalisation of
the one presented for the two examples Ia and Ib in the Lemma B.1. The only change lies in the extraction
of the degrees of freedom, which impacts the matrix only on the top left two by two blocks describing the
coordinate-wise behaviours. As the extraction fulfils the Assumption 3.12, the rows involving terms whose
projection onto the kernel can be expressed from a same monomial are linearly independent. Thus, the same
arguments as above can be applied and the conclusion follows.

In particular, by this admissibility criterion there cannot be more than 𝑑 + 1 polynomials reducing to the same
moments’ kernel or to an equivalent point-value quantifier. Thus, as we have 𝑑 + 1 coordinate-wise moments to
tune per decomposed monomial, there is no over-determination at a fixed polynomial degree. The constraint on
the extraction of degrees of freedom ensures the non over-determination overall. Further, the linear independence
of the sub-matrix’s columns is ensured as those polynomials cannot be linearly dependent. Thus, by linearity of
the degrees of freedom, the independence of the kernels transfers to the moments and there is no row dependency.
The submatrix block corresponding to any specific order is therefore invertible, and the same conclusion as in
the proof B.1 follows.

The Proposition 3.18 thus holds by the number of degrees of freedom, matching the dimension of the space
H𝑘(𝐾). Indeed, as by the Proposition 3.19 the kernel of the linear operator defined by the set of degrees of
freedom has a null kernel providing their unisolvence when enclosed within the space H𝑘(𝐾). �

Proof of the relation (3.4). As for any 𝑙1 ≤ 0 the two natural subspaces are in direct sum, recalling the block
construction of H𝑘(𝐾) allows the dimension of the space H𝑘(𝐾) to be easily derived. We can simply add the
dimension of the two main subspaces (𝐴𝑘)𝑑 and 𝑥 𝐵𝑘 to retrieve the dimension of H𝑘(𝐾). Let us derive their
respective dimensions.

First, we compute the dimension of 𝐴𝑘. In the way presented in [11], one can get it by using the superposition
theorem. Indeed, for any second member belonging to Q𝑚1 and any boundary function 𝑝𝑘1𝑓 ∈ 𝐿2(𝐾), there
exists a unique solution to the Poisson’s problems defining 𝐴𝑘 (see e.g. [8]). Thus, reading out the structure of
the set 𝐴𝑘 implies the following relation.

dim 𝐴𝑘 = dimℋ𝑙1(𝜕𝐾) + dim Q𝑚1(𝐾)

= 𝑛(𝑙1 + 1)𝑑−1 + (𝑚1 + 1)𝑑.

Therefore, as (𝐴𝑘)𝑑 is a simple Cartesian product of 𝑑 copies of 𝐴𝑘, we have immediately dim 𝐴𝑘 = 𝑑(dim 𝐴𝑘) =
𝑑(𝑛(𝑙1 + 1)𝑑−1 + (𝑚1 + 1)𝑑). In the exact same way, we retrieve the dimension of 𝐵𝑘 by

dim 𝐵𝑘 = dimℋ𝑙2(𝜕𝐾) + dim Q[𝑚2](𝐾)

= 𝑛(𝑙2 + 1)𝑑−1 + (𝑚2 + 1)𝑑 −𝑚𝑑
2.

Last, we recall that the space 𝑥 𝐵𝑘 simply corresponds to an identical 𝑑 – duplication of the space 𝐵𝑘 where
each coordinate has been multiplied by the corresponding spatial variable. Thus, there is no liberty adjunction
during its construction, and the dimension of 𝑥 𝐵𝑘 equals the one of 𝐵𝑘. By combining this, we finally get

dim H𝑘(𝐾) = 𝑑 dim 𝐴𝑘 + dim 𝐵𝑘

= 𝑑(𝑛(𝑙1 + 1)𝑑−1 + (𝑚1 + 1)𝑑) + 𝑛(𝑙2 + 1)𝑑−1 + (𝑚2 + 1)𝑑 −𝑚𝑑
2.

�

Finally, we point out the relation between the proposed spaces and the slight restriction of the one introduced
in [12]. Indeed, we focus on relation (3.19).

Sketch of the proof that 𝒱2, 𝑘(𝐾) ⊂ H𝑘(𝐾). Let us quickly show that any element of 𝒱2, 𝑘(𝐾) can be recast as
an element of H𝑘(𝐾) for the coefficients (𝑙1, 𝑙2) = (0, 𝑘) and (𝑚1, 𝑚2) = (𝑘 − 1, −1).

Regularity. Any element 𝑣 ∈ 𝒱2, 𝑘(𝐾) belongs to 𝐻1(𝐾). Indeed, 𝑣 ∈ 𝐻(div, 𝐾) ∩ 𝐻(rot, 𝐾) ⊂ (𝐻1(𝐾))𝑑
.

Furthermore, as any element 𝑤 of H𝑘(𝐾) writes 𝑤 = 𝑢1 + 𝑥 𝑢2 with 𝑢1, 𝑢2 both having for regularity 𝐻1(𝐾),
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𝑤 ∈ 𝐻1
𝑙𝑜𝑐(𝐾). And since 𝐾 is compact and bounded, 𝐻1

𝑙𝑜𝑐(𝐾) = 𝐻1(𝐾). Thus, the regularity asked for any
element 𝑣 to be in 𝒱2, 𝑘(𝐾) is stricter than the one asked for any element 𝑤 to be in H𝑘(𝐾).

On the boundary. Any 𝑣 ∈ 𝒱2, 𝑘(𝐾) is a polynomial and satisfies 𝑣 · 𝑛|𝑓 ∈ P𝑓 (𝐾) on every face 𝐾 of the polygon
𝐾. But 𝑣 ·𝑛|𝑓 is nothing else than the linear combination

∑︀𝑑
𝑖=1 𝑣𝑖𝑛𝑥𝑖

of the coordinate-wise functions 𝑣𝑖 with the
normal’s coefficients 𝑛𝑥𝑖 . Thus, each polynomial 𝑣𝑖 has no choice but to live in the space P𝑘, ..., 𝑘, 𝑘+1, 𝑘,..., 𝑘(𝐾),
where the 𝑘 + 1 is in the 𝑖th position. The space ×𝑑

𝑖=1P𝑘, ..., 𝑘, 𝑘+1, 𝑘,..., 𝑘(𝐾) is indeed the smallest space that is
polynomial (required by the linear combination) and that contains all the functions 𝑣 such that 𝑣 · 𝑛|𝑓 ∈ P𝑓 (𝐾).
Note that allowing a higher degree in the 𝑖th variable is required as on each face 𝑓 ∈ 𝜕𝐾, 𝑥 · 𝑛 ≡ 𝑐 for some
constant 𝑐. And ×𝑑

𝑖=1P𝑘, ..., 𝑘, 𝑘+1, 𝑘,..., 𝑘(𝐾) ⊂ P0(𝐾) + 𝑥 P𝑘(𝐾), which is exactly the structure of the H𝑘(𝐾)
space on the boundary.

Within the element. For any 𝑣 ∈ 𝒱2, 𝑘(𝐾), it holds{︃
∇(∇ · 𝑣) ∈ ∇(P𝑘−1(𝐾))
∇× 𝑣 ∈ P𝑘−1(𝐾).

Thus, it comes ∇(∇ · 𝑣)⏟  ⏞  
∈∇(P𝑘−1(𝐾))

−∇× (∇× 𝑣)⏟  ⏞  
∈∇(P𝑘−2(𝐾))

∈ ∇(P𝑘−1(𝐾)), which implies ∇2𝑣 ∈ ∇(P𝑘−1(𝐾)) and writes

∇2𝑣 =

⎛⎜⎜⎝
∑︀𝑑

𝑖=1
𝜕2𝑣1
𝜕𝑥2

𝑖

...∑︀𝑑
𝑖=1

𝜕2𝑣𝑑

𝜕𝑥2
𝑖

⎞⎟⎟⎠ ∈

⎛⎜⎝P𝑘−2, 𝑘−1, ..., 𝑘−1(𝐾)
...

P𝑘−1, 𝑘−1, ..., 𝑘−2(𝐾)

⎞⎟⎠ .

Thus, we have naturally

∇2𝑣 ∈

⎧⎪⎨⎪⎩𝑢,

⎛⎜⎝∆𝑢1

...
∆𝑢𝑑

⎞⎟⎠ , ∆𝑢𝑖 ∈ Q𝑘−1(𝐾)

⎫⎪⎬⎪⎭ .

Summary. Let 𝑣 ∈ 𝒱2, 𝑘(𝐾). Then 𝑣 can be decomposed as follows:

𝑣 = (𝑣1 + 𝑣2)|𝐾 + (𝑣1 + 𝑣2)|𝜕𝐾

where {︃
𝑣1 ∈ (P0(𝜕𝐾))𝑑 represents the constant part of 𝑣 on the boundary
𝑣2 ∈ (P𝑘(𝜕𝐾) ∖ P0(𝜕𝐾))𝑑 represents the higher parts of 𝑣 on the boundary

and {︃
𝑣1 = 𝑣|𝐾 − 𝑝[1], ..., [1]

𝑣2 = 𝑝[1], ..., [1]

for any 𝑝[1], ..., [1] belonging to 𝑥P0. Doing so, we get{︃
𝑣1|𝜕𝐾 ∈ (P0(𝜕𝐾))𝑑

𝑣1|𝐾 = 𝑣|𝐾 − 𝑝[1], ..., [1]

and {︃
𝑣2|𝜕𝐾 (P𝑘(𝜕𝐾) ∖ P0(𝜕𝐾))𝑑

𝑣2|𝐾 = 𝑝[1], ..., [1].
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There, we get straightforwardly from the previous paragraphs:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝑣1 ∈ 𝐻1(𝐾)
𝑣1 · 𝑛|𝜕𝐾 ∈ P0(𝜕𝐾) ⊂ Q0(𝜕𝐾)
∆𝑣1|𝐾 = 𝑣|𝐾⏟ ⏞ 

∈∇(P𝑘−1(𝐾))
⊂P𝑘−1(𝐾)

−∆(𝑝)⏟  ⏞  
=0

∈ P𝑘−1(𝐾) ⊂ Q𝑘−1(𝐾)

and ⎧⎪⎨⎪⎩
𝑣2 ∈ 𝐻1(𝐾)
𝑣2 · 𝑛|𝜕𝐾 = 𝑣|𝜕𝐾 · 𝑛− 𝑣1 · 𝑛|𝜕𝐾 ∈ P𝑘(𝜕𝐾) ⊂ Q𝑘(𝜕𝐾)
∆𝑣2|𝐾 = ∆(𝑥 𝑐) = 𝑥∆(𝑐) = 0 ∈ P[−1](𝐾) ⊂ Q[−1](𝐾)

for some constant 𝑐 ∈ P0(𝐾). Writing 𝑣2 as 𝑣2 = 𝑥𝑤 on the boundary with 𝑤 ∈ 𝑥 P𝑘, ..., 𝑘(𝜕𝐾)
⊂ ×𝑑

𝑖=1P𝑘, ..., 𝑘, 𝑘+1, 𝑘,..., 𝑘(𝜕𝐾) ∖ P0(𝜕𝐾), it comes further⎧⎪⎨⎪⎩
𝑤 ∈ 𝐻1(𝐾)
𝑤 · 𝑛|𝜕𝐾 ∈ P𝑘(𝜕𝐾) ⊂ Q𝑘(𝜕𝐾)
∆𝑤|𝐾 = 0 ∈ P−1(𝐾) ⊂ Q[−1](𝐾).

Taking without loss of generality 𝑐 = 1, considering 𝑣 = 𝑣1 + 𝑥 𝑤 and setting (𝑙1, 𝑙2) = (0, 𝑘), (𝑚1, 𝑚2) =
(𝑘 − 1, −1), we get:

𝑣1 ∈ 𝒜𝑘, 𝑣2 = 𝑥 𝑤 ∈ 𝑥ℬ𝑘,

and therefore,
𝑣 = 𝑣1 + 𝑣2 ∈ H𝑘(𝐾).

�

Acknowledgements. E. Le Mélédo and P. Öffner have been funded by SNF project 200020 175784 “Solving advection
dominated problems with high order schemes with polygonal meshes: application to compressible and incompressible flow
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