Operator splitting around Euler–Maruyama scheme and high order discretization of heat kernels
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 55 (2021), pp. S323-S367

This paper proposes a general higher order operator splitting scheme for diffusion semigroups using the Baker–Campbell–Hausdorff type commutator expansion of non-commutative algebra and the Malliavin calculus. An accurate discretization method for the fundamental solution of heat equations or the heat kernel is introduced with a new computational algorithm which will be useful for the inference for diffusion processes. The approximation is regarded as the splitting around the Euler–Maruyama scheme for the density. Numerical examples for diffusion processes are shown to validate the proposed scheme.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1051/m2an/2020043
Classification : 58J35, 60H07, 60H30, 60H35, 60J60, 65C05
Keywords: Heat kernel, high order discretization, operator splitting, Baker–Campbell–Hausdorff formula, Malliavin calculus
@article{M2AN_2021__55_S1_S323_0,
     author = {Iguchi, Yuga and Yamada, Toshihiro},
     title = {Operator splitting around {Euler{\textendash}Maruyama} scheme and high order discretization of heat kernels},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {S323--S367},
     year = {2021},
     publisher = {EDP-Sciences},
     volume = {55},
     number = {Suppl\'ement},
     doi = {10.1051/m2an/2020043},
     mrnumber = {4221306},
     zbl = {1479.58024},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/m2an/2020043/}
}
TY  - JOUR
AU  - Iguchi, Yuga
AU  - Yamada, Toshihiro
TI  - Operator splitting around Euler–Maruyama scheme and high order discretization of heat kernels
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2021
SP  - S323
EP  - S367
VL  - 55
IS  - Supplément
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/m2an/2020043/
DO  - 10.1051/m2an/2020043
LA  - en
ID  - M2AN_2021__55_S1_S323_0
ER  - 
%0 Journal Article
%A Iguchi, Yuga
%A Yamada, Toshihiro
%T Operator splitting around Euler–Maruyama scheme and high order discretization of heat kernels
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2021
%P S323-S367
%V 55
%N Supplément
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/m2an/2020043/
%R 10.1051/m2an/2020043
%G en
%F M2AN_2021__55_S1_S323_0
Iguchi, Yuga; Yamada, Toshihiro. Operator splitting around Euler–Maruyama scheme and high order discretization of heat kernels. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 55 (2021), pp. S323-S367. doi: 10.1051/m2an/2020043

H. F. Baker, On the exponential theorem for a simply transitive continuous group, and the calculation of finite equations from the constants of structure. Lond. M. S. Proc. 34 (1901) 91–127. | MR | JFM | DOI

V. Bally and A. Kohatsu-Higa, A probabilistic interpretation of the parametrix method. Ann. Appl. Probab. 25 (2015) 3095–3138. | MR | Zbl | DOI

V. Bally and D. Talay, The law of the Euler scheme for stochastic differential equations I. Convergence rate of the distribution function. Probab. Theory Relat. Fields 104 (1996) 43–60. | MR | Zbl | DOI

V. Bally and D. Talay, The law of the Euler scheme for stochastic differential equations II. Convergence rate of the density, Monte Carlo Methods App. 2 (1996) 93–128. | MR | Zbl

A. Bonfiglioli and R. Fulci, Topics in Noncommutative Algebra “The Theorem of Campbell, Baker, Hausdorff and Dynkin”, Springer, 2012. | MR | Zbl | DOI

J. E. Campbell, On a law of combination of operators bearing on the theory of transformation groups. Lond. M. S. Proc. 28 (1897) 381–390. | MR | JFM

S. Ditlevsen and A. Samson, Hypoelliptic diffusions: discretization, filtering and inference from complete and partial observations. J. R. Stat. Soc. B 81 (2019) 361–384. | MR | Zbl | DOI

A. Friedman, Partial Differential Equations of Parabolic Type. Prentice Hall Inc (1964). | MR | Zbl

E. Gobet and C. Labart, Sharp estimates for the convergence of the density of the Euler scheme in small time. Electron. Commun. Probab. 13 (2008) 352–363. | MR | Zbl | DOI

J. Guyon, Euler schemes and tempered distributions. Stochastic Processes App. 116 (2006) 877–904. | MR | Zbl | DOI

F. Hausdorff, Die symbolische Exponentialformel in der Gruppentheorie. Leipz. Ber. 58 (1906) 19–48. | JFM

N. Ikeda and S. Watanabe, Stochastic Differential Equations and Diffusion Processes, 2nd edition. North-Holland Mathematical Library (1989). | MR | Zbl

V. Konakov and E. Mammen, Edgeworth type expansions for Euler schemes for stochastic differential equations. Monte Carlo Methods App. 8 (2002) 271–285. | MR | Zbl

S. Kusuoka and D. Stroock, Applications of the Malliavin calculus Part I. In Vol. 32 of Stochastic Analysis. Katata/Kyoto1984 (1982) 271–306. | MR | Zbl

P. H. Labordére, X. Tan and N. Touzi, Unbiased simulation of stochastic differential equations. Ann. Appl. Probab. 27 (2017) 1–37. | MR | Zbl

A. Melnykova, Parametric inference for multi-dimensional hypoelliptic ergodic diffusion with full observations. Preprint. Hal : https://hal.archives-ouvertes.fr/hal-01704010v3 hal-01704010, version 2 (2019) | MR | Zbl

G. Maruyama, Continuous Markov processes and stochastic equations. Rend. Circ. Mat. Palermo 4 (1955) 48–90. | MR | Zbl | DOI

D. Nualart, The Malliavin Calculus and Related Topics. Springer (2006). | MR | Zbl

A. R. Pedersen, A new approach to maximum likelihood estimation for stochastic differential equations based on discrete observation. Scand. J. Stat. 22 (1995) 55–71. | MR | Zbl

A. Takahashi, Asymptotic expansion approach in finance, edited by P. Friz, J. Gatheral, A. Gulisashvili, A. Jacquier and J. Teichmann. In: Large Deviations and Asymptotic Methods in Finance. Springer Proceedings in Mathematics & Statistics (2015). | MR | DOI

A. Takahashi and T. Yamada, An asymptotic expansion with push-down of Malliavin weights. SIAM J. Financial Math. 3 (2012) 95–136. | MR | Zbl | DOI

A. Takahashi and T. Yamada, A weak approximation with asymptotic expansion and multidimensional Malliavin weights. Ann. Appl. Probab. 26 (2016) 818–856. | MR | Zbl | DOI

T. Yamada, An arbitrary high order weak approximation of SDE and Malliavin Monte Carlo: analysis of probability distribution functions. SIAM J. Numer. Anal. 57 (2019) 563–591. | MR | Zbl | DOI

T. Yamada and K. Yamamoto, Second order discretization of Bismut-Elworthy-Li formula: application to sensitivity analysis. SIAM/ASA J. Uncertainty Quantification 7 (2019) 143–173. | MR | Zbl | DOI

Cité par Sources :