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OPERATOR SPLITTING AROUND EULER-MARUYAMA SCHEME AND HIGH
ORDER DISCRETIZATION OF HEAT KERNELS

YucA IcucHI! AND TOSHIHIRO YAMADAZ*

Abstract. This paper proposes a general higher order operator splitting scheme for diffusion semi-
groups using the Baker—-Campbell-Hausdorff type commutator expansion of non-commutative algebra
and the Malliavin calculus. An accurate discretization method for the fundamental solution of heat
equations or the heat kernel is introduced with a new computational algorithm which will be useful for
the inference for diffusion processes. The approximation is regarded as the splitting around the Euler—
Maruyama scheme for the density. Numerical examples for diffusion processes are shown to validate
the proposed scheme.
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1. INTRODUCTION

Approximating or estimating heat kernels is an important theme in mathematics since it naturally appears in
many problems related to the topics on diffusions and partial differential equations. Because heat kernel is given
as the density of the solution of stochastic differential equation, many kernel estimations rely on probabilistic
methods. While there has been considerable studies on kernel estimation, high order discretization for heat
kernels and its validity are not obtained at present.

This paper shows a general high order discretization algorithm for heat kernels with its theoretical foundation.
Before illustrating the sketch of the discretization method, we briefly review the standard discretization scheme.
Maruyama [17] proposed a discretization method for Itd’s stochastic differential equations (SDEs) which is
nowadays called the Fuler—Maruyama scheme. The method is widely used in many fields due to its versatility
and applicability. Let {X (¢, 2)}:>0 be the solution of an Ité6 SDE

d
dX (t,z) = b(X(t,x))dt + Y 0i(X(t,2))dB], X(0,2) =z € R", (1.1)
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with functions b, o;, i = 1,...,d, and consider the problem of computing Prf(z) = E[f(X (T, x))] for a function
f where {P;}; is the semigroup of linear operators given by (P:f)(x) = E[f(X (t,x))]. It is known that one has

E[f(X(T,2))] - E [f (X09(T,2)) || = O(1/n), (1.2)
where XM (")(T' z) is the n-step Euler-Maruyama scheme with the time interval T'/n given by

+Z (XEM ) (kT /m, x)) (Bka)T/n — B;;T/n) . (1.3)

In the operator splitting perspective, (1.2) is written in the form
[Prf(a) - (QFL) " £(@)] = 0(1/m). (1.4)
where QFMf(z) = E[f(XEM(¢,7))] with XEM (¢, 2) = z + b(x)t + Z _, 0i(z)B}. Even if the test function f is
non-smooth, (1.2) or (1.4) still gives first order discretization under the sufficient smoothness condition for the

coefficients b, 0, i = 1,...,d with an appropriate ellipticity. Furthermore, the density y — pr(z,y) of X (T, x)
is also approximated by the density y — pX ) (z,y) of the Euler-Maruyama scheme XFM-(")(T, 1) as

XEM m la e—c2lz—yl*/T
x < ——e 27 1.5
pr(2,y) — (@,y)| < —7ge (1.5)
for some c¢1,co > 0 and o > N under the sufficient smoothness condition for the coefficients b, 0;, i =1,...,d

and the uniformly elliptic condition for o;, i = 1,...,d; see Bally and Talay [4]. See also [9, 10, 13] for the
Euler-Maruyama scheme for the density for instance. The efficient computation scheme is obtained in Pedersen
[19] as follows:

p¥(ey) =B [pi, " (X (0 = )T/ 2).y) | + O(1/n), (1.6)

where y — pg(:/?d’(n) (z,y) is the Gaussian density of the one-step Euler-Maruyama scheme. Here, the (n—1)-step

Euler-Maruyama scheme X" :(")((n —1)T/n, z) is used in the algorithm (1.6), and then the scheme (1.6) is
implemented by the Monte-Carlo simulation, which enables us to treat statistical inference of diffusion processes.

The paper shows a new discretization method of the heat kernel as an extension of the Euler—-Maruyama
scheme in Bally and Talay [4] and the algorithm of Pedersen [19]. We firstly show a general operator splitting
method for diffusion semigroups as expectations of It6 SDEs. The approximation is obtained through a generator
expansion method around the Euler—-Maruyama semigroup and the Baker—Campbell-Hausdorff type commuta-
tor calculation of non-commutative algebra. In particular, we introduce an optimal truncation of the semigroup
expansion in order to give a low cost numerical computation. For the global error estimate of the discretization,
the Kusuoka—Stroock theory on Malliavin calculus plays an important role. The high order splitting method for
weak approximation of It6 SDEs of the order O(1/n™) is given by

|Prf(x) — Q)" f(2)| = O(1/n™) (1.7)

with operators ng) t > 0 constructed through the Baker—Campbell-Hausdorff expansion, which has the form
Q™ f(z) = E[f(XEM(t,2)){1 + n\™"*(B,)}] with the one-step Euler-Maruyama scheme XEM(t, z) and a

functional of polynomials of Brownian motions ﬂ(m) " (By). Here, the optimal truncation is introduced for the
Baker—Campbell-Hausdorff expansion using Malliavin calculus in order to attain a high order discretization
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with minimum computational effort. Consequently, for instance, we get a simple second order discretization for
1t6 SDEs

Pri) = (QF),)" f@)+0 (1/22) (1.8)
with a simple local operator §2) given by
2 2
O {1 + 5 I% z}} P f(@)ome = B [f(XP ) {14778}, (19)
i=1

where P f(x) = E[f(z + b(2)t + Ele oi(2)B})] and [£F, £7] (i = 1,2) is the commutator of two differentia-
tion operators £ and .Z7 appearing in the Taylor expansion . ~ Z§ + E?Zl Z7. Then, in the second order
discretization, the terms [, .,?f]PtO’Z f(@)|:=2, ¢ = 1,2, work as the correction to the Euler-Maruyama term
P27 f(x)] .= = E[f(X®M(t,2))], and these can be obtained through an easy commutator computation of the
Baker—Campbell-Hausdorff formula. The general operator splitting (1.7) can be represented as

E[f(X(T,2))] - E | f(X"M (T, 2)) (1.10)

n

m), XEM) (—1)T/n,z
X H {1 + W(T/,)L (=017 )(BiT/n - B(ifl)T/n)}
=1

‘ =0(1/n™).
using the n-step Euler-Maruyama scheme X™M-(")(T' ). Since the discretization scheme is constructed by

f (XEM,(n) (T, a:)) ﬁ {1 n 7r(Ty;LT)L)XEM,m)((ifl)T/n,x) (BiT/n _ B(ifl)T/n) }]

=1

()" s = B

and the term E[f(XFM()(T, z))] in (1.10) is the Euler-Maruyama scheme, the approximation is regarded as
the operator splitting around the Euler-Maruyama scheme. The result (1.10) holds even if the function f is
only bounded and measurable.

As the second main result, we next introduce a higher order discretization scheme of the heat kernel p2 (z, y)
as follows:

Py (2,y) — B |py i (XEM’(")((H - 1)T/n,w)7y)

n—1
m), XEM() ((;—1)T /s 1 ¢ —colz—y|?
X H {1 +7T§~/7)1' « / r)(BiT/n - B(i—l)T/n)}‘| | < nimﬁe 2le=yl /T, (111)
i=1

where ¢1,co > 0 and o > N are some constants. Here, the function y — th’(m)(m,y) is a small time approxi-

mation of py*(z,-), and we note that the (n — 1)-th (not n-th) product of polynomials of Brownian motions is
used. The kernel discretization is a natural extension of (1.6) in [19] since the function p;X’(m) (x,-) has the form

pf’(m)(gg, D) = pg(EM’(n) (z,){1 4 9¢(z,-)} with a polynomial function ¥:(x,-) and the method in (1.11) can be
written as

pr(z,y) = E [pq)f/’ﬁlm) (XEM’(")((TL - 1)T/n,x),y) (1 + Mgrj)l(T, x))} +0 (nlm> ,

- m), X EM() (- n,x . .
with 1 + M(ﬁ;)l (T, z) = H?:ll{l + W(T/;’XEM (=)T/n, )(BiT/n — B(i—1)r/n)}- Also the approximation can be

a generalization of [23]. The scheme is simply implemented by the Quasi-Monte-Carlo method. We provide
numerical examples for the scheme in order to confirm the validity.
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The paper is organized as follows. Section 2 introduces the higher order splitting method for diffusion semi-
groups around the Euler-Maruyama scheme. Then, in Section 3, we show a new discretization algorithm for the
heat kernel. Numerical examples of the proposed method are given in Section 4 with the comparison with the
Euler-Maruyama scheme. Section 5 concludes the method. Appendix is devoted to the proofs of mathematical
results.

2. SPLITTING METHOD

For N,n € N, let C;°(RY,R™) be the space of all infinitely continuously differentiable functions f : RY — R"
such that f and all of its partial derivatives at any order are bounded. We write C°(RY) for C2°(RY,R). For
any f € Cg°(RY), we define

ok f

_ 2.1
8mj1 ...8xj,€ ( )

[ flloo := sup [f(@)],  [V*flloo ="
zERN 1

o0

Let Q = Co([0,00),R?) = {w : [0,00) — RY; w(0) = 0, w is continuous}, F be the Borel field over 2 and P
be the Wiener measure. For p € [1, 00), the LP-space of real valued Wiener functionals is denoted by L?(Q2); that
is, LP(Q) is a real Banach space of all P-measurable functionals F' : Q — R such that ||, = E[|F|P]'/? < oo
with the identification F' = G if and only if F(w) = G(w), a.s.

We will use the language of Malliavin calculus. See [12, 18] for details Let H = L%([0,00),R%) with the
inner product (-,-}y and B(h) be the Wiener integral B(h) = _1 JoShi(s)dBI for h € H. Let S()
denote the class of smooth random variables of the form F = f( (h1),. B(hn)) where f € Cp°(R"),
hiy....,h, € H, n > 1. For F € S(Q), we define the derivative DF as the H-valued random variable
DF =" 0;f(B(h1),...,B(hy))h; and D; F =31 9;f(B(h1),...,B(hn))hi(s), j =1,...,d, s > 0. For
F e S8(Q), weset DIF, j € N, as the H®/-valued random variable obtained by iterating j-times the operator D.
Then D’ is a closable operator from LP(Q) into LP(Q, H®J) for any p € [1,00). For k € N, p € [1,00), we
define |||} , = E[|F["] + Z?Zl E[|DF|%.,], F € S(€2). Then the space D*? is defined as the completion of
S(§) with respect to the norm || - ||x . Moreover, let D> be the space of smooth Wiener functionals in the
sense of Malliavin D> = M,>1 Nken D*P. Let § be an unbounded operator from L2(2, H) into L?(£2) such that
the domain of §, denoted by Dom(4), is the set of H-valued square integrable random variables u such that
|E[(DF,u)y]| < C||F||2, for all F € D12 where C is some constant depending on u, and if u € Dom(6), §(u) is
characterized by

E[(DF,u)u] = E[F5(u)] (2.2)

for all F € DV2. §(u) is called the Skorohod integral of the process u. When u € Dom(d) has the form u = Gh
with G € D'2 and h € H, the Skorohod integral is given by

3(Gh) = G8(h) — (DG, h) . (2.3)

Let F = (Fy,...,Fy) be a Wiener functional such that F; € D*, i =1,..., N, and the Malliavin covariance
matrix of ((DF“DF> )i<ij<n is invertible a.s. and satisfies ||(deto®)~!||l, < oo, p > 1. For such a
nondegenerate Wiener functional F, we have the integration by parts, that is, for all g € C°(RY), G € D*®
and multi-index o = (v, ..., o) € {1,...,N}* k € N, there exists H, (F,G) € D> such that

E[(0%9)(F)G| = E[g(F)Ho(F, G)]. (2.4)
In particular, H,(F,G) is given by Ho(F,G) = H(a,)(F, Hq, ... .a_,)(F, G)) with

N
Hy(F,G)=6| Y G(e™);}DF; |, i=1,...,N. (2.5)

Jj=1
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Let us consider the solution X = {X(t,2)};>0, * € RV of the following It&’s stochastic differential equation
driven by a d-dimensional Brownian motion B = {B;};>:

t d_ rt
X(t,x)==x —|—/0 b(X(s,x))ds+ Z/o oi(X(s,z))dB., (2.6)
i=1

where b € C°(RY,RY), 0; € C°(RY,RY), i = 1,...,d. We assume the uniformly elliptic condition for the
matrix oo’ (-), where ¢’ is the transposition of o . Let .Z be the generator given by

% 9 1 d ol 82 oo (mN
Zole) = L V@ el + 53 D D@ g pela), o€ GERY) (2.7)

i=1 k=114,j=1
and {P,};>0 be the semigroup of linear operators
(Pif)(z) == (" f)(z) == E[f(X(t,z))], t>0, zeR"Y, (2.8)

where f: RY — R is appropriately chosen. For a fixed z € R, we define a generator % whose coefficients are
frozen at a point z € RV as follows:

d N
Z 1 Z 82 o0

=11,j=1
and let {Pto’z}t>0 be the semigroup of linear operators corresponding to £ given by
(P*f)(@) = ("0 f)(w) := E[f(X*(t,2))], ¢>0, = €RY, (2.10)

with an appropriate function f : RY — R, where

d
X*(t,z) =z + b(2)t + Z oi(2)B.. (2.11)

=1

Then, (Ptozf)(:v) can be explicitly given using the Gaussian density y — p~~ (t,z,y) of X*(t,x) as
(Pto’zf) @)=/ F)p™ (tao,y)dy, t>0, zeRY, (2.12)
R

For a multi-index o = (ay,...,ax) € {1,2,...,N}* k € N, we write |a| := k and 0% := o et

T 0%a, .,.am%

XEM(¢ 1) be the one-step Euler—Maruyama scheme:

d
=x+b(x)t+ Z o;(z)B;

z=x ‘
i=1

XEM(t 1) .= X*(t, x)

and {XFM:(")(¢ x)}, be the continuous Euler-Maruyama scheme with the uniform time grids given by

XEMM) (4 2) = XEMO) (KT, ) + b ()_(EM’(”)(kT/n, :v)) (t — kT /n)

+Zaz( (EM,n) k:T/n x)) (BZ —B]iT/n)a
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for t € [kT/n, (k+1)T/n]. The aim of this paper is to provide a general discretization scheme for Pr f(z) around
the Euler-Maruyama scheme E[f(X™M:(")(T, z))].

In order to construct a discretization scheme, we expand . around .7 in the sense that; for all m € N,
there is C, ,(m) > 0 depending on the derivatives of b, o and m such that for all p € Cg°(RY) and z, 2z € RY,

m 2

Lo(x) = Lip(e) =Y Lip(r)| < Coo(m) Y IIViellecle — 2™, (2.13)

i=1 i=1

where the differential operators .27, i € N are defined by

i) o 5
=5 ¥ ﬁaabj( o=z [[(@a; = 20,) 53— (2.14)
a! Oz

j=1ae{1,2,...,N}i Jj=1

laf 82

d N
2D VRND SRS LCLOTO/ | (BNEEMPELAS

k=1j1,j2=1 a€{1,2,...,N}i Jj=1
For example, we have
N d N 4 92
Leo() :i;(wl — 20 (2 Z_: 2 x; — 2)010%(2) ol (2) 7o axj‘p(m)’ (2.15)
- 0
L5 (x) = 3 Z (w1, — 21,) (21, — 21,) 01, 01, 0" (2) 81%-@(96) (2.16)

i,l1,la=1
i N ' , _ 4 52
+ Z Z (le - le)(‘rlz - le){allalzallc(z)ai(z) + 8110’2(2’)@20’%(2)}8:%8%]' @(x)v

k=144l la=1

for p € C°(RY) and = € RY. We use non-commutative relationship of .4 and .27, i € N in the approximation
scheme. Let DO be the space of smooth differential operators over RY. Then DO is a non-commutative algebra
over R. For 21,9, € DO, we define the commutator (2, Do) = P1Ds — P22;. In addition, we define for
D, Day..., D, € DO, n €N, HZ:I D =D, Doy, Dy

2.1. Splitting around Euler—Maruyama

‘We shall use abbreviate notation
X(t,x) = X®M(t,z) and X (t,2) = XEMM (¢ 1), (2.17)
for simplicity.

We now show a splitting method using a new operator constructed through the Baker—-Campbell-Hausdorff
expansion around the Euler-Maruyama scheme combined with Malliavin calculus.

Theorem 2.1. For T > 1 and m € N, there ezists a constant C = C(T, m) > 0 such that

m n 1
1Prf = (QF1) fllow < Cllf oo (2.18)
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for all bounded and measurable functions f : RN — R and n > 1, where {ng)}t>0 is a family of operators
given by

Q™ () = P7 ()]0 + z_: > > é](a) (2.19)

=1 <3 kj<2m41  1<aa<k:
SXizihis 0<as<ks

0<a;<k;
E;=1 aj+is<m
)i o (15 155 25 22 ) P F (@)
=1

a;-times

= B [f(X(t.2)) {1+ =" (B)}]

for some Wt(m)’w(Bt) € D>, where a! := (1) (a2)!...(a)! and I(a), a = (a1, ...,q;), is defined as

I(Q)/Ol /til.../t:(tl)”‘i(tg)“i1...(ti)a1 dty ... dt;. (2.20)

Proof of Theorem 2.1. See Section 2.3. O

In the discretization, an optimal truncation of the Baker-Campbell-Hausdorf{f expansion is used in (2.19)
which is justified by Malliavin calculus. See Proposition 2.3 in the proof of Theorem 2.1.

As a corollary, we show a useful representation for the proposed splitting method and give a property on the
variance.

Corollary 2.1. It holds that

f (X(") (T7 x)) H {1 + W;n;%’X(n)((i_l)T/n’m) (BiT/n — B(z‘—l)T/n) }‘| , T € RY. (2.21)

(@) 1) =

Furthermore, we have the following result for the variance:

2

v “ m), X ((i— n,x
E ‘f (X(n) (T7 l’)) H {1 + W;w/T)lVX (DT /n.) (BzT/n - B(i—l)T/n)} < 00, (222)
i=1
for any v € RN,
Proof. Tt is obvious from the proof of Theorem 2.1 (especially Lem. 2.1). O

Remark 2.1 (On the construction of the splitting method). We explain the strategy for the construction of
the splitting method for (Prf)(xz) = E[f(X(T,z))], T > 1 for a non-smooth test function f. Basically, the
discretization is derived through two steps, the local and global approximations.

We first consider the local approximation. According to the generator expansion around the frozen generator:

L =L+ LI L+, (2.23)

the semigroup {P,}; is expanded as

Pupla) =P o(w)| __+ P ol)

+PPo(z)|  +... (2.24)
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for a bounded and measurable function ¢, where the family of Pto’z, t > 0 is the semigroup frozen at z
corresponding to Z§. Note that the family of PtO’Z|Z:w7 t > 0 is regarded as the one-step Euler-Maruyama
semigroup. The expansion (2.24) is obtained based on the expansion of the “parametrix”:

t
Pop(a) = PO p(a)|_ + / Py (& — )PP () ds|__ (2.25)
0

2m—+1

t
= PY%p(z)|  + / PY(L — L) PP p(a)ds| _ +...= PPp(@)| _, + > Pe@)]| _, +....

z=

where (2.25) and (2.23) (or (2.13)) are recursively used, and P;"*p(x) is given by

PlEo(z) = Z // /p“gklp?zl WL LEPY p(x)dty ... dt. (2.26)

kit...+ki=i

When we truncate the expansion at the order 2m + 1 as Pip(z) ~ PP 0()|.—0 + szH P/* ()] =g, the
error term can be written as

2m-+1 ( 2m+1—k

Z / Pi—s Z; f) Pl p(x) ds|.=s- (2.27)

We will discuss details in the proof of Proposition 2.2.

While we obtain an approximation P;o(z) &~ P %o(x)|.ms + Yoo PP?o(x)|.22, we do not use this form
directly in numerical computation and apply the Baker Campbell-Hausdorff formula to Pti #o(xz), i > 1. Fur-
thermore, we do not use all terms of ZZmH P*(z)|,—¢ in order to obtain more smart local approximation
for splitting method.

After obtaining the approximation P,p(z) ~ P% ()| ,—s + ZQmH *¢(2)| 2=z, We give an optimal trun-
cation using the Baker—Campbell-Hausdorff formula and the Malliavin calculus, which may be regarded as a
“truncated parametrix”. The following local approximation is introduced:

Pyp() ~ Q™ () (2.28)
with
(m) 0.7 — (t)%(t2)™ .. (t)™ ,
i o(x) = Py Z > // / ol el dty...dt;
i=1 <EI m+1  1<ai <k
0<a2<k2
0<a;<k;
i, agFi<m
< T 1% 125, a0 ) )P ()] oma (2.29)
=1 a;-times

The above truncation in (2.28) is “optimal” in the sense that (ng'/?l)" f(z) will give O(1/n™)-order approxima-

tion for Pp f(z) with the minimum computational effort. The local approximation error is explicitly given as fol-
lows Pyp(x) —th)gp(x) = R (x)+t™ W7 (2) where Zf is given in (2.27) which can be estimated by ||Z{||c <
t™ 10|l using Malliavin calculus, and ¥ is a function of the form 7 (z) =, hi(£)gi ()0 P22 (1)) .—.
with v € N, multi-indices ' € {1,..., N}!, I < v, non-decreasing h; and smooth and bounded gi-

Next, we explain the global approximation for Prf(x). When the test function f is smooth, the result
| Prf — (QT/n) ¢|loc = O(n~™) immediately follows. Actually, if ¢ is a function of Cj°-class, we easily see that
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| Prp — th)goﬂoo = O(t™*1) holds by the estimate ||Uf | < C with the result sup,. 105" P2 () ||oe < o0,
and then one has ||Prf — (QT/n)”fHoo =nx O(T/n)"™*1) = O(n=™).

However, when f is non-smooth, we cannot employ this argument. The important point on the construction
of the splitting method in the paper is to use the explicit local error functions %Z; and ¥{ in the estimate of the
global approximation for Pr f with bounded and measurable test functions f, where the Malliavin calculus plays
a crucial role. In particular, by applying Kusuoka—Stroock’s integration by parts [14] for elliptic Itd processes,
we are able to provide the global approximation Pr f(x) = (QT /n) f(z)+0(1/n™) for bounded and measurable
test functions f, in other words, the weak approximation for It6 SDE is obtained.

Remark 2.2 (Comparison with the probabilistic parametrix methods). We mention the features of the pro-
posed scheme (Thm. 2.1 (and Cor. 2.1)) by comparing with the probabilistic parametrix methods of Bally and
Kohatsu-Higa [2] and Labordere et al. [15].

Bally and Kohatsu-Higa [2] obtained an exact formula with an estimator for Prf(z) through the parametrix
method, where there is no discretization error (weak approximation error), in other words, the estimator provided
by [2] is “unbiased”. However, the cost of the scheme may be the divergent of the variance. In general, the
estimator gives infinite variance except for some special cases, which is partially improved by Labordere et al.
[15].

Our scheme will be regarded as a biased-simulation method because it involves weak approximation error.
However the bias is quite small since it gives higher order discretization. Also the variance of the estimator is
finite (see Cor. 2.1), which is consequence of the use of the Baker—-Campbell-Hausdorff formula for the “truncated
parametrix” (Rem. 2.1).

2.2. Examples of the splitting method

As examples for the splitting method in Theorem 2.1 (and Cor. 2.1), we show the following simple second
and third order methods in Corollaries 2.2 and 2.3.

Corollary 2.2 (Second order weak approximation). For T' > 1, there exists a constant C > 0 such that

1P = (QF))" flloe < Cllflloosg 5 (2.30)

for all bounded and measurable functions f : RN — R andn > 1, where {Q§2)}t>0 is a family of operators given
by

Q2 f(x) = PP f(a) s + Z 15, L) PP f(@)]ama (2.31)
_E {f (X(t,z)) {1 + wt(z)’z(Bt)H . (2.32)

)T

Here, the Malliavin weight 77( "(By) is given by

d N
z 1 v i1 i
DNBY =5 3D Laok @) Hee (X(t0), BB — 11, ,) (2.33)
i1,i2=1k1=1
1R & .
T3 > {500'“ @)+ Ly, 0" (a )}H(k1> (X(t,x), Bi't) (2.34)
21: k1:1
1 N
Z Z Z E“ s (@)L, 12( )H(kl,kz)( (t, ), t2) (2.35)
i1,02=1 k1 ,ka=1
N

+ = Z Lob™ (x)Hpyy (X (t,2),1%) (2.36)

kll



S332 Y. IGUCHI AND T. YAMADA

with the differential operators appearing in the Ité Taylor expansion:

/.31220 8£ i=1,...,d,
01 LY 02
Lo = ;bj( 87 §j1§ 2:: 6x]18x]2

Remark 2.3 (Explicit formula for the weight in Cor. 2.2). We provide below the explicit forms of
H(’h)(X(t?x)’ leBtlz - tlilziz)v H(k:1)(X(t7x)7 let)a H(k1 kz)( (t ‘T) 1)

i1, =1,...,d, k1,ka = 1,..., N, in the Malliavin weight wt(z)’x(Bt) in Corollary 2.2. Let A(x) = (AJ ())1<ij<n
be the inverse matrix of oo’(x). By the computation of Skorohod integral (2.3) with (2.4) and (2.5), we have

Hoy (X (t, ), B B —t1;,—;,) = ZZA’“I Wit (z)t{ B} B B}?
Jji=lig=1
B“ﬂw_m B2t1;,—i, — BPt1s,—i, }, (2.37)
H, (X (t,z), Bi't) ZZA’“ Wil (@) {B]* B —t1;,_, }, (2.38)
Jji=lig=1
Hg ) (X Z Z Aj @)V (@) AR () V2 () BP B — tliym, ), (2:39)

J1,d2=113,i4=1
for kl,kQZ].,...,N and i17i2:1,...,d.

Corollary 2.3 (Third order weak approximation). For T > 1, there exists a constant C > 0 such that
1
1Prf = Q%)) flloe < Cliflle (2.40)

for all bounded and measurable functions f : RN — R andn > 1, where {Q§3)}t>0 is a family of operators given
by

2
3 z t2 z
D@ = PP @)oma + 5 Y15 LR (@)
i=1
ts - z z z OZ z z p0,z
Jrg (25, 25, L7 P7 f ()= mJF Z Z (L5, L5 LE P ()| a=a
1=2 11=1114+i2<4
2.3. Proof of Theorem 2.1
For a bounded and measurable function ¢ : RN — R, we define functions Pti’z<p, t>0,1=12,...,2m+1
given by
) t
P p(x) = Z/ P> 27, PREp(x)ds, =,z e RY, (2.41)
0

which play a role in the construction of the approximation for P;. We note that for any i € N, k =0,...,i—1,
z € RN, one has s — P2%.27, P%%p(z) € L'([0,]) by the integration by parts argument. Let us see this in
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the case i = 1 (k = 0). From the the integration by parts and the definition of .Zf in (2.15), we have the two
representations for Py%. 27 P%%o(x):

N
PY* L PO p(x) = Z Z E [8“P£’Zga (X*(t - 5,2)) gau(z) (Xz’l(t —s,z)—z)] (2.42)
ae{1,2,...,N}*, =1
k<2

N
Z Z E[PY?p (X*(t —s,2)) Ho (X*(t — 5, ), gau(2) ()_(z’l(t —s,x)—z))]

ae{1,2,...,N}* I=1

k<2
(2.43)
for some g, € C°(RY), a € {1,2,...,N}* k=1,2,1=1,..., N. Hence, we can choose positive constants C;
and Cy such that
¢ t/2 ¢
[1pngiprzpwas = [P popta|ds + [ P27 pla) ds
0 0 /2
/2 ¢

< Cl/ %ds—&—(}b %ds = (C1 4 C2)||¢llcc2log 2 (2.44)

0 t—s tj2 S

where the estimate of Kusuoka and Stroock [14] (or the basic Gaussian calculus, in this case) is applied to
(2.42) and (2.43). Then s — P2%. 27 P%*p(x) € L'([0,1]) holds for bounded and measurable test functions.
The integrability of the integrand of Pti #p(z) for ¢ > 2 follows by induction.

Before showing the proof of Theorem 2.1, we prepare three useful results (Props. 2.1-2.3).

First, we give the Baker—Campbell-Hausdorff type formula in order to compute P;"*¢(z)|,=z, 7 > 1. See the
book of [5] for the topics on the Baker—-Campbell-Hausdorff formula initialized in [1,6,11]. In our application,
we need the following specific version of Baker—Campbell-Hausdorff formula for expectations with bounded and
measurable test functions.

Proposition 2.1 (Baker—Campbell-Hausdorff formula). Let0 < s <t<1,i€ N and,{”i\e DO be a differential

operator of the form 2: c;(1)0P where ¢ is a constant, ;(+) is a polynomial of the degree at most i and O°
is a partial derivative with a multi-index 3 € {1,..., N}, £ € N. Then we have the explicit formula:

Pk
sLE o (t—8)L¢F s z z z o g
%0 L9720 () = Z o {fo ) [ . [XO , {XO 7.,%H . .”et“% (), (2.45)
k=0
k-times
for any bounded and measurable function ¢ : RN — R, where [£§,]. .. [ Ly, [Z7, (,2]] L= .
0-times

Proof. We provide the proof in Appendix A. a

Using the explicit Baker-Campbell-Hausdorff formula (2.45) and the Malliavin calculus, we have the following
estimate.

Proposition 2.2. For m € N, there exists a constant C = C(m) > 0 such that

2m—+1
sup | Prp(a) = D PR (@) |iza| < CE™ o]l (2.46)

N
z€R i=0

for any t € (0,1] and bounded and measurable function ¢ : RN — R.
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Proof. We provide the proof in Appendix B. O

Furthermore, applying the explicit Baker—Campbell-Hausdorff formula for Z?Z)H PZ Zp(x)| 1=z, We give the

optimal truncation in order to give O(t™*!)-order local approximation for P,p(z).

Proposition 2.3. For m € N and a bounded and measurable function ¢ : RV — R, it holds that

2m—+1 )
N Pp()|ee = Qp(x) (2.47)
=0
iy t2§:1 arts : z z z z 0,z
+ Z > 3 Tf(a)l‘[([zo,[zo,...,[go ,.,iﬂkl]]...]])Pt’ (@) (2.48)
=1y ki<amtl éég;éi; =t a;-times
0<a;<k;
So1 uFi>m
2m+1 P, i i ) . o .
+ Z | 3 3 TI(a)H([D%7[92”0,...,[,,%,fkl]]...}])Pt’ o(2) ]2, (2.49)
PET ALY ki <2met] éég;é:; =1 a;-times
0<a;<k;

where {ng)}bo is a family of operators given in Theorem 2.1. In particular, the terms (2.48) and (2.49) are
simply written in the following form :

Y (0)gu(@)9”” P (@), (2:50)

I<v

for some v € N, functions hy, | < v at most polynomial growth, g, € Cg*(RN), I < v and multi-indices 6O,
[ <v.

Proof. We will show this in Appendix C. O
Using these results, we proceed to the proof of Theorem 2.1.

Proof of Theorem 2.1. For any bounded and measurable function ¢ : RY — R and t € (0,1], we define a
function Zf(-) on RN as ¢ (x) := Pyp(x) — S0 P/ *p()] .=, © € RY. Then, by Proposition 2.3, the local
error Pyp(x) — §"”)¢(x) is given by

Pip(z) — Q™ p(x) = &f (x) + 17105 (2), (2.51)

where U : RY — R is defined as ¥f(:) := ZKVhl(t)gl(~)65<l)Pto’z<p(~)|z=. with those functions appearing
in (2.50). When the bounded and measurable function ¢ is sufficiently smooth, we immediately see that the
function 85(Z)Pt0’280(')|z:. in U7(-) has the form 65<Z)Pt0’z<,0(l‘)|z:g; = E[(‘)B(l)w()_((t,x))]. However, when ¢ is
only bounded and measurable we cannot use the derivatives of ¢, of which case is discussed in Lemma 2.2.

We show the bound for the global error Prf(x) — (Q(T%)l)" f(x) without employing the regularity on f. We
note that by the integration by parts on Wiener space, for any bounded and measurable function f : RY — R,
Q'™ f(z) is represented as

M) = B[f(X ) {1+ 7B}, (2:52)
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where Wt(m)’m(Bt) € D is given as a sum of polynomials of Brownian motion { B; };~¢ with coefficients depending

on b,oy,...,04 and theirs partial derivatives evaluated at € RY. Here we have
n—1 (m) k
Prf(z) - (QT/n) fla)y=">" <QT”;n) (Pr/n — Qrn)Pr_(rsi1yrmf(2) (2.53)
k=0
n—1
P 1 n m P B L .

- Z (Qg:%) T7n (e f( )+ (T /n)™*! Z (Q(T772L) T§n<k+ )T/ f(x)
kf
n—1

= B | %y 0 (X KT )
k=0

k
(m), X" (=) /n.2)
<1 {1 s (Bjr/m = B(j—l)T/n)}

.
I
-

n—1
() 3B | T (XKD ) )

k
(n)
H { w0 (B B(j—l)T/n)} ’ (2.54)

where the representation (2.52) is iteratively applied. We note that the following properties hold for the Euler—
Maruyama scheme and the weights in (2.54).

Lemma 2.1. We have X" ((k — 1)T/n,z) € D*® and H?=1{1 + W(Ty;?l’x(")((j_l)T/n’m)(BjT/n —Bi—nyr/m)} €
D for allk =1,...,n. In other words, for K € N, p =2e, e € N, there exists C(T) > 0 such that

sup || X ((k - 1)T/n,a:)H < o(T), (2.55)
k=1,...,n K.p
b (n)
m), X" n,x
]FSluP {1 + (/) (G-0T/ )(BjT/n - B(j—l)T/n)}HKp < O(T). (2.56)

Proof. The result X ((k —1)T/n,x) € D*®, k= 1,...,n or (2.55) is given in Lemma 5.1 of Bally and Talay
[3]. We will give the proof of (2.56) in Appendix D. O

First, we will estimate the terms (Q(Tn}i)kz%’ﬁjn (k“)T/”f( ), k=0,1,2,...,n — 1. By Lemma 2.1, it holds

that there exists C'(T') > 0 which does not depend on k such that

m P, n P, nr/nf
||(Q;/i)k%T;n(k+l)T/ Hoo < ”%T7n (k+1)T/ ||ooC(T)

for any k =0,1,...,n — 1. Then, using Proposition 2.2 leads to

m P nf 1
@) 2o " o < O Sloo s (2.57)
with some constant C'(T') > 0 which does not depend on k¥ =0,1,...,n — 1.

In order to complete the proof, it suffices to show that there exists a constant C' > 0 independent of n

such that H(Q(T%)k‘l’;fn(”””"f\l <C|flle for k=0,1,2,...,n — 1. The term (Q(m) )k\Ilifn“““)T/"f( ) is
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represented with the Euler—-Maruyama scheme as follows: for k =0,1,2,...,n — 2,
P n @ v (n
(@) wpre el @) = S m(rm)E 07 Pr_ syt (X + DT/mn)) 6P], (259)
I<v

where Fj1/,-measurable random variable Gl(k) € D>, | < v is given by

k
G = g (X (U= 1)T/m,2)) T {1+ 7)) X O0T (B — B ayen) o (259)

j=1

Note that now we exclude the case where k = n — 1 since we cannot have 97" f for a bounded and measurable
function f: RY — R while we can use 85(1>PT,(k+1)T/nf fork=1,...,n—2.

For s € (0,7/2) and a multi-index «, since we can choose C' > 0 and ¢ > 1 such that ||0*Pr_sf|lecc <
| fllccC/T? by Friedman [8] or Kusuoka and Stroock [14], we immediately have

PT—k nT/nf
H(QT/n) T/n( o ”00 < C(T)||f||007 k= 0717""[77‘/2]'

For s € [T/2,T), another application of Kusuoka and Stroock [14] enables us to give the upper bound of
(2.58). We can remove the derivatives of Pr_(x11)r/»f through the integration by parts with respect to the

elliptic It6 process { X (™ (s,2)}s>0 and then have the estimate: for all multi-index «, there are C' > 0 and ¢ > 1
such that

sup |E[0Pr_s f(X™(s,)) ]I<C P sfllooéc 7 1 flloos

zeRN

for all G € D> such that for all k£ > 1,p € (1,00), ||G|lx,p < C. Hence, one has

loo <O flloos k=1[n/2] +1,...,n—2.

P - nf
H(QT/n) T?n<k+1)T/
Even if k =n — 1, we can show the upper bound of (2.58) as follows:

Lemma 2.2. There exist C > 0 and q > 0 such that for any bounded and measurable function f : RN — R,

Q)™ Wl < Ol (2.60)
Proof. We will give the proof in Appendix E. O

Therefore, we have

m 1
1@ Prj = Qrpa) Pr—qesnyrynf || o < CT) i1 floes k=0,1,...n—1,
and in conclusion

n—1

SO Y e = OT) -l

HPTf - (Q(T"/li)"

The proof of Theorem 2.1 is finished. (I
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3. DISCRETIZATION OF HEAT KERNEL

Let y — piX (z,y) be the density of X (¢,2) or the fundamental solution (the heat kernel) associated with the
backward heat operator 9; +.%. We aim at constructing a general discretization method for p5 (z,y), T > 1,
z,y € RN, )

Let us denote by pX (z,-) the density of X?*(¢,z) given in (2.11), i.e. X*(¢,2) = = + b(2)t + Z?Zl oi(2)B:.
Since X?(t,z) follows N-dimensional normal distribution with the mean x + b(z)t and the variance-covariance
to(2)o’(2), the density pX (z,y), (t,z,y) € (0,00) x RN x RV is explicitly given by

(@) = .
’ (2mt)N/2\/det X(2)

where %(z) = o(2)0’(z) and A(z) = %(z)"". Note that the uniform ellipticity of oo’ guarantees that the N x N
matrix ¥(z) is invertible for all z € RY. When we substitute z = x into pX (z, %), we simply write it as p;* (2, ).
Using the weight 7{"™)"(B,) in Theorem 2.1 or (2.52), i.e. Q\™ f(z) = E[f(X(t,2)){1 + 7™ (B,)}], we give
a new discretization of the heat kernel p (z, -).

The main result is as follows.

exp (_;t (v— e +0(:)1) A (v — {2 + b(z)t})) , (3.1)

Theorem 3.1. Assume T > 1, m € N. There exist some constants C(m),c >0, ¢ > % independent of T and
non-decreasing function K(-) such that

n—1

X,(m (n m), X" (G-1)T/n,z
pp(v,y) — E pT/Ez ) (X( )((n — 1)T/n,x),y> {1 + 7T(T/BL (G=1)T/n) (Bjr/n — B(jfl)T/n)}
j=1

K(T) C(m) ly — x|
< S e e ) 2
for all z,y € RN, where pf’(m) (z,y), (t,2,9) € (0,00) x RNV x RN is given by
@ y) = i (2,y)
m—1 i : 7
t21:1 autt z z z z X #
v > S (5 15 20 ) e
=130 kys2matl (légiél]z; =t ag-times
0<a;<k;
Yo cuti<m
(3.3)
Proof. See Appendix F. O

(m) (

We show the representation of th’ x,y). First, we note that the differential operator appearing in (3.3) is

simply written in the following form:
i

1% 1%, 126, LE0 - ) ema = ) 95(2)0”, (3-4)

=1 ; 1Bl<v
a;-times

where v € N, g€ {1,2,..., N}l < v and each gg € CEC(RN) is a linear combination of b, ¢ and their partial
derivatives. Then, we have
i

TG 1%, 15, L2 e (@ )eme = Y 95(2)07 % (2, y)] o= (3.5)

=1 . |BI<v
ag-times
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For a multi-index 8 = (61,...,0) € {1,..., N}, € N, the derivative 9°pX " (z,) is explained as

O’ (2,y) = (1) x HY5 M (y — 2 = b(2)0)py () (3.6)
using the [-th order multivariate Hermite polynomial FPrreBi1Bs (&) given by
g o) = = (la e, — 0, ) HI P (O, =1L (.1
for an invertible matrix a € RV*N and a vector ¢ € RN with H?1(¢) = —[a~1¢]s,. Let 95 : (0,00) xRV xRN —
R be a function given by
Pp(tsw,y) 1= (=)' < Hypyy M (y =2 = b@)0)| _ (3.8)
then 0%pX” (x,y)|.—. has the form
O (9= = D5t 2,) B (). (3.9)
Therefore, th’(m) (z,y) is transformed into the following formula:
P y) = MU (1) b (@), (1) € (0,00) x BY xRV, (3.10)
where the weight on finite dimension M ™) : (0,00) x RNV x RN — R is given by
. m—1 0o cut
MMtz y) =1+ ) > >y ———1(@)gs(x)I5(t 2,y). (3.11)

i=1 ;<> g;<2m+1  1<ai<ks  |B|<v
SEjm ks 0<ax<ks

0<a; <k
Do utism

Based on the above discussion and Theorem 3.1, we derive the second order discretization of heat kernel

P (z,y) as follows:

Corollary 3.1 (Second order discretization of heat kernel). Assume T > 1. There exist some constants C,c > 0,

q> % independent of T' and non-decreasing function K(-) such that

1

n

X,2) { o(n 2), X" (G-1D)T/n,z
p}T((x,y) -F pT/'(n) (X( )((TL - 1)T/’I’L,£C), y) {]— + ng/)n (G=01/ ) (BjT/n - B(j—l)T/n)}

j=1

K(T) C© ly — =
< 2 quxp(—c T ,

for all x,y € RN, where wt(Q)’m(Bt), (t,z) € (0,00) x R¥is given in Corollary 2.2 and pf’@) (x,y), (t,z,y) €

(0,00) x RN x RY s given by

X X t2 2 z 21, X7 V1 X
pi P y) = b (@y) + 5 D LZE L (@ y)le=e = MOt 2,9) 97 (2,0)

i=1

(3.12)
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with the weight on finite dimension M(2)(t,w,y) given by

— 2N 4
MOt z,y) =1+ 52&@]@) Gt 2,y) Z Z Lt ()07 (2)9j, ) (t 7, ) (3.13)
j_l k=1j1,j2=1
t2 i
Z Z ‘600 JZ Z(x)ﬂ(jl,jz)(tax7y) (314)
k= 1]1 j2 1
2 @ _
+5 Dl Z Lol (@) (@) (@)9 1 i) (62, Y) (3.15)
k1,k2=1j1,j2,j3=1
2 &
+Z Z Z [’klak £k1ak( )ﬁ(j17j2)(t’x7y) (316)

k1,k2=171,j2=1

with 95, (1w, y) = § Xpy A (@) (g — 2 — P (@)),

19(j17j2) (t,z,y) Z A AJ2 (y71 — — b (x)t) (yi2 -z, — b2 (x)t) — EAﬁ‘ (x)

’Ll 7,2 1

and

19(]&,]27]3) t z y t3 Z A AJ2 )Afg (‘T) (yil — Tiy — bil (I)t) (yiz — Liy — biZ (:C)t) (yi:s — Tig — blg(‘r)t)

’Ll 7,2 13 1
AJl Ah ]
Z AP (x —x; — b'(x) Z AP (x —z; — b'(x)t)
AJ2 ,
ZAJl —z; — b (z)t) .
Proof. By Theorem 3.1, we obtain
= 5 t2 t2 2
X,(2 X z 21, X7 X z 21, X*
P ay) = o (o) + Y SILE LAY @) =0 (@9) + 5 Y LG LS @), (B1T)
i=1 i=1

where on the second and third equations we used [.£§, fz]pt (,y)] 2=z = 0 for 4 = 3,4, 5 which is due to the
result that [.;2”0 ,.i”z]pt (%, 9)| 2=« has the form ¥(2)(z — 2)’p;X " (2,y)|.= = 0 for some 1) € C°(RN) and ¢ € N.
The term % Eizl[,fo , LA (2,9)]2—2 is calculated in the following way. Since we have

z z % 8 X
[30 agl} :L’ Y |z T — Z bl ab 833 sz (xay)|z:m
i,l=1 v

d N
; 7 62 2
E E l i X
+ == {b (x)alo-k: (x)aé (.TI) 8.%18.%] Db (.Z', y)|Z:$

2

) ) 0 oz
+ @l (0 ()57 <w,y>|z-z}

i P
+ Z Z o}, ()}, ()00 ()Uki(ff)mptx (2,Y)]2=2
J 1 12

k1,ka=11i1,i2,5,l=1
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and
_ 1 X 0 <
45 L e =33, D @l @0 () o pi (e
k=11,l1.1o=1 7
1 . ; )
3 Sy d 2 @) {01,001, ()01, (@) + O, 01, (2) O, ()}
k1,ka=11,5,l1,l=1
2 ..
X D0,V (@,9)|2=a;
it holds that
t2 2 z j a Xz
o Z[gmf ]pt (f Y)le=az = *Zﬁob amjpt (z,Y)]:=2
=1
t2 i . . H? -
+§Z > Lt (@)oy (@) 5—a—pp (@,Y)]:=a
k=1 j1,j2=1 J1 J2
t2 d N ) 82 .
+§Z > Loof(x)o)’ ( ) oo Pt (@Y=
k=1j1,j2=1 10T 2
R - GE <
+§ Z Z £k10k2 Ukl( )Uﬁ(fc)mm (@, Y)|2=a
kl,kzzljmz,jg 1 1G5 0y
t2 d 62 Xz
+Z Z Z ‘Cklak ﬁklakz( )Wpt (@, y)]2=a-
k1,k2=1j1,j2=1 J1Y% g2
By the representation (3.9) with (3.8), we have the assertion. O

4. NUMERICAL STUDY OF HIGH ORDER DISCRETIZATION OF HEAT KERNEL

In this section, we show some numerical results of discretizing heat kernels for univariate and multivariate
models using the proposed high order scheme in order to verify our assertion. We compare those with the results
computed by the classical Euler-Maruyama method, the first order scheme. Here, the first order discretization
is constructed as follows. Let T' > 1 and X (T, z) be the solution of SDE (2.6). We denote the density of X (T, x)
by p (z,y), (z,y) € RN x RV, In addition, the density of the Euler-Maruyama scheme X (™) (T, z) is denoted
by px o (z,y). Then, pi (z,y) is approximated by the following convolution.

)~ X(")(x,y) _ (pi(:/n . *pé(:/n)(x7y) —E [pf/n (X(n)((n - 1)T/n,x),y)} ) (4.1)

n

)
pr(x

where p§ (2,9), (t,z,y) € (0,1] x RN x R¥ is the density of one step Euler-Maruyama scheme given by (3.1)
with z = x. On the other hand, based on Theorem 3.1 using Malliavin calculus, we approximate p¥ (z,y) by
m-th order scheme (m > 2)

X, (m
P (@,y) ~ (pT/fL ™k, ))(w,y) (4.2)

n

= B |y (X0 (n = 1)T/m,2).) 1:[ {14 XG5 B )
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-+ True EM (n=1) EM (n=2) — EM (n=4)

0.016

0.012

0.008

Density

0.004

-0.004

FIGURE 1. Kernel estimation (Euler-Maruyama scheme).

== True Malliavin (n=1) Malliavin (n=2) = Malliavin (n=4)
0.016
2 Y
0.012
£
0.008 f \
A Y
=4
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.
- \
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0 == ———
-0.004
0 50 100 150 200

FIGURE 2. Kernel estimation (Second order scheme).

Note that for n = 1, we always have exact values for both approximations since pz):( /n(x, y) and pf/’glm) (z,y) are

obtained in closed form. In the following numerical examples, we compute the approximation (4.1) and (4.2)
with m = 2 by simulation. For the figures, the labels (EM) and (Malliavin) are used for (4.1) and (4.2).

4.1. Univariate model

Let us consider the following 1-dimensional SDE:

dXy =oX7dWy, X§ =2 €R, (4.3)



S342 Y. IGUCHI AND T. YAMADA

== True «+ EM (n=4) — Malliavin (n=4)

0.016

0.012

0.008

Density

0.004

-0.004 ' . ' '
0 50 100 150 200
y

FIGURE 3. Comparison of approximated densities with time steps n = 4.

where o > 0. We numerically compute the density of X7, T'> 1, € R, using the Euler-Maruyama method
and our proposed scheme (m = 2, i.e. second order scheme). Here, we apply the Quasi-Monte-Carlo (QMC)
method to both schemes (4.1) and (4.2) with number of simulations M = 10* for each time step n = 1,2 and
4. The parameters are given by T'= 1, = 100 and ¢ = 0.3. In this example, the exact density is obtained
in closed form since the probability law of X7 is lognormal. We use the exact density as the benchmark in the
following numerical tests.

In Figures 1 and 2, the true and the approximated densities are illustrated. Figure 1 shows the comparison
results for the Euler—-Maruyama scheme and Figure 2 shows the estimated kernels with the proposed second
order scheme. Through the experiments, we particularly observe that the convergence of the second order scheme
is much faster than that of the Euler-Maruyama scheme. The approximated density of the second order scheme
almost corresponds with the true density when n = 4, which can be checked in the following Figure 3.

4.2. Multivariate model

We consider the following 2-dimensional SDE:

X = XE I, XY =0 > 0 o
dX]" = vpX P AW + /1= PPXPTAW?, X3 = 25 > 0, (4.5)

where 8 € [0,1], » > 0 and p € (—1,1). In financial mathematics, the process {X;*, X?"*};¢ is known as the
SABR model which is one of important classes of stochastic volatility model. Here, the first and second element
of the process means underlying asset and its volatility, respectively. In this section, we especially investigate
the marginal density of X:}Jw since estimating it is important in practice. As in the previous section, we apply
QMC method to the Euler-Maruyama scheme and the proposed second order scheme (m = 2) with number
of simulations M = 10° for each time step n = 1,2 and 4. Since we do not have the analytical solution of the
density of X%’x, we numerically compute the benchmark value by the first order scheme (4.1) with the number
of simulations M = 10% and the time step n = 27. We set T = 1,2; = 100,25 = 0.3,8 = 1,v = 0.1 and
p=—0.5.
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-- EM (M=1016, n=128) EM (M=1045, n=1)
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FIGURE 4. Kernel estimation (Euler—-Maruyama scheme).
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FIGURE 5. Kernel estimation (Second order scheme).

In Figures 4 and 5, the benchmark and the approximated densities are illustrated. Here, the benchmark density
is represented by the dashed line. As in the previous section, Figures 4 and 5 show the comparison results for the
Euler-Maruyama scheme and the proposed second order scheme, respectively. From these figures, it is also clear
that the proposed scheme achieves faster convergence, compared to the Euler-Maruyama scheme. In particular,
we observe from Figure 6 that the approximated density computed by the new scheme with n = 4 is almost the
same with the benchmark density. Through these numerical studies, one can check that the new scheme has a
superior efficiency compared to the classical Euler—-Maruyama scheme.
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-- EM (M=10%6, n=128) -- EM (M=10/5, n=4) — Malliavin (M=10/5, n=4)
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FI1GURE 6. Comparison of approximated densities with time steps n = 4.

Remark 4.1. We give some remarks on numerical results for the density of the SABR model (including that
of the Black—Scholes model). We consider the following system equivalent to the SABR, model:

dX} = eX}XHPAW}, Xt =0 >0,
dX? = vXZ(pdW} + /1 — p2dW?), X2 =1,

where € = x5 is the initial volatility. When 8 =1 and v = 0, X' becomes the Black-Scholes model. For v > 0,
the process X? takes positive values. We assume the condition such that at least X} has the density pX ! (zo,*)
with the ellipticity at the starting point xy. However, the model does not satisfy the uniformly elliptic condition
in general and the coefficients are not sufficiently smooth. We approximate pq)gl(:co, -) by the density of the
following modified SABR model which satisfies the uniformly elliptic condition with smooth coefficients:

dX} = ey (XD)o(XD)dW,, X =z >0,
dX2 = vips(X2) (pdW} 4+ /1 — p2dW?), X2 =1.

where 1 (z) = h(z)z, va(z) = h(z)a?, ¥s(z) = h(z) with

h(z) = V(@ = az) , O<ag<ar<a:=

Y(z —az) + (a1 — z)
y(z) = e V1,50,

~ 0,
50
Note that the densities pxX ' (z,-) and ’p?g ! (z,-) have the following representations under their existence conditions:

P (@,9) = E [1ix2,)8 (DXHIDXE|2)| and 5 (2,9) = B [115y5,,0 (DXHIDXHI?)]
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Where S(DXE|DXA ) € L*(Q) and 5(DX}||DX'711||I}2) € L*(Q). Then the difference between p%l(x,y) and
(Jc y) is given by

1 ¥l
lp? (2,y) —p7 (2,9)]

= |BlLx3 5 6(DXHIDXE)] — Bl gy 5, 8 (DXFI DX
< B [[10020 8(DXHIDXHI) = 1igy5,) d(DXHIDXH))|
=E [ll{x;zy}é(DX%”DX%HI_{Q) - l{ﬁ;zy}é(Di%“Di%H;f)‘ l{x_l;ﬁ)?_l}}

3 . ~ - 1/2
< C{ISMDXHIDXH )Nz + IS XHIDZHI 12} P ({ws X2 (w) # K1 (@)})

_ > S1— 1/2
< C{IS(DXHDXH )2 + IS(DXHIDXH2) 12} P ({w; X} w) > ay for some ¢ € [0,T]})",

for some C' > 0. Since we have ||§(DX 5| DX L[| 5)||l2 < oo and ||(5(DX'}||D)Z}||;12)||2 < o0, furthermore it holds
that

P ({w; X} (w) > a; for some t € [0,T]})
P({w; stip|th(w)—x| >a}> < ) > a’ for some t € [0,7]} N {w; sup|X (w) — x| <a})
=P <{w; Sltlp X} (w) — x| > a}> O(e"), forall k=1,2,.

where the large deviation estimate for small noise SDE ([20], Lem. 4) is applied in the above, then the difference
|p ' (z,y) — Py ' (z,y)| is negligible, which implies that p ' (z,-) can be approximated by the proposed second
order discretization.

5. CONCLUDING REMARKS

In the paper, we showed a higher order operator splitting scheme for diffusion semigroups using the Baker—
Campbell-Hausdorff expansion around the Euler-Maruyama scheme and combined with Malliavin calculus.
The heat kernel approximation was given with the new algorithm as the extension of Bally and Talay [4] and
Pedersen [19]. We illustrated the numerical experiments for the scheme and the effectiveness was checked.

Although the uniformly elliptic condition is assumed in the paper, we believe that the proposed scheme can
work in weaker conditions. In other words, a higher order scheme for the density of hypoelliptic diffusions will
be constructed and we are able to prove the conjecture in [7] by different approach. Furthermore, construction
of a higher order scheme for density of hypoelliptic diffusions will lead to various applications such as parametric
inference as discussed in [16]. The higher order discretization of hypoelliptic heat kernels should be developed
as future work.

APPENDIX A. PROOF OF PROPOSITION 2.1

Let

—

Us,z) := €70 Z3el1 =970 o) = /R ez < /R e (- 5.6 ) dy) P (s, €) de.

Then, we have

(s o
D]+ /O Sl U(€ 7) de

T sk ok
Uls,2) = ;J?(T ml 9gm+l
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Note that
%U(s,x) _ esfozgozge(t—s)fozw(m) _ esfozggoze(t—s)foch(x)
7315, L (@),
and
D U(s,0)| =125, Z1e ola)

Furthermore, it holds that for k£ € N,

%U(s, r) = o525 [goz’ [ 3 [Dg/poz, |:$027D?i:|i| § '}}6(t75)30z50(x)’
k-times
and
sven| = [ [ 1% [% 2] ))eoe

k-times

We prove the explicit truncation in the formula (2.45). Let us define by D; € DO (i = 0,1,2,...) a set of
differential operators acting on ¢(z), ¢ € C*(RY) with at most i-th degree polynomial of x in the coefficients.
Then, it is obvious that Dy is commutative sub-algebra, that is, for any X, Y € Dy, [X,Y] = 0. Moreover, for

all X € Dy, Y € D;, the commutator [X,Y] is an element of D;_;. Since .Z§ € Dy and 2 € D;, we have
[Z¢,.%] € Di—1 and then,

[z;, [zg,..., [302,.,2“ ] € D,. (A1)

i-times

By the commutativity of Dy, we have for every i € N,

% [ %, | %.2]]. ] =0 (A.2)
n-times
for any integers n > ¢ + 1. Then the assertions are obtained. O

APPENDIX B. PROOF OF PROPOSITION 2.2

First, we introduce the result on P??¢(x) which plays an important role in the proof of the proposition. We
recall that for i € N, P4»?¢(z) with a bounded and measurable function ¢ : RY — R is defined as
‘ i—1
Pi* () = Z/ PY? #7 PP o(z)du, s e (0,1], 2,z € RV, (B.1)

Lemma B.1. Fori € N, each term of P&*p(z), s € (0,1], z,2 € RN is given in the form

(2) [[ (21, = 21,)07 (P ) (), (B.2)
j=1
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where 1 > 1,p > 0 and multi-index v € {1,2,..., N} satisfy
204p—Il =1, (B.3)
and with ¢ € CPRN), I; =1,...,N, j=1,...,p

Proof. We show this by induction with respect to the integer i. When ¢ = 1, it is easy to check that the assertion
holds. Then, we assume that for all k =1,2,...,n, n € N, each term of Psk’zgp(x) is given by

H (21, — 21,)07 (P27 ) (), (B.4)

with ¢ € C°(RY) and [,p € N and a multi-index v such that 20 + p — |y| > k. From now on, we will show the
assertion holds for k = n + 1. Because of the above assumption, terms in P*"*12p(z) are given by

s D
/ P> u%(z)f,ﬁkk H(xlj —2,)0" P%*p(x) du. (B.5)
0 =1

Here, we note that £7, | H] (1, — 21,)07(PY*¢)(x) has the form of

2 n+l—k p—r
ZXT(Z) H (Tey = 20a) H(ch - ZLc)aﬁ aW(PS’Z‘P)(x)
r=0 d=1 e=1

2
z( ) 1
Z n+F; k+p— T(PO )( )

with some function y, € Cg°(RY), integers 1 < 14,6 < N and a multi-index " satisfying |87 < 2 —r
(0 <r <2). Then, each term of (B.5) takes the form of

/ W () P22 L PO () du
0

* () 2
_— / (s — )P 2 P () du (B.6)
and we have

PO Zgn-&-l k+p rPs u‘p( ) (B7)

_ ulF o (s—u)&§
=e€ 0 $n+1fk+p7re ) 0 (p(‘r)
n+l1—k+p—r i

- Y g% [m ezl eee) ®9

j-times

where the truncation in the above summation is justified by the same argument of Appendix A.
Note that we are able to show that for j =0,1,2,...,n4+1—k +p — r, the term

% [ [ [ Z ] ] 0@

j-times
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is expressed as

n+17k:+p7r72£:1 a;

7Myt%xr(z)gj(z) X > > X Ul (2, = 2,)0" N .0 (PP o) (x)

1<ai,...,a; <2 d1<2— (11)\16{1 .. N}91

iy aisntl—k+p— Td;<2— aj », e nyi

where g; € Cg°(RY) and we assume H?:1(9Ci — z;) = 1. Then, terms in (B.6) are given by

n+17k+p77‘72g:1 a;

by (2) /0 (s — w)le? II (@, = 2.)0" 0N ...0% (P ) (z) du, (B.9)

e=1

with j = 0,1,2,...,n+1—k+p—r, ¢; € C*(RY), integers 1 < (. < N and 1 < ay,...,a; < 2 satisfying
Zgzl a; < n+1—k+p—r and the multi-indices 5", ~, A; whose elements take values in {1,2,..., N}. Moreover,
the multi-indices 8" and A;,i = 1,2,..., 7 are defined so as to satisfy [3"] < 2—1r (0 <r < 2) and |\;| <2 —aq;.
Changing the variable u — su in (B.9), we obtain

n+1—k+p—r—2f=1 a;

b;(2) / (s —u)lu? 11 (@, — 2,)07 90N .0 (PP p)(2) du
0 e=1
1 n+l—k+p—r—>7_, a;
= (z)s / (1w du II (2, —2.)0% 0N ...0% (PP o) (x).
e=1

In particular, it follows that

J J
ntl—k+p—r—> a+20+2j+2— 8=y =D |\l
=1 i=1
>n+l—-k+p—r+20+2—|6"—|v|
>n+l—-k+p+20—|vy
>n+1,

where we applied |\;| <2 —a;, ¢ =1,2,...,7, |67] <2 —r and the assumption of induction p + 2] — || > k.
This implies that P*+1*¢(z) is given as the summation of the terms

(2) [[ (21, = 21,)07 (P 0) (), (B.10)

Jj=1

with ¢ € C°(RN) 1> 1,p >0 and v € {1,2,..., N}l such that 20 +p — |y| > n+ 1. O

Proof of Proposition 2.2. In the proof, let t € (0,1], z € RY and C be a generic function independent of ¢ and
z. By the perturbation method, we have

t
Pip(e) = P ()] oz + / P (& — L5 PP (x) ds|os
0
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and expand it through the expansion of .. We can see . — 45 = Z?:fl L7+ .,?ﬁ z € RN by Taylor’s
formula where Z7, i =1,...,2m + 1 are given in (2.14) and £~ is defined as

2m—+2
—~ 0
gzg(m) = E | | xlk Rl { E h’ ..... lzm+2 JZ,Z) o g(x)

l1 ..... lzm+2 1 k=1 1= 1

+ Z hlsotemez (g z)aizg(x) . gECERYN), z e RV,
vl riira 0x,, 0.,
1,72=

for some bounded functions hll’ ’lf;"“( 2), b1y lamye = 1,... N, k = 1,2. We note that s — P,_4(&€ —
L5)PY%p(z) € L([0,1]) holds since we have

t t/2 t
[Pz - zpepas sod [ 1= agp [Pl g —otog2x gl 1)
0 o t—s tj2 S
through the estimates [|[0%P%?¢l|, < C’% and ||Ho(X (¢t —s,2), hag(X(t —s,2))pa,g(X(t —s,2) — 2))llp
<C ”f”;", p > 1, |a] = 2, for the terms appearing in the following representation through the integration
by parts:
Prs(L — L5)P)p(2)
= > Z Bl0*PY* (X (t = 5,2))ha,s(X(t = 5,2))pa,s(X (t — 5,2) = 2)] (B.12)
ae{l,..., }Ia\ ,36{1 }\ﬁ\
lor|=1,2
= Z Z E[PSO’Z@(X(t—s7x))Ha(X(t—S,x),ha”g(X(t—&x))pa“g(X(t—s,x)—z))],
ae{l,...,N}l ge{1,..,N}AI,
la|=1,2 By
(B.13)

for some v € N, hy g € CEO(RN) and polynomial functions p, g : RY — R, which is the same argument as in
(2.44).

We expand [} Py (L — Z5)PY%p(2)|.—p ds around 377" P/ p(x)].—,. Since it holds 8,P " p(z) =
L7 P p(x), we have

i—1 i—1 t
0P o) =S PEoa) + 25 Y / PY% 7 PR () ds
k=0 k=00

%
:Z"?iz—kptkggo(x)) 22172a72m+1

Then we get

2m—+1 2m—+1 2m+1—k
02 {Pw -3 et } $ (z— 3 z) ——
1=0

by considering 0; Pyp(x) = L Pyp(x). Also note that
2m+1—k

at/Pt S(z— > .,zﬂZ)P’“ () ds

=0

2m+1—k t 2m+1—k
= (,,Sf — Z .,?f> PF2p(x) —I—,,?/ P,_, (,,Sf — Z .i”f) PFp(z)ds
i=0 0 i=0
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Therefore, when we put u(t,z) = Pip(z) — S0t Pi2o(x), a(t,x) = Yot fo Py (& — Sk g
PF2p(z)ds and o(t, z) = S0 (L = 2R 22 PR (a), we have
(0 — Lu(t,z) =v(t,z), (O —L)u(t,x) =v(t, x).
Since limg_,o u(t, ) = limy_,o 4(¢, z) = 0, it holds that u(t,z) = 4(¢, z) by the uniqueness of the solution to the
PDE. Then we have the representation of % (z) as follows:
2m+1 2m—+1 < 2m+1—k

R (x) = Pyp(a Z PP ()] smn = Z / P Z x) PF2o(2) ds|,—g (B.14)

t _ 2m+1 . )
:/ P L7 P%*p(x)ds|,—y + Z / P fgmﬂ—l— fQZerlf(ifl)—i—gZ) Pr2o(x) ds|—q.
0

Then, in order to estimate %/ (), let us consider the following terms:

t

t . )
/ P ZL*P%*p(x)ds|,—, and / Py L1 o PrPo(x)ds|o—g, i =1,2,...,2m + 1, (B.15)
0 0

where ¢ =0,1,...,7— 1. Due to the definition of the semi-group {P,;};>¢ and the differential operators % and
Zmt1—q» the integrands of the above terms are given by the sum of the form:

2m+2—q
E|0*(PFe)(X(t—s,2)g (X(t—s,2) [ (XYt —s2)—2,)]| o=, (B.16)
j=1
where o € {1,2,... N}*l is a multi-index of the length |a| = 1,2, ¢ =0,1,...,i iwilj=1....,N(G=1,....2m+

2 —¢) and a function g € Cg°(RY).
For ¢ =0,1,...,7 and multi-index « such that |a| = 1,2, let us define

2m+42—q
Ly(s,2z) = £ |0” (PIP) (X(t —s,2))g (X (t — s,)) H (XY (t—s,2)— 21,)
. 2m42—gq
= E [(Pyp)(X(t—s,x)Hy | X(t—s,2),9(X(t — s,2)) H (le (t—s,x)— zlj) , (B.17)
for s < t, z € RY. Then, we have
4 2m+2—q
D5 (s 2)| <|| (PR X (¢ = s.2))|| [ Ha(X (0 = s,2).00X (¢ = s2)) [[ KV -so)—m)) . (B1Y)

To show the bound of |T'§(s, )|, we need the following lemma of which proof is given after the proof of
Proposition 2.2.

Lemma B.2. Let ¢ =0,1,...,i and a be a multi-index such that |a| = 1,2. Then, when z = x, we have
. 20— P
|(Pize)x(t = s5,2)) | < Cllellos™ (= )%, (B.19)
where l,r > 1 p > 0 satisfy 2l —r +p > i, and
2m—+42—q
2m—i
HHQ(X(t —s,0),9(X(t—s,2) [ (Xb(t—sa) - zlj))H2 <Ot — )5, (B.20)
j=1

where C' > 0 is a constant independent of x, s and t.
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Using (B.19) and (B.20) in the above lemma, we have for any ¢ = 0,1,...,7 and a be a multi-index such that
la] = 1,2,
¢
/0 Ly (s,z)ds

since 2] — r + p > i. Therefore, the proof of Proposition 2.2 is completed. O

2m—i+p 2l—r

t
scnsonoo/u—@*z 5 ds
0

2m—i+(2l—r+p)+2
2

2m— z+1+

< Cllplloot < Cllglloot = Clelloct™ ",

Proof of Lemma B.2. By Lemma B.1 and Hélder’'s estimate, we have |[(P*p)(X(t — s,2))|l2 <
ClOV PO || aos TTE_, [| X" (t — s,2) — 2, ||, for some p,l € N, 7; > 1, i = 1,...,p and a multi-index 7y of
the length |y| = r satisfying 2] — r 4+ p > i. Then when z = z we have

I(PE)(X (t = 5,2))|> < CO"PO%p]locs! (t— ) < C'llillocs™ 2 (£ 5)%,

k > 1. Furthermore, we have ||H,(X(t — s,x),g(X(t — s,ac))]_[fml+2 UX(t — s,z) — )|l < Ot —

5)~lel72) H?:ﬁzfq(le (t—s,2) — x1,))l|a|,~ for some £ > 1. Then, when z = z,

where we used the basic estimates [|07PY?¢|0 < COll@lloos™ % and || X't — s,2) — 2]l < C(t — s)V/2,

2m+42—q
Hoc X(t—S,Z‘),g(X(t—S,]J)) H (le(t_87x)_zlj)
j=1
2
<COt—s)" T <ot - )T T <0t - 5) M
(]
APPENDIX C. PROOF OF PROPOSITION 2.3
From the definition of {P/*}; given in (B.1) it holds that for a bounded and measurable ¢ : RN — R,
2m—+1
Z P 0(2)|:=a (C.1)
2m+1 t
-y ¥ / / / PPz PO, 7 42 PY (o) dty ... dbilaey, >0,z € RY.
=1 i< k;<2m b2
Using the Baker—Campbell-Hausdorff formula for Pt(z’zflfl Pg’fl_tiiﬂé L Pto_’ilgo(x) in (C.1), we obtain
0, z p0, z z pO0,
By, szlpt:l—ti-gkz = .fkiPt_Z(p(a:) (C.2)
= eti‘%szle(t“l_“)fgsz .. .fkie(t_tl)‘g}ggo(x)
i [ K
1+1 l z z z z 0,z
:H Z fo,[-%ww[foafkl]]~-~]] P o(x)

a-times

1) (£) Y1 L ()0 1 s s s .
-y @) a(lf(lz' a‘,() T %1%, 1200 01 | P27 ola).
N sl ot A

0<a;<k;

a-times
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On the second equation of (C.2), the summation is truncated for all j > k; due to (A.2). Also
25,145 145, Ll Dl = (C.3)

a-times
is used in (C.2) when o = 0. Hence, substituting the equation (C.2) into (C.1), we have
2m—+1

> Pl (C.4)

2m—+1

tl al t2 a‘ 1 ...(ti)al
$)|z:z+ Z Z Z //t / 0(1'042 041'! dtldtl

=14 <Zl,1k <2m+10<a1 <k
0<av; <k

~.

<11 | 145 145 - 125, L) D] | P (@)

=1

«a;-times
= P p(2)]:=
2m+1 20—y arti : 2 2 2 2 0,2
2 X Y Il | L )| P @)
i=1 <3 kj<2m+1 12@412?1 =1 oy-times
ap<ks g
0< i <k

where I(«) is given by (2.20). Note that we obtained the second equation through the changing variables in the
multiple time integral: ) — tty, kK =1,2,...,4, and we took the summation for c; > 1 since whenever a7 = 0,

L 145 L L0 ) | PY P el@)]ams = 0.

=2

ag-times

Then, we decompose the term (C.4) as follows:

m—1 i ; 4
$2i=1 cuti
Me=et D3 > @] [ % )| e
=1 i<>i_ ) ky<2m+1 ééz;éﬁ; =1 a;-times
0<a;<k;
iy utis<m
(C.5)
m—1 21— Qi : 2t epz 2 oz 0,2
+> > S E @ [ | 1% % B | P e (C6)
i=1 <3k kj<2m+1 ééggzi =1 a-times
0<a;<k;
Do aFi>m
2m+1 tZl 1‘3‘1*@ 2 oz 0,z
DD VD> 1|15, 2| s 0)

i=m <3 kj<2m+411<an<k; ;
—Z 0<as<ks ag-times

0<ai<ks
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Therefore, it is easy to see that szH P}*p(x)|,—s is given as the sum of terms (2.47), (2.48) and (2.49).
Furthermore, it is clear that all terms in (C 6) and (C.7) are given as

tm+1a(t)b($)8ﬁpt07z‘:0(x) | 2=z

for some multi-index 3 € {1,2,..., N}/?l a non-decreasing function a(-) and b € Cye (RM). a

APPENDIX D. PrROOF OoF LEMMA 2.1

We will use an abbreviate notation B(j nz ;r for the Brownian increment B/, —Bj_1yr/m, forj=1,...,n.

n)n

Let p = 2e, e € N. We show that there exist constants C, ¢ > 0 such that

7 p

(m)’X(n) (jfl)%’w
H {1+7TT/n ( )<B(j—1)z:,j32)}

p

K J

. (n)

+>E DlH{l—k o XG0 (g 1)"’“)} < C(1+cT/n)’, (D.1)
i Jj=1 H®i

for J=1,...,n and K € N. If the inequality (D.1) holds, we reach to the conclusion:

J
H { ) XGDT/ @(B(j,l)%’j%)} <C(+cT/n)"? <0 +cT/n)" <CeT.  (D.2)

K.p

(m), X" ((G-DE, )(B is gi by th f Wi f ionals of the form:
T/n (j—l)%,j%) is given by the sum of Wiener tunctionals of the tform:

We first note that
g(X"((j = )T /n,2))(T/n)" P (B;_yyz ;z), r+i>2 reZ, i NU{0},
where g € C°(RN) and 2 : R 3 € v 24(€) = [[1_, £ with iy + ... +ig = i.

First, we show the bound for the first term of the left-hand side of (D.1). Let F; := 0(Bs; s <t),t <T. Due
to the tower property of conditional expectation, we obtain

P
J
(m), X" (G-1)ZT
E H <1+ T/n (J )(B(] 1)T,jz;)> (DS)
j=1
I p
X(n (j*l)%’w m), X (J-1)T/n,z p
= F H <1+ T/n ( )<B(]_1)Z7JZ)> E |:’1+7T’§"/2L (« )T/ )(B(J—l)Z:,J%) -7_—(J—1)321|

P
J—1
(m), X (G-1) L .
=F H <1+7TT/n ( )(B(J 1)n’jn)> E [‘1+W;7721n(B(J71)T Jz)
i=1

n’

p
] ’n:)?(m((Jq)%,m)

Noting that B}, B?,..., B¢ are independent with each other and for t > 0 and k = 1,2,...,d,

E[(Bf)T] _ {0 B} (r : odd)

) , DA
707t /2 (r: even) (D4)
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it follows that there exists a constant ¢ > 0 such that E[|1 4+ W(Tn/lr);n(B(J nz yz)F] <1+ cT/nfor all n € RN

under the assumption that the coefficients b, o and their derivatives are bounded Then we have

p

J
) X (1) Lz
E H<1+7T§1/7){X (G 1)"’)(B(j_1)£7j5)> < (1+cT/n)’ (D.5)
j=1

for some positive constant ¢ > 0.
Next, we assume K = 1 and estimate the upper bound of

P

(m), X" ((j-1)Z 2)
B DH(1+ Tr/n (B(J 1)”0))

H
9 e

LT 4 (m), X ((-1) T z)
=F Z/ Dk7t H (1 + T/'n, " (B(Jl)Z:JZ)) dt
k=170

with p = 2e. The chain rule of Malliavin derivative gives

2
T J m) X (G- T =
/0 (Dk,t{_l'[(uw(wi‘x @ 1>n»)(3(j1)£’j5)>}) ar (D.6)

j=1

T J-1 () (i \T = (n) T
(m), X" ((G-1)%,z) (m), X" ((7-1) L z)
{Dk,t IT (1 + 7 (Bul)”;f,jg))} (1 + T (B(J—l)%,J%>
j=1

2
It m), XM (G-1)ZL z m), XM ((J-1)L =z
N {H (1+“(T/3{X (G-I, )(B(j1)£,j£)>}Dkvtﬂ'§"/3¥X (-1, >(B<J,1>%J%) &
j=1
J
(m), X" ((1-1)ZT = )X (o1 T
= > I1 (1+ T /m (G- )(B(a'lfl)%,jl%)) (14 mlm XG0 )(B(jzfl)%dé%)>

ly,lo=1 | jie{l,...,d}\{l1}
Je€{l,...,J\{l2}

T — —
(m), XM (1 -1) L ) (m), XM ((12-1) L ,x)
X/O Dk,t{“T/n (B(llfl)%,ll%) Dreymp/, (3(1271)%,12%) dt.

<">(<l—1)%,m>(

In particular, Dy, t{TrT/n B(_1yz 4z )} is reduced to the following term:

n’n

=g (X =1)T/n,2)) (@/n) 02" (Byyyzz ) L vyrsmarml ()

Dag (X = 1)T/n,2)) (T/n)" 2" (By_yyz.z) (D.7)

N
+ 30,9 (X = )T /n,2)) Dyt X9 = )T/, 2)1 0,012/ (D(T/0)" 2" (By_yyz iz )
g=1

Using again the argument of conditional expectation in (D.3) with (D.4) inductively, we obtain

2

e
T J J
m), X ™ 1 T
B /0 D, H(H A (G- >(B(j 1%%)) dt <C<1+cn> : (D.8)

Jj=1
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by applying the estimate sup;<;<,, || fOT |D: XM ((j — 1)T/n,2)|?dt||, < ¢ (by Bally and Talay [3]), where
constants C,c,¢’ > 0 are independent of J and n. Therefore, there exist C,¢ > 0 (which are independent of J
and n) such that

2 p/2
T J x ) 1
E / D [ (1 g XG0 (B, (jl)T)> dt < CeT, (D.9)
0 N n’ n
Jj=1
forall J=1,...,n. For K > 2, we proceed in the same way and obtain the bound (D.1). |

APPENDIX E. PROOF OF LEMMA 2.2

We prepare some notation and basic facts on Watanabe distributions on Wiener space. Let us denote the
Dirac delta function mass at y € RY by §, which is an element of the space of Schwartz tempered distributions
S’(RY), the dual of the space of Schwartz rapidly decreasing functions S(R”). We define the space of Watanabe
distributions D~°° as the dual of D> and denote by _ (P, G)s the coupling between ® € D~ and G € D*°.
Note that the composition d,(F) of §, and a nondegenerate F' € (D) is well-defined as an element of D~
and we have for any bounded and measurable function f : RY — R and G € D,

E[f(F)G] = | f(y)-oc(dy(F), G)oo dy. (E.1)

Furthermore, for S € §'(RY), it holds that
—oc{OiS(F), Ghoo = —c(S(F), Hip) (F, G))oo = s(S, E[Hei) (F, G)|F = ]p" ())s, (E2)

where s/ (-,-)s is the coupling on S'(RY) x S(R™), and p* is the density of F.
Hereafter we write X7 for X(t,x) = X*(t,z)|,—, for t > 0,2 € RM. We give a representation of
m)\n— l 32 :

(Q;/i) 1\1’%;/ (z) where ‘I’{() = Zzgyhl(t)gl(')aﬁ( >Pt0 f(-)]z=.. Since we have for 5 = (f1,...,0.), e € N,

0° _
O R f@)eme = Gt [0l (X7 0,2). Do (£3)

e—1 N
0 L) SENCE NG S0 RSN

B 8xﬁ1 cee 8:6[&371 RN 1
ae—l

~ Og, .. 0w, Jun

= f(y)—w<aﬁ5y(j(z(tax))71>oody|z=:c

RN

= v f(y)—oo<5y(Xz(tv .Z’)),Hg(XZ(t,I), 1)>oo dy|z::c7

f(y),oo<8ge(5y(XZ(t, 7)), 1) oo dYlo=a

one gets

Q)" 1w, () (E4)

_ — (n) .
- B \pé/n (X(")((n ~1)T/n,z ) H ( (m) XM (G-11/ Lﬂf)(BjT/n _ B(j—l)T/n))

=2 T/mE { e § W) o0 <§y (Xé/”) Hgow (Xé/n’ 1) >Oo dy‘f—)‘((m((n1)T/n,m)Gl(”_1)] ’

I<v
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where the F(,,_1)r/n-measurable random variable Gl(nfl) € D is defined as

n— v(n (m ) n,z
Gl( n_ gl(X( )((n —1)T/n,x) H { )X (G-nT/ )(BjT/n - B(j71)T/n)}. (E.5)

Furthermore, using Fubini’s theorem, we obtain

[/ f ( T/n> 7Hﬁ(l) <X§/n7l)> dy’& X (n) (nl)T/n,a:)Gl(n_l)}
= . fE [_Oo <5y ()_(;/n) s Hgao ()_(T/n, 1>>Oo |£:X(">((n71)T/n,z)Gz(n71)} dy.

If we show that it holds

E{foo <5y (Xg/n>’Hﬁ<”( T/n’ )> }g X ((n— 1)T/nl)G(n 1)] (E.6)
= B [0, (X(T,2)) Hyoo (X1, 2), 6"V

then from the equations (E.4) and (E.G) we get

(Q(Tn;n)" 1\Il§/n Zhl (T/n) / fy (X(”)(T,x)) ,Hga (X(n)(T7 x)’Gl(n—l))> dy

I<v e

= Y n@mE|s (Xm)(T,m)) Hyo (X0(T,2),607))]

I<v

and easily reach to the conclusion with the same argument we gave in the last part of proof of Theorem 2.1.

In order to complete the proof, let us show that the equation (E.6) holds. We note that the distribution 4,
is represented as the weak derivative of Heaviside function, namely, d,(-) = 97Ty(-), where v = (1,2,...,N)
and for z € RN, Ty(z) = 1if 2; > y; for all i = 1,2,..., N and T,(x) = 0 otherwise. Then, we introduce the
mollifier of Heaviside function T, given by Ty := Ty * wg € C"’O(RN ) with some suitable smooth function .,
€ >0 on RY such that T; — T, (¢ — 0) where the limit is understood in the space of Schwartz distributions.
We consider the following function on RY depending on ¢ > 0:

Fow) = B [ (07T (X, )  Ha (Xé/n’1)> lemxenuonrma Gl ] v ERY(ED)

From now on, we transform F¢(y) in two ways. First, we have

Fé(y)=FE [ <8ﬂ”)mTf (X§/n) >o<> ’ngm<<n71>T/n,z)Gz(n71)} (E.8)
=B [o"orT; (X0(T.2)) 61"
=F [ Y (X(”)(T,z)> Hpga) .y ()7((")(T7 x),GEn_l))} ,
where B0 %~ := (6;1), e l(l), 1,2,...,N). On the other hand, we get
Fo(y) = B oo (T3 (%5,) oy (85001)) Lo uonyrymn &0 (E.9)

Now, we take the limit € | 0 for both terms (E.8) and (E.9). For (E.8), since T} is a bounded function and there
exists a constant M > 0 such that |T§()_((”)(T, z)(w))] < M for all w € Q, £ > 0, the dominated convergence
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theorem allows us to exchange the limit and integration and get
lim £ [TE (X<"> (T, x)) Hgo.,, (X<”> (T, z), G}”‘”)] (E.10)
_E [Ty (X<”> (T, a:)) Hyo., (XW (T, z), Gl(”*”)}

—F {51, (X(”)(T, x)) Hjo (XW (T, z), Gl("*”)} .

For (E.9), let h5(&) = —oo(T5(X5,)s Hpr oy (X5 D)oo = ElT5(X5),) Hgwary (X5, 1)), then there exists
constants C,q > 0 (Wthh do not depend on £ and ¢) such that
_ 1
sup |hS <  sup T | oo || H g 4 X5, .1 <C . E.11
w11 swp (T Il Haoe (K1) In} < O (E.11)
Therefore when € | 0 we have
€ _ 3 €
lelﬂ)l E[h(Z)G] = E[lglln[r)l hy (Z)G] (E.12)
for Z,G € D*. Also, since Ty — T, in §'(RN) (¢ — 0) we have
xX¢
B (&) = 50 (T BlHpouy (X500 1) 155 = 1057200
_ _ 5
= s (T BlHg.y (X5,01) 1X5), = 0757 () (E.13)

by (E.2) and by the basic argument on the Schwartz distribution theory. Therefore, we get

: e [ v€ v& (n—1)
E{EE {—00 <Ty (XT/n) » Hgw) .y <XT/n’ 1)>Oo |§:X(")((n—1)T/n,x)Gl L } (E.14)

= 1€1ng (5 (X = 1)T/n,2)) 6]

_ e [ v(n) _ (n—1)
,Elslﬂ}h (X ((n 1)T/n,x))Gl }

_ : e [ v& & (n—1)
=k _16%1—00 <Ty (XT/n> » Hpw)uy (XT/n7 1>>oo |§:X(n)((n—1)T/n,a:)Gl }

gl vé vé (n—1)
=B oo (T (X0) + Horoy (X5/01))_lesonnvyryma G0

_ € o€ (n—1)
_E__Oo<6y (XT/n),Hﬁ<l> (XT/n,1>> e (a2 O }

In conclusion, we obtain

lim F=(y) = B {5 ( () (T, x)) Hyo (X< T, ),ng—nﬂ

X
€l0
[ < ( ) Hga (Xé/n,1)> |5 20 (e l)T/nx)G(n 1)} y e RV,

APPENDIX F. PROOF OF THEOREM 3.1

We prepare the following three results which play an important role in the proof of Theorem 3.1.



S358 Y. IGUCHI AND T. YAMADA

Lemma F.1. It holds that there exist constants C,c > 0 such that

1 _ 42 ]2 _
— exp (cl |z~ | ) exp <02|yz|> dz<C (ST>
r2 JRrN T S—7T S

for any constants cy,ca > 0 and (r,x,y,2) € (0,5) x RV x RN x RN, Furthermore, it holds for any (r,z,y) €
[0,5) x RN x RN and ¢ > 0,

w|2

exp (x‘y'z) (F.1)

S

— X 2 o\ 2 12
E {exp (—CWW)} < K(T) <S T) exp (—c’my|> , (F.2)
s—r s s
where ¢’ > 0 and K () is a non decreasing function.
Proof. See Gobet and Labart [9]. O

Lemma F.2 (Small time expansion of heat kernel). It holds for any (t,z,y) € (0,1] x RY x RY

P (e,y) — o " (@ y) = Bz, y) + 0N (2, y), (F.3)

where
1 — z|?
| %y (2, y)] < C’tmﬂt—% exp (—c|yt|) (F.4)

with some constants C,c > 0 and V(x,y) has the following representation:

Vi(z,y) = > (g (@)% pF (2,y)].0 (F.5)

I<v

for some v € N, functions hy, | < v at most polynomial growth, g, € C°(RY), | < v and multi-indices
s e {1,2,..., N} I <v.

Proof. To give the upper bound of (F.4), it is enough to estimate

t
/ s*F
0
e

/Ot skE[pg‘” (X(t — 5,2),y)Ha (X(t — s,2),g(X(t — s,2)) [[(X(t - 5,2) - xli))} ds

=1

(F.6)

o (p§I (X(t - va)a y)) g(X(t - va)) H (Xli(t - S,l’) - xlz)‘| ds

i=1

9

for k > 1,e > 0 and a multi-index « satisfying k + %M > m, by (B.16) with Lemma 2.3. We note that Holder’s
inequality and the estimate in Lemma B.2 give

E

pXT (X (t - s,2),y)Hy <X(t = 5,2), 9(X(t = s,)) [J(X"(t = 5.2) - W)] ’

e—|al

o X =sa)| ]} -9

gC{E[
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for some ¢ > 1 and C' > 0. Now, due to the explicit formula of pf(m,y), (s,2,y) € (0,00) x RN x RN there

exist constants K, ¢ > 0 such that
a1y /e K4 X(t — 2 1/q
I s fe o (=) |}
S 2 S

il
o (22
(o (22).

where on the last inequality we used the following result which is derived from the similar argument in the proof
of Lemma F.1: There exists some constant C' > 0 such that for ¢ > 0

E:Fxp(_cw“x‘i‘sﬂﬂz)]<<7(j)gexp(—c”';“2)~ (F.7)

e

pX(X(t - s,2),y)

IA

e
&

IN

Hence, we have

i=1
Cogxox e~ lal ly —xf
SC/ SPTRTT(t—5) T2 ds X —+exp (—c )
0 t7 t
e—jal 4 1 —z|?
< Ok Nexp(—cy z| )
2
< Ct™H - exp < ly =2 ) ,
5 4
since k + eleal > m. The representation (F.5) is immediately obtained from (2.50) of Lemma 2.3 by replacing
PY%p(y) with the kernel pX~ (z, 7). O
Lemma F.3. Let (s,z,y) € (0,T] x RN x RN Also let T, be the Heaviside function defined in Appendiz E.
Then, for a multi-index o = (au,...,aq) € {1,..., N}, where £ is an integer satisfying { = |a| > 0 and

~v=(1,...,N), it holds

J
_ m (n)
E Ty(X(n)(*S,x))Hw*a n) (s,z a]:[ ( ( )X (=0T mw) (BjT/n - B(j—l)T/n))

j=1
2
<Kmmdﬁwﬂ>

N+tlo]

52 §
with some non-decreasing function K(-) and constant ¢ > 0 both of which are independent of J = 1,2,...,n
Here, a notation yx o := (1,...,N,a1,...,qp) is used.

Proof. Holder’s inequality gives

J
=(n X(") T /n,z
E|T, (X( )(sw)) Hyuoo | X (s,2), ] ( (=T (B, —Bufl)T/n))
Jj=1

J
S(n n m), X T /n,x
<, (X(5,2) Nl | Hyve | X2, TT (1477007 (B = Biyayaym))
j=1
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Using the upper bound of the density of the Euler-Maruyama scheme given in [9], we obtain

E|IT, (X5, 2)) 2] = EIT,(X) (5,0))] < 2D RGeS (—'5'> a¢

S22 S

N 2
H\[/ Ty, (&) eXP( = 1>d§i

for some non-decreasing function K (-). When y; — x; > /s, i =1,2,..., N, we have

e (S i ()
Yi—Tq

1 s} 2 ]2
<L / e <C) dz<clexp< lywl)
NG vi—ws Ui — Ti s s

for some C > 0. On the other hand, for y; — x; <+/s, i =1,2,..., N,

\jg/RTyi(&)exp( |€i_3x )dgz \[/exp( il )dgl <C

< o (A8 e () ()

for some constant Cy > 0. Therefore, we have

BT, (X (s,2))P[1/* < K(T) exp ( ly ') . (F.9)

Furthermore, by Kusuoka—Stroock’s integration by parts, there exists a constant ¢ > 0 such that

J
m (n) n,x
Hopo | X (s, 2) H( nl )X (G-1T/ )(BjT/n—B(j_l)T/n))

2

J
(m), X ((-1)T/n.2)
H (1w I (B — B )

N+|al4
By Lemma 2.1, we have the bound K (T") independent of J =1,...,n such that
J
Hoo | X0(5,2) H ( m) XM ((j-)T/n,2) (Bjzr/n — B(jfl)T/n)) < ﬁK(T). (F.10)
_ 8§72
2
Applying (F.9) and (F.10) to (F.8), we have the assertion. O

Proof of Theorem 3.1. The global approximation is written using ng), t > 0 given in (2.19) of Theorem 2.1 as
follows:

g - - (n)
p7(,y) — E P;(/’flm) (X(n)(( DT/n,z) ) H { (m) XGIT (Bjr/n — B(j—l)T/n)}

pEy) — (@) PNyl

n—2

(QT/n) (PT/n QE,?},)L) Pr— ey (5 Ul =e + (Q(TW/L,),)%I (p¥/n('a y) — p;“(/ibm)('vy)> | =z

>

=0
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By Lemma F.2, we have for every k =0,1,2,...,n — 2,
Prju = Q) ) 7 L)l = F.11
T/n T/n pr(qul)T/n( Y| = (F.11)
_ X b's _ X (m)
- ~/]RN pr(k+1)T/n(Za y) (pT/n(mv Z) pT/n (:L’, Z)) dz
= /RN P71z yn (% 9) (@, 2) + (T/0)" g (2, 2)) dz

= («%)T/n *p’l)“(—(k+l)T/n> (z,y) + (T/n)"*! (‘I’T/n *pl)g—(k+l)T/n) (z,9).
Hence, we obtain
k
(@) (Prsm — Q) P esnyzyn(+9)l =
X,(m X, (m m m)\
= PT/E«L . *PT/; : e *p¥—(k+1)T/n (z,y) + (T/n)"*! (Q(T/BL) (‘I’T/n *p¥—(k+1)T/n) (z,y)

k-times

= My(z,y) + (T/n)" T My(z,y), (z,y) € RN xRV,

Moreover, we define a function M3 : RV x RY — R by

n—1 -
My(w,y) = (@) (#3Co9) = 30" (0) Lo (@) €RY xRV (F.12)

Since we are able to show that the terms M (z,y), (T/n)™+ 1 May(x,y) and M3(z,y) are bounded by

() S ()

for some non-decreasing function K (-) and constants ¢ > 0, @ > N/2, we have

n—1

X,(m) ;v m), X" (G-1)T/n,z
p%(xﬂl/) -F pT/»(ﬂ )(X(n)<(n_ 1)T/7’L,$>7y) {1+7rj(1“/»,)L (=0 ) (BjT/n _B(jfl)T/n)}
j=1

(TN KT ly — af?
() e ()

() KD ()

Then, in what follows, we shall estimate the terms Mj(z,y), Ma(z,y) and Ms(z,y), using the key results;
Lemmas F.1-F.3. O
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F.1. Upper bound for M,

At first, we will give the upper bound for the first term of (F.11). Taking advantage of Lemma F.1 and
Lemma F.2, we have

‘ (‘%’T/n *pgf(kﬂ)T/n) (z, y)’ (F.13)

(T/n)™+! 1 o (o =gl e
L (T_<k+1>T/n>fz/RN p( 1T/n) p( 2T—<k+1>T/n>d
@t (@t ly—af?
=¢ (T/n)% (T —kT/n)* p( )

)]

w2

where ¢y, co, c and C are some positive constants.

Since we have for k=1,...,n — 2,
m X,(m
pT/Ez ) '*pT/Ez ) (%5)
k-times

k
(n)
- <6§ (X(n kT/n T ) H ( (m) XN ((G-1)T/n,x) (BjT/n _ B(j—l)T/n))>

o0

k
- F TE()_((")(kT/n,x))H7 X(n) (kT /n, 71_[ ( m) XM ((j—1)T/n,x) (BjT/n _ B(jfl)T/n)) ,
j=1

(F.14)
where v = (1,...,N) and T¢(-) is the Heaviside function introduced in Appendix E, it follows that
2
K)o (@ < ﬂex ( € — 2] ) F.15
Pr/m Py | (,8)] < (T /m) ¥ P T n (F.15)
k-times

where C(T) > 0 is a constant which does not depend on k =1,...,n — 2 by applying Lemma F.3 with |a] =0
o (F.14).
Then, using the bounds (F.13) and (F.15), we obtain for k=1,...,n — 2,

X,(m X,(m
‘Ml(xvy” = pT/El ) *pT/'(rL )*%T/n*pgf(kJrl)T/n (xvy)

k-times

X,(m m
S/ pT/1(’L ) *pT/Ez ) (QT,Z) ('@T/n*pgf(k+1)T/n) (Z7y) dz

k-times

: (ch/%/Z (T(T/Z)TT;; 3 / P (‘Cl i;/f) P (‘T|y—_w|/n> ¢
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< oy i (T—kT/n)’zveXp (_Iy—l)

(T — kT/n)> T T
= (T )wexp <_c3 v _T””| ) : (F.16)

where C(T), ¢1, co and c3 are some positive constants (which are independent of k¥ and n) and on the third
inequality we applied Lemma F.1 again. When k = 0, it is easy to see from the inequality (F.13) that |Mi(z,y)]
has the same bound as (F.16).

F.2. Upper bound for M,

k
We will give the upper bound for (Q(TW/LBL) (Ur/m *p%(_(k+l)T/n)(-, Y)|.=z, k=0,1,2,...,n—2. In particular,
we proceed the derivation differently for the cases k is small or large. Due to the explicit form of Wr,, and the
operator Qr/y,, we have

‘(Q(T/ZL) (\I/T/” *pg—(k-‘rl)T/n> (Y| -=a

< ;hl (:) ‘E [aamp)T( (k+1)T/n ( XM ((k + 1)T/n,a:),y> Gz(k))”

with some multi-indices o¥), I < v € N and the random variable Gl(k) is given by
k ()
k (m),X ™ )T /n,x
G( ) =q (X(”) kT /n,x ) | I ( ) (G-01/ )( §T/n — B(jﬂ)T/n))’ (F.17)

for some g; € C°(RY), which is the same one we defined in (2.59). Then it suffices to give the estimate for the
above expectation.

F.2.1. The case (k+1)T/n € (0,7/2)
First, it holds,

E [30*”)171)5 (k+1)T/n ( XM ((k+1)T/n, ), y) Gl(k)}

=/, 0 DX sty (6 Y) oo <5€ ()_((”)((k—l—l)T/n,x)) ,G§’“>>mdg. (F.18)

Applying the result in [8], we obtain

0y c ly = £J?
0 /(&Y < (T — (k+ 1)T/n)%a(l)l xp (_01WL>

and by Lemma F.3 we also have

‘—w (0 (X ((k +1)T/n,)) 7G§'“)>OO\ = \E [T (X + 0T /n,2)) By (X0 (0 + 1)T/n,2), G )| ’
S S (0 R—— ( 2|’5—~T|2>
(k+1)T/n)% (k+1)T/n

<
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with some non-decreasing function K (-) and positive constants C, ¢y and ¢ which are independent of n. Hence,
it follows that

i s (50 0.0) )

c K(T) (e y=gP N Je—af
S(T—(k—#l)T/n)NH;ml((k+1)T/n)]2V/ﬂ%Nep< 1T—(k+1)T/n) p( 2(/c+1)T/n>df

N

K'(T) T—(h+0)T/n\* [ ly—af
S(T—(k+1)ir/n)1”'§(”'( r > p( T )
KM Ly aP

(T = (k+ 1)T/n) s T* p( T )

with some non-decreasing function K’(-) and constant ¢ > 0. In particular, we applied Lemma F.1 on the second

inequality.
Since we assume T/2 < T — (k+ 1)T'/n < T, we conclude that
K(T) (=l
T? T ’

o > (n k
’E {3 PR k1) (X< )((k+1)T/n,$)7y> el )H S

with some non-decreasing function K(-), some constants ¢ > 0 and Q > % which are independent of n.

F.2.2. the case (k+ 1)T/n € [T/2,T)
Applying the integration by parts on Wiener space, we obtain

o e (0 .5) )

= ‘E {p%(f(kﬂ)z“/n (X(n)((k + 1)T/n,x),y) H,u ()_((")((k +1)T/n, ), Gl(k))} ‘

=| [ € (o (KOG 07 /m)) Ho (KOt 0T m). 6)) .
Again, due to Lemma F.3 we have
‘*oo <5€ (X(n)((k + 1)T/”733)) s How (X(")((k: +1)T/n,x), Gl(k))>oo‘

K(T) o o 1621
- ((k + DT /n) 5 ’ ( (k+ 1)T/n>

and since T/2 < (k+ 1)T/n < T, we obtain

‘E {8a(l)p¥—(k+1)T/n (X(n)((k + 1)T/n,a:),y) Gl(k)} ‘

¢ K(T) exo [ —c ly — &7 N € —=|?
<(T(k+1)T/n)g((k;+1)T/n)N+l2a(l)|/RN P( 1T_(k:+1)T/n> p( 2(k+1)T/n)d§

N

< ((kH; Z))N'”' (e (s

K@) 1 (_Cy—xP)
N
S




OPERATOR SPLITTING AROUND EULER-MARUYAMA SCHEME S365

with some non-decreasing function K’() and constants ¢ > 0, > N/2 which are independent of n.

F.3. Upper bound for Mg

By the small time expansion formula (F.3), we get

n—1

n—1
= p;(/;m) -k pT/n >’<<%T/n (.TJ, y) (T/n)m+1 (QT/n> \IIT/n('v y)‘:l (Flg)

(n—1)-times

For the first term of (F.19), using the bound (F.15) with ¥ =n — 1 and Lemma F.1, we obtain

P;(/flm) *PT/ 5% | (2,y) (F.20)

(n—1)-times

= _Klg?/m (T/i)év (Dmﬂ [ (_CIM) P <_02 IyT_/SQ) 4
m+l n— n\ * —x|?
<(0) ey () e ()

(5 )

for some non-decreasing function K (-) and a constant ¢ > 0 which are independent of n.
Finally we consider the second term of (F.19). We notice that

al v 2 3l oz
Oz pi( (7, y)]2=2 = m—oo <5y(X (tam>)71>oo|z:m (F.21)

0%qy ---0%q,
= 0o (0, (X*(t,2)) , Ho (X*(t,2),1))__ |22

for any multi-index a € {1,..., N}l eNand (t,x,y) € [0,00) x RN x RY. From now on, we briefly write X7
for X*(t,z). Then, Up/,(z,y) is given by
Urnle,y) = > My ( > <5y (X;/n)  H (X;/n,1)>oo s (F.22)
I<v

and hence we have

(Q%)L) . Yr/n(z,y)
=3 <f;> B [ (8, (K70 oo (37 D)oo syrynmGE

I<v
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where F(,,_1)r/n-measurable random variable Gl(nfl) is the same one we defined in (E.5) on Appendix E. Since
we have seen the equation (E.6) holds, we obtain

| (Qg@b)n_l Ur/n(z,y)l < Zhl (:) ’E {51/ (X(”)(T,x)) Hgaa (X(")(T7 x),Gl("fl))”
1<v

- Zhl (i) ’E {Ty (X(n)(Tan)) Hg) iy (X(") (T, x),Gl("_l))”

I<v

where v = (1,2,..., N). Applying Lemma F.3, we easily obtain

m n—1 K(T _ |2
’(Qgr/i) ‘I’T/n(w,y)‘ < % exp <—c|yTx> (F.23)

for some non-decreasing function K (-) and constants ¢ > 0, @ > N/2 which are independent of n.
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