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GENERAL POLYTOPAL H(div)-CONFORMAL FINITE ELEMENTS AND
THEIR DISCRETISATION SPACES

REMI ABGRALL, ELISE LE MELEDO* AND PHILIPP OFFNER

Abstract. We present a class of discretisation spaces and H(div)-conformal elements that can be
built on any polytope. Bridging the flexibility of the Virtual Element spaces towards the element’s
shape with the divergence properties of the Raviart—Thomas elements on the boundaries, the designed
frameworks offer a wide range of H (div)-conformal discretisations. As those elements are set up through
degrees of freedom, their definitions are easily amenable to the properties the approximated quantities
are wished to fulfil. Furthermore, we show that one straightforward restriction of this general setting
share its properties with the classical Raviart—-Thomas elements at each interface, for any order and any
polytopal shape. Then, to close the introduction of those new elements by an example, we investigate
the shape of the basis functions corresponding to particular elements in the two dimensional case.
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1. INTRODUCTION

There has been recently a lot of activity in the design of methods able to deal with polygonal meshes. In the
case of elliptic PDEs, one can mention [3,5,11,13,20]. One may also mention [6,21,27] for fluid problems, both
for compressible and incompressible flow. These are very partial lists only. In the case of hyperbolic problems, the
flexibility of the discontinuous Galerkin method also enables, a priori, to deal with polygonal meshes, see [10],
one of the very first papers after the seminal works of Reeds and Hill [25] and Lesaint-Raviart [19]. There are
several reasons for this interest of the scientific community: it allows more flexibility in the geometry description
and facilitate mesh adaptation, and several other reasons such as the status of hanging nodes.

There are many variants of the discontinuous Galerkin method, and one family of algorithms that has received
a lot of attention recently is the so-called Flux Reconstruction methods [18,23,28].

The classical simplicial Flux Reconstruction approach involves a point-wise approximation of the flux in a
finite-differece framework, modified by a term living only on the boundary in order to retrieve stability and local
conservation. Up to some involved modifications, this method can be adapted to quadrangles and hexaheda.
In any of those cases, the Flux Reconstruction technique can be rewritten as a Galerkin method applied to
a perturbed flux, perturbation guaranteeing the local conservation and stability. The perturbation term is
determined by a lifting technique involving a Raviart—Thomas [24] polynomial.
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Going further and using the Residual Distribution framework, we have shown in [1] how to construct schemes
analogous to Flux Reconstruction for arbitrary polytopes, convex or non-convex. By using an entropy correction
term, this method benefits from a non-linear entropy stability property.

In this paper, our primary motivation is to construct a Raviart-Thomas like approximation, so that we can
reinterpret the correction term we introduce in [1] exactly as it is done for simplices in [28]. We are also interested
in providing new H (div)-conformal discretisation spaces on arbitrary polytopes which we believe has its interest
by itself.

The theory of H(div)-conformal element has already been studied by Raviart and Thomas [24] and later
generalized by Nédélec [22] or Brezzi et al. in the context of mixed finite element method [7]. More recently, a
mixed Petrov-Galerkin scheme using Raviart—-Thomas elements has also been investigated in [16]. However, up
to the authors knowledge, those elements are limited to simplicial and quadrangular shapes.

Several attempts to use general polygons have been made [9,17,26], but they usually make use of generalized
barycentric coordinates and are delicate to handle in distorted non-convex elements. A first polygonal H (div)-
conformal element has been proposed in [14] using gradient reconstruction and pyramidal sub-meshes tessellation.
However, their construction requires some shape regularity within the mesh and the parallel with Raviart—Thomas
spaces is limited to the lowest order space. Another approach using stabilisation techniques has been later
investigated in [15], where if more flexibility on the element’s shape has been achieved the parallel with the
Raviart—-Thomas elements is still limited to lowest-order simplicial shapes.

Some other approaches as Virtual Elements Method [11] introduced approximation spaces based on Poisson’s
solutions. Although more flexible towards the element’s shape, those are scalar and not H (div)-conformal. A first
promising shape-flexible H (div)-conformal discretisation has been recently proposed in [12], where the conformity
property is enforced directly at the level of the boundaries normal components. As it therefore leaves on each
boundary face only a scalar representation of the normal component, the boundary setting may appear quite
restrictive, especially in applications for which a direct component-wise characterisation or tangential information
is suitable. Therefore, its usage may be delicate when one targets a discretisation enhancing the representation
of boundary’s quantities. We rather focus on creating spaces enhancing a boundary characterisation of the
discretised quantity itself, that links to the setting presented in [11]. The quantity of information available on an
element is maximized at the boundary, while the H (div)-conformity is preserved.

In this paper, we propose a construction enhancing a boundary characterisation, that inherits the interface
properties of the Raviart-Thomas elements and benefits from the shape flexibility of the Virtual Element
discretisation. Moreover, rather than defining a basis on which the correction functions can be decomposed, this
new setting offers a new element class that can be used as such in the construction of further numerical schemes.
Note also that in [1], we do not need the explicit construction of this new elements, we only need the knowledge
of degrees of freedom. In that sense, this construction is also in the spirit of VEM.

After briefly recalling the key ideas of the Raviart—Thomas elements, we introduce our new class of discretisation
spaces. In a second time, we detail a possible definition of H(div)-conformal element to finally test them through
the behaviour of their corresponding basis functions in the numerical results. For the sake of readability, proofs and
further element examples will be given in the appendix. For interested readers, more details on the construction
can be found in the extended technical report [2] and an application of those elements can be found in [1].

NOTATIONS
Throughout the paper, our notation will be the following:

Geometrical notations

— x: spatial variable z = (zq, ..., xd)T € R

— K: polytopal shape with interior K and boundary 0K.
— n: number of faces of the polytope K.

— f: generic face f of the boundary 0K.
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— n: generic normal to a generic face f.
— f;: jth face of the boundary K, where j € [1, n].
— 0;K: hyper-face of f € 0K for which the variable z; is fixed.

Monomials and polynomial spaces
— a: multi-index a = (a1, ..., ag) defining the monomial z* = z{* ... z5".
— Q: space of polynomials of degree mlax(al-) is at most k, of dimension (k + 1).
— IPg: space of polynomials of degree Z‘Zzl a; < k, of dimension (k '}; d).
— Qi space of polynomials of degree m?X(ai) =k.
— P space of polynomials of degree Z?zl a; = k.

— Py, ks, ..., k,: Space of polynomials with degree in x; < k;.
= Pry, .. (ki) ..., kq SPace of polynomials with degree k; in ;.

For example, when considering an element in 2D, a face is one-dimensional and can be parametrised as
To = axy + b for some constant a and b. The space 01 K is then the hyper-face of the line for which the variable
x1 is fixed, and Q (01 K) is reduced to the space of constants. In 3D, 9; K would reduce to the line driven by
29 and 0o K to the line driven by z1. There, Qg (9, K) would be the space of polynomials of degree k whose
monomials are only involving the terms x,.

Functional spaces
~ Ri(0K) = {p € L*(K), p|s, € Pr(f;) for every face f; € OK}.
~ H(div,K) = {u € (L*(K))?, divu € L2(K)}.

Operators

- X?zlz Cartesian product: ijl(:ri) =z = (x1,...,24q)-

— {(;}4: set containing the d cyclic permutations of {k+ 1, k, ..., k}.
—_————

d—1 times
— 1: indicator function.

— o: Hadamard product.

2. CLASSICAL RAVIART-THOMAS ELEMENTS

The spirit of the Raviart—Thomas elements is to work in a vectorial polynomial discretisation subspace of
H(div, K) in which the functions are characterised separately on the boundary and within the elements. Doing
so, the enforcement of the H(div)-conformity can be done at the interfaces by a specific choice of moment-based
degrees of freedom acting only on the boundaries. As formalised by Nédelec [22], its definition on any simplicial
reference shape K contained in R? reads

RTy(K) = (Py(K))? @ 2 Py (K). (2.1)
There, any element p € RTj(K) C (Pg,1(K))? writes under the form

p1+T1q
P2+ 124 ¢ ¢ ¢
p= : = Xpi+ziq) = Xpi+ Xziq (2.2)
: i=1 i=1 i=1
Pd +Taq

for some p; € Pr(K), i € [1, d] and ¢ € Py, (K). Up to some straightforward computations, the dimension of
RTj(K) can be formulated as

dim RTy(K) = dim(Py_1 (K)?) + (d + 1) dim Py, (f). (2.3)
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Therefore, the definition of the element is done by setting internal and normal moments projecting respectively
on the spaces P_1(K)? and R;,(9K).

Definition 2.1 (Degrees of freedom). Any q € RT\(K) is determined by

Normal moments: ¢ +— q-nppdy(x), Vpr € Ri(0K), (2.4a)
0K

Internal moments: ¢ +— / q - pr—1 de, Vpr_1 € (Pp_1(K))%, (2.4b)
K
where dv represents the Lebesgue measure on the faces.

The basis functions of RT(K) that are dual to those degrees of freedom verify
q-nlox €PL(OK) or q-nlgg =0 (2.5)
and are classified respectively as normal and internal basis functions. One can observe the H(div)-conformity

property: it reduces here to the continuity of the normal component across the boundary. Further divergence
properties also hold directly by the nature of the approximation space [24], being a subspace of H(div, K).

Property 2.2 (Divergence properties). For any ¢ € RT(K), it holds:

div g € Pp(K) (2.6)
q- n|aK S Rk(aK)

However, as the relation (d + 1) dim Py (f) = dim Ry (0K) is only valid when the number of edges is d + 1,

this definition is very specific to the simplicial case. Therefore, when going to quads, the definition is changed by

modifying the meaning of the polynomial degree, i.e. using Qy, spaces instead of P spaces. The RTy(K) space

then reads }

RT%(K) = (Qu(K))" + 2 Quy(K) = X P, k1, k.o k)

i=1

and benefits from a dimensional split similar to (2.3);

dim RTk(K) = 2d dim Qk(f) + dim >< PCi({k*L E,..., k})(K)
i=1
A definition of degrees of freedom analogous to (2.4) can then be set up. However, this extension is very specific
to quads and cannot be adapted to offer a discretisation framework for arbitrary polytopes (see Abgrall et al. [2]
for details).

3. A FRAMEWORK FOR ARBITRARY POLYTOPES

In order to build a unifying discretisation framework, we have to define spaces Hy (K) that fulfil the following
property:

Requirement 3.1 (Requirements on the discretisation space). The space Hj,(K) is a finite dimensional vectorial
subspace of H(div, K) whose dimension adapts to both the number of the polygon’s faces and the discretisation
order.

In addition, to be able to endow H(div, K)-conformal elements Ej(K) through definitions of degrees of
freedom, we further ask the Requirement 3.2.

Requirement 3.2 (Requirements on the elements).

(1) For any space Hj(K), there exists a unisolvent set of degrees of freedom {o} that can be split into internal
and normal subsets so that both the number of internal degrees of freedom and of the normal degrees of
freedom per face do not depend on the shape of K.
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(2) The number of internal and normal degrees of freedom both increase strictly monotonically with the
discretisation order.

Lastly, to ensure the existence of a split into internal and normal subsets of degrees of freedom that matches
the classification (2.5) at the level of the dual basis functions, the feasibility of the Requirement 3.3 in Hj(K) is
also needed.

Requirement 3.3 (Requirement on the basis functions). For any polytope K, the internal basis functions
vanish on every face of the element.

One may possibly ask for one further requirement ensuring a parallel with the Raviart—Thomas setting from
the lowest order on.

Requirement 3.4 (Optional requirement on the basis functions). The lowest order element has no internal
degrees of freedom.

3.1. A class of admissible approximation spaces.

Construction of spaces of discretisation

In order to design a subspace of H(div, K) that satisfies Requirement 3.1 we are led to define a space
Hy (K) with the same architecture as the classical Raviart—-Thomas space. Thus, we look for spaces in the form
Hy(K) = (Ak)d + x By, for two given functional sets Ax and By. In order to design those two sets, we start
by observing that the use of polynomial spaces is excluded by the Requirement 3.3, being required for any
number of edges. Therefore, we consider the spaces A and By based on solutions to Poisson’s problems as in
the context of the VEM method [11]. There, a way to allow the existence in Hj(K') of smooth internal basis
functions is to use the set of solutions to the boundary problems {u|sx = 0, Au = pi} for any pi belonging to
Qm(K), m e NU{-1}.

In addition, as the H(div, K)-conformity will be enforced by normal quantities that are tested only on the
boundaries, we also consider the set of Poisson’s problems {ulsx = prly, Au = 0} defined from polynomial
boundary functions px € Q;(f), 1 € NU{—1} for each face f of K. Thus, seeing the boundary 0K face-wise,
we define the set

Hi(0K) = {ulox € L*(OK), u|; € Qi(f), Vf € OK} (3.1)
and build the space Hy(K), for integers Iy, ls, m1 and ms, as follows.

Definition 3.5 (Hj(K) space).
Hy(K) = {u € H'(K), ulox € Hi, (0K), Au € Qp, (K)}
+ z{u € H'(K), ulox € Hi,(0K), Au € Qpuyy(K)}- (3.2)

The choice of l1, I3, my and ms is related to k and will be discussed below.

Remark 3.6.

— The two subspaces in the definitions of Hy(K) are in direct sum whenever I; < 0.

— The presented space is based on polynomial spaces Q(K) rather than P (K) for the sake of consistency
with the definition of the Raviart-Thomas space built on quads. This is also a more natural choice when
considering mappings to elements of reference, as the monomials involved in the transformations a more
coherent with a Q(K) based discretisation (especially for the lower order discretisation where the monomial
xy is not part of Py (K) but already belongs to Qq(K)).
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Properties of Hg(K) spaces

The space Hj (K) is constructed from four independent blocks whose definitions are driven by the independent
coefficients I, I, my and ms. The couple (m, ms) drives the discretisation quality exclusively within the cell
while (11, l2) takes care only of the boundary. Thus, the separation between internal and normal basis functions
is natural. Furthermore, the Property 3.7 holds, emphasising that the H(div, K)-conformity is ensured by the
definition of Hy(0K), while the inner smoothness is provided through the Laplacian.

Proposition 3.7. For any function q belonging to any space Hy(K), it holds:
q -nlox € Hmax{iy,1,}(0K) and divg € L*(K). (3.3)
It comes the following inclusion allowing H (div)-conformity.
Corollary 3.8. For any couples (11, l2) and (mq, ma),
Hy(K) C H(div, K).
When selecting I; < 0, those spaces are of dimension
dimHy,(K) = n(d(l + D)+ (L + D)) + (dimy + 1) + (ma + 1)* — md), (3.4)

making their structure a priori suitable to be used as discretisation spaces endowing H (div, K)-conformal
elements.

Example 3.9. When K is a two-dimensional simplex and when Iy, Iy are chosen as (l1, l2) = (=1, k), the
discretisation quality of the normal component matches the one of the Raviart—Thomas setting.

Admissibility of the spaces for building H (div)-conformal elements

In order to define elements in the spirit of Raviart-Thomas, we need to set (d(l; + 1)~ + (I3 +1)?~!) normal
degrees of freedom per face and d(mj + 1)? + (mg + 1) — mg internal degrees of freedom. While this splitting
does not impact the set of admissible coefficients (my, ms), it reduces the range of coefficients (I, l3) that can be
used. Indeed, the space Hy(K) is constructed from four independent blocks providing two distinct discretisations:
on the boundary and within the element. Thus, when testing a function of Hy (K) through normal degrees of
freedom, one can only retrieve the polynomial obtained from the two boundary conditions defining the sets Ay
and By,. On each face, this polynomial is of the form p = pi, 4 + px, B, where the function pi, 4 € (Ag)?|s reads

d
Pe,a= X Z a;;z™ (3.5)

for a given set of multi-index {a;}; and coefficients {a; ;}; ; depending on the coordinates x;. The function
Pk, B € © By|f reads however

d
pep=X [z D> b (3.6)
=1 18i|<l>

for a given set of multi-indices {/3; }; and coefficients {b; }; independent of the coordinates x;. Therefore, denoting
by {&}je[1,q) the coordinates permutation that allows to shift the lowest orders terms of z By|s to (Ay)?|y,

p € Hg(K)|; can be written as follows:

If l2 lev p

d d
Z a,-j:zzo” +>< Zj Z bzl’ﬁl

L\ Joui| <l J=1 [8i1<l2

J

I
X =~

Z (aij + béj(i))l’ai + Zj Z bll‘ﬁl + >< aojl’?. (37)
L\ Jasl<ty L<|Bi|<l2 j=1
levi|7#0

J
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d
Ifly 21+1, p= >< Z (ai]‘ + bgj(i))xai + aojx? . (3.8)
J=1\ |ai|<ly
|ai 70|
The structure of those relations implies that the terms a;; and b, (;) are combined into a single coefficient and
cannot be specified individually from further normal degrees of freedom. Indeed, the remaining freedom can only
be seen inside the polytope, as a consequence of the boundary conditions on the Poisson’s solutions in either Ay
or x By. To prevent any over-determination by the normal degrees of freedom in Hy(K)|s, we therefore have to
make sure that the dimension of the boundary part (3.7) and (3.8) of any function living in Hy (K) is larger
than the number of wished normal degrees of freedom per face. By reading out the structure of (3.7) and (3.8) it
comes

(Iy + 1)1 if I} =—1,
dimHy (K)|; = { d(ly + 1)1 + (I + D)4 =197 if Iy > 1y, (3.9)
d(ly +1)%-1 otherwise.

We thus restrict the admissible couples (1, l2) to those verifying the Admissibility conditions 3.10, preventing
any over-determination.

Admissibility conditions 3.10 (Necessary condition for using conformal elements). If dim N is the number
of normal moments per face that we wish, and dim Hy,(K); is the number of coefficient we can tune for the face
f, we should have:

dimN < dim Hk<K)|f.

In the case Iy > [y, it reduces to:

dily + D)5 4 (o + D) <d(ly + D) 4 (I + 1) — 8! (& 1971 <0)
while otherwise it comes
d(ly + 1)+ (I + D)4 <d(ly +1)%? (& Ilp=-1).

Regarding the internal characterisation, any couple of coefficients (my, ms) is allowed.
Definition of series of spaces

While fulfilling the above conditions, one can set a specific discretisation framework within which the spaces
share a predefined structure. By example, defining the four coefficients Iy, ls, m1 and ms through affine relations
of the type [ = ak + b for some index k € N, the range of discretisation qualities achievable within the framework
is predetermined by a refinement sequence in each block, and the order of each space can be simply defined
as the index k generating each of the four coefficients. A typical working example is obtained by defining

m1 =mg =k—1,1; =0 and l; = k, leading to a series of discretisation spaces of order k. This case is specifically
detailed in the Section 3.4.

3.2. Definition of admissible elements

Under the Admissibility condition 3.10, the spaces Hj (K) allow the construction of H (div)-conformal elements
through the definition of normal degrees of freedom enforcing the conformity and internal ones preserving it. We
propose here a possible construction of such sets.

Definition of admissible normal degrees of freedom

The role of the normal degrees of freedom is to determine vectorial polynomials on the boundaries and to
enforce the H(div)-conformity of the element. We define them as the normal component of the tested quantities
projected against polynomials of Hj (/)| ;. We focus on the following possibilities:
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Available types of degrees of freedom. For any ¢ € H(K), we define:

(1) The face integral of coordinate-wise components tested against projection polynomials p:

qr /fQ’i ’I’med’)/(aj), vp € @max{ll, lz}(f) (3103)

(2) The face integral of a function in Hy(K) projected onto the face normal, and tested against polynomials:
qr— /fq ' npd’y(a:), vp € Qmax{l17l2}(f)7 (310b)

q— /fq ~npdy(x), Vp € {zipi, i € Qci(la,to, .. 12)(f), T € [1, d — 1]} (3.10c)

(3) The pointwise values of the discretised quantity tested against the face’s normal:

g+ q(xim) - n;, for sampling points {x;, }m on the face f;. (3.10d)

Defining the normal degrees of freedom then reduces to choosing d(l; + 1)9~1 + (I3 4+ 1)4~1 of them among the
possibilities (3.10) so that their set is unisolvent for Hy (K)|;. To ensure this, preventing any under-determination
is sufficient. Therefore, we need to avoid the selection of projectors that are linearly dependent, and pay attention
to determining both global and coordinate-wise behaviours of any vector polynomial ¢ € Hy(K),s.

Example 3.11. In two dimensions and for I; =l = 0, any p € Hy (K)‘f reads

- (0)+<()

for some constants A, B and C. The characterisation of ¢ can be done by selecting two component-wise moments
involving An;, or Bn;y, tested against the constant polynomial p = 1 and one global moment that tests
q-n=C Ny + ny) + Anig + Bn,, against the polynomial p = z. One could also choose two global moments
and one coordinate-wise.

In practice, the selection of degrees of freedom reduces to choosing the polynomials p on which the function ¢
will be tested coordinate-wise. The other polynomials p play the role of test functions for the global normal
component ¢ - n. The unisolvence of the set is then ensured by the following admissibility conditions.

Admissibility conditions 3.12.

(1) The projection polynomials p involved in (3.10a), (3.10b) and (3.10c), and all the forms (3.10d) that define
the point values must be linearly independent.

(2) When using a coordinate-wise degree of freedom of the type (3.10a), polygonal shapes K containing a face
parallel to any axis are not allowed. The term n;, or n;, would indeed always vanish for some i € [1, n],
thus not describing any function of Hy (K),;.

Note. The second point of the admissibility conditions may seem unreasonable as it may prevent the use of
some shapes for specific orientations. However, it is always possible to easily modify the incriminated moments
element-wise or to select other moments that make the element robust with respect to rotation while still yielding
H (div)-conformity. See Abgrall et al. [2] for more details.

To help the construction of an element on K through the selection of degrees of freedom among those fulfilling
the Admissibility condition 3.12, we recall that the chosen set of degrees of freedom imposes the shape of the
dual basis functions. We can therefore select the degrees of freedom depending on the wished properties of the
basis functions.

More crucially, the selection of global and/or coordinate-wise normal degrees of freedom leads to the reclassi-
fication of some basis functions as internal ones. Indeed, as the face-wise normal component of any function
q in Hy(K)|s is only of degree max{l1, l5}, the term ¢ - n| requires only (max{ly, lo} + 1)?~* basis functions
to be decomposed on. Therefore, up to d (I; + 1)4~1 basis functions may see their global normal component
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vanishing on every face. Their coordinate-wise components will however not vanish, as they take care of the
coordinate-wise behaviours that cannot be determined solely through the expression of ¢ - n|;.

Remark 3.13. Typically, the more global degrees of freedom are designed, the more the representation of ¢ - n
is completed globally. As a consequence, more basis functions have a vanishing normal component as they are
forced to take care only of coordinate-wise behaviours, forcing them to be reclassified into internal basis function.
The reverse scenario may also be considered.

To avoid this reclassification and allow a parallel with the Raviart—Thomas elements from the lowest order
space, we ask the Requirement 3.4. This will be discussed in the Section 3.4.2.

An example of a possible definition of normal degrees of freedom

As an example, we detail one selection of normal degrees of freedom in the case I3 > [; where every function in
Hy (K)|y is of the form (3.7). For interested readers, other possibilities are presented in the technical report [2].

Here, we select moments from the set (3.10) so that the elements of Hj,(K); are determined as much as
possible by testing only their normal component. The remaining freedom is characterised by few coordinate-wise
moments. We consider:

g | qing T dy(z), for all j € [[1, n] and all 7 € [1, d], (3.11a)
T

o q |—>/ q- npgdy(x), for all j € [1, n] and all py, € Qu, (f;) \ Qi (f), (3.11b)
fi

ol q— / q-n; xé?gﬁdv(m), for all j € [1, n] and any Z € Q, (9;K), (3.11¢)
i

where & € Q;,(R?"2) is not involving the variable z; so that the moment (3.11c) has for integrands the second
terms of the right hand side of (3.7) when |3;| = lo. Note that the set (3.11) is of dimension d(l; + 1)471 +
(Iy + 1)1 — (I + )41 + (d — 1)(Iz + 1)972 though we require d(l; + 1)~ + (I3 + 1)?~! moments. Thus, this
configuration can only be used when [y and Iy verify the feasibility condition:

(L + 1)< (d—1)(Iy +1)%72, (3.12)

which is a reduction of the Admissibility conditions 3.10. In two dimensions the above relation reduces to an
equality, and all the degrees of freedom presented in (3.11) are considered. In higher dimensions, a further
selection from the set (3.11) is required. There, we consider the sets (3.11a) and (3.11b) fully and select any
(I; + 1)~ moments from (3.11c).

Definition 3.14. Any choice of (I; + 1)~! moments among (3.11c) is denoted as the “configuration Ia”.
Associated with any admissible internal degrees of freedom, its unisolvence is given by the Lemma B.1.

Up to the additional coordinate-wise moments, the configuration Ia is close to the Raviart—-Thomas setting.
However, the scaling of the dual basis functions does not match the one of the Raviart—Thomas basis. In order
to obtain a similar scaling, one should rather scale the above degrees of freedom with respect to each edge’s
length and orientation, or consider in place of the moments (3.11c) the point-wise values

q— q(xim) - n, (3.13)
where i € [1, d], m € [1, (1 +1;)%1] and 2, is any sampling point on the face f;.
Definition 3.15. Any selection of (I; + 1)¢~! degrees of freedom among the sets (3.11a), (3.11b) and (3.13) is

labelled as the “configuration Ib”. Associated with any admissible internal degrees of freedom, its unisolvence is
given by the Lemma B.1.

Remark 3.16. As we assume in this example that ls > [y, the choice of [ is restricted to either [y = 0 or
[y = —1. Thus, in the Definitions 3.14 and 3.15, one would only need to select respectively one or none degrees
of freedom from the set (3.11c) or (3.13).
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Definition of admissible internal degrees of freedom

In order to define admissible internal degrees of freedom, we have to make sure that the corresponding internal
basis functions vanish on every face. We therefore stick to the idea of Raviart-Thomas and define moment based
degrees of freedom that read for any ¢ € Hy (K)

o(q) — / q - prdx, for all p, € P(K) (3.14)
K

for some function space P(K) of dimension ((my + 1)% + (mz + 1)%). Considered as a test space, P(K) may
simply gather polynomial functions used in the definition of the Poisson’s problems generating Hy (K). The
discretised quantities would then be determined through their polynomial projections. Another choice is to test
against the set of Poisson’s solutions to the problems {Apy € P, pilox = 0}.

Using one or the other possibility for P(K), the unisolvence of the set of internal degrees of freedom in
Hy (K)| is ensured by the following admissibility conditions (see the proof B.1, Part 3):

Admissibility conditions 3.17.

(1) The polynomials {p;}; generating P(K) are linearly independent.
(2) No polynomial p; is of degree larger than max{my, mqs + 1}.
Definition of the elements
Combining the two previous paragraphs with the definition of the space Hy(K), H(div, K)-conformal elements

can be set up.

Proposition 3.18. Let K be any polytope satisfying the second item of the Admissibility conditions 3.12 and
Hy.(K) be any admissible space built on it. Let also {ox} be any selection of d(Iy + 1)1 + (Iy + 1)?~1 degrees of
freedom from the set (3.10) fulfilling the first item of the Admissibility conditions 3.12, and {o1} the set of internal
moments built through the expression (3.14) for any of the projection sets P(K) fulfilling the Admissibility
conditions 3.17. Then, the set {on} U{or} is unisolvent for Hy(K) and defines a H(div, K)-conformal element.

This well-possessedness property is an immediate corollary of the following proposition, proven in the
Appendix B.

Proposition 3.19. Let g € Hy(K), and denote on(q) the n-tuple of normal degrees of freedom extracted from
the set (3.10). If

on(g) =0 and /q-pkdm:O for all p, € P
K

then ¢ = 0.
At this point, any admissible definition leads to H(div, K)-conformal elements.

3.3. Summary of the construction

Let us summarize the spaces construction and the example of normal degrees of freedom that has been detailed
above. To begin with, the class of discretisation spaces reads
H(K) = {u € HY(K), ulox € Hy, (0K), Au € Qy,, (K)}*
@ z{uec HY(K), ulogx € Hi,(0K), Au € Q) (K)},
with the convention that Q_; = {0} and where the integers l1, l3, m; and mq verify
my, Mo, log > —1 and —-1< 1 <0.
So defined, it holds:

— dimH(K) = n(d(ly + D)4+ (o + D41 + ((mg + 1) + (mg + 1)% — m3)
— For all ¢ € Hp(K), ¢-nlox € Humax{iy, 1.} (0K) and Hy(K) C H(div, K).
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TABLE 1. Summary of the used degrees of freedom for the configurations Ia.

Representation Of low order Of (Ar N By)|ox Of higher orders
Available when Inherited from f qi nzimélﬂ f q- Npk
(d—1)(Iz +1)472 the highest order rep- fj i
> (h +1)¢? resentation fa- nmimlf:f:

fj
Select (I3 + 1)%!
moments per face Vi € [1, d], Vo € Qi (fi) \
from the bold ones. Vi € [1, n] Q, (f;)

1 I

VZ € Qi (0:K)

Thus, conformal elements can be defined through normal degrees of freedom enforcing the H(div)-conformity
and internal ones preserving it, provided that the polytope K satisfies the two conditions

— The polytope K has a reasonable aspect ratio, so that the Poisson problem (required by the definition of the
underlying VEM spaces) is well posed.

— No face is parallel to any axis, ensuring the unisolvence of the presented degrees of freedom (when using
component-wise degrees of freedom).

Note that when selecting component-wise degrees of freedom, the above condition on the orientation of the
face with respect to the axis raises stability issues when dealing with element whose faces are almost parallel to
the axis. This issue is easily avoidable by selecting at least a global degree of freedom involving the term p - n in
the moment’s integrand and changing the testing vector in the coordinate-wise degrees of freedom to any vector

v # n.

Internal degrees of freedom. It is set

O’qu—>/ q-prdz, Vpp €P (3.15)
K

for any space P defined either as a polynomial space or as any subspace of Poisson’s solutions, having for
dimension (m + 1)? + (mg + 1)¢ — m¢ and fulfilling the Assumption 3.17.

Normal degrees of freedom. Though in two dimensions the above setting is fixed and all the mentioned
degrees of freedom have to be considered, in three dimensions the selection of degrees of freedom among the bold
ones is a matter of taste, possibly directed by properties of the discretised quantities that are known a priori.
Note also that one could project on any other polynomial basis rather than using projections over monomials
(Table 1).

3.4. Two examples in two dimensions

We first detail an example of a discretisation framework contained in the previously presented setting for
which a parallel with the Raviart-Thomas elements can be drawn from the order kK = 1 on. In a second time, we
present an example of a reduced framework where a parallel with the Raviart—-Thomas is achieved at any order.
8.4.1. An example of a general setting

We consider a series of discretisation spaces by indexing the coefficients [y = 0,1l = k, m; = kK — 1 and
mo =k — 1 for any k € N, seen here as the space order. The space Hy (K) is then defined as

Hy(K) = {u € HY(K), ulorx € Ho(0K), Au € Qi_1(K)}?
EBx{u S Hl(K), ulorx € Hi(0K), Au € Q[k_l](K)}. (3.16)
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TABLE 2. Definition of the degrees of freedom in the 2D case for the configuration Ia.

Representation Of low order Of (Ar N By)|ox Of higher orders
Moments Jaq-n J @ina, i Ja- npk
£ fj fj
Vi € [1, n] vi € [1,2],Vy € Vjel[l,n],
[1, n] Vpr € Qi(£5)\Qo(f5)

By a straightforward application of the previous section, it comes
dimHy(K) = n(k + 3) + 2k(k + 1) — 1g>o. (3.17)
Ezxample of a two dimensional element

The example of selected normal degrees of freedom defining the elements Ej = (K, H(K), {o}) presented in
the previous section then reduces to the expressions given in the Table 2. The internal degrees of freedom are set
as

o(q) — /q - prdz, for all py € P, (3.18)
K

where P is chosen as the space

. oy
P =Pr k-1 %X Peo1,k \ (P, e—1] X Pro—1), 1) YU (@, 9)" — 21y .

Though the internal projection space is less refined than the one set on the edges, this is not bothersome as the
impact of the divergence within the cell is less dramatic. Note also that in practice, for defining the projections
(3.18) one can work with any basis of P.

Link to another class of elements

As pointed out in the introduction, this contribution can be linked to a discretisation setting presented in [12],
where the considered space reads

VI4(K) = {v eH(div, K) N H(cul, K) s.t. v-n|; € Pp(f)Vf € OK,
grad(div(v)) € VP,_1(K), and curlv € P,_;(K)}.

Restricting the setting on the boundary to polynomial functions, that is introducing

d
ffz’k(K) = {veH(div, K)N H(curl, K) s.t. v-nly € Pp(f) and vly € X Q¢ ht1,k,...0)(f) Vf €K,
i=1
grad(div(v)) € VP,_1(K), and curlv € Pr_1(K)}.
It can in particular be shown that ~
v e Vg’k = vE Hk(K), (3.19)

for the space Hy (K) is constructed from the coefficients (I3, I2) = (0, k) and (mq, mz2) = (k, —1) as
Hy(K) = {u € H'(K), ulox € Ho(0K), Au € Qp(K)}
+ z{u € H'(K), ulox € Hr(0K), Au € Q_yj(K)}.

Indeed, any element v € ]}Q,k(K) belongs to H!(K), and can be written as v = v; + v, where vy lives in Ay and
vy lives in = By, (see the Appendiz for a sketch of the proof).



GENERAL POLYTOPAL H(DIV) ELEMENTS S689

TABLE 3. Degrees of freedom of the element Ia defined within the reduced setting.

Core normal Moments Misc moment Core internal moment Misc internal moment
T . I, m 0 lik k—1
ffj xrq nd’% ffj qnd’Y i (Ié/ )qdzdy and é(mmyl) -qg dzdy, Jx (:L‘k?jlyk .qdzdy
Vie[l,n],i€[1, k] jeli,n] vi€[0, k], me[0, k—1]

s.t. (I, m)#(k,k—1)

The degrees of freedom selected in the framework of [12] are however different from what we do here. We
allow more freedom in the inner characterisation while preserving the desired properties on the boundary. Note
also that contrarily to the more general setting presented in this section, the lowest order elements of [12] cannot
be natively defined. As the normal component on the boundary belongs at least to P;(K) for any admissible
space, the setting of [12] has to be slightly modified (see e.g. [4]).

3.4.2. An example of a reduced setting

As quickly addressed in the Section 3.2 and as it will be shown in the numerical results, a classical construction
of the space Hy(K) implies the degeneration of some normal functions into internal ones. This is a consequence
of the coordinate-wise freedom provided on the boundary from the definition of the set Ag. Therefore, to allow a
parallel with the Raviart—Thomas elements from the lowest order on and to fulfil the optional Condition 3.4, one
can consider replacing the boundary conditions u|sx € Hj, (OK) in Ay to obtain the reduced space

Hi(K) = {u € H'(K), ulox =1, Au € Qpy, (K)}*
@z {ue H(K), ulox € Hi,(0K), Au € Qppy (K)} (3.20)
There, the coordinate-wise freedom on the boundary is reduced and the normal degrees of freedom can be set as

in the classical Raviart—Thomas setting. Furthermore, contrarily to the general case, any definition of I3, m; and
mg leads to an H(div)-conformity ready space.

Ezxample of a reduced two dimensional element

To emphasise the parallel with the Raviart—-Thomas setting on the boundary, we reduce the previous example
and derive the corresponding reduced discretisation framework.

Definition 3.20 (Reduced space).
Hy(K) = {u € H'(K), ulox =1, Au € Qp_1(K)}

Its dimension then naturally reads:
dimHk(K) = n(k + 1) + 2]{5(1{5 — 1) — Ig>o.
Therefore, exactly k + 1 normal functions per edge can be designed, fitting the framework of Raviart—Thomas.
As this matches the dimension of Qx(f), all the freedom is required to entirely determine the global normal
component. Thus, as a straightforward reduction of the general case, the H(div, K)-conformal element presented
in the Section 3.4 simplify to the following degrees of freedom (Table 3).

Note that here too, for defining the projections (3.18) one can work with any basis of P instead of the
presented canonical basis.
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FIGURE 1. Left: considered polygon. Right: normal component of a representative internal basis
functions plotted on every edge.

4. NUMERICAL RESULTS

We explore the properties of the main element Ia and its variant Ib presented in the previous section by
investigating their basis functions, for both the general framework and the reduced one. We particularly focus on
the normal component ¢ - n|gx of representative basis functions ¢ on the boundary of the element K. Those
basis functions have been constructed by tuning a natural basis of the space Hy (K) towards the selected sets of
degrees of freedom through a transfer matrix.

As an example, we consider the non-convex nine-edges polygon presented in the Figure 1 on which the elements
are built. In all the results, the polynomial projectors used in the definition of the degrees of freedom were
chosen as Hermite polynomials: experimentally we have observed that this improves the conditioning of the
linear system.

4.1. General setting

We start by considering the spaces and elements described in the Section 3.4.1. First of all, we have investigated
the behaviour of the internal basis functions. The normal component of them is shown in the right of Figure 1.
As wished, the basis functions corresponding to internal degrees of freedom vanish on the boundary. This can
been seen on the right figure where the function is plotted in the plane z = 0.

In order to study the behaviour of the normal basis functions on the boundaries, we have considered the case
k = 2 where we expect five basis functions to have a quadratic normal component. We have plotted in the left
most side of the Figure 2 the normal component of one of the normal basis functions associated to the element
Ib. One can observe that its support is contained on one single edge.

We then have plotted all the basis functions associated to the edge number 5 on the Figure 2, for both the
configurations Ib (middle) and Ia (right). One can first notice that their normal components, plotted in the
middle graph of the Figure 2, are polynomial of degree k < 2, that together generate the space Po(R). Observing
further, it appears that the normal component of two basis are vanishing, that is ¢ -1 = @1 -n5, 4 + @2 - 15,4 = 0.
This generates this straight line equal to zero in the graph. Indeed, those two basis functions characterise the
coordinate-wise freedom ¢ - n5 » # 0 and @9 - ns, , # 0. This additional freedom is not reflected through the
global term ¢ - n as addressed in the Example 3.11 and in the Remark 3.13. This comes from the fact that only
three basis functions are required to generate Py (R), where the global component ¢ - n lives. The two components
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FIGURE 2. Left: normal component of one representative of the normal basis functions for the
element Ib and k£ = 2 along the edges. Middle: normal component of all the functions generated
from the edge number 5, plotted on the edge number 5. Right: as middle, for the element Ia.
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FIGURE 3. Degeneration of a degenerating normal basis functions’ representative in the case
k = 2, for the element Ib. Left: normal component on all the boundaries. Right: internal behaviour

of the basis functions.

w15, and @ons , of the vector ¢ on are compensating themselves. Those functions are nevertheless regular
within the polygon K and not identically vanishing on K (see Fig. 3, where the left graph represents the value of
the normal component ¢ -n on the boundary and where the right graph represents the components ¢; and ¢ on
the element K). They can therefore be reclassified as internal basis functions. Note that this can be suppressed
when using the reduced setting, as one can observe below in the Section 4.2.

Finaly, one can consider the scaling of the basis functions by plotting the normal basis functions corresponding
to the configurations Ia and Ib in the lowest order case, i.e. for k = 0 (see Fig. 4). There, only the configuration
Ib using a point value scales to one. The fully moment-based configuration Ia scales to another constant that
depends on the edge’s length and orientation with respect to the axes. This example emphasises that the
configuration Ib leads to basis functions which share similar properties like the Raviart—Thomas elements.

4.2. Reduced setting

As a last example, we derive some results obtained for the reduced element Ib, offering a complete parallel
with the Raviart—-Thomas elements on the boundary by suppressing the further coordinate-wise liberty provided
by the general setting. The internal basis functions being unchanged from the general setting, they are not

represented.
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FIGURE 4. Scaling of the non-vanishing basis functions generated from the edge number 5 when
k = 0. From left to right: Ia and Ib.
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FIGURE 5. Top left: regularity of the components of one representative of the basis functions for
the reduced element Ib and k = 2 within the element. Top right: its normal component along
the boundary. Bottom: normal component of all the functions generated from the edge number
5, plot on the edge number 5. From left to right: k=0, k=1, k = 2.

Indeed, one can observe on the bottom of the Figure 5 that there is no more degenerating normal basis
functions. Therefore, all normal basis functions are acting globally to characterise the polynomial behaviour of
functions of the reduced Hy(K) space on the boundary. Furthermore, one can observe that the scaling of the
basis functions corresponding to lowest order element, as well as the amplitude of the basis functions describing
the higher order ones, make the discretisation framework reliable.
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Remark 4.1. The shape of the normal component of the basis functions is driven by the definition of the
projectors p in the normal degrees of freedom. Changing the basis of the projectors then allows to enforce wished
shape of the basis functions of Hy (K) while keeping the regularity and order of the discretisation. Shifting them
by modulating the offset directly from the definition of the degrees of freedom to enforce their positivity is
equally possible.

5. CONCLUSION

Motivated by defining a flux reconstruction scheme on general polytopes [1], we have developed a new H(div)-
conformal discretisation framework that can be set up on any polytope, not necessarily convex. It merges the
flexibility of the Virtual Element setting with the properties of the Raviart-Thomas elements on the boundaries.

The introduced finite dimensional spaces are vectorial and allow a lot of flexibility in the definition of the
degrees of freedom. In particular, the choices of discretisation quality and degrees of freedom on the boundary
are independent from the ones made within the element.

The discretised quantities benefit from an extensive coordinate-wise freedom. Therefore, upon the choice made
while selecting the degrees of freedom, some dual normal basis functions may be reclassified into internal ones.
Thus, to allow a complete parallel with the Raviart—Thomas setting on the boundary from the lowest order on,
one may construct straightforwardly a reduced space, along with reduced elements.

Last, we detailed a particular example of a discretisation framework through a series of spaces and the
definition of a particular element. It could be observed that in both general and reduced frameworks, the type of
degrees of freedom (point-wise values or moments) impacts the scaling of the dual basis functions. This can
typically be observed in the lowest order case of the given examples, where only the dual basis functions of the
element Ib scale to one.

An important topic for further research is the exploration of projectors from the introduced spaces onto
polynomial ones, in a way similar to those already constructed in [12] and used in the Virtual Elements Methods.
Especially, a suitable extension of those projectors to the spaces introduced here may be inferred from a close
investigation of those projectors. Once the projectors have been defined, we can apply those discretisation spaces
in a more practical context, as by example employing the introduced spaces in a finite element framework.

To conclude, let us point out again that the results presented here are already useful from a theoretical point
of view. Indeed, they first guarantee that the considerations about FR schemes on general polytopes hold, and
guarantee that the conjecture about the correction functions made in [1] is correct. Secondly, it opens the door
to a more general framework in context of FE, direction that will be further investigated in the future.

APPENDIX A. A NOTE ON FURTHER POSSIBLE CONFIGURATIONS

As example, we only detail in this paper two declinations of one possible configuration of degrees of freedom.
There exists many more possibilities, and their choice impact the properties of the elements. In particular, it
is possible to focus on a coordinate-wise boundary characterisation of the quantities living in a general space
H (K), rather than the global focus presented here. In the general setting, this choice yields a degeneracy of
only one normal basis function, thus moving a bit away from the Raviart-Thomas spirit. For interested readers,
a presentation of this possibility for both the general and the reduced space is available in [2], along with further
investigations on various configurations.

Note also that different choices also have a very strong impact on the conditionning number of the linear
systems to solve. The solution we have shown in this paper is the one that offers the best compromise. It is also
the one that is the closest from the classical RT framework.

APPENDIX B. PROOFS

Proof of Proposition 3.7. We start by deriving the first statement. By construction, any ¢ € Hy(K) can be
decomposed into ¢ = qo + z¢q; for some gy € (A;)? and q; € By. Therefore, on the boundary of K one
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has q - nlox = qo - nlox + (xq1 - n)|sx. As the functions ¢; is scalar, this quantity can also read ¢ - nlgx =
qo - n|ox + q1(x - n)|ax by linearity and commutativity of the dot product.

Since for every face f of K the term z - n|y is constant, it reduces to ¢ - n|f = o - n|f + ¢f q1]7 on each face
f for a constant ¢y € R depending only on the face layout and position with respect to the axes and origin.
Therefore, since qols € (Qy, (f))? and q1]5 € Qi (f), ¢ - 1|y € Quax{ir, 1,3 (f)- And since it is valid for any face
f € 0K, we finally get that q - n|ox € Hiax{i,, 1,3 (0K)

Let us now derive the divergence property within the cell. Any u € Hy(K) can be written under the form
u = G+ x q for some functions ¢ € H*(K) and G = (q1, ..., da)T € (H*(K))% such that

)

Aq € mo K AN’L € my K .
{ q € Qpn,)(K) d { Gi € Qum, ( vie[l, d]. (B.1)
qlox € Qu, (0K) Gilox € Qu, (OK),
We have
d d d d
div(u) = Z Oq,; (T3 q) + Z 0r,qi = Z (q+2:0:,q) + Z On, i
i=1 i=1 i=1 i=1
d d
= d + x; 8% + 8% Ti -
da, 2 (0 g )+ ) 0t

er?(x) =t er(k) €L2(K)

Since by (B.1) we have V - ¢ € L*(K), it comes that for any i € [1, d]; ; 0., € L3 (K). As K is compact

loc

and bounded, we have L2 (K) = L*(K) and divg € L?(K). As a by-product, note that we can derive

loc

V- (xVq) = V- q+ xAq, where Aq € Quax [m,, mo+1) and xAq € C(K). O

Lemma B.1. The configurations Ia and Ib are sets of degrees of freedom leading to unisolvent elements when
endowed in Hy (K).

Proof of the Lemma B.1. We refer to the functions pyx by the term “kernel”, while using the term “integrand”
to represent the term q - pr. Immediate transfer of this designation apply to the normal moment based degrees of
freedom.

We first sketch the proof. To begin with, let us point out that the key lies in the Assumption 3.12 ensuring
the linear independence of the set of point-wise values and moment’s integrands. The linearity of the integral
operators transfers then this independence to the moments themselves, characterising any function of Hy (K)
independently on the boundary and within the cell. We proceed in three steps.

(1) First, we show that the internal characterisation of the function does not impact the normal one, allowing
the determination to be done distinctively within the element and on the boundary.

(2) Then, we show that selecting the appropriate number of degrees of freedom in any of the sets Ia or Ib
ensures a unique characterisation on the boundary. We use the fact that the kernels are scalar polynomials
while the functions of Hy (K) are vector polynomials.

(3) Lastly, we consider the interior of the element where the characterisation is done through projections over
linearly independent sets. Those projections of functions in Hy (K) are indeed neither identically null nor
identically identical (i.e. they differ at least on a subset of non-zero measure).

Let us detail this determination process more in details.

Step 1. Let us first recall that the space Hy(K) is built from blocks of independent functions. In particular,
the boundary behaviour of functions living in Hy (K) is independent of their behaviour within the inner cell.
Therefore, by the structure of H(K) and making use of the superposition theorem, any function ¢ € Hy (K)
reads

q= florx +gly (B.2)

for two functions f and g belonging to Hy(K). As a consequence, characterising a function ¢ € Hy(K)
comes down to characterising the independent functions f and g on the distinct supports 0K and K,
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respectively. Note also that necessarily, f|f, € X?:1 Qumax{ls, l2+1}(Rd—1) for any face f; € 0K. We show that
any admissible extraction (in the sense of the Admissibility conditions 3.12) from either of the two sets of
degrees of freedom (Ta, internal), (Ib, internal) fully characterises the functions f and g, independently. In
all the following, the notation Ia or Ib refers to the corresponding set of normal degrees of freedom while
“internal” refers to the set (3.14) and is identical to any of the two configurations under consideration.

We first show that any above defined set of degrees of freedom preserve the independence of the boundary
and inner characterisations. To this aim, we combine the relation (B.2) with the all possible definitions of the
degrees of freedom. It comes that all global normal moments lead to an expression of the form

U(q)Z/q-nka/(fllfj+g]lf<)-npk=/f-nm

fi fi fi
for some polynomial function py living on 0K. On the other side, as x;, € f;, the global degrees of freedom
that are built from point-wise values read
o(q) = q(xjm) - n = f(@jm) nlg(zjm) + 9(@jm) - nlg(Tim) = f(zjm) 0.
Similar relations for coordinate — wise degrees of freedom can be derived, that is;

o(q) = /innmi Pk = /(fmq-,llfj + Gu, L )N, P = /frnr Dk
fi fi fi
and  0(q) = qa, (xjm)nxi = fu; (xjm)nwi]lfj (xjm) + Gz, (mjm)nwilk(ij)
= fu (xjm)nwia
where here the terms f,, simply represent the ith component of the function f. Therefore, in any of
the configurations Ia and Ib no contribution of the function g representing the inner part of the cell is

involved in the normal degrees of freedom. The mirror case is obtained with the internal moments, leading
via (B.2) to

U(Q)Z/Q'ka/(fﬂaK+91k)'PkZ/g'pm

K K K

where py, stands for any Poisson’s function living in Hy(K) or any polynomial function defining the second
member of a Poisson’s problem involved in the definition of Hy (K). There, the function f representing the
boundary part of the function ¢ is not involved, that for any definition of the space P}, generating the internal
moments. Thus, by linearity we can decompose the degrees of freedom {q — o;(¢q)}; in the following matrix.

o1
Normal Dofs .
values : Normal moments 0 f
ONn - applied to f
UNNJrl Internal moments
annli g
Internal Dofs . 0 applied to g
values .
UNI

Clearly, there is no interconnection between the function’s characterisation on the boundaries and the one
performed within the element. Thus, showing the Proposition 3.19 reduces to show independently that Ia =
0 or Ib = 0 implies f|sx =0 and ng -prx =0, forall p, € Py implies g|; = 0.

Step 2. Let us now consider the boundary characterisation. There, by definition of the spaces H;, and H;,, the

function f|gx is discontinuous at the polytope’s vertices and can be decomposed into n vectorial polynomial
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functions {f;}, with distinct supports, each of them matching one particular face of the polytope. Thus, we

can write
n

florx = erlfj

j=1

with r; € ijl Qmax{iy, 1,413 (fj) and f; any face belonging to K. With a similar argument than in the
previous point, the characterisation of f|gx can therefore be done edge-wise, and the determination matrix
becomes block — diagonal. We discuss here the characterisation on one particular edge f; by showing the
invertibility of the corresponding matrix block. The arguments naturally transpose to the other ones.

In this perspective, let us show that for any r; € ijl Qumax{ls, 15411 (fj), it holds {(Ia)|s, = 0 or (1b)|y, =
0} = r; =0, where ()|, represents the subset of the degrees of freedom (-) whose support (or evaluation
point for point-values) matches (or lies on) f;.

First of all, we recall that on the face f; the function r; is a multi-valued polynomial of the form

ap, 1 dim(Hy, "H1,) [ ey (6) + @it dim(H,,) z1b;
rilp =1 0 |+ Z : Mo, () + Z D e
ao, d i=dim(Ho) bﬁd(l) + Qi d i=dim(7‘(llﬁ7'(12) xdbi

dim(Hm)
i=dim(H,)
forms a base of H,, \ H;. Note that the coeflicients {a;;}; ; are defined coordinate-wise while the coefficients
{b;}; are identical for all the components. The function r; is therefore determined by

where mg, represents a monomial of Qpaxi;,1,) of multi-index degree a; such that the set {ma,}

dim({{as, m }ieo, dim(r, \Ho)]> 10} ie[dim(r, \Ho), })
me[l,d] dim(H,)]
coefficients.
As in all configurations the function r; is determined only through its normal components, let us use the
above expression to derive them more specifically. With the normal n; = (njs,, _“,nﬂd) to the face fj, it

comes
dim(H;; NHi,) g dim(Hi,)
i ngly = Z ao, mNjz,, + E Z be,. (i) + @i, m) Nz, Ma, (T E ¢; bima, (),
i=dim(Ho) m=1 i= dlm(Hllﬁle)

where ¢; = = - n; is a constant term on the face f;. Reordering the terms, we end up with the formulation

d dim (Hyy, NH,)
rienly =Y | [aom+ D @immaw) | e,
m=1 i=dim(Ho) B3
dim (H; NH,) dim (H,) ( ' )

d
Z Nz, Z be,. (iyMa,; (T) +¢; Z bi M, ()
m=1 i=1 i=dim(H;, NHiy)
The structure of the retrieved form makes clearly emerge the coefficients that should be used depending on
the coordinate-wise behaviour of the polygon.

In addition, as all the coefficients determining r; appear in this expression, using degrees of freedom defined
only from the normal components of tested functions is admissible. Thus, the two configurations fitting this
framework, we only have to make sure that the set of extracted degrees of freedom are uniquely characterising
each of the involved coefficients. To this aim, we explicit all the possible degrees of freedom when applied to
the function ;. For the sake of clarity, we denote by {oaz, , }a the moments designed coordinate-wise, being
of the form

144 Qg (le)njﬂii or OM; -4 / Qz;Mjz; DI
i
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for some scalar polynomial p;, and by {0, }; the ones acting globally, reading
or,:q—q(z) - n or JTZZQ'—’/Q'nPl
i

for some scalar polynomial p;. Further, for convenience we denote by {0y, }; the global degrees of freedom
that comes into play to determining the coordinate — wise coefficients, whose expressions are done in the
same way as {oq, };. We now express those degrees of freedom depending on the coefficients {b;, m }im and
{a;};. Using the linearity of the degrees of freedom, plugging the expression (B.3) in place of ¢ and setting
the permutation operator directly on the multi — indices «; instead of the coefficients a;, we can rewrite the
moments as follows.

dim(H; NHyy)
it Qainds 0 boom [ mge it Y- i [ mo e,
fi i=Ho fi
dim('Hllﬂ'HlZ) d1m(H12
+ Z bi / T, T () (T)PL+ Z / (Tm Njz,Ma, (@)1
i=Ho i=dim(Hi; NHi,)

d dim(Hy NHy,)

ory - ({ai,m}7 {b } Z aq, m/ Njz,, Pl + Z Z Qi m My, (x)njxm,pl

m=1 {=dim(Ho) fi
dlm(HllﬁHZQ) d dim(Hl2)

+ Z bi Z </ njwmmfm(ai)(x)pl> + Z b; (ijai(l“)pl).

i=Ho  m=1 i=dim(Hy, "Hiy) 7 J9
Thus, defining the component-wise parts of the global moments or, by or, ,(q) = f £, Mizm 4P such that
: ; ,

d .
o7, = Y me1 0T, ,» One can express any degrees of freedom of the two considered sets as
dim(H; NHyy)

TNyt 4 G0, mOM,, (D) + D i mou, (Ma,)

i=Ho
dim(Hllﬁle) dlm(HLQ)
+ > bion, (e @)+ Y, biow, (@mma,)
i=Ho i:dim(HllﬂHlQ)
d dim(Hi, NHuy) 4
and  on:q— Y aomor, (D4 D> > aimor, ,(ma,)
m=1 i:Ho m=1
dim(Hllﬁle) d d1m(Hl2)
+ > by on, (me )+ Y, aicion(ma,).
i=Ho m=1 i:dim('Hll mle )

Note that in view of deriving the determination matrix, the last term can also be decomposed as follows.

dim(H,) dim(Hi,)
E: bicj or,(Ma,) = E E o1 (TmMa,)-
i=dim(H;, NHy) i:dim(HllﬁHlQ)’m 1

Similar relations for oy can ve derived from the expression of op. Thus, we can rewrite the degrees of freedom
as a dot product and derive the characterisation matrix X

(UMLU ) JMd,l» OVyiy «oy OV OTyy -+« O, )T = E({ai,m}imy {bz}z)T

which shape is given in the Figure B.1. We now investigate its structure.
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First of all, as the number of extracted degrees of freedom from the two sets Ia and Ib matches the number
of coeflicients determining r;, the matrix ¥ is a square matrix.

Let us focus on the top two-by-two left blocks, surrounded in blue. They correspond to the coefficients that
should be determined coordinate-wise. Thus, by construction, there are dim({a;m, }im) = d(l; +1)?~! columns.
And by the definition of the configurations II and I, we have dim({ou, ,}ij) = d+d((lh + 1)1 = 1) =
d(ly + 1)?~1. Therefore, this submatrix is a square matrix. Furthermore, each subblock corresponds to one
member of the decomposition of g tested through coordinate — wise degrees of freedom whose kernels are built
on the same monomial. Therefore, as the degrees of freedom {0y, ;} consider one normal component only,
the coefficients {a;m, }im for m # j are not involved, and the subblocks are diagonal. Thus, those submatrices
are invertible and in particular their columns and rows are linearly independent.

On the other side of the matrix, the last bottom block surrounded in deep red matches the Raviart—Thomas
moments tuning members of Hj,(K)|ax living exclusively in 2By|s,. It is then a submatrix of the classical
Raviart—-Thomas’ one, and is thus invertible. In particular, its rows and columns are linearly independent.

The extended bottom right submatrix highlighted in dashed red corresponds to the previously described
high-order submatrix of the Raviart-Thomas’s setting, enriched by the moments {oy } tuning the behaviour
of members of Hj,(K)|y, falling in the intersection Hy, N Hy, (f;).

This matrix is equivalent to the full Raviart—Thomas setting. Indeed, even if the moments {oy } have to
be slightly modified from the Raviart—Thomas setting in the configuration I, this modification leaves the
projection order unchanged and the integrand still belongs to Hy(K)|s,. Therefore, the dashed line block is
invertible and its columns and rows are linearly independent.

There is only left to show that there is no linear dependence between rows of different row blocks. As the
degrees of freedom are linear forms, it is enough to show that the integrand of moments (or polynomials
constructing the point — wise values) that involve the same monomial are linearly independent.

Indeed, being linear forms whose kernels are polynomials, the degrees of freedom can combine each other
only if their integrand (g tested against the kernel) involve — up to constants — the same monomials. We then
have to show that in both configurations, the rows involving terms whose projection onto the kernel can be
expressed from a same monomial are linearly independent.

In the configurations Ia and Ib, this property comes automatically. Indeed, the only interaction between
degrees of freedom having integrands sharing the same monomial order (and then possibly being based on
the same monomial) is possible between (3.11a) and (3.11b) when |px| = {1 + 1. Indeed, by definition of
Hy (K), the polynomial py - n in (3.11a) is only of order /;. However, no combination of (3.11b) can form the
moments (3.11a). Indeed, for any real coefficients ¢; it holds

l1+1
Z CiQac,- nac,- 'ril i q : npk

for any monomial py such that |pg| =13 + 1. Note that in the left hand side, all the ¢; should be non-null to
reconstruct the term p - n. However, doing so no factorisation by a single monomial such that

d d
l1+1
g Ciqiiinliixil = § Ciqez; Nz, | Pk
i=1 i=1

is possible.

Thus, the designed moments are linearly independent, and no row combination can occur for any tested
polynomial belonging to Hy (K)|oxk -

All in all, for both configurations all the rows are linearly independent. As by construction we have as
many relations as unknowns, the matrix is invertible. Thus, we get a null kernel, meaningly

Ia=0or Ib =0 implies f|gx = 0.

Step 3. Let us now consider the internal characterisation of functions living in Hy(K). From the first point of
the proof, it is enough to study the characterisation of g within the inner cell. By definition of Hy (K), any
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function g € Hj(K)|z can be decomposed over a set of Poisson’s solutions as follows:

d dim A, dim By,
g = Z Z ai’jejui + Z b]xﬁl
i=1 =1 i=1
Here, the vector e; stands for e; = (0, ..., 1,0, ..., 0)7 where the 1 is in the jth position. The functions wu;
and w; represents the Poisson’s solutions of the problems
Au; = pi, pi € Qum, (K) and %u] = Pi, Di € Qpy)(K) (B.A)
uilor =0 Uilore =0

where {p;}; and {p;}; form respectively a basis of Qp,, (K) and Q,,](K). In any presented definition of the
degrees of freedom, the internal characterisation is done through moment — based degrees of freedom of the
form

o1t q /q-pkdx
K

where the kernels pj, € Py, consist of linearly independent polynomials belonging t0 Qumax{m,, m,+1}(K), or of
the solution of their corresponding problems of the form (B.4). Therefore, we can derive a characterisation
matrix in the same spirit as in the case of the normal characterisation.

Block repeats as many time as coordinates;

i€[1,d] Single block a
Ty
I I
~ ~ Repeat;
o Jewi-pri oo [emua pig L wdnp —eoo Jaup ;1 ; e
3 | | o | ai, 4
! = | | ! | Y
! | | : | | bl
Olp . | - -
f €iUy - PP, - f€iUA'PP,q: \./‘.7371,1 “pp - fIUB'pP }
I
. bp

Let us consider the case where Py forms a polynomial projection space. There, none of the py € Py is the
zero function. In the same time, the functions {{u;};, {x;};} are linearly independent, and being solutions
to some Poisson’s problem with non-zero second member, they are by construction not identically vanishing
on K. Indeed, even when my < m; where second members of the problems (B.4) lives both in Q,,, and
Q(imy), it holds A(z ;) = 2V - 4; + A(4;). Thus, it is impossible to combine linearly the function x; with
functions of the set {u;};.

Furthermore, the degrees of the polynomials belonging to the space Py, are lower or equal than the highest
degree of the second members of the Poisson’s problem defining the space Hy (K'). Thus, every projection of
function of Hy (K') onto the space Py is not null. And as the internal moments are linear forms, any linear
combination of those moments at fixed p; could have its integrand factorised by the kernel py for any pr. € Pk,
transferring the linear independency of the set {{u;};, {1;}:} to the terms { [ u; - py}; for any fixed py € Pg.

Lastly, as the space Py contains only linearly independent functions the previous argument can be repeated
for each row of the matrix defined in (B.5). And as by construction the number of internal degrees of freedom
matches the dimension of the space Hj,(K)|;, the linear independence of functions of P, combined with the
linear independence of the tested functions transfer automatically to the moments tested against a basis
of Hy(K)| ;. Thus, the internal submatrix is invertible. The same reasoning can be applied when Py, is
built from the Poisson’s solutions themselves, as the projections of functions would decompose the functions
directly.

Merging the above points together, we get that Ta = 0 or Ib = 0 implies f|spx =0 and [, g - prz =0 for
all py € Py, implies g|; = 0. From this, we get that for ¢ € Hy(K) Ia =0 or Ib =0 and qu - pgx =0 for
all py € Py implies ¢ = 0. O
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Proof of the Propositions 3.18 and 3.19. The proof of the Proposition 3.18 is a straightforward generalisation of
the one presented for the two examples Ia and Ib in the Lemma B.1. The only change lies in the extraction
of the degrees of freedom, which impacts the matrix only on the top left two by two blocks describing the
coordinate-wise behaviours. As the extraction fulfils the Assumption 3.12, the rows involving terms whose
projection onto the kernel can be expressed from a same monomial are linearly independent. Thus, the same
arguments as above can be applied and the conclusion follows.

In particular, by this admissibility criterion there cannot be more than d + 1 polynomials reducing to the same
moments’ kernel or to an equivalent point-value quantifier. Thus, as we have d + 1 coordinate-wise moments to
tune per decomposed monomial, there is no over-determination at a fixed polynomial degree. The constraint on
the extraction of degrees of freedom ensures the non over-determination overall. Further, the linear independence
of the sub-matrix’s columns is ensured as those polynomials cannot be linearly dependent. Thus, by linearity of
the degrees of freedom, the independence of the kernels transfers to the moments and there is no row dependency.
The submatrix block corresponding to any specific order is therefore invertible, and the same conclusion as in
the proof B.1 follows.

The Proposition 3.18 thus holds by the number of degrees of freedom, matching the dimension of the space
Hy(K). Indeed, as by the Proposition 3.19 the kernel of the linear operator defined by the set of degrees of
freedom has a null kernel providing their unisolvence when enclosed within the space Hj (K). O

Proof of the relation (3.4). As for any [; < 0 the two natural subspaces are in direct sum, recalling the block
construction of Hy(K) allows the dimension of the space Hy(K) to be easily derived. We can simply add the
dimension of the two main subspaces (A4;)? and z By, to retrieve the dimension of Hj,(K). Let us derive their
respective dimensions.

First, we compute the dimension of Ay. In the way presented in [11], one can get it by using the superposition
theorem. Indeed, for any second member belonging to Q,,, and any boundary function pil; € L?(K), there
exists a unique solution to the Poisson’s problems defining Ay (see e.g. [8]). Thus, reading out the structure of
the set Ax implies the following relation.

dim Ay = dimH;, (0K) + dim Q,,,, (K)
=n(l + D4 4 (my +1)%
Therefore, as (Ay)? is a simple Cartesian product of d copies of Ay, we have immediately dim Ay = d(dim Ay) =
d(n(ly + )41 4+ (my + 1)%). In the exact same way, we retrieve the dimension of By, by
dim By, = dim H;, (0K) + dim Q[mz] (K)
=n(ly + 1)+ (my 4+ 1)4 — md.
Last, we recall that the space x By simply corresponds to an identical d — duplication of the space Bj where

each coordinate has been multiplied by the corresponding spatial variable. Thus, there is no liberty adjunction
during its construction, and the dimension of x By equals the one of By. By combining this, we finally get

dimHk(K) = ddim Ay + dim By,
=dn(l + D 4 (my + DY +n(ls + 1D+ (mg 4+ 1)4 — md.
([l

Finally, we point out the relation between the proposed spaces and the slight restriction of the one introduced
in [12]. Indeed, we focus on relation (3.19).

Sketch of the proof that ]}27 k(K) C Hi(K). Let us quickly show that any element of 1}2, x(K) can be recast as
an element of H (K) for the coefficients (11, l2) = (0, k) and (mq, mg) = (k — 1, —1).

Regularity. Any element v € V, (K) belongs to H'(K). Indeed, v € H(div, K) N H(rot, K) C (H'(K))
Furthermore, as any element w of Hy(K) writes w = uj + x uz with uy, up both having for regularity H*(K),
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w € H}, (K). And since K is compact and bounded, H}, ,(K) = H'(K). Thus, the regularity asked for any
element v to be in V, (K) is stricter than the one asked for any element w to be in Hy(K).

On the boundary. Any v € Vy 4(K) is a polynomial and satisfies v - n|; € P¢(K) on every face K of the polygon
K. But v-n|s is nothing else than the linear combination E?Zl VN, of the coordinate-wise functions v; with the
normal’s coefficients n,,. Thus, each polynomial v; has no choice but to live in the space Py, . & k+1, k..., 6 (K),
where the k + 1 is in the ith position. The space xleph ok k41, k..., k(K) is indeed the smallest space that is
polynomial (required by the linear combination) and that contains all the functions v such that v - n|; € Py (K).
Note that allowing a higher degree in the ith variable is required as on each face f € 0K, x - n = ¢ for some
constant c. And x?zllP;%_“7k7k+1yk,__”k(K) C Po(K) + xPi(K), which is exactly the structure of the Hy(K)
space on the boundary.

Within the element. For any v € Va1, (K), it holds

V(V-v) €V(Pri(K))
V xwv € ]P)kfl(K).

Thus, it comes V(V-v) —V x (V xv) € V(Py_1(K)), which implies V?v € V(P;_1(K)) and writes

—— ——
EV(Pr-1(K)) €V(Pr—2(K))

d 92
> et vafl Pr_o k-1,.. k—1(K)
Vi = : € :
Zgzl ‘9;;; Pr_1, k-1, ... k—2(K)
Thus, we have naturally
Aul
Vv el u, Do, Au € Qi (K)

Aud

Summary. Let v € Vy (K). Then v can be decomposed as follows:

v = (V1 + )| + (01 + 02)|oK

where
01 € (Po(OK))? represents the constant part of v on the boundary
vy € (Pr(0K) \ Po(0K))? represents the higher parts of v on the boundary
and
U1 =0l —ppp, .
U2 =Py, ..., 1
for any pp), ..., (1) belonging to zIPy. Doing so, we get
ﬁl'BK S (Po(aK»d
vl =vlg —pm,
and

{v2|a;< (PL(OK) \ Po(9K))*

Vol =Py,
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There, we get straightforwardly from the previous paragraphs:

IS HI(K)

U1 -n‘aK S Po(aK) C QO(aK)

Avy|g = vl g —A(p) €Pr_1(K)C Qp_1(K)

~ ——
eV (Pr_1(K)) =0
CPr_1(K)
and
Vo € Hl(K)

vy - nlog = vV|gx cn—v1-nlox € Pr(OK) C Qr(0K)
Ava|p = A(xe) =2A(c) =0 € P_y(K) C Q_y(K)

for some constant ¢ € Po(K). Writing ve as va = zw on the boundary with w € z Py 1 (0K)
C x‘z-izllP’k’ ok k1, k., k(OK) \ Po(OK), it comes further

we HY(K)
w - n|aK S ]P)k(aK) C @k(aK)
Awf(:O EP,l(K)CQ[,l](K).

Taking without loss of generality ¢ = 1, considering v = vy + z w and setting (I1, l2) = (0, k), (mq1, ma) =
(k—1, —1), we get:

v1 € A, va=zw € By,

and therefore,
V=101 +U3 € Hk(K)

O
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