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OPERATOR SPLITTING AROUND EULER–MARUYAMA SCHEME AND HIGH
ORDER DISCRETIZATION OF HEAT KERNELS

Yuga Iguchi1 and Toshihiro Yamada2,*

Abstract. This paper proposes a general higher order operator splitting scheme for diffusion semi-
groups using the Baker–Campbell–Hausdorff type commutator expansion of non-commutative algebra
and the Malliavin calculus. An accurate discretization method for the fundamental solution of heat
equations or the heat kernel is introduced with a new computational algorithm which will be useful for
the inference for diffusion processes. The approximation is regarded as the splitting around the Euler–
Maruyama scheme for the density. Numerical examples for diffusion processes are shown to validate
the proposed scheme.
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1. Introduction

Approximating or estimating heat kernels is an important theme in mathematics since it naturally appears in
many problems related to the topics on diffusions and partial differential equations. Because heat kernel is given
as the density of the solution of stochastic differential equation, many kernel estimations rely on probabilistic
methods. While there has been considerable studies on kernel estimation, high order discretization for heat
kernels and its validity are not obtained at present.

This paper shows a general high order discretization algorithm for heat kernels with its theoretical foundation.
Before illustrating the sketch of the discretization method, we briefly review the standard discretization scheme.
Maruyama [17] proposed a discretization method for Itô’s stochastic differential equations (SDEs) which is
nowadays called the Euler–Maruyama scheme. The method is widely used in many fields due to its versatility
and applicability. Let {𝑋(𝑡, 𝑥)}𝑡≥0 be the solution of an Itô SDE

𝑑𝑋(𝑡, 𝑥) = 𝑏(𝑋(𝑡, 𝑥)) d𝑡+
𝑑∑︁

𝑖=1

𝜎𝑖(𝑋(𝑡, 𝑥))𝑑𝐵𝑖
𝑡, 𝑋(0, 𝑥) = 𝑥 ∈ R𝑁 , (1.1)
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with functions 𝑏, 𝜎𝑖, 𝑖 = 1, . . . , 𝑑, and consider the problem of computing 𝑃𝑇 𝑓(𝑥) = 𝐸[𝑓(𝑋(𝑇, 𝑥))] for a function
𝑓 where {𝑃𝑡}𝑡 is the semigroup of linear operators given by (𝑃𝑡𝑓)(𝑥) = 𝐸[𝑓(𝑋(𝑡, 𝑥))]. It is known that one has⃒⃒⃒

𝐸[𝑓(𝑋(𝑇, 𝑥))]− 𝐸
[︁
𝑓
(︁
𝑋̄EM,(𝑛)(𝑇, 𝑥)

)︁]︁⃒⃒⃒
= 𝑂(1/𝑛), (1.2)

where 𝑋̄EM,(𝑛)(𝑇, 𝑥) is the 𝑛-step Euler–Maruyama scheme with the time interval 𝑇/𝑛 given by

𝑋̄EM,(𝑛)((𝑘 + 1)𝑇/𝑛, 𝑥) = 𝑋̄EM,(𝑛)(𝑘𝑇/𝑛, 𝑥) + 𝑏
(︁
𝑋̄EM,(𝑛)(𝑘𝑇/𝑛, 𝑥)

)︁
𝑇/𝑛

+
𝑑∑︁

𝑖=1

𝜎𝑖

(︁
𝑋̄EM,(𝑛)(𝑘𝑇/𝑛, 𝑥)

)︁(︁
𝐵𝑖

(𝑘+1)𝑇/𝑛 −𝐵𝑖
𝑘𝑇/𝑛

)︁
. (1.3)

In the operator splitting perspective, (1.2) is written in the form⃒⃒⃒
𝑃𝑇 𝑓(𝑥)−

(︁
𝑄EM

𝑇/𝑛

)︁𝑛

𝑓(𝑥)
⃒⃒⃒

= 𝑂(1/𝑛), (1.4)

where 𝑄EM
𝑡 𝑓(𝑥) = 𝐸[𝑓(𝑋̄EM(𝑡, 𝑥))] with 𝑋̄EM(𝑡, 𝑥) = 𝑥 + 𝑏(𝑥)𝑡 +

∑︀𝑑
𝑖=1 𝜎𝑖(𝑥)𝐵𝑖

𝑡. Even if the test function 𝑓 is
non-smooth, (1.2) or (1.4) still gives first order discretization under the sufficient smoothness condition for the
coefficients 𝑏, 𝜎𝑖, 𝑖 = 1, . . . , 𝑑 with an appropriate ellipticity. Furthermore, the density 𝑦 ↦→ 𝑝𝑇 (𝑥, 𝑦) of 𝑋(𝑇, 𝑥)
is also approximated by the density 𝑦 ↦→ 𝑝𝑋̄EM,(𝑛)

𝑇 (𝑥, 𝑦) of the Euler–Maruyama scheme 𝑋̄EM,(𝑛)(𝑇, 𝑥) as⃒⃒⃒
𝑝𝑋

𝑇 (𝑥, 𝑦)− 𝑝𝑋̄EM,(𝑛)

𝑇 (𝑥, 𝑦)
⃒⃒⃒
≤ 1
𝑛

𝑐1
𝑇𝛼

𝑒−𝑐2|𝑥−𝑦|2/𝑇 (1.5)

for some 𝑐1, 𝑐2 > 0 and 𝛼 ≥ 𝑁 under the sufficient smoothness condition for the coefficients 𝑏, 𝜎𝑖, 𝑖 = 1, . . . , 𝑑
and the uniformly elliptic condition for 𝜎𝑖, 𝑖 = 1, . . . , 𝑑; see Bally and Talay [4]. See also [9, 10, 13] for the
Euler–Maruyama scheme for the density for instance. The efficient computation scheme is obtained in Pedersen
[19] as follows:

𝑝𝑋
𝑇 (𝑥, 𝑦) = 𝐸

[︁
𝑝𝑋̄EM,(𝑛)

𝑇/𝑛

(︁
𝑋̄EM,(𝑛)((𝑛− 1)𝑇/𝑛, 𝑥), 𝑦

)︁]︁
+𝑂(1/𝑛), (1.6)

where 𝑦 ↦→ 𝑝𝑋̄EM,(𝑛)

𝑇/𝑛 (𝑥, 𝑦) is the Gaussian density of the one-step Euler–Maruyama scheme. Here, the (𝑛−1)-step
Euler–Maruyama scheme 𝑋̄EM,(𝑛)((𝑛− 1)𝑇/𝑛, 𝑥) is used in the algorithm (1.6), and then the scheme (1.6) is
implemented by the Monte-Carlo simulation, which enables us to treat statistical inference of diffusion processes.

The paper shows a new discretization method of the heat kernel as an extension of the Euler–Maruyama
scheme in Bally and Talay [4] and the algorithm of Pedersen [19]. We firstly show a general operator splitting
method for diffusion semigroups as expectations of Itô SDEs. The approximation is obtained through a generator
expansion method around the Euler–Maruyama semigroup and the Baker–Campbell–Hausdorff type commuta-
tor calculation of non-commutative algebra. In particular, we introduce an optimal truncation of the semigroup
expansion in order to give a low cost numerical computation. For the global error estimate of the discretization,
the Kusuoka–Stroock theory on Malliavin calculus plays an important role. The high order splitting method for
weak approximation of Itô SDEs of the order 𝑂(1/𝑛𝑚) is given by

|𝑃𝑇 𝑓(𝑥)− (𝑄(𝑚)
𝑇/𝑛)𝑛𝑓(𝑥)| = 𝑂(1/𝑛𝑚) (1.7)

with operators 𝑄(𝑚)
𝑡 , 𝑡 > 0 constructed through the Baker–Campbell–Hausdorff expansion, which has the form

𝑄
(𝑚)
𝑡 𝑓(𝑥) = 𝐸[𝑓(𝑋̄EM(𝑡, 𝑥)){1 + 𝜋

(𝑚),𝑥
𝑡 (𝐵𝑡)}] with the one-step Euler–Maruyama scheme 𝑋̄EM(𝑡, 𝑥) and a

functional of polynomials of Brownian motions 𝜋(𝑚),𝑥
𝑡 (𝐵𝑡). Here, the optimal truncation is introduced for the

Baker–Campbell–Hausdorff expansion using Malliavin calculus in order to attain a high order discretization
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with minimum computational effort. Consequently, for instance, we get a simple second order discretization for
Itô SDEs

𝑃𝑇 𝑓(𝑥) =
(︁
𝑄

(2)
𝑇/𝑛

)︁𝑛

𝑓(𝑥) +𝑂
(︀
1/𝑛2

)︀
(1.8)

with a simple local operator 𝑄(2)
𝑡 given by

𝑄
(2)
𝑡 𝑓(𝑥) =

{︃
1 +

𝑡2

2

2∑︁
𝑖=1

[L 𝑧
0 ,L

𝑧
𝑖 ]

}︃
𝑃 0,𝑧

𝑡 𝑓(𝑥)|𝑧=𝑥 = 𝐸
[︁
𝑓(𝑋̄EM(𝑡, 𝑥))

{︁
1 + 𝜋

(2),𝑥
𝑡 (𝐵𝑡)

}︁]︁
, (1.9)

where 𝑃 0,𝑧
𝑡 𝑓(𝑥) = 𝐸[𝑓(𝑥+ 𝑏(𝑧)𝑡+

∑︀𝑑
𝑖=1 𝜎𝑖(𝑧)𝐵𝑖

𝑡)] and [L 𝑧
0 ,L

𝑧
𝑖 ] (𝑖 = 1, 2) is the commutator of two differentia-

tion operators L 𝑧
0 and L 𝑧

𝑖 appearing in the Taylor expansion L ≈ L 𝑧
0 +

∑︀2
𝑖=1 L 𝑧

𝑖 . Then, in the second order
discretization, the terms [L 𝑧

0 ,L
𝑧
𝑖 ]𝑃 0,𝑧

𝑡 𝑓(𝑥)|𝑧=𝑥, 𝑖 = 1, 2, work as the correction to the Euler–Maruyama term
𝑃 0,𝑧

𝑡 𝑓(𝑥)|𝑧=𝑥 = 𝐸[𝑓(𝑋̄EM(𝑡, 𝑥))], and these can be obtained through an easy commutator computation of the
Baker–Campbell–Hausdorff formula. The general operator splitting (1.7) can be represented as⃒⃒⃒⃒

⃒𝐸[𝑓(𝑋(𝑇, 𝑥))]− 𝐸

[︃
𝑓(𝑋̄EM,(𝑛)(𝑇, 𝑥)) (1.10)

×
𝑛∏︁

𝑖=1

{︁
1 + 𝜋

(𝑚),𝑋̄EM,(𝑛)((𝑖−1)𝑇/𝑛,𝑥)
𝑇/𝑛 (𝐵𝑖𝑇/𝑛 −𝐵(𝑖−1)𝑇/𝑛)

}︁]︃⃒⃒⃒⃒⃒ = 𝑂(1/𝑛𝑚).

using the 𝑛-step Euler–Maruyama scheme 𝑋̄EM,(𝑛)(𝑇, 𝑥). Since the discretization scheme is constructed by(︁
𝑄

(𝑚)
𝑇/𝑛

)︁𝑛

𝑓(𝑥) = 𝐸

[︃
𝑓
(︁
𝑋̄EM,(𝑛)(𝑇, 𝑥)

)︁ 𝑛∏︁
𝑖=1

{︁
1 + 𝜋

(𝑚),𝑋̄EM,(𝑛)((𝑖−1)𝑇/𝑛,𝑥)
𝑇/𝑛

(︀
𝐵𝑖𝑇/𝑛 −𝐵(𝑖−1)𝑇/𝑛

)︀}︁]︃

and the term 𝐸[𝑓(𝑋̄EM,(𝑛)(𝑇, 𝑥))] in (1.10) is the Euler–Maruyama scheme, the approximation is regarded as
the operator splitting around the Euler–Maruyama scheme. The result (1.10) holds even if the function 𝑓 is
only bounded and measurable.

As the second main result, we next introduce a higher order discretization scheme of the heat kernel 𝑝𝑋
𝑇 (𝑥, 𝑦)

as follows:⃒⃒⃒⃒
⃒𝑝𝑋

𝑇 (𝑥, 𝑦)− 𝐸

[︃
𝑝

𝑋̄,(𝑚)
𝑇/𝑛

(︁
𝑋̄EM,(𝑛)((𝑛− 1)𝑇/𝑛, 𝑥), 𝑦

)︁
×

𝑛−1∏︁
𝑖=1

{︁
1 + 𝜋

(𝑚),𝑋̄EM,(𝑛)((𝑖−1)𝑇/𝑛,𝑥)
𝑇/𝑛 (𝐵𝑖𝑇/𝑛 −𝐵(𝑖−1)𝑇/𝑛)

}︁]︃⃒⃒⃒⃒⃒ ≤ 1
𝑛𝑚

𝑐1
𝑇𝛼

𝑒−𝑐2|𝑥−𝑦|2/𝑇 , (1.11)

where 𝑐1, 𝑐2 > 0 and 𝛼 ≥ 𝑁 are some constants. Here, the function 𝑦 ↦→ 𝑝
𝑋̄,(𝑚)
𝑡 (𝑥, 𝑦) is a small time approxi-

mation of 𝑝𝑋
𝑡 (𝑥, ·), and we note that the (𝑛 − 1)-th (not 𝑛-th) product of polynomials of Brownian motions is

used. The kernel discretization is a natural extension of (1.6) in [19] since the function 𝑝𝑋̄,(𝑚)
𝑡 (𝑥, ·) has the form

𝑝
𝑋̄,(𝑚)
𝑡 (𝑥, ·) = 𝑝𝑋̄EM,(𝑛)

𝑡 (𝑥, ·){1 + 𝜗𝑡(𝑥, ·)} with a polynomial function 𝜗𝑡(𝑥, ·) and the method in (1.11) can be
written as

𝑝𝑋
𝑇 (𝑥, 𝑦) = 𝐸

[︁
𝑝

𝑋̄,(𝑚)
𝑇/𝑛

(︁
𝑋̄EM,(𝑛)((𝑛− 1)𝑇/𝑛, 𝑥), 𝑦

)︁(︁
1 +𝑀𝑛−1

(𝑚) (𝑇, 𝑥)
)︁]︁

+𝑂

(︂
1
𝑛𝑚

)︂
,

with 1 +𝑀𝑛−1
(𝑚) (𝑇, 𝑥) =

∏︀𝑛−1
𝑖=1 {1 + 𝜋

(𝑚),𝑋̄EM,(𝑛)((𝑖−1)𝑇/𝑛,𝑥)
𝑇/𝑛 (𝐵𝑖𝑇/𝑛 −𝐵(𝑖−1)𝑇/𝑛)}. Also the approximation can be

a generalization of [23]. The scheme is simply implemented by the Quasi-Monte-Carlo method. We provide
numerical examples for the scheme in order to confirm the validity.
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The paper is organized as follows. Section 2 introduces the higher order splitting method for diffusion semi-
groups around the Euler–Maruyama scheme. Then, in Section 3, we show a new discretization algorithm for the
heat kernel. Numerical examples of the proposed method are given in Section 4 with the comparison with the
Euler–Maruyama scheme. Section 5 concludes the method. Appendix is devoted to the proofs of mathematical
results.

2. Splitting method

For 𝑁,𝑛 ∈ N, let 𝐶∞𝑏 (R𝑁 ,R𝑛) be the space of all infinitely continuously differentiable functions 𝑓 : R𝑁 → R𝑛

such that 𝑓 and all of its partial derivatives at any order are bounded. We write 𝐶∞𝑏 (R𝑁 ) for 𝐶∞𝑏 (R𝑁 ,R). For
any 𝑓 ∈ 𝐶∞𝑏 (R𝑁 ), we define

‖𝑓‖∞ := sup
𝑥∈R𝑁

|𝑓(𝑥)|, ‖∇𝑘𝑓‖∞ := max
𝑗1,...,𝑗𝑘∈{1,...,𝑁}

⃦⃦⃦⃦
𝜕𝑘𝑓

𝜕𝑥𝑗1 . . . 𝜕𝑥𝑗𝑘

⃦⃦⃦⃦
∞
. (2.1)

Let Ω = 𝐶0([0,∞),R𝑑) = {𝑤 : [0,∞) → R𝑑; 𝑤(0) = 0, 𝑤 is continuous}, ℱ be the Borel field over Ω and P
be the Wiener measure. For 𝑝 ∈ [1,∞), the 𝐿𝑝-space of real valued Wiener functionals is denoted by 𝐿𝑝(Ω); that
is, 𝐿𝑝(Ω) is a real Banach space of all P-measurable functionals 𝐹 : Ω → R such that ‖𝐹‖𝑝 = 𝐸[|𝐹 |𝑝]1/𝑝 < ∞
with the identification 𝐹 = 𝐺 if and only if 𝐹 (𝑤) = 𝐺(𝑤), a.s.

We will use the language of Malliavin calculus. See [12, 18] for details. Let 𝐻 = 𝐿2([0,∞),R𝑑) with the
inner product ⟨·, ·⟩𝐻 and 𝐵(ℎ) be the Wiener integral 𝐵(ℎ) =

∑︀𝑑
𝑗=1

∫︀∞
0
ℎ𝑗(𝑠) d𝐵𝑗

𝑠 for ℎ ∈ 𝐻. Let 𝒮(Ω)
denote the class of smooth random variables of the form 𝐹 = 𝑓(𝐵(ℎ1), . . . , 𝐵(ℎ𝑛)) where 𝑓 ∈ 𝐶∞𝑏 (R𝑛),
ℎ1, . . . , ℎ𝑛 ∈ 𝐻, 𝑛 ≥ 1. For 𝐹 ∈ 𝒮(Ω), we define the derivative 𝐷𝐹 as the 𝐻-valued random variable
𝐷𝐹 =

∑︀𝑛
𝑖=1 𝜕𝑖𝑓(𝐵(ℎ1), . . . , 𝐵(ℎ𝑛))ℎ𝑖 and 𝐷𝑗,𝑠𝐹 =

∑︀𝑛
𝑖=1 𝜕𝑖𝑓(𝐵(ℎ1), . . . , 𝐵(ℎ𝑛))ℎ𝑗

𝑖 (𝑠), 𝑗 = 1, . . . , 𝑑, 𝑠 ≥ 0. For
𝐹 ∈ 𝒮(Ω), we set 𝐷𝑗𝐹 , 𝑗 ∈ N, as the 𝐻⊗𝑗-valued random variable obtained by iterating 𝑗-times the operator 𝐷.
Then 𝐷𝑗 is a closable operator from 𝐿𝑝(Ω) into 𝐿𝑝(Ω, 𝐻⊗𝑗) for any 𝑝 ∈ [1,∞). For 𝑘 ∈ N, 𝑝 ∈ [1,∞), we
define ‖𝐹‖𝑝

𝑘,𝑝 = 𝐸[|𝐹 |𝑝] +
∑︀𝑘

𝑗=1𝐸[‖𝐷𝑗𝐹‖𝑝
𝐻⊗𝑗 ], 𝐹 ∈ 𝒮(Ω). Then the space D𝑘,𝑝 is defined as the completion of

𝒮(Ω) with respect to the norm ‖ · ‖𝑘,𝑝. Moreover, let D∞ be the space of smooth Wiener functionals in the
sense of Malliavin D∞ = ∩𝑝≥1 ∩𝑘∈N D𝑘,𝑝. Let 𝛿 be an unbounded operator from 𝐿2(Ω, 𝐻) into 𝐿2(Ω) such that
the domain of 𝛿, denoted by Dom(𝛿), is the set of 𝐻-valued square integrable random variables 𝑢 such that
|𝐸[⟨𝐷𝐹, 𝑢⟩𝐻 ]| ≤ 𝐶‖𝐹‖2, for all 𝐹 ∈ D1,2 where 𝐶 is some constant depending on 𝑢, and if 𝑢 ∈ Dom(𝛿), 𝛿(𝑢) is
characterized by

𝐸[⟨𝐷𝐹, 𝑢⟩𝐻 ] = 𝐸[𝐹𝛿(𝑢)] (2.2)

for all 𝐹 ∈ D1,2. 𝛿(𝑢) is called the Skorohod integral of the process 𝑢. When 𝑢 ∈ Dom(𝛿) has the form 𝑢 = 𝐺ℎ
with 𝐺 ∈ D1,2 and ℎ ∈ 𝐻, the Skorohod integral is given by

𝛿(𝐺ℎ) = 𝐺𝛿(ℎ)− ⟨𝐷𝐺,ℎ⟩𝐻 . (2.3)

Let 𝐹 = (𝐹1, . . . , 𝐹𝑁 ) be a Wiener functional such that 𝐹𝑖 ∈ D∞, 𝑖 = 1, . . . , 𝑁 , and the Malliavin covariance
matrix 𝜎𝐹 = (⟨𝐷𝐹𝑖, 𝐷𝐹𝑗⟩𝐻)1≤𝑖,𝑗≤𝑁 is invertible a.s. and satisfies ‖(det𝜎𝐹 )−1‖𝑝 < ∞, 𝑝 ≥ 1. For such a
nondegenerate Wiener functional 𝐹 , we have the integration by parts, that is, for all 𝑔 ∈ 𝐶∞𝑏 (R𝑁 ), 𝐺 ∈ D∞
and multi-index 𝛼 = (𝛼1, . . . , 𝛼𝑘) ∈ {1, . . . , 𝑁}𝑘, 𝑘 ∈ N, there exists 𝐻𝛼(𝐹,𝐺) ∈ D∞ such that

𝐸[(𝜕𝛼𝑔)(𝐹 )𝐺] = 𝐸[𝑔(𝐹 )𝐻𝛼(𝐹,𝐺)]. (2.4)

In particular, 𝐻𝛼(𝐹,𝐺) is given by 𝐻𝛼(𝐹,𝐺) = 𝐻(𝛼𝑘)(𝐹,𝐻(𝛼1,...,𝛼𝑘−1)(𝐹,𝐺)) with

𝐻(𝑖)(𝐹,𝐺) = 𝛿

⎛⎝ 𝑁∑︁
𝑗=1

𝐺(𝜎𝐹 )−1
𝑖,𝑗 𝐷𝐹𝑗

⎞⎠ , 𝑖 = 1, . . . , 𝑁. (2.5)
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Let us consider the solution 𝑋 = {𝑋(𝑡, 𝑥)}𝑡≥0, 𝑥 ∈ R𝑁 of the following Itô’s stochastic differential equation
driven by a 𝑑-dimensional Brownian motion 𝐵 = {𝐵𝑡}𝑡≥0:

𝑋(𝑡, 𝑥) = 𝑥+
∫︁ 𝑡

0

𝑏(𝑋(𝑠, 𝑥)) d𝑠+
𝑑∑︁

𝑖=1

∫︁ 𝑡

0

𝜎𝑖(𝑋(𝑠, 𝑥)) d𝐵𝑖
𝑠, (2.6)

where 𝑏 ∈ 𝐶∞𝑏 (R𝑁 ,R𝑁 ), 𝜎𝑖 ∈ 𝐶∞𝑏 (R𝑁 ,R𝑁 ), 𝑖 = 1, . . . , 𝑑. We assume the uniformly elliptic condition for the
matrix 𝜎𝜎′(·), where 𝜎′ is the transposition of 𝜎 . Let L be the generator given by

L𝜙(𝑥) =
𝑁∑︁

𝑖=1

𝑏𝑖(𝑥)
𝜕

𝜕𝑥𝑖
𝜙(𝑥) +

1
2

𝑑∑︁
𝑘=1

𝑁∑︁
𝑖,𝑗=1

𝜎𝑖
𝑘(𝑥)𝜎𝑗

𝑘(𝑥)
𝜕2

𝜕𝑥𝑖𝜕𝑥𝑗
𝜙(𝑥), 𝜙 ∈ 𝐶∞𝑏 (R𝑁 ), (2.7)

and {𝑃𝑡}𝑡≥0 be the semigroup of linear operators

(𝑃𝑡𝑓)(𝑥) := (𝑒𝑡L 𝑓)(𝑥) := 𝐸[𝑓(𝑋(𝑡, 𝑥))], 𝑡 ≥ 0, 𝑥 ∈ R𝑁 , (2.8)

where 𝑓 : R𝑁 → R is appropriately chosen. For a fixed 𝑧 ∈ R𝑁 , we define a generator L 𝑧
0 whose coefficients are

frozen at a point 𝑧 ∈ R𝑁 as follows:

L 𝑧
0 𝜙(𝑥) =

𝑁∑︁
𝑖=1

𝑏𝑖(𝑧)
𝜕

𝜕𝑥𝑖
𝜙(𝑥) +

1
2

𝑑∑︁
𝑘=1

𝑁∑︁
𝑖,𝑗=1

𝜎𝑖
𝑘(𝑧)𝜎𝑗

𝑘(𝑧)
𝜕2

𝜕𝑥𝑖𝜕𝑥𝑗
𝜙(𝑥), 𝜙 ∈ 𝐶∞𝑏 (R𝑁 ), (2.9)

and let {𝑃 0,𝑧
𝑡 }𝑡>0 be the semigroup of linear operators corresponding to L 𝑧

0 given by

(𝑃 0,𝑧
𝑡 𝑓)(𝑥) := (𝑒𝑡L 𝑧

0 𝑓)(𝑥) := 𝐸[𝑓(𝑋̄𝑧(𝑡, 𝑥))], 𝑡 ≥ 0, 𝑥 ∈ R𝑁 , (2.10)

with an appropriate function 𝑓 : R𝑁 → R, where

𝑋̄𝑧(𝑡, 𝑥) = 𝑥+ 𝑏(𝑧)𝑡+
𝑑∑︁

𝑖=1

𝜎𝑖(𝑧)𝐵𝑖
𝑡. (2.11)

Then, (𝑃 0,𝑧
𝑡 𝑓)(𝑥) can be explicitly given using the Gaussian density 𝑦 ↦→ 𝑝𝑋̄𝑧

(𝑡, 𝑥, 𝑦) of 𝑋̄𝑧(𝑡, 𝑥) as(︁
𝑃 0,𝑧

𝑡 𝑓
)︁

(𝑥) =
∫︁

R𝑁

𝑓(𝑦)𝑝𝑋̄𝑧

(𝑡, 𝑥, 𝑦) d𝑦, 𝑡 > 0, 𝑥 ∈ R𝑁 . (2.12)

For a multi-index 𝛼 = (𝛼1, . . . , 𝛼𝑘) ∈ {1, 2, . . . , 𝑁}𝑘, 𝑘 ∈ N, we write |𝛼| := 𝑘 and 𝜕𝛼 := 𝜕|𝛼|

𝜕𝑥𝛼1 ...𝜕𝑥𝛼𝑘
. Let

𝑋̄EM(𝑡, 𝑥) be the one-step Euler–Maruyama scheme:

𝑋̄EM(𝑡, 𝑥) := 𝑋̄𝑧(𝑡, 𝑥)
⃒⃒⃒
𝑧=𝑥

= 𝑥+ 𝑏(𝑥)𝑡+
𝑑∑︁

𝑖=1

𝜎𝑖(𝑥)𝐵𝑖
𝑡

and {𝑋̄EM,(𝑛)(𝑡, 𝑥)}𝑡 be the continuous Euler–Maruyama scheme with the uniform time grids given by

𝑋̄EM,(𝑛)(𝑡, 𝑥) = 𝑋̄EM,(𝑛)(𝑘𝑇/𝑛, 𝑥) + 𝑏
(︁
𝑋̄EM,(𝑛)(𝑘𝑇/𝑛, 𝑥)

)︁
(𝑡− 𝑘𝑇/𝑛)

+
𝑑∑︁

𝑖=1

𝜎𝑖

(︁
𝑋̄(EM,𝑛)(𝑘𝑇/𝑛, 𝑥)

)︁(︁
𝐵𝑖

𝑡 −𝐵𝑖
𝑘𝑇/𝑛

)︁
,
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for 𝑡 ∈ [𝑘𝑇/𝑛, (𝑘+1)𝑇/𝑛]. The aim of this paper is to provide a general discretization scheme for 𝑃𝑇 𝑓(𝑥) around
the Euler–Maruyama scheme 𝐸[𝑓(𝑋̄EM,(𝑛)(𝑇, 𝑥))].

In order to construct a discretization scheme, we expand L around L 𝑧
0 in the sense that; for all 𝑚 ∈ N,

there is 𝐶𝑏,𝜎(𝑚) > 0 depending on the derivatives of 𝑏, 𝜎 and 𝑚 such that for all 𝜙 ∈ 𝐶∞𝑏 (R𝑁 ) and 𝑥, 𝑧 ∈ R𝑁 ,⃒⃒⃒⃒
⃒L𝜙(𝑥)−L 𝑧

0 𝜙(𝑥)−
𝑚∑︁

𝑖=1

L 𝑧
𝑖 𝜙(𝑥)

⃒⃒⃒⃒
⃒ ≤ 𝐶𝑏,𝜎(𝑚)

2∑︁
𝑖=1

‖∇𝑖𝜙‖∞|𝑥− 𝑧|𝑚+1, (2.13)

where the differential operators L 𝑧
𝑖 , 𝑖 ∈ N are defined by

L 𝑧
𝑖 :=

𝑁∑︁
𝑗=1

∑︁
𝛼∈{1,2,...,𝑁}𝑖

1
|𝛼|!

𝜕𝛼𝑏𝑗(·)|·=𝑧

|𝛼|∏︁
𝑗=1

(𝑥𝛼𝑗 − 𝑧𝛼𝑗 )
𝜕

𝜕𝑥𝑗
(2.14)

+
1
2

𝑑∑︁
𝑘=1

𝑁∑︁
𝑗1,𝑗2=1

∑︁
𝛼∈{1,2,...,𝑁}𝑖

1
|𝛼|!

𝜕𝛼(𝜎𝑗1
𝑘 𝜎

𝑗2
𝑘 )(·)|·=𝑧

|𝛼|∏︁
𝑗=1

(𝑥𝛼𝑗
− 𝑧𝛼𝑗

)
𝜕2

𝜕𝑥𝑗1𝜕𝑥𝑗2

·

For example, we have

L 𝑧
1 𝜙(𝑥) =

𝑁∑︁
𝑖,𝑙=1

(𝑥𝑙 − 𝑧𝑙)𝜕𝑙𝑏
𝑖(𝑧)

𝜕

𝜕𝑥𝑖
𝜙(𝑥) +

𝑑∑︁
𝑘=1

𝑁∑︁
𝑖,𝑗,𝑙=1

(𝑥𝑙 − 𝑧𝑙)𝜕𝑙𝜎
𝑖
𝑘(𝑧)𝜎𝑗

𝑘(𝑧)
𝜕2

𝜕𝑥𝑖𝜕𝑥𝑗
𝜙(𝑥), (2.15)

L 𝑧
2 𝜙(𝑥) =

1
2

𝑁∑︁
𝑖,𝑙1,𝑙2=1

(𝑥𝑙1 − 𝑧𝑙1)(𝑥𝑙2 − 𝑧𝑙2)𝜕𝑙1𝜕𝑙2𝑏
𝑖(𝑧)

𝜕

𝜕𝑥𝑖
𝜙(𝑥) (2.16)

+
𝑑∑︁

𝑘=1

𝑁∑︁
𝑖,𝑗,𝑙1,𝑙2=1

(𝑥𝑙1 − 𝑧𝑙1)(𝑥𝑙2 − 𝑧𝑙2){𝜕𝑙1𝜕𝑙2𝜎
𝑖
𝑘(𝑧)𝜎𝑗

𝑘(𝑧) + 𝜕𝑙1𝜎
𝑖
𝑘(𝑧)𝜕𝑙2𝜎

𝑗
𝑘(𝑧)} 𝜕2

𝜕𝑥𝑖𝜕𝑥𝑗
𝜙(𝑥),

for 𝜙 ∈ 𝐶∞𝑏 (R𝑁 ) and 𝑥 ∈ R𝑁 . We use non-commutative relationship of L 𝑧
0 and L 𝑧

𝑖 , 𝑖 ∈ N in the approximation
scheme. Let 𝒟𝒪 be the space of smooth differential operators over R𝑁 . Then 𝒟𝒪 is a non-commutative algebra
over R. For D1,D2 ∈ 𝒟𝒪, we define the commutator [D1,D2] = D1D2 − D2D1. In addition, we define for
D1,D2, . . . ,D𝑛 ∈ 𝒟𝒪, 𝑛 ∈ N,

∏︀𝑛
𝑘=1 D𝑘 := D1,D2, . . . ,D𝑛.

2.1. Splitting around Euler–Maruyama

We shall use abbreviate notation

𝑋̄(𝑡, 𝑥) ≡ 𝑋̄EM(𝑡, 𝑥) and 𝑋̄(𝑛)(𝑡, 𝑥) ≡ 𝑋̄EM,(𝑛)(𝑡, 𝑥), (2.17)

for simplicity.
We now show a splitting method using a new operator constructed through the Baker–Campbell–Hausdorff

expansion around the Euler–Maruyama scheme combined with Malliavin calculus.

Theorem 2.1. For 𝑇 ≥ 1 and 𝑚 ∈ N, there exists a constant 𝐶 = 𝐶(𝑇,𝑚) > 0 such that

‖𝑃𝑇 𝑓 −
(︁
𝑄

(𝑚)
𝑇/𝑛

)︁𝑛

𝑓‖∞ ≤ 𝐶‖𝑓‖∞
1
𝑛𝑚

, (2.18)
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for all bounded and measurable functions 𝑓 : R𝑁 → R and 𝑛 ≥ 1, where {𝑄(𝑚)
𝑡 }𝑡>0 is a family of operators

given by

𝑄
(𝑚)
𝑡 𝑓(𝑥) = 𝑃 0,𝑧

𝑡 𝑓(𝑥)|𝑧=𝑥 +
𝑚−1∑︁
𝑖=1

∑︁
𝑖≤
∑︀𝑖

𝑗=1 𝑘𝑗≤2𝑚+1

∑︁
1≤𝛼1≤𝑘1
0≤𝛼2≤𝑘2

...
0≤𝛼𝑖≤𝑘𝑖∑︀𝑖
𝑙=1 𝛼𝑙+𝑖≤𝑚

1
𝛼!
𝐼(𝛼) (2.19)

× 𝑡
∑︀𝑖

𝑙=1 𝛼𝑙+𝑖
𝑖∏︁

𝑙=1

(︁
[L 𝑧

0 , [L
𝑧
0 , . . . , [L

𝑧
0 ,L

𝑧
𝑘𝑙

]] . . .]]⏟  ⏞  
𝛼𝑙-times

)︁
𝑃 0,𝑧

𝑡 𝑓(𝑥)|𝑧=𝑥

= 𝐸
[︁
𝑓(𝑋̄(𝑡, 𝑥))

{︁
1 + 𝜋

(𝑚),𝑥
𝑡 (𝐵𝑡)

}︁]︁
for some 𝜋(𝑚),𝑥

𝑡 (𝐵𝑡) ∈ D∞, where 𝛼! := (𝛼1)!(𝛼2)! . . . (𝛼𝑖)! and 𝐼(𝛼), 𝛼 = (𝛼1, . . . , 𝛼𝑖), is defined as

𝐼(𝛼) =
∫︁ 1

0

∫︁ 1

𝑡𝑖

. . .

∫︁ 1

𝑡2

(𝑡1)𝛼𝑖(𝑡2)𝛼𝑖−1 . . . (𝑡𝑖)𝛼1 d𝑡1 . . . d𝑡𝑖. (2.20)

Proof of Theorem 2.1. See Section 2.3. �

In the discretization, an optimal truncation of the Baker–Campbell–Hausdorff expansion is used in (2.19)
which is justified by Malliavin calculus. See Proposition 2.3 in the proof of Theorem 2.1.

As a corollary, we show a useful representation for the proposed splitting method and give a property on the
variance.

Corollary 2.1. It holds that

(︁
𝑄

(𝑚)
𝑇/𝑛

)︁𝑛

𝑓(𝑥) = 𝐸

[︃
𝑓
(︁
𝑋̄(𝑛)(𝑇, 𝑥)

)︁ 𝑛∏︁
𝑖=1

{︁
1 + 𝜋

(𝑚),𝑋̄(𝑛)((𝑖−1)𝑇/𝑛,𝑥)
𝑇/𝑛

(︀
𝐵𝑖𝑇/𝑛 −𝐵(𝑖−1)𝑇/𝑛

)︀}︁]︃
, 𝑥 ∈ R𝑁 . (2.21)

Furthermore, we have the following result for the variance:

𝐸

⎡⎣⃒⃒⃒⃒⃒𝑓 (︁𝑋̄(𝑛)(𝑇, 𝑥)
)︁ 𝑛∏︁

𝑖=1

{︁
1 + 𝜋

(𝑚),𝑋̄(𝑛)((𝑖−1)𝑇/𝑛,𝑥)
𝑇/𝑛

(︀
𝐵𝑖𝑇/𝑛 −𝐵(𝑖−1)𝑇/𝑛

)︀}︁⃒⃒⃒⃒⃒
2
⎤⎦ <∞, (2.22)

for any 𝑥 ∈ R𝑁 .

Proof. It is obvious from the proof of Theorem 2.1 (especially Lem. 2.1). �

Remark 2.1 (On the construction of the splitting method). We explain the strategy for the construction of
the splitting method for (𝑃𝑇 𝑓)(𝑥) = 𝐸[𝑓(𝑋(𝑇, 𝑥))], 𝑇 ≥ 1 for a non-smooth test function 𝑓 . Basically, the
discretization is derived through two steps, the local and global approximations.

We first consider the local approximation. According to the generator expansion around the frozen generator:

L = L 𝑧
0 + L 𝑧

1 + L 𝑧
2 + . . . , (2.23)

the semigroup {𝑃𝑡}𝑡 is expanded as

𝑃𝑡𝜙(𝑥) =𝑃 0,𝑧
𝑡 𝜙(𝑥)

⃒⃒⃒
𝑧=𝑥

+ 𝑃 1,𝑧
𝑡 𝜙(𝑥)

⃒⃒⃒
𝑧=𝑥

+ 𝑃 2,𝑧
𝑡 𝜙(𝑥)

⃒⃒⃒
𝑧=𝑥

+ . . . (2.24)
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for a bounded and measurable function 𝜙, where the family of 𝑃 0,𝑧
𝑡 , 𝑡 > 0 is the semigroup frozen at 𝑧

corresponding to L 𝑧
0 . Note that the family of 𝑃 0,𝑧

𝑡 |𝑧=𝑥, 𝑡 > 0 is regarded as the one-step Euler–Maruyama
semigroup. The expansion (2.24) is obtained based on the expansion of the “parametrix”:

𝑃𝑡𝜙(𝑥) = 𝑃 0,𝑧
𝑡 𝜙(𝑥)

⃒⃒
𝑧=𝑥

+
∫︁ 𝑡

0

𝑃𝑡−𝑠(L −L 𝑧
0 )𝑃 0,𝑧

𝑠 𝜙(𝑥) d𝑠
⃒⃒
𝑧=𝑥

(2.25)

= 𝑃 0,𝑧
𝑡 𝜙(𝑥)

⃒⃒⃒
𝑧=𝑥

+
∫︁ 𝑡

0

𝑃 0,𝑧
𝑡−𝑠(L −L 𝑧

0 )𝑃 0,𝑧
𝑠 𝜙(𝑥) d𝑠

⃒⃒
𝑧=𝑥

+ . . . = 𝑃 0,𝑧
𝑡 𝜙(𝑥)

⃒⃒
𝑧=𝑥

+
2𝑚+1∑︁
𝑖=1

𝑃 𝑖,𝑧
𝑡 𝜙(𝑥)

⃒⃒
𝑧=𝑥

+ . . . ,

where (2.25) and (2.23) (or (2.13)) are recursively used, and 𝑃 𝑖,𝑧
𝑡 𝜙(𝑥) is given by

𝑃 𝑖,𝑧
𝑡 𝜙(𝑥) =

∑︁
𝑘1+...+𝑘𝑖=𝑖

∫︁ 𝑡

0

∫︁ 𝑡

𝑡𝑖

. . .

∫︁ 𝑡

𝑡2

𝑃 0,𝑧
𝑡𝑖

L 𝑧
𝑘1
𝑃 0,𝑧

𝑡𝑖−1−𝑡𝑖
L 𝑧

𝑘2
. . .L 𝑧

𝑘𝑖
𝑃 0,𝑧

𝑡−𝑡1𝜙(𝑥) d𝑡1 . . . d𝑡𝑖. (2.26)

When we truncate the expansion at the order 2𝑚 + 1 as 𝑃𝑡𝜙(𝑥) ≈ 𝑃 0,𝑧
𝑡 𝜙(𝑥)|𝑧=𝑥 +

∑︀2𝑚+1
𝑖=1 𝑃 𝑖,𝑧

𝑡 𝜙(𝑥)|𝑧=𝑥, the
error term can be written as

R𝜙
𝑡 (𝑥) =

2𝑚+1∑︁
𝑘=0

∫︁ 𝑡

0

𝑃𝑡−𝑠

(︃
L −

2𝑚+1−𝑘∑︁
𝑖=0

L 𝑧
𝑖

)︃
𝑃 𝑘,𝑧

𝑠 𝜙(𝑥) d𝑠|𝑧=𝑥. (2.27)

We will discuss details in the proof of Proposition 2.2.
While we obtain an approximation 𝑃𝑡𝜙(𝑥) ≈ 𝑃 0,𝑧

𝑡 𝜙(𝑥)|𝑧=𝑥 +
∑︀2𝑚+1

𝑖=1 𝑃 𝑖,𝑧
𝑡 𝜙(𝑥)|𝑧=𝑥, we do not use this form

directly in numerical computation and apply the Baker–Campbell–Hausdorff formula to 𝑃 𝑖,𝑧
𝑡 𝜙(𝑥), 𝑖 ≥ 1. Fur-

thermore, we do not use all terms of
∑︀2𝑚+1

𝑖=1 𝑃 𝑖,𝑧
𝑡 𝜙(𝑥)|𝑧=𝑥 in order to obtain more smart local approximation

for splitting method.
After obtaining the approximation 𝑃𝑡𝜙(𝑥) ≈ 𝑃 0,𝑧

𝑡 𝜙(𝑥)|𝑧=𝑥 +
∑︀2𝑚+1

𝑖=1 𝑃 𝑖,𝑧
𝑡 𝜙(𝑥)|𝑧=𝑥, we give an optimal trun-

cation using the Baker–Campbell–Hausdorff formula and the Malliavin calculus, which may be regarded as a
“truncated parametrix”. The following local approximation is introduced:

𝑃𝑡𝜙(𝑥) ≈ 𝑄
(𝑚)
𝑡 𝜙(𝑥) (2.28)

with

𝑄
(𝑚)
𝑡 𝜙(𝑥) = 𝑃 0,𝑧

𝑡 𝜙(𝑥)|𝑧=𝑥 +
𝑚−1∑︁
𝑖=1

∑︁
𝑖≤
∑︀𝑖

𝑗=1 𝑘𝑗≤2𝑚+1

∑︁
1≤𝛼1≤𝑘1
0≤𝛼2≤𝑘2

...
0≤𝛼𝑖≤𝑘𝑖∑︀𝑖
𝑙=1 𝛼𝑙+𝑖≤𝑚

∫︁ 𝑡

0

∫︁ 𝑡

𝑡𝑖

. . .

∫︁ 𝑡

𝑡2

(𝑡1)𝛼𝑖(𝑡2)𝛼𝑖−1 . . . (𝑡𝑖)𝛼1

𝛼1!𝛼2! . . . 𝛼𝑖!
d𝑡1. . . d𝑡𝑖

×
𝑖∏︁

𝑙=1

(︁
[L 𝑧

0 , [L
𝑧
0 ,. . .,[L

𝑧
0 ,L

𝑧
𝑘𝑙

]]. . .]]⏟  ⏞  
𝛼𝑙-times

)︁
𝑃 0,𝑧

𝑡 𝜙(𝑥)|𝑧=𝑥 (2.29)

The above truncation in (2.28) is “optimal” in the sense that (𝑄(𝑚)
𝑇/𝑛)𝑛𝑓(𝑥) will give 𝑂(1/𝑛𝑚)-order approxima-

tion for 𝑃𝑇 𝑓(𝑥) with the minimum computational effort. The local approximation error is explicitly given as fol-
lows 𝑃𝑡𝜙(𝑥)−𝑄(𝑚)

𝑡 𝜙(𝑥) = R𝜙
𝑡 (𝑥)+𝑡𝑚+1Ψ𝜙

𝑡 (𝑥) where R𝜙
𝑡 is given in (2.27) which can be estimated by ‖R𝜙

𝑡 ‖∞ ≤
𝑡𝑚+1𝐶‖𝜙‖∞ using Malliavin calculus, and Ψ𝜙

𝑡 is a function of the form Ψ𝜙
𝑡 (𝑥) =

∑︀
𝑙≤𝜈 ℎ𝑙(𝑡)𝑔𝑙(·)𝜕𝛽𝑙

𝑃 0,𝑧
𝑡 𝜙(·)|𝑧=·

with 𝜈 ∈ N, multi-indices 𝛽𝑙 ∈ {1, . . . , 𝑁}𝑙, 𝑙 ≤ 𝜈, non-decreasing ℎ𝑙 and smooth and bounded 𝑔𝑙.
Next, we explain the global approximation for 𝑃𝑇 𝑓(𝑥). When the test function 𝑓 is smooth, the result

‖𝑃𝑇 𝑓 − (𝑄(𝑚)
𝑇/𝑛)𝑛𝜙‖∞ = 𝑂(𝑛−𝑚) immediately follows. Actually, if 𝜙 is a function of 𝐶∞𝑏 -class, we easily see that
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‖𝑃𝑡𝜙−𝑄
(𝑚)
𝑡 𝜙‖∞ = 𝑂(𝑡𝑚+1) holds by the estimate ‖Ψ𝜙

𝑡 ‖∞ ≤ 𝐶 with the result sup𝑡>0 ‖𝜕𝛽𝑙

𝑃 0,·
𝑡 𝜙(·)‖∞ <∞,

and then one has ‖𝑃𝑇 𝑓 − (𝑄(𝑚)
𝑇/𝑛)𝑛𝑓‖∞ = 𝑛×𝑂((𝑇/𝑛)𝑚+1) = 𝑂(𝑛−𝑚).

However, when 𝑓 is non-smooth, we cannot employ this argument. The important point on the construction
of the splitting method in the paper is to use the explicit local error functions R𝜙

𝑡 and Ψ𝜙
𝑡 in the estimate of the

global approximation for 𝑃𝑇 𝑓 with bounded and measurable test functions 𝑓 , where the Malliavin calculus plays
a crucial role. In particular, by applying Kusuoka–Stroock’s integration by parts [14] for elliptic Itô processes,
we are able to provide the global approximation 𝑃𝑇 𝑓(𝑥) = (𝑄(𝑚)

𝑇/𝑛)𝑛𝑓(𝑥)+𝑂(1/𝑛𝑚) for bounded and measurable
test functions 𝑓 , in other words, the weak approximation for Itô SDE is obtained.

Remark 2.2 (Comparison with the probabilistic parametrix methods). We mention the features of the pro-
posed scheme (Thm. 2.1 (and Cor. 2.1)) by comparing with the probabilistic parametrix methods of Bally and
Kohatsu-Higa [2] and Labordere et al. [15].

Bally and Kohatsu-Higa [2] obtained an exact formula with an estimator for 𝑃𝑇 𝑓(𝑥) through the parametrix
method, where there is no discretization error (weak approximation error), in other words, the estimator provided
by [2] is “unbiased”. However, the cost of the scheme may be the divergent of the variance. In general, the
estimator gives infinite variance except for some special cases, which is partially improved by Labordere et al.
[15].

Our scheme will be regarded as a biased-simulation method because it involves weak approximation error.
However the bias is quite small since it gives higher order discretization. Also the variance of the estimator is
finite (see Cor. 2.1), which is consequence of the use of the Baker–Campbell–Hausdorff formula for the “truncated
parametrix” (Rem. 2.1).

2.2. Examples of the splitting method

As examples for the splitting method in Theorem 2.1 (and Cor. 2.1), we show the following simple second
and third order methods in Corollaries 2.2 and 2.3.

Corollary 2.2 (Second order weak approximation). For 𝑇 ≥ 1, there exists a constant 𝐶 > 0 such that

‖𝑃𝑇 𝑓 − (𝑄(2)
𝑇/𝑛)𝑛𝑓‖∞ ≤ 𝐶‖𝑓‖∞

1
𝑛2
, (2.30)

for all bounded and measurable functions 𝑓 : R𝑁 → R and 𝑛 ≥ 1, where {𝑄(2)
𝑡 }𝑡>0 is a family of operators given

by

𝑄
(2)
𝑡 𝑓(𝑥) = 𝑃 0,𝑧

𝑡 𝑓(𝑥)|𝑧=𝑥 +
𝑡2

2

2∑︁
𝑖=1

[L 𝑧
0 ,L

𝑧
𝑖 ]𝑃 0,𝑧

𝑡 𝑓(𝑥)|𝑧=𝑥 (2.31)

= 𝐸
[︁
𝑓
(︀
𝑋̄(𝑡, 𝑥)

)︀{︁
1 + 𝜋

(2),𝑥
𝑡 (𝐵𝑡)

}︁]︁
. (2.32)

Here, the Malliavin weight 𝜋(2),𝑥
𝑡 (𝐵𝑡) is given by

𝜋
(2),𝑥
𝑡 (𝐵𝑡) =

1
2

𝑑∑︁
𝑖1,𝑖2=1

𝑁∑︁
𝑘1=1

ℒ𝑖1𝜎
𝑘1
𝑖2

(𝑥)𝐻(𝑘1)

(︀
𝑋̄(𝑡, 𝑥), 𝐵𝑖1

𝑡 𝐵
𝑖2
𝑡 − 𝑡1𝑖1=𝑖2

)︀
(2.33)

+
1
2

𝑑∑︁
𝑖1=1

𝑁∑︁
𝑘1=1

{︁
ℒ0𝜎

𝑘1
𝑖1

(𝑥) + ℒ𝑖1𝑏
𝑘1(𝑥)

}︁
𝐻(𝑘1)

(︀
𝑋̄(𝑡, 𝑥), 𝐵𝑖1

𝑡 𝑡
)︀

(2.34)

+
1
4

𝑑∑︁
𝑖1,𝑖2=1

𝑁∑︁
𝑘1,𝑘2=1

ℒ𝑖1𝜎
𝑘1
𝑖2

(𝑥)ℒ𝑖1𝜎
𝑘2
𝑖2

(𝑥)𝐻(𝑘1,𝑘2)

(︀
𝑋̄(𝑡, 𝑥), 𝑡2

)︀
(2.35)

+
1
2

𝑁∑︁
𝑘1=1

ℒ0𝑏
𝑘1(𝑥)𝐻(𝑘1)

(︀
𝑋̄(𝑡, 𝑥), 𝑡2

)︀
, (2.36)
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with the differential operators appearing in the Itô Taylor expansion:

ℒ𝑖 =
𝑁∑︁

𝑗=1

𝜎𝑗
𝑖 (𝑥)

𝜕

𝜕𝑥𝑗
, 𝑖 = 1, . . . , 𝑑,

ℒ0 =
𝑁∑︁

𝑗=1

𝑏𝑗(𝑥)
𝜕

𝜕𝑥𝑗
+

1
2

𝑁∑︁
𝑗1,𝑗2=1

𝑑∑︁
𝑖=1

𝜎𝑗1
𝑖 (𝑥)𝜎𝑗2

𝑖 (𝑥)
𝜕2

𝜕𝑥𝑗1𝜕𝑥𝑗2

·

Remark 2.3 (Explicit formula for the weight in Cor. 2.2). We provide below the explicit forms of

𝐻(𝑘1)(𝑋̄(𝑡, 𝑥), 𝐵𝑖1
𝑡 𝐵

𝑖2
𝑡 − 𝑡1𝑖1=𝑖2), 𝐻(𝑘1)(𝑋̄(𝑡, 𝑥), 𝐵𝑖1

𝑡 𝑡), 𝐻(𝑘1,𝑘2)(𝑋̄(𝑡, 𝑥), 1),

𝑖1, 𝑖2 = 1, . . . , 𝑑, 𝑘1, 𝑘2 = 1, . . . , 𝑁 , in the Malliavin weight 𝜋(2),𝑥
𝑡 (𝐵𝑡) in Corollary 2.2. Let 𝐴(𝑥) = (𝐴𝑗

𝑖 (𝑥))1≤𝑖,𝑗≤𝑁

be the inverse matrix of 𝜎𝜎′(𝑥). By the computation of Skorohod integral (2.3) with (2.4) and (2.5), we have

𝐻(𝑘1)(𝑋̄(𝑡, 𝑥), 𝐵𝑖1
𝑡 𝐵

𝑖2
𝑡 − 𝑡1𝑖1=𝑖2) =

𝑁∑︁
𝑗1=1

𝑑∑︁
𝑖3=1

𝐴𝑘1
𝑗1

(𝑥)𝑉 𝑗1
𝑖3

(𝑥)𝑡−1{𝐵𝑖1
𝑡 𝐵

𝑖2
𝑡 𝐵

𝑖3
𝑡

−𝐵𝑖1
𝑡 𝑡1𝑖2=𝑖3 −𝐵𝑖2

𝑡 𝑡1𝑖1=𝑖3 −𝐵𝑖3
𝑡 𝑡1𝑖1=𝑖2}, (2.37)

𝐻(𝑘1)(𝑋̄(𝑡, 𝑥), 𝐵𝑖1
𝑡 𝑡) =

𝑁∑︁
𝑗1=1

𝑑∑︁
𝑖3=1

𝐴𝑘1
𝑗1

(𝑥)𝑉 𝑗1
𝑖3

(𝑥){𝐵𝑖1
𝑡 𝐵

𝑖3
𝑡 − 𝑡1𝑖1=𝑖3}, (2.38)

𝐻(𝑘1,𝑘2)(𝑋̄(𝑡, 𝑥), 𝑡2) =
𝑁∑︁

𝑗1,𝑗2=1

𝑑∑︁
𝑖3,𝑖4=1

𝐴𝑘1
𝑗1

(𝑥)𝑉 𝑗1
𝑖3

(𝑥)𝐴𝑘2
𝑗2

(𝑥)𝑉 𝑗2
𝑖4

(𝑥){𝐵𝑖3
𝑡 𝐵

𝑖4
𝑡 − 𝑡1𝑖3=𝑖4}, (2.39)

for 𝑘1, 𝑘2 = 1, . . . , 𝑁 and 𝑖1, 𝑖2 = 1, . . . , 𝑑.

Corollary 2.3 (Third order weak approximation). For 𝑇 ≥ 1, there exists a constant 𝐶 > 0 such that

‖𝑃𝑇 𝑓 − (𝑄(3)
𝑇/𝑛)𝑛𝑓‖∞ ≤ 𝐶‖𝑓‖∞

1
𝑛3
, (2.40)

for all bounded and measurable functions 𝑓 : R𝑁 → R and 𝑛 ≥ 1, where {𝑄(3)
𝑡 }𝑡>0 is a family of operators given

by

𝑄
(3)
𝑡 𝑓(𝑥) = 𝑃 0,𝑧

𝑡 𝑓(𝑥)|𝑧=𝑥 +
𝑡2

2

2∑︁
𝑖=1

[L 𝑧
0 ,L

𝑧
𝑖 ]𝑃 0,𝑧

𝑡 𝑓(𝑥)|𝑧=𝑥

+
𝑡3

6

4∑︁
𝑖=2

[L 𝑧
0 , [L

𝑧
0 ,L

𝑧
𝑖 ]]𝑃 0,𝑧

𝑡 𝑓(𝑥)|𝑧=𝑥 +
𝑡3

6

2∑︁
𝑖1=1

∑︁
𝑖1+𝑖2≤4

[L 𝑧
0 ,L

𝑧
𝑖1 ]L 𝑧

𝑖2𝑃
0,𝑧
𝑡 𝑓(𝑥)|𝑧=𝑥.

2.3. Proof of Theorem 2.1

For a bounded and measurable function 𝜙 : R𝑁 → R, we define functions 𝑃 𝑖,𝑧
𝑡 𝜙, 𝑡 > 0, 𝑖 = 1, 2, . . . , 2𝑚 + 1

given by

𝑃 𝑖,𝑧
𝑡 𝜙(𝑥) =

𝑖−1∑︁
𝑘=0

∫︁ 𝑡

0

𝑃 0,𝑧
𝑡−𝑠L

𝑧
𝑖−𝑘𝑃

𝑘,𝑧
𝑠 𝜙(𝑥) d𝑠, 𝑥, 𝑧 ∈ R𝑁 , (2.41)

which play a role in the construction of the approximation for 𝑃𝑡𝜙. We note that for any 𝑖 ∈ N, 𝑘 = 0, . . . , 𝑖− 1,
𝑥 ∈ R𝑁 , one has 𝑠 ↦→ 𝑃 0,𝑧

𝑡−𝑠L
𝑧
𝑖−𝑘𝑃

0,𝑧
𝑠 𝜙(𝑥) ∈ 𝐿1([0, 𝑡]) by the integration by parts argument. Let us see this in
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the case 𝑖 = 1 (𝑘 = 0). From the the integration by parts and the definition of L 𝑧
1 in (2.15), we have the two

representations for 𝑃 0,𝑧
𝑡−𝑠L

𝑧
1 𝑃

0,𝑧
𝑠 𝜙(𝑥):

𝑃 0,𝑧
𝑡−𝑠L

𝑧
1 𝑃

0,𝑧
𝑠 𝜙(𝑥) =

∑︁
𝛼∈{1,2,...,𝑁}𝑘,

𝑘≤2

𝑁∑︁
𝑙=1

𝐸
[︀
𝜕𝛼𝑃 0,𝑧

𝑠 𝜙
(︀
𝑋̄𝑧(𝑡− 𝑠, 𝑥)

)︀
𝑔𝛼,𝑙(𝑧)

(︀
𝑋̄𝑧,𝑙(𝑡− 𝑠, 𝑥)− 𝑧𝑙

)︀]︀
(2.42)

=
∑︁

𝛼∈{1,2,...,𝑁}𝑘,
𝑘≤2

𝑁∑︁
𝑙=1

𝐸
[︀
𝑃 0,𝑧

𝑠 𝜙
(︀
𝑋̄𝑧(𝑡− 𝑠, 𝑥)

)︀
𝐻𝛼

(︀
𝑋̄𝑧(𝑡− 𝑠, 𝑥), 𝑔𝛼,𝑙(𝑧)

(︀
𝑋̄𝑧,𝑙(𝑡− 𝑠, 𝑥)− 𝑧𝑙

)︀)︀]︀
(2.43)

for some 𝑔𝛼,𝑙 ∈ 𝐶∞𝑏 (R𝑁 ), 𝛼 ∈ {1, 2, . . . , 𝑁}𝑘, 𝑘 = 1, 2, 𝑙 = 1, . . . , 𝑁 . Hence, we can choose positive constants 𝐶1

and 𝐶2 such that∫︁ 𝑡

0

⃒⃒
𝑃 0,𝑧

𝑡−𝑠L
𝑧
1 𝑃

0,𝑧
𝑠 𝜙(𝑥)

⃒⃒
d𝑠 =

∫︁ 𝑡/2

0

⃒⃒
𝑃 0,𝑧

𝑡−𝑠L
𝑧
1 𝑃

0,𝑧
𝑠 𝜙(𝑥)

⃒⃒
d𝑠+

∫︁ 𝑡

𝑡/2

⃒⃒
𝑃 0,𝑧

𝑡−𝑠L
𝑧
1 𝑃

0,𝑧
𝑠 𝜙(𝑥)

⃒⃒
d𝑠

≤ 𝐶1

∫︁ 𝑡/2

0

‖𝜙‖∞
𝑡− 𝑠

d𝑠+ 𝐶2

∫︁ 𝑡

𝑡/2

‖𝜙‖∞
𝑠

d𝑠 = (𝐶1 + 𝐶2)‖𝜙‖∞2 log 2 (2.44)

where the estimate of Kusuoka and Stroock [14] (or the basic Gaussian calculus, in this case) is applied to
(2.42) and (2.43). Then 𝑠 ↦→ 𝑃 0,𝑧

𝑡−𝑠L
𝑧
1 𝑃

0,𝑧
𝑠 𝜙(𝑥) ∈ 𝐿1([0, 𝑡]) holds for bounded and measurable test functions.

The integrability of the integrand of 𝑃 𝑖,𝑧
𝑡 𝜙(𝑥) for 𝑖 ≥ 2 follows by induction.

Before showing the proof of Theorem 2.1, we prepare three useful results (Props. 2.1–2.3).
First, we give the Baker–Campbell–Hausdorff type formula in order to compute 𝑃 𝑖,𝑧

𝑡 𝜙(𝑥)|𝑧=𝑥, 𝑖 ≥ 1. See the
book of [5] for the topics on the Baker–Campbell–Hausdorff formula initialized in [1, 6, 11]. In our application,
we need the following specific version of Baker–Campbell–Hausdorff formula for expectations with bounded and
measurable test functions.

Proposition 2.1 (Baker–Campbell–Hausdorff formula). Let 0 < 𝑠 < 𝑡 ≤ 1, 𝑖 ∈ N and ̂︁L𝑖 ∈ 𝒟𝒪 be a differential
operator of the form ̂︁L𝑖 = 𝑐𝜓𝑖(·)𝜕𝛽 where 𝑐 is a constant, 𝜓𝑖(·) is a polynomial of the degree at most 𝑖 and 𝜕𝛽

is a partial derivative with a multi-index 𝛽 ∈ {1, . . . , 𝑁}ℓ, ℓ ∈ N. Then we have the explicit formula:

𝑒𝑠L 𝑧
0 ̂︁L𝑖𝑒

(𝑡−𝑠)L 𝑧
0 𝜙(·) =

𝑖∑︁
𝑘=0

𝑠𝑘

𝑘!

[︁
L 𝑧

0 ,
[︁
. . .
[︁
L 𝑧

0 ,
[︁
L 𝑧

0 ,
̂︁L𝑖

]︁]︁
. . .
]︁]︁

⏟  ⏞  
𝑘-times

𝑒𝑡L 𝑧
0 𝜙(·), (2.45)

for any bounded and measurable function 𝜙 : R𝑁 → R, where [L 𝑧
0 , [. . . [L

𝑧
0 , [L

𝑧
0 ,
̂︁L𝑖]] . . .]]⏟  ⏞  

0-times

≡ ̂︁L𝑖.

Proof. We provide the proof in Appendix A. �

Using the explicit Baker–Campbell–Hausdorff formula (2.45) and the Malliavin calculus, we have the following
estimate.

Proposition 2.2. For 𝑚 ∈ N, there exists a constant 𝐶 = 𝐶(𝑚) > 0 such that

sup
𝑥∈R𝑁

⃒⃒⃒⃒
⃒𝑃𝑡𝜙(𝑥)−

2𝑚+1∑︁
𝑖=0

𝑃 𝑖,𝑧
𝑡 𝜙(𝑥)|𝑧=𝑥

⃒⃒⃒⃒
⃒ ≤ 𝐶𝑡𝑚+1‖𝜙‖∞ (2.46)

for any 𝑡 ∈ (0, 1] and bounded and measurable function 𝜙 : R𝑁 → R.
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Proof. We provide the proof in Appendix B. �

Furthermore, applying the explicit Baker–Campbell–Hausdorff formula for
∑︀2𝑚+1

𝑖=0 𝑃 𝑖,𝑧
𝑡 𝜙(𝑥)|𝑧=𝑥, we give the

optimal truncation in order to give 𝑂(𝑡𝑚+1)-order local approximation for 𝑃𝑡𝜙(𝑥).

Proposition 2.3. For 𝑚 ∈ N and a bounded and measurable function 𝜙 : R𝑁 → R, it holds that

2𝑚+1∑︁
𝑖=0

𝑃 𝑖,𝑧
𝑡 𝜙(𝑥)|𝑧=𝑥 = 𝑄

(𝑚)
𝑡 𝜙(𝑥) (2.47)

+
𝑚−1∑︁
𝑖=1

∑︁
𝑖≤
∑︀𝑖

𝑗=1 𝑘𝑗≤2𝑚+1

∑︁
1≤𝛼1≤𝑘1
0≤𝛼2≤𝑘2

...
0≤𝛼𝑖≤𝑘𝑖∑︀𝑖
𝑙=1 𝛼𝑙+𝑖>𝑚

𝑡
∑︀𝑖

𝑙=1 𝛼𝑙+𝑖

𝛼!
𝐼(𝛼)

𝑖∏︁
𝑙=1

(︁
[L 𝑧

0 , [L
𝑧
0 , . . . , [L

𝑧
0 ,L

𝑧
𝑘𝑙

]] . . .]]⏟  ⏞  
𝛼𝑙-times

)︁
𝑃 0,𝑧

𝑡 𝜙(𝑥)|𝑧=𝑥 (2.48)

+
2𝑚+1∑︁
𝑖=𝑚

∑︁
𝑖≤
∑︀𝑖

𝑗=1 𝑘𝑗≤2𝑚+1

∑︁
1≤𝛼1≤𝑘1
0≤𝛼2≤𝑘2

...
0≤𝛼𝑖≤𝑘𝑖

𝑡
∑︀𝑖

𝑙=1 𝛼𝑙+𝑖

𝛼!
𝐼(𝛼)

𝑖∏︁
𝑙=1

(︁
[L 𝑧

0 , [L
𝑧
0 , . . . , [L

𝑧
0 ,L

𝑧
𝑘𝑙

]] . . .]]⏟  ⏞  
𝛼𝑙-times

)︁
𝑃 0,𝑧

𝑡 𝜙(𝑥)|𝑧=𝑥, (2.49)

where {𝑄(𝑚)
𝑡 }𝑡>0 is a family of operators given in Theorem 2.1. In particular, the terms (2.48) and (2.49) are

simply written in the following form :

𝑡𝑚+1
∑︁
𝑙≤𝜈

ℎ𝑙(𝑡)𝑔𝑙(𝑥)𝜕𝛽(𝑙)
𝑃 0,𝑧

𝑡 𝜙(𝑥)|𝑧=𝑥, (2.50)

for some 𝜈 ∈ N, functions ℎ𝑙, 𝑙 ≤ 𝜈 at most polynomial growth, 𝑔𝑙 ∈ 𝐶∞𝑏 (R𝑁 ), 𝑙 ≤ 𝜈 and multi-indices 𝛽(𝑙),
𝑙 ≤ 𝜈.

Proof. We will show this in Appendix C. �

Using these results, we proceed to the proof of Theorem 2.1.

Proof of Theorem 2.1. For any bounded and measurable function 𝜙 : R𝑁 → R and 𝑡 ∈ (0, 1], we define a
function R𝜙

𝑡 (·) on R𝑁 as R𝜙
𝑡 (𝑥) := 𝑃𝑡𝜙(𝑥)−

∑︀2𝑚+1
𝑖=0 𝑃 𝑖,𝑧

𝑡 𝜙(𝑥)|𝑧=𝑥, 𝑥 ∈ R𝑁 . Then, by Proposition 2.3, the local
error 𝑃𝑡𝜙(𝑥)−𝑄

(𝑚)
𝑡 𝜙(𝑥) is given by

𝑃𝑡𝜙(𝑥)−𝑄
(𝑚)
𝑡 𝜙(𝑥) = R𝜙

𝑡 (𝑥) + 𝑡𝑚+1Ψ𝜙
𝑡 (𝑥), (2.51)

where Ψ𝜙
𝑡 : R𝑁 → R is defined as Ψ𝜙

𝑡 (·) :=
∑︀

𝑙≤𝜈ℎ𝑙(𝑡)𝑔𝑙(·)𝜕𝛽(𝑙)
𝑃 0,𝑧

𝑡 𝜙(·)|𝑧=· with those functions appearing
in (2.50). When the bounded and measurable function 𝜙 is sufficiently smooth, we immediately see that the
function 𝜕𝛽(𝑙)

𝑃 0,𝑧
𝑡 𝜙(·)|𝑧=· in Ψ𝜙

𝑡 (·) has the form 𝜕𝛽(𝑙)
𝑃 0,𝑧

𝑡 𝜙(𝑥)|𝑧=𝑥 = 𝐸[𝜕𝛽(𝑙)
𝜙(𝑋̄(𝑡, 𝑥))]. However, when 𝜙 is

only bounded and measurable we cannot use the derivatives of 𝜙, of which case is discussed in Lemma 2.2.
We show the bound for the global error 𝑃𝑇 𝑓(𝑥) − (𝑄(𝑚)

𝑇/𝑛)𝑛𝑓(𝑥) without employing the regularity on 𝑓 . We
note that by the integration by parts on Wiener space, for any bounded and measurable function 𝑓 : R𝑁 → R,
𝑄

(𝑚)
𝑡 𝑓(𝑥) is represented as

𝑄
(𝑚)
𝑡 𝑓(𝑥) = 𝐸

[︁
𝑓
(︀
𝑋̄(𝑡, 𝑥)

)︀{︀
1 + 𝜋

(𝑚),𝑥
𝑡 (𝐵𝑡)

}︀]︁
, (2.52)



OPERATOR SPLITTING AROUND EULER–MARUYAMA SCHEME S335

where 𝜋(𝑚),𝑥
𝑡 (𝐵𝑡) ∈ D∞ is given as a sum of polynomials of Brownian motion {𝐵𝑡}𝑡>0 with coefficients depending

on 𝑏, 𝜎1, . . . , 𝜎𝑑 and theirs partial derivatives evaluated at 𝑥 ∈ R𝑁 . Here we have

𝑃𝑇 𝑓(𝑥)−
(︁
𝑄

(𝑚)
𝑇/𝑛

)︁𝑛

𝑓(𝑥) =
𝑛−1∑︁
𝑘=0

(︁
𝑄

(𝑚)
𝑇/𝑛

)︁𝑘

(𝑃𝑇/𝑛 −𝑄𝑇/𝑛)𝑃𝑇−(𝑘+1)𝑇/𝑛𝑓(𝑥) (2.53)

=
𝑛−1∑︁
𝑘=0

(︁
𝑄

(𝑚)
𝑇/𝑛

)︁𝑘

R
𝑃𝑇−(𝑘+1)𝑇/𝑛𝑓

𝑇/𝑛 (𝑥) + (𝑇/𝑛)𝑚+1
𝑛−1∑︁
𝑘=0

(︁
𝑄

(𝑚)
𝑇/𝑛

)︁𝑘

Ψ𝑃𝑇−(𝑘+1)𝑇/𝑛𝑓

𝑇/𝑛 (𝑥)

=
𝑛−1∑︁
𝑘=0

𝐸

⎡⎣R
𝑃𝑇−(𝑘+1)𝑇/𝑛𝑓

𝑇/𝑛

(︁
𝑋̄(𝑛)(𝑘𝑇/𝑛, 𝑥)

)︁

×
𝑘∏︁

𝑗=1

{︁
1 + 𝜋

(𝑚),𝑋̄(𝑛)((𝑗−1)𝑇/𝑛,𝑥)
𝑇/𝑛

(︀
𝐵𝑗𝑇/𝑛 −𝐵(𝑗−1)𝑇/𝑛

)︀}︁⎤⎦
+ (𝑇/𝑛)𝑚+1

𝑛−1∑︁
𝑘=0

𝐸

⎡⎣Ψ𝑃𝑇−(𝑘+1)𝑇/𝑛𝑓

𝑇/𝑛

(︁
𝑋̄(𝑛)(𝑘𝑇/𝑛, 𝑥)

)︁

×
𝑘∏︁

𝑗=1

{︁
1 + 𝜋

(𝑚),𝑋̄(𝑛)((𝑗−1)𝑇/𝑛,𝑥)
𝑇/𝑛 (𝐵𝑗𝑇/𝑛 −𝐵(𝑗−1)𝑇/𝑛)

}︁⎤⎦ , (2.54)

where the representation (2.52) is iteratively applied. We note that the following properties hold for the Euler–
Maruyama scheme and the weights in (2.54).

Lemma 2.1. We have 𝑋̄(𝑛)((𝑘 − 1)𝑇/𝑛, 𝑥) ∈ D∞ and
∏︀𝑘

𝑗=1{1 + 𝜋
(𝑚),𝑋̄(𝑛)((𝑗−1)𝑇/𝑛,𝑥)
𝑇/𝑛 (𝐵𝑗𝑇/𝑛 −𝐵(𝑗−1)𝑇/𝑛)} ∈

D∞ for all 𝑘 = 1, . . . , 𝑛. In other words, for 𝐾 ∈ N, 𝑝 = 2𝑒, 𝑒 ∈ N, there exists 𝐶(𝑇 ) > 0 such that

sup
𝑘=1,...,𝑛

⃦⃦⃦
𝑋̄(𝑛)((𝑘 − 1)𝑇/𝑛, 𝑥)

⃦⃦⃦
𝐾,𝑝

≤ 𝐶(𝑇 ), (2.55)

sup
𝑘=1,...,𝑛

⃦⃦⃦ 𝑘∏︁
𝑗=1

{︁
1 + 𝜋

(𝑚),𝑋̄(𝑛)((𝑗−1)𝑇/𝑛,𝑥)
𝑇/𝑛 (𝐵𝑗𝑇/𝑛 −𝐵(𝑗−1)𝑇/𝑛)

}︁⃦⃦⃦
𝐾,𝑝

≤ 𝐶(𝑇 ). (2.56)

Proof. The result 𝑋̄(𝑛)((𝑘 − 1)𝑇/𝑛, 𝑥) ∈ D∞, 𝑘 = 1, . . . , 𝑛 or (2.55) is given in Lemma 5.1 of Bally and Talay
[3]. We will give the proof of (2.56) in Appendix D. �

First, we will estimate the terms (𝑄(𝑚)
𝑇/𝑛)𝑘R

𝑃𝑇−(𝑘+1)𝑇/𝑛𝑓

𝑇/𝑛 (𝑥), 𝑘 = 0, 1, 2, . . . , 𝑛 − 1. By Lemma 2.1, it holds
that there exists 𝐶(𝑇 ) > 0 which does not depend on 𝑘 such that

‖(𝑄(𝑚)
𝑇/𝑛)𝑘R

𝑃𝑇−(𝑘+1)𝑇/𝑛𝑓

𝑇/𝑛 ‖∞ ≤ ‖R𝑃𝑇−(𝑘+1)𝑇/𝑛𝑓

𝑇/𝑛 ‖∞𝐶(𝑇 )

for any 𝑘 = 0, 1, . . . , 𝑛− 1. Then, using Proposition 2.2 leads to⃦⃦
(𝑄(𝑚)

𝑇/𝑛)𝑘R
𝑃𝑇−(𝑘+1)𝑇/𝑛𝑓

𝑇/𝑛

⃦⃦
∞ ≤ 𝐶(𝑇 )‖𝑓‖∞

1
𝑛𝑚+1

(2.57)

with some constant 𝐶(𝑇 ) > 0 which does not depend on 𝑘 = 0, 1, . . . , 𝑛− 1.
In order to complete the proof, it suffices to show that there exists a constant 𝐶 > 0 independent of 𝑛

such that ‖(𝑄(𝑚)
𝑇/𝑛)𝑘Ψ𝑃𝑇−(𝑘+1)𝑇/𝑛𝑓

𝑇/𝑛 ‖∞ ≤ 𝐶‖𝑓‖∞ for 𝑘 = 0, 1, 2, . . . , 𝑛 − 1. The term (𝑄(𝑚)
𝑇/𝑛)𝑘Ψ𝑃𝑇−(𝑘+1)𝑇/𝑛𝑓

𝑇/𝑛 (𝑥) is
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represented with the Euler–Maruyama scheme as follows: for 𝑘 = 0, 1, 2, . . . , 𝑛− 2,(︁
𝑄

(𝑚)
𝑇/𝑛

)︁𝑘

Ψ𝑃𝑇−(𝑘+1)𝑇/𝑛𝑓

𝑇/𝑛 (𝑥) =
∑︁
𝑙≤𝜈

ℎ𝑙(𝑇/𝑛)𝐸
[︁
𝜕𝛽(𝑙)

𝑃𝑇−(𝑘+1)𝑇/𝑛𝑓
(︁
𝑋̄(𝑛)((𝑘 + 1)𝑇/𝑛, 𝑥)

)︁
𝐺

(𝑘)
𝑙

]︁
, (2.58)

where ℱ𝑘𝑇/𝑛-measurable random variable 𝐺(𝑘)
𝑙 ∈ D∞, 𝑙 ≤ 𝜈 is given by

𝐺
(𝑘)
𝑙 = 𝑔𝑙

(︁
𝑋̄(𝑛)((𝑘 − 1)𝑇/𝑛, 𝑥)

)︁ 𝑘∏︁
𝑗=1

{︁
1 + 𝜋

(𝑚),𝑋̄(𝑛)((𝑗−1)𝑇/𝑛,𝑥)
𝑇/𝑛

(︀
𝐵𝑗𝑇/𝑛 −𝐵(𝑗−1)𝑇/𝑛

)︀}︁
. (2.59)

Note that now we exclude the case where 𝑘 = 𝑛− 1 since we cannot have 𝜕𝛽(𝑙)
𝑓 for a bounded and measurable

function 𝑓 : R𝑁 → R while we can use 𝜕𝛽(𝑙)
𝑃𝑇−(𝑘+1)𝑇/𝑛𝑓 for 𝑘 = 1, . . . , 𝑛− 2.

For 𝑠 ∈ (0, 𝑇/2) and a multi-index 𝛼, since we can choose 𝐶 > 0 and 𝑞 > 1 such that ‖𝜕𝛼𝑃𝑇−𝑠𝑓‖∞ ≤
‖𝑓‖∞𝐶/𝑇 𝑞 by Friedman [8] or Kusuoka and Stroock [14], we immediately have

‖(𝑄(𝑚)
𝑇/𝑛)𝑘Ψ𝑃𝑇−(𝑘+1)𝑇/𝑛𝑓

𝑇/𝑛 ‖∞ ≤ 𝐶(𝑇 )‖𝑓‖∞, 𝑘 = 0, 1, . . . , [𝑛/2].

For 𝑠 ∈ [𝑇/2, 𝑇 ), another application of Kusuoka and Stroock [14] enables us to give the upper bound of
(2.58). We can remove the derivatives of 𝑃𝑇−(𝑘+1)𝑇/𝑛𝑓 through the integration by parts with respect to the
elliptic Itô process {𝑋̄(𝑛)(𝑠, 𝑥)}𝑠>0 and then have the estimate: for all multi-index 𝛼, there are 𝐶 > 0 and 𝑞 > 1
such that

sup
𝑥∈R𝑁

|𝐸[𝜕𝛼𝑃𝑇−𝑠𝑓(𝑋̄(𝑛)(𝑠, 𝑥))𝐺]| ≤ 𝐶
1
𝑇 𝑞
‖𝑃𝑇−𝑠𝑓‖∞ ≤ 𝐶

1
𝑇 𝑞
‖𝑓‖∞,

for all 𝐺 ∈ D∞ such that for all 𝑘 ≥ 1, 𝑝 ∈ (1,∞), ‖𝐺‖𝑘,𝑝 ≤ 𝐶. Hence, one has

‖(𝑄(𝑚)
𝑇/𝑛)𝑘Ψ𝑃𝑇−(𝑘+1)𝑇/𝑛𝑓

𝑇/𝑛 ‖∞ ≤ 𝐶(𝑇 )‖𝑓‖∞, 𝑘 = [𝑛/2] + 1, . . . , 𝑛− 2.

Even if 𝑘 = 𝑛− 1, we can show the upper bound of (2.58) as follows:

Lemma 2.2. There exist 𝐶 > 0 and 𝑞 > 0 such that for any bounded and measurable function 𝑓 : R𝑁 → R,

‖(𝑄(𝑚)
𝑇/𝑛)𝑛−1Ψ𝑓

𝑇/𝑛‖∞ ≤ 𝐶
1
𝑇 𝑞
‖𝑓‖∞. (2.60)

Proof. We will give the proof in Appendix E. �

Therefore, we have

⃦⃦
(𝑄(𝑚)

𝑇/𝑛)𝑘(𝑃𝑇/𝑛 −𝑄𝑇/𝑛)𝑃𝑇−(𝑘+1)𝑇/𝑛𝑓
⃦⃦
∞ ≤ 𝐶(𝑇 )

1
𝑛𝑚+1

‖𝑓‖∞, 𝑘 = 0, 1, . . . , 𝑛− 1,

and in conclusion

⃦⃦⃦
𝑃𝑇 𝑓 − (𝑄(𝑚)

𝑇/𝑛)𝑛𝑓
⃦⃦⃦
∞
≤ 𝐶(𝑇 )

𝑛−1∑︁
𝑘=0

1
𝑛𝑚+1

‖𝑓‖∞ = 𝐶(𝑇 )
1
𝑛𝑚

‖𝑓‖∞.

The proof of Theorem 2.1 is finished. �
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3. Discretization of heat kernel

Let 𝑦 ↦→ 𝑝𝑋
𝑡 (𝑥, 𝑦) be the density of 𝑋(𝑡, 𝑥) or the fundamental solution (the heat kernel) associated with the

backward heat operator 𝜕𝑡 + L . We aim at constructing a general discretization method for 𝑝𝑋
𝑇 (𝑥, 𝑦), 𝑇 ≥ 1,

𝑥, 𝑦 ∈ R𝑁 .
Let us denote by 𝑝𝑋̄𝑧

𝑡 (𝑥, ·) the density of 𝑋̄𝑧(𝑡, 𝑥) given in (2.11), i.e. 𝑋̄𝑧(𝑡, 𝑥) = 𝑥+ 𝑏(𝑧)𝑡+
∑︀𝑑

𝑖=1 𝜎𝑖(𝑧)𝐵𝑖
𝑡.

Since 𝑋̄𝑧(𝑡, 𝑥) follows 𝑁 -dimensional normal distribution with the mean 𝑥+ 𝑏(𝑧)𝑡 and the variance-covariance
𝑡𝜎(𝑧)𝜎′(𝑧), the density 𝑝𝑋̄𝑧

𝑡 (𝑥, 𝑦), (𝑡, 𝑥, 𝑦) ∈ (0,∞)× R𝑁 × R𝑁 is explicitly given by

𝑝𝑋̄𝑧

𝑡 (𝑥, 𝑦) =
1

(2𝜋𝑡)𝑁/2
√︀

det Σ(𝑧)
exp

(︂
− 1

2𝑡

(︁
𝑦 − {𝑥+ 𝑏(𝑧)𝑡}

)︁′
𝐴(𝑧)

(︁
𝑦 − {𝑥+ 𝑏(𝑧)𝑡}

)︁)︂
, (3.1)

where Σ(𝑧) = 𝜎(𝑧)𝜎′(𝑧) and 𝐴(𝑧) = Σ(𝑧)−1. Note that the uniform ellipticity of 𝜎𝜎′ guarantees that the 𝑁 ×𝑁
matrix Σ(𝑧) is invertible for all 𝑧 ∈ R𝑁 . When we substitute 𝑧 = 𝑥 into 𝑝𝑋̄𝑧

𝑡 (𝑥, 𝑦), we simply write it as 𝑝𝑋̄
𝑡 (𝑥, 𝑦).

Using the weight 𝜋(𝑚),𝑥
𝑡 (𝐵𝑡) in Theorem 2.1 or (2.52), i.e. 𝑄(𝑚)

𝑡 𝑓(𝑥) = 𝐸[𝑓(𝑋̄(𝑡, 𝑥)){1 + 𝜋
(𝑚),𝑥
𝑡 (𝐵𝑡)}], we give

a new discretization of the heat kernel 𝑝𝑋
𝑇 (𝑥, ·).

The main result is as follows.

Theorem 3.1. Assume 𝑇 ≥ 1, 𝑚 ∈ N. There exist some constants 𝐶(𝑚), 𝑐 > 0, 𝑞 ≥ 𝑁
2 independent of 𝑇 and

non-decreasing function 𝐾(·) such that⃒⃒⃒⃒
⃒⃒𝑝𝑋

𝑇 (𝑥, 𝑦)− 𝐸

⎡⎣𝑝𝑋̄,(𝑚)
𝑇/𝑛

(︁
𝑋̄(𝑛)((𝑛− 1)𝑇/𝑛, 𝑥), 𝑦

)︁ 𝑛−1∏︁
𝑗=1

{︁
1 + 𝜋

(𝑚),𝑋̄(𝑛)((𝑗−1)𝑇/𝑛,𝑥)
𝑇/𝑛

(︀
𝐵𝑗𝑇/𝑛 −𝐵(𝑗−1)𝑇/𝑛

)︀}︁⎤⎦⃒⃒⃒⃒⃒⃒
≤ 𝐾(𝑇 )

𝑛𝑚

𝐶(𝑚)
𝑇 𝑞

exp
(︂
−𝑐 |𝑦 − 𝑥|2

𝑇

)︂
, (3.2)

for all 𝑥, 𝑦 ∈ R𝑁 , where 𝑝𝑋̄,(𝑚)
𝑡 (𝑥, 𝑦), (𝑡, 𝑥, 𝑦) ∈ (0,∞)× R𝑁 × R𝑁 is given by

𝑝
𝑋̄,(𝑚)
𝑡 (𝑥, 𝑦) = 𝑝𝑋̄

𝑡 (𝑥, 𝑦)

+

𝑚−1∑︁
𝑖=1

∑︁
𝑖≤
∑︀𝑖

𝑗=1 𝑘𝑗≤2𝑚+1

∑︁
1≤𝛼1≤𝑘1
0≤𝛼2≤𝑘2

...
0≤𝛼𝑖≤𝑘𝑖∑︀𝑖
𝑙=1 𝛼𝑙+𝑖≤𝑚

𝑡
∑︀𝑖

𝑙=1 𝛼𝑙+𝑖

𝛼!
𝐼(𝛼)

𝑖∏︁
𝑙=1

(︂
[L 𝑧

0 , [L 𝑧
0 , . . . , [L 𝑧

0 , L 𝑧
𝑘𝑙

]] . . .]]⏟  ⏞  
𝛼𝑙-times

)︂
𝑝𝑋̄𝑧

𝑡 (𝑥, 𝑦)|𝑧=𝑥.

(3.3)

Proof. See Appendix F. �

We show the representation of 𝑝𝑋̄,(𝑚)
𝑡 (𝑥, 𝑦). First, we note that the differential operator appearing in (3.3) is

simply written in the following form:

𝑖∏︁
𝑙=1

(︀
[L 𝑧

0 , [L
𝑧
0 , . . . , [L

𝑧
0 ,L

𝑧
𝑘𝑙

]] . . .]]⏟  ⏞  
𝛼𝑙-times

)︀
|𝑧=𝑥 =

∑︁
|𝛽|≤𝜈

𝑔𝛽(𝑥)𝜕𝛽 , (3.4)

where 𝜈 ∈ N, 𝛽 ∈ {1, 2, . . . , 𝑁}𝑙, 𝑙 ≤ 𝜈 and each 𝑔𝛽 ∈ 𝐶∞𝑏 (R𝑁 ) is a linear combination of 𝑏, 𝜎 and their partial
derivatives. Then, we have

𝑖∏︁
𝑙=1

(︀
[L 𝑧

0 , [L
𝑧
0 , . . . , [L

𝑧
0 ,L

𝑧
𝑘𝑙

]] . . .]]⏟  ⏞  
𝛼𝑙-times

)︀
𝑝𝑋̄𝑧

𝑡 (𝑥, 𝑦)|𝑧=𝑥 =
∑︁
|𝛽|≤𝜈

𝑔𝛽(𝑥)𝜕𝛽𝑝𝑋̄𝑧

𝑡 (𝑥, 𝑦)|𝑧=𝑥. (3.5)
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For a multi-index 𝛽 = (𝛽1, . . . , 𝛽𝑙) ∈ {1, . . . , 𝑁}𝑙, 𝑙 ∈ N, the derivative 𝜕𝛽𝑝𝑋̄𝑧

𝑡 (𝑥, 𝑦) is explained as

𝜕𝛽𝑝𝑋̄𝑧

𝑡 (𝑥, 𝑦) = (−1)𝑙 ×𝐻𝛽1,...,𝛽𝑙

Σ(𝑧)𝑡 (𝑦 − 𝑥− 𝑏(𝑧)𝑡)𝑝𝑋̄𝑧

𝑡 (𝑥, 𝑦) (3.6)

using the 𝑙-th order multivariate Hermite polynomial 𝐻𝛽1,...,𝛽𝑖−1,𝛽𝑖
𝑎 (𝜉) given by

𝐻𝛽1,...,𝛽𝑖−1,𝛽𝑖
𝑎 (𝜉) = −

(︁
[𝑎−1𝜉]𝛽𝑖 − 𝜕𝜉𝛽𝑖

)︁
𝐻𝛽1,...,𝛽𝑖−1

𝑎 (𝜉), 𝑖 = 1, . . . , 𝑙, (3.7)

for an invertible matrix 𝑎 ∈ R𝑁×𝑁 and a vector 𝜉 ∈ R𝑁 , with 𝐻𝛽1
𝑎 (𝜉) = −[𝑎−1𝜉]𝛽1 . Let 𝜗𝛽 : (0,∞)×R𝑁×R𝑁 →

R be a function given by

𝜗𝛽(𝑡, 𝑥, 𝑦) := (−1)𝑙 ×𝐻𝛽1,...,𝛽𝑙

Σ(𝑧)𝑡 (𝑦 − 𝑥− 𝑏(𝑧)𝑡)
⃒⃒⃒
𝑧=𝑥

, (3.8)

then 𝜕𝛽𝑝𝑋̄𝑧

𝑡 (𝑥, 𝑦)|𝑧=𝑥 has the form

𝜕𝛽𝑝𝑋̄𝑧

𝑡 (𝑥, 𝑦)|𝑧=𝑥 = 𝜗𝛽(𝑡, 𝑥, 𝑦) 𝑝𝑋̄
𝑡 (𝑥, 𝑦). (3.9)

Therefore, 𝑝𝑋̄,(𝑚)
𝑡 (𝑥, 𝑦) is transformed into the following formula:

𝑝
𝑋̄,(𝑚)
𝑡 (𝑥, 𝑦) = ̃︁ℳ(𝑚)(𝑡, 𝑥, 𝑦) 𝑝𝑋̄

𝑡 (𝑥, 𝑦), (𝑡, 𝑥, 𝑦) ∈ (0,∞)× R𝑁 × R𝑁 , (3.10)

where the weight on finite dimension ̃︁ℳ(𝑚) : (0,∞)× R𝑁 × R𝑁 → R is given by

̃︁ℳ(𝑚)(𝑡, 𝑥, 𝑦) = 1 +
𝑚−1∑︁
𝑖=1

∑︁
𝑖≤
∑︀𝑖

𝑗=1 𝑘𝑗≤2𝑚+1

∑︁
1≤𝛼1≤𝑘1
0≤𝛼2≤𝑘2

...
0≤𝛼𝑖≤𝑘𝑖∑︀𝑖
𝑙=1 𝛼𝑙+𝑖≤𝑚

∑︁
|𝛽|≤𝜈

𝑡
∑︀𝑖

𝑙=1 𝛼𝑙+𝑖

𝛼!
𝐼(𝛼)𝑔𝛽(𝑥)𝜗𝛽(𝑡, 𝑥, 𝑦). (3.11)

Based on the above discussion and Theorem 3.1, we derive the second order discretization of heat kernel
𝑝𝑋

𝑇 (𝑥, 𝑦) as follows:

Corollary 3.1 (Second order discretization of heat kernel). Assume 𝑇 ≥ 1. There exist some constants 𝐶, 𝑐 > 0,
𝑞 ≥ 𝑁

2 independent of 𝑇 and non-decreasing function 𝐾(·) such that⃒⃒⃒⃒
⃒⃒𝑝𝑋

𝑇 (𝑥, 𝑦)− 𝐸

⎡⎣𝑝𝑋̄,(2)
𝑇/𝑛

(︁
𝑋̄(𝑛)((𝑛− 1)𝑇/𝑛, 𝑥), 𝑦

)︁ 𝑛−1∏︁
𝑗=1

{︁
1 + 𝜋

(2),𝑋̄(𝑛)((𝑗−1)𝑇/𝑛,𝑥)
𝑇/𝑛

(︀
𝐵𝑗𝑇/𝑛 −𝐵(𝑗−1)𝑇/𝑛

)︀}︁⎤⎦⃒⃒⃒⃒⃒⃒
≤ 𝐾(𝑇 )

𝑛2

𝐶

𝑇 𝑞
exp

(︂
−𝑐 |𝑦 − 𝑥|2

𝑇

)︂
,

for all 𝑥, 𝑦 ∈ R𝑁 , where 𝜋(2),𝑥
𝑡 (𝐵𝑡), (𝑡, 𝑥) ∈ (0,∞) × R𝑁 is given in Corollary 2.2 and 𝑝

𝑋̄,(2)
𝑡 (𝑥, 𝑦), (𝑡, 𝑥, 𝑦) ∈

(0,∞)× R𝑁 × R𝑁 is given by

𝑝
𝑋̄,(2)
𝑡 (𝑥, 𝑦) = 𝑝𝑋̄

𝑡 (𝑥, 𝑦) +
𝑡2

2

2∑︁
𝑖=1

[L 𝑧
0 ,L

𝑧
𝑖 ]𝑝𝑋̄𝑧

𝑡 (𝑥, 𝑦)|𝑧=𝑥 = ̃︁ℳ(2)(𝑡, 𝑥, 𝑦) 𝑝𝑋̄
𝑡 (𝑥, 𝑦) (3.12)
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with the weight on finite dimension ̃︁ℳ(2)(𝑡, 𝑥, 𝑦) given by

̃︁ℳ(2)(𝑡, 𝑥, 𝑦) = 1 +
𝑡2

2

𝑁∑︁
𝑗=1

ℒ0𝑏
𝑗(𝑥)𝜗(𝑗1)(𝑡, 𝑥, 𝑦) +

𝑡2

2

𝑑∑︁
𝑘=1

𝑁∑︁
𝑗1,𝑗2=1

ℒ𝑘𝑏
𝑗1(𝑥)𝜎𝑗2

𝑘 (𝑥)𝜗(𝑗1,𝑗2)(𝑡, 𝑥, 𝑦) (3.13)

+
𝑡2

2

𝑑∑︁
𝑘=1

𝑁∑︁
𝑗1,𝑗2=1

ℒ0𝜎
𝑗1
𝑘 (𝑥)𝜎𝑗2

𝑘 (𝑥)𝜗(𝑗1,𝑗2)(𝑡, 𝑥, 𝑦) (3.14)

+
𝑡2

2

𝑑∑︁
𝑘1,𝑘2=1

𝑁∑︁
𝑗1,𝑗2,𝑗3=1

ℒ𝑘1𝜎
𝑗1
𝑘2

(𝑥)𝜎𝑗2
𝑘1

(𝑥)𝜎𝑗3
𝑘2

(𝑥)𝜗(𝑗1,𝑗2,𝑗3)(𝑡, 𝑥, 𝑦) (3.15)

+
𝑡2

4

𝑑∑︁
𝑘1,𝑘2=1

𝑁∑︁
𝑗1,𝑗2=1

ℒ𝑘1𝜎
𝑗1
𝑘2

(𝑥)ℒ𝑘1𝜎
𝑗2
𝑘2

(𝑥)𝜗(𝑗1,𝑗2)(𝑡, 𝑥, 𝑦) (3.16)

with 𝜗(𝑗1)(𝑡, 𝑥, 𝑦) = 1
𝑡

∑︀𝑁
𝑘=1𝐴

𝑗1
𝑘 (𝑥)(𝑦𝑘 − 𝑥𝑘 − 𝑏𝑘(𝑥)𝑡),

𝜗(𝑗1,𝑗2)(𝑡, 𝑥, 𝑦) =
1
𝑡2

𝑁∑︁
𝑖1,𝑖2=1

𝐴𝑗1
𝑖1

(𝑥)𝐴𝑗2
𝑖2

(𝑥)
(︀
𝑦𝑖1 − 𝑥𝑖1 − 𝑏𝑖1(𝑥)𝑡

)︀ (︀
𝑦𝑖2 − 𝑥𝑖2 − 𝑏𝑖2(𝑥)𝑡

)︀
− 1
𝑡
𝐴𝑗1

𝑗2
(𝑥)

and

𝜗(𝑗1,𝑗2,𝑗3)(𝑡, 𝑥, 𝑦) =
1
𝑡3

𝑁∑︁
𝑖1,𝑖2,𝑖3=1

𝐴𝑗1
𝑖1

(𝑥)𝐴𝑗2
𝑖2

(𝑥)𝐴𝑗3
𝑖3

(𝑥)
(︀
𝑦𝑖1 − 𝑥𝑖1 − 𝑏𝑖1(𝑥)𝑡

)︀ (︀
𝑦𝑖2 − 𝑥𝑖2 − 𝑏𝑖2(𝑥)𝑡

)︀ (︀
𝑦𝑖3 − 𝑥𝑖3 − 𝑏𝑖3(𝑥)𝑡

)︀
−
𝐴𝑗1

𝑗2
(𝑥)
𝑡2

𝑁∑︁
𝑖=1

𝐴𝑗3
𝑖 (𝑥)

(︀
𝑦𝑖 − 𝑥𝑖 − 𝑏𝑖(𝑥)𝑡

)︀
−
𝐴𝑗1

𝑗3
(𝑥)
𝑡2

𝑁∑︁
𝑖=1

𝐴𝑗2
𝑖 (𝑥)

(︀
𝑦𝑖 − 𝑥𝑖 − 𝑏𝑖(𝑥)𝑡

)︀
−
𝐴𝑗2

𝑗3
(𝑥)
𝑡2

𝑁∑︁
𝑖=1

𝐴𝑗1
𝑖 (𝑥)

(︀
𝑦𝑖 − 𝑥𝑖 − 𝑏𝑖(𝑥)𝑡

)︀
.

Proof. By Theorem 3.1, we obtain

𝑝
𝑋̄,(2)
𝑡 (𝑥, 𝑦) = 𝑝𝑋̄

𝑡 (𝑥, 𝑦) +
5∑︁

𝑖=1

𝑡2

2
[L 𝑧

0 ,L
𝑧
𝑖 ]𝑝𝑋̄𝑧

𝑡 (𝑥, 𝑦)|𝑧=𝑥 = 𝑝𝑋̄
𝑡 (𝑥, 𝑦) +

𝑡2

2

2∑︁
𝑖=1

[L 𝑧
0 ,L

𝑧
𝑖 ]𝑝𝑋̄𝑧

𝑡 (𝑥, 𝑦)|𝑧=𝑥, (3.17)

where on the second and third equations we used [L 𝑧
0 ,L

𝑧
𝑖 ]𝑝𝑋̄𝑧

𝑡 (𝑥, 𝑦)|𝑧=𝑥 = 0 for 𝑖 = 3, 4, 5 which is due to the
result that [L 𝑧

0 ,L
𝑧
𝑖 ]𝑝𝑋̄𝑧

𝑡 (𝑥, 𝑦)|𝑧=𝑥 has the form 𝜓(𝑧)(𝑥−𝑧)ℓ𝑝𝑋̄𝑧

𝑡 (𝑥, 𝑦)|𝑧=𝑥 = 0 for some 𝜓 ∈ 𝐶∞𝑏 (R𝑁 ) and ℓ ∈ N.
The term 𝑡2

2

∑︀2
𝑖=1[L 𝑧

0 ,L
𝑧
𝑖 ]𝑝𝑋̄𝑧

𝑡 (𝑥, 𝑦)|𝑧=𝑥 is calculated in the following way. Since we have

[L 𝑧
0 ,L

𝑧
1 ]𝑝𝑋̄𝑧

𝑡 (𝑥, 𝑦)|𝑧=𝑥 =
𝑁∑︁

𝑖,𝑙=1

𝑏𝑙(𝑥)𝜕𝑙𝑏
𝑖(𝑥)

𝜕

𝜕𝑥𝑖
𝑝𝑋̄𝑧

𝑡 (𝑥, 𝑦)|𝑧=𝑥

+
𝑑∑︁

𝑘=1

𝑁∑︁
𝑖,𝑗,𝑙=1

{︂
𝑏𝑙(𝑥)𝜕𝑙𝜎

𝑖
𝑘(𝑥)𝜎𝑗

𝑘(𝑥)
𝜕2

𝜕𝑥𝑖𝜕𝑥𝑗
𝑝𝑋̄𝑧

𝑡 (𝑥, 𝑦)|𝑧=𝑥

+ 𝜎𝑙
𝑘(𝑥)𝜎𝑗

𝑘(𝑥)𝜕𝑙𝑏
𝑖(𝑥)

𝜕2

𝜕𝑥𝑖𝜕𝑥𝑗
𝑝𝑋̄𝑧

𝑡 (𝑥, 𝑦)|𝑧=𝑥

}︂
+

𝑑∑︁
𝑘1,𝑘2=1

𝑁∑︁
𝑖1,𝑖2,𝑗,𝑙=1

𝜎𝑙
𝑘1

(𝑥)𝜎𝑗
𝑘1

(𝑥)𝜕𝑙𝜎
𝑖1
𝑘2

(𝑥)𝜎𝑖2
𝑘2

(𝑥)
𝜕3

𝜕𝑥𝑗𝜕𝑥𝑖1𝜕𝑥𝑖2

𝑝𝑋̄𝑧

𝑡 (𝑥, 𝑦)|𝑧=𝑥
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and

[L 𝑧
0 ,L

𝑧
2 ]𝑝𝑋̄𝑧

𝑡 (𝑥, 𝑦)|𝑧=𝑥 =
1
2

𝑑∑︁
𝑘=1

𝑁∑︁
𝑖,𝑙1.𝑙2=1

𝜎𝑙1
𝑘 (𝑥)𝜎𝑙2

𝑘 (𝑥)𝜕𝑙1𝜕𝑙2𝑏
𝑖(𝑥)

𝜕

𝜕𝑥𝑖
𝑝𝑋̄𝑧

𝑡 (𝑥, 𝑦)|𝑧=𝑥

+
1
2

𝑑∑︁
𝑘1,𝑘2=1

𝑁∑︁
𝑖,𝑗,𝑙1,𝑙2=1

𝜎𝑙1
𝑘1

(𝑥)𝜎𝑙2
𝑘1

(𝑥)
{︁
𝜕𝑙1𝜕𝑙2𝜎

𝑖
𝑘2

(𝑥)𝜎𝑗
𝑘2

(𝑥) + 𝜕𝑙1𝜎
𝑖
𝑘2

(𝑥)𝜕𝑙2𝜎
𝑗
𝑘2

(𝑥)
}︁

× 𝜕2

𝜕𝑥𝑖𝜕𝑥𝑗
𝑝𝑋̄𝑧

𝑡 (𝑥, 𝑦)|𝑧=𝑥,

it holds that

𝑡2

2

2∑︁
𝑖=1

[L 𝑧
0 ,L

𝑧
𝑖 ]𝑝𝑋̄𝑧

𝑡 (𝑥, 𝑦)|𝑧=𝑥 =
𝑡2

2

𝑁∑︁
𝑗=1

ℒ0𝑏
𝑗(𝑥)

𝜕

𝜕𝑥𝑗
𝑝𝑋̄𝑧

𝑡 (𝑥, 𝑦)|𝑧=𝑥

+
𝑡2

2

𝑑∑︁
𝑘=1

𝑁∑︁
𝑗1,𝑗2=1

ℒ𝑘𝑏
𝑗1(𝑥)𝜎𝑗2

𝑘 (𝑥)
𝜕2

𝜕𝑥𝑗1𝜕𝑥𝑗2

𝑝𝑋̄𝑧

𝑡 (𝑥, 𝑦)|𝑧=𝑥

+
𝑡2

2

𝑑∑︁
𝑘=1

𝑁∑︁
𝑗1,𝑗2=1

ℒ0𝜎
𝑗1
𝑘 (𝑥)𝜎𝑗2

𝑘 (𝑥)
𝜕2

𝜕𝑥𝑗1𝜕𝑥𝑗2

𝑝𝑋̄𝑧

𝑡 (𝑥, 𝑦)|𝑧=𝑥

+
𝑡2

2

𝑑∑︁
𝑘1,𝑘2=1

𝑁∑︁
𝑗1,𝑗2,𝑗3=1

ℒ𝑘1𝜎
𝑗1
𝑘2

(𝑥)𝜎𝑗2
𝑘1

(𝑥)𝜎𝑗3
𝑘2

(𝑥)
𝜕3

𝜕𝑥𝑗1𝜕𝑥𝑗2𝜕𝑥𝑗3

𝑝𝑋̄𝑧

𝑡 (𝑥, 𝑦)|𝑧=𝑥

+
𝑡2

4

𝑑∑︁
𝑘1,𝑘2=1

𝑁∑︁
𝑗1,𝑗2=1

ℒ𝑘1𝜎
𝑗1
𝑘2

(𝑥)ℒ𝑘1𝜎
𝑗2
𝑘2

(𝑥)
𝜕2

𝜕𝑥𝑗1𝜕𝑥𝑗2

𝑝𝑋̄𝑧

𝑡 (𝑥, 𝑦)|𝑧=𝑥.

By the representation (3.9) with (3.8), we have the assertion. �

4. Numerical study of high order discretization of heat kernel

In this section, we show some numerical results of discretizing heat kernels for univariate and multivariate
models using the proposed high order scheme in order to verify our assertion. We compare those with the results
computed by the classical Euler–Maruyama method, the first order scheme. Here, the first order discretization
is constructed as follows. Let 𝑇 ≥ 1 and 𝑋(𝑇, 𝑥) be the solution of SDE (2.6). We denote the density of 𝑋(𝑇, 𝑥)
by 𝑝𝑋

𝑇 (𝑥, 𝑦), (𝑥, 𝑦) ∈ R𝑁 × R𝑁 . In addition, the density of the Euler–Maruyama scheme 𝑋̄(𝑛)(𝑇, 𝑥) is denoted
by 𝑝𝑋̄(𝑛)

𝑇 (𝑥, 𝑦). Then, 𝑝𝑋
𝑇 (𝑥, 𝑦) is approximated by the following convolution.

𝑝𝑋
𝑇 (𝑥, 𝑦) ≈ 𝑝𝑋̄(𝑛)

𝑇 (𝑥, 𝑦) =
(︁
𝑝𝑋̄

𝑇/𝑛 * . . . * 𝑝
𝑋̄
𝑇/𝑛

)︁
⏟  ⏞  

𝑛

(𝑥, 𝑦) = 𝐸
[︁
𝑝𝑋̄

𝑇/𝑛

(︁
𝑋̄(𝑛)((𝑛− 1)𝑇/𝑛, 𝑥), 𝑦

)︁]︁
, (4.1)

where 𝑝𝑋̄
𝑡 (𝑥, 𝑦), (𝑡, 𝑥, 𝑦) ∈ (0, 1] × R𝑁 × R𝑁 is the density of one step Euler–Maruyama scheme given by (3.1)

with 𝑧 = 𝑥. On the other hand, based on Theorem 3.1 using Malliavin calculus, we approximate 𝑝𝑋
𝑇 (𝑥, 𝑦) by

𝑚-th order scheme (𝑚 ≥ 2)

𝑝𝑋
𝑇 (𝑥, 𝑦) ≈

(︁
𝑝

𝑋̄,(𝑚)
𝑇/𝑛 * . . . * 𝑝𝑋̄,(𝑚)

𝑇/𝑛

)︁
⏟  ⏞  

𝑛

(𝑥, 𝑦) (4.2)

= 𝐸

⎡⎣𝑝𝑋̄,(𝑚)
𝑇/𝑛

(︁
𝑋̄(𝑛)((𝑛− 1)𝑇/𝑛, 𝑥), 𝑦

)︁ 𝑛−1∏︁
𝑗=1

{︁
1 + 𝜋

(𝑚),𝑋̄(𝑛)((𝑗−1)𝑇/𝑛,𝑥)
𝑇/𝑛 (𝐵𝑗𝑇/𝑛 −𝐵(𝑗−1)𝑇/𝑛)

}︁⎤⎦ .
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Figure 1. Kernel estimation (Euler–Maruyama scheme).

Figure 2. Kernel estimation (Second order scheme).

Note that for 𝑛 = 1, we always have exact values for both approximations since 𝑝𝑋̄
𝑇/𝑛(𝑥, 𝑦) and 𝑝𝑋̄,(𝑚)

𝑇/𝑛 (𝑥, 𝑦) are
obtained in closed form. In the following numerical examples, we compute the approximation (4.1) and (4.2)
with 𝑚 = 2 by simulation. For the figures, the labels (EM) and (Malliavin) are used for (4.1) and (4.2).

4.1. Univariate model

Let us consider the following 1-dimensional SDE:

𝑑𝑋𝑥
𝑡 = 𝜎𝑋𝑥

𝑡 𝑑𝑊𝑡, 𝑋
𝑥
0 = 𝑥 ∈ R, (4.3)
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Figure 3. Comparison of approximated densities with time steps 𝑛 = 4.

where 𝜎 > 0. We numerically compute the density of 𝑋𝑥
𝑇 , 𝑇 ≥ 1, 𝑥 ∈ R, using the Euler–Maruyama method

and our proposed scheme (𝑚 = 2, i.e. second order scheme). Here, we apply the Quasi-Monte-Carlo (QMC)
method to both schemes (4.1) and (4.2) with number of simulations 𝑀 = 104 for each time step 𝑛 = 1, 2 and
4. The parameters are given by 𝑇 = 1, 𝑥 = 100 and 𝜎 = 0.3. In this example, the exact density is obtained
in closed form since the probability law of 𝑋𝑥

𝑡 is lognormal. We use the exact density as the benchmark in the
following numerical tests.

In Figures 1 and 2, the true and the approximated densities are illustrated. Figure 1 shows the comparison
results for the Euler–Maruyama scheme and Figure 2 shows the estimated kernels with the proposed second
order scheme. Through the experiments, we particularly observe that the convergence of the second order scheme
is much faster than that of the Euler–Maruyama scheme. The approximated density of the second order scheme
almost corresponds with the true density when 𝑛 = 4, which can be checked in the following Figure 3.

4.2. Multivariate model

We consider the following 2-dimensional SDE:

𝑑𝑋1,𝑥
𝑡 = 𝑋2,𝑥

𝑡 (𝑋1,𝑥
𝑡 )𝛽𝑑𝑊 1

𝑡 , 𝑋
1,𝑥
0 = 𝑥1 > 0 (4.4)

𝑑𝑋2,𝑥
𝑡 = 𝜈𝜌𝑋2,𝑥

𝑡 𝑑𝑊 1
𝑡 + 𝜈

√︀
1− 𝜌2𝑋2,𝑥

𝑡 𝑑𝑊 2
𝑡 , 𝑋

2,𝑥
0 = 𝑥2 > 0, (4.5)

where 𝛽 ∈ [0, 1], 𝜈 ≥ 0 and 𝜌 ∈ (−1, 1). In financial mathematics, the process {𝑋1,𝑥
𝑡 , 𝑋2,𝑥

𝑡 }𝑡≥0 is known as the
SABR model which is one of important classes of stochastic volatility model. Here, the first and second element
of the process means underlying asset and its volatility, respectively. In this section, we especially investigate
the marginal density of 𝑋1,𝑥

𝑇 since estimating it is important in practice. As in the previous section, we apply
QMC method to the Euler–Maruyama scheme and the proposed second order scheme (𝑚 = 2) with number
of simulations 𝑀 = 105 for each time step 𝑛 = 1, 2 and 4. Since we do not have the analytical solution of the
density of 𝑋1,𝑥

𝑇 , we numerically compute the benchmark value by the first order scheme (4.1) with the number
of simulations 𝑀 = 106 and the time step 𝑛 = 27. We set 𝑇 = 1, 𝑥1 = 100, 𝑥2 = 0.3, 𝛽 = 1, 𝜈 = 0.1 and
𝜌 = −0.5.
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Figure 4. Kernel estimation (Euler–Maruyama scheme).

Figure 5. Kernel estimation (Second order scheme).

In Figures 4 and 5, the benchmark and the approximated densities are illustrated. Here, the benchmark density
is represented by the dashed line. As in the previous section, Figures 4 and 5 show the comparison results for the
Euler–Maruyama scheme and the proposed second order scheme, respectively. From these figures, it is also clear
that the proposed scheme achieves faster convergence, compared to the Euler–Maruyama scheme. In particular,
we observe from Figure 6 that the approximated density computed by the new scheme with 𝑛 = 4 is almost the
same with the benchmark density. Through these numerical studies, one can check that the new scheme has a
superior efficiency compared to the classical Euler–Maruyama scheme.
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Figure 6. Comparison of approximated densities with time steps 𝑛 = 4.

Remark 4.1. We give some remarks on numerical results for the density of the SABR model (including that
of the Black–Scholes model). We consider the following system equivalent to the SABR model:

𝑑𝑋1
𝑡 = 𝜀𝑋2

𝑡 (𝑋1
𝑡 )𝛽𝑑𝑊 1

𝑡 , 𝑋1
0 = 𝑥0 > 0,

𝑑𝑋2
𝑡 = 𝜈𝑋2

𝑡 (𝜌𝑑𝑊 1
𝑡 +

√︀
1− 𝜌2𝑑𝑊 2

𝑡 ), 𝑋2
0 = 1,

where 𝜀 = 𝑥2 is the initial volatility. When 𝛽 = 1 and 𝜈 = 0, 𝑋1 becomes the Black–Scholes model. For 𝜈 > 0,
the process 𝑋2 takes positive values. We assume the condition such that at least 𝑋1

𝑇 has the density 𝑝𝑋1

𝑇 (𝑥0, ·)
with the ellipticity at the starting point 𝑥0. However, the model does not satisfy the uniformly elliptic condition
in general and the coefficients are not sufficiently smooth. We approximate 𝑝𝑋1

𝑇 (𝑥0, ·) by the density of the
following modified SABR model which satisfies the uniformly elliptic condition with smooth coefficients:

𝑑 ̃︀𝑋1
𝑡 = 𝜀𝜓1( ̃︀𝑋2

𝑡 )𝜓2( ̃︀𝑋1
𝑡 )𝑑𝑊𝑡, ̃︀𝑋1

0 = 𝑥0 > 0,

𝑑 ̃︀𝑋2
𝑡 = 𝜈𝜓3( ̃︀𝑋2

𝑡 )(𝜌𝑑𝑊 1
𝑡 +

√︀
1− 𝜌2𝑑𝑊 2

𝑡 ), ̃︀𝑋2
0 = 1.

where 𝜓1(𝑥) = ℎ(𝑥)𝑥, 𝜓2(𝑥) = ℎ(𝑥)𝑥𝛽 , 𝜓3(𝑥) = ℎ(𝑥)𝑥 with

ℎ(𝑥) =
𝛾(𝑥− 𝑎2)

𝛾(𝑥− 𝑎2) + 𝛾(𝑎1 − 𝑥)
, 0 < 𝑎2 < 𝑎1 < 𝑎 :=

1
2
𝑥0,

𝛾(𝑥) = 𝑒−1/𝑥1𝑥>0.

Note that the densities 𝑝𝑋1

𝑇 (𝑥, ·) and ̃︀𝑝 ̃︀𝑋1

𝑇 (𝑥, ·) have the following representations under their existence conditions:

𝑝𝑋1

𝑇 (𝑥, 𝑦) = 𝐸
[︁
1{𝑋1

𝑇≥𝑦}𝛿
(︀
𝐷𝑋1

𝑇 ‖𝐷𝑋1
𝑇 ‖−2

𝐻

)︀]︁
and ̃︀𝑝 ̃︀𝑋1

𝑇 (𝑥, 𝑦) = 𝐸
[︁
1{ ̃︀𝑋1

𝑇≥𝑦}𝛿
(︁
𝐷 ̃︀𝑋1

𝑇 ‖𝐷 ̃︀𝑋1
𝑇 ‖−2

𝐻

)︁]︁
,
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where 𝛿(𝐷𝑋1
𝑇 ‖𝐷𝑋1

𝑇 ‖
−2
𝐻 ) ∈ 𝐿2(Ω) and 𝛿(𝐷 ̃︀𝑋1

𝑇 ‖𝐷 ̃︀𝑋1
𝑇 ‖
−2
𝐻 ) ∈ 𝐿2(Ω). Then the difference between 𝑝𝑋1

𝑇 (𝑥, 𝑦) and̃︀𝑝 ̃︀𝑋1

𝑇 (𝑥, 𝑦) is given by

|𝑝𝑋1

𝑇 (𝑥, 𝑦)− ̃︀𝑝 ̃︀𝑋1

𝑇 (𝑥, 𝑦)|

=
⃒⃒⃒
𝐸[1{𝑋1

𝑇≥𝑦}𝛿(𝐷𝑋
1
𝑇 ‖𝐷𝑋1

𝑇 ‖−2
𝐻 )]− 𝐸[1{ ̃︀𝑋1

𝑇≥𝑦}𝛿(𝐷 ̃︀𝑋1
𝑇 ‖𝐷 ̃︀𝑋1

𝑇 ‖−2
𝐻 )]

⃒⃒⃒
≤ 𝐸

[︁⃒⃒⃒
1{𝑋1

𝑇≥𝑦}𝛿(𝐷𝑋
1
𝑇 ‖𝐷𝑋1

𝑇 ‖−2
𝐻 )− 1{ ̃︀𝑋1

𝑇≥𝑦}𝛿(𝐷 ̃︀𝑋1
𝑇 ‖𝐷 ̃︀𝑋1

𝑇 ‖−2
𝐻 )
⃒⃒⃒]︁

= 𝐸
[︁⃒⃒⃒

1{𝑋1
𝑇≥𝑦}𝛿(𝐷𝑋

1
𝑇 ‖𝐷𝑋1

𝑇 ‖−2
𝐻 )− 1{ ̃︀𝑋1

𝑇≥𝑦}𝛿(𝐷 ̃︀𝑋1
𝑇 ‖𝐷 ̃︀𝑋1

𝑇 ‖−2
𝐻 )
⃒⃒⃒
1{𝑋1

· ̸= ̃︀𝑋1
· }

]︁
≤ 𝐶{‖𝛿(𝐷𝑋1

𝑇 ‖𝐷𝑋1
𝑇 ‖−2

𝐻 )‖2 + ‖𝛿(𝐷 ̃︀𝑋1
𝑇 ‖𝐷 ̃︀𝑋1

𝑇 ‖−2
𝐻 )‖2}𝑃

(︁
{𝜔; 𝑋1

· (𝜔) ̸= ̃︀𝑋1
· (𝜔)}

)︁1/2

≤ 𝐶{‖𝛿(𝐷𝑋1
𝑇 ‖𝐷𝑋1

𝑇 ‖−2
𝐻 )‖2 + ‖𝛿(𝐷 ̃︀𝑋1

𝑇 ‖𝐷 ̃︀𝑋1
𝑇 ‖−2

𝐻 )‖2}𝑃
(︀
{𝜔; 𝑋1

𝑡 (𝜔) ≥ 𝑎1 for some 𝑡 ∈ [0, 𝑇 ]}
)︀1/2

,

for some 𝐶 > 0. Since we have ‖𝛿(𝐷𝑋1
𝑇 ‖𝐷𝑋1

𝑇 ‖
−2
𝐻 )‖2 <∞ and ‖𝛿(𝐷 ̃︀𝑋1

𝑇 ‖𝐷 ̃︀𝑋1
𝑇 ‖
−2
𝐻 )‖2 <∞, furthermore it holds

that

𝑃
(︀
{𝜔; 𝑋1

𝑡 (𝜔) ≥ 𝑎1 for some 𝑡 ∈ [0, 𝑇 ]}
)︀

≤ 𝑃

(︂
{𝜔; sup

𝑡
|𝑋1

𝑡 (𝜔)− 𝑥| > 𝑎}
)︂

+ 𝑃

(︂
{𝜔; 𝑋1

𝑡 (𝜔) ≥ 𝑎′ for some 𝑡 ∈ [0, 𝑇 ]} ∩ {𝜔; sup
𝑡
|𝑋1

𝑡 (𝜔)− 𝑥| ≤ 𝑎}
)︂

= 𝑃

(︂
{𝜔; sup

𝑡
|𝑋1

𝑡 (𝜔)− 𝑥| > 𝑎}
)︂

= 𝑂(𝜀𝑘), for all 𝑘 = 1, 2, . . . ,

where the large deviation estimate for small noise SDE ([20], Lem. 4) is applied in the above, then the difference
|𝑝𝑋1

𝑇 (𝑥, 𝑦) − ̃︀𝑝 ̃︀𝑋1

𝑇 (𝑥, 𝑦)| is negligible, which implies that 𝑝𝑋1

𝑇 (𝑥, ·) can be approximated by the proposed second
order discretization.

5. Concluding remarks

In the paper, we showed a higher order operator splitting scheme for diffusion semigroups using the Baker–
Campbell–Hausdorff expansion around the Euler–Maruyama scheme and combined with Malliavin calculus.
The heat kernel approximation was given with the new algorithm as the extension of Bally and Talay [4] and
Pedersen [19]. We illustrated the numerical experiments for the scheme and the effectiveness was checked.

Although the uniformly elliptic condition is assumed in the paper, we believe that the proposed scheme can
work in weaker conditions. In other words, a higher order scheme for the density of hypoelliptic diffusions will
be constructed and we are able to prove the conjecture in [7] by different approach. Furthermore, construction
of a higher order scheme for density of hypoelliptic diffusions will lead to various applications such as parametric
inference as discussed in [16]. The higher order discretization of hypoelliptic heat kernels should be developed
as future work.

Appendix A. Proof of Proposition 2.1

Let

𝑈(𝑠, 𝑥) := 𝑒𝑠L 𝑧
0 ̂︁L𝑖𝑒

(𝑡−𝑠)L 𝑧
0 𝜙(𝑥) =

∫︁
R𝑁

̂︁L𝑖

(︂∫︁
R𝑁

𝜙(𝑦)𝑝𝑋̄𝑧

(𝑡− 𝑠, 𝜉, 𝑦) d𝑦
)︂
𝑝𝑋̄𝑧

(𝑠, 𝑥, 𝜉) d𝜉.

Then, we have

𝑈(𝑠, 𝑥) = 𝑈(0, 𝑥) +
𝑚∑︁

𝑘=1

𝑠𝑘

𝑘!
𝜕𝑘

𝜕𝑠𝑘
𝑈(𝑠, 𝑥)

⃒⃒⃒
𝑠=0

+
∫︁ 𝑠

0

(𝑠− 𝜉)𝑚

𝑚!
𝜕𝑚+1

𝜕𝜉𝑚+1
𝑈(𝜉, 𝑥) d𝜉.
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Note that

𝜕

𝜕𝑠
𝑈(𝑠, 𝑥) = 𝑒𝑠L 𝑧

0 L 𝑧
0
̂︁L𝑖𝑒

(𝑡−𝑠)L 𝑧
0 𝜙(𝑥)− 𝑒𝑠L 𝑧

0 ̂︁L𝑖L
𝑧
0 𝑒

(𝑡−𝑠)L 𝑧
0 𝜙(𝑥)

= 𝑒𝑠L 𝑧
0 [L 𝑧

0 ,
̂︁L𝑖]𝑒(𝑡−𝑠)L 𝑧

0 𝜙(𝑥),

and

𝜕

𝜕𝑠
𝑈(𝑠, 𝑥)

⃒⃒⃒
𝑠=0

= [L 𝑧
0 ,
̂︁L𝑖]𝑒𝑡L 𝑧

0 𝜙(𝑥).

Furthermore, it holds that for 𝑘 ∈ N,

𝜕𝑘

𝜕𝑠𝑘
𝑈(𝑠, 𝑥) = 𝑒𝑠L 𝑧

0

[︁
L 𝑧

0 ,
[︁
. . .
[︁
L 𝑧

0 ,
[︁
L 𝑧

0 ,
̂︁L𝑖

]︁]︁
. . .
]︁]︁

⏟  ⏞  
𝑘-times

𝑒(𝑡−𝑠)L 𝑧
0 𝜙(𝑥),

and

𝜕𝑘

𝜕𝑠𝑘
𝑈(𝑠, 𝑥)

⃒⃒⃒
𝑠=0

=
[︁
L 𝑧

0 ,
[︁
. . .
[︁
L 𝑧

0 ,
[︁
L 𝑧

0 ,
̂︁L𝑖

]︁]︁
. . .
]︁]︁

⏟  ⏞  
𝑘-times

𝑒𝑡L 𝑧
0 𝜙(𝑥).

We prove the explicit truncation in the formula (2.45). Let us define by 𝒟𝑖 ⊂ 𝒟𝒪 (𝑖 = 0, 1, 2, . . .) a set of
differential operators acting on 𝜙(𝑥), 𝜙 ∈ 𝐶∞(R𝑁 ) with at most 𝑖-th degree polynomial of 𝑥 in the coefficients.
Then, it is obvious that 𝒟0 is commutative sub-algebra, that is, for any 𝑋,𝑌 ∈ 𝒟0, [𝑋,𝑌 ] = 0. Moreover, for
all 𝑋 ∈ 𝒟0, 𝑌 ∈ 𝒟𝑖, the commutator [𝑋,𝑌 ] is an element of 𝒟𝑖−1. Since L 𝑧

0 ∈ 𝒟0 and ̂︁L𝑖 ∈ 𝒟𝑖, we have
[L 𝑧

0 ,
̂︁L𝑖] ∈ 𝒟𝑖−1 and then, [︁

L 𝑧
0 ,
[︁
L 𝑧

0 , . . . ,
[︁
L 𝑧

0 ,
̂︁L𝑖

]︁]︁
. . .
]︁

⏟  ⏞  
𝑖-times

∈ 𝒟0. (A.1)

By the commutativity of 𝒟0, we have for every 𝑖 ∈ N,[︁
L 𝑧

0 ,
[︁
L 𝑧

0 , . . . ,
[︁
L 𝑧

0 ,
̂︁L𝑖

]︁]︁
. . .
]︁

⏟  ⏞  
𝑛-times

= 0 (A.2)

for any integers 𝑛 ≥ 𝑖+ 1. Then the assertions are obtained. �

Appendix B. Proof of Proposition 2.2

First, we introduce the result on 𝑃 𝑖,𝑧
𝑠 𝜙(𝑥) which plays an important role in the proof of the proposition. We

recall that for 𝑖 ∈ N, 𝑃 𝑖,𝑧
𝑠 𝜙(𝑥) with a bounded and measurable function 𝜙 : R𝑁 → R is defined as

𝑃 𝑖,𝑧
𝑠 𝜙(𝑥) =

𝑖−1∑︁
𝑘=0

∫︁ 𝑠

0

𝑃 0,𝑧
𝑠−𝑢L 𝑧

𝑖−𝑘𝑃
𝑘,𝑧
𝑢 𝜙(𝑥) d𝑢, 𝑠 ∈ (0, 1], 𝑥, 𝑧 ∈ R𝑁 . (B.1)

Lemma B.1. For 𝑖 ∈ N, each term of 𝑃 𝑖,𝑧
𝑠 𝜙(𝑥), 𝑠 ∈ (0, 1], 𝑥, 𝑧 ∈ R𝑁 is given in the form

𝑠𝑙𝜓(𝑧)
𝑝∏︁

𝑗=1

(𝑥𝑙𝑗 − 𝑧𝑙𝑗 )𝜕𝛾(𝑃 0,𝑧
𝑠 𝜙)(𝑥), (B.2)
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where 𝑙 ≥ 1, 𝑝 ≥ 0 and multi-index 𝛾 ∈ {1, 2, . . . , 𝑁}|𝛾| satisfy

2𝑙 + 𝑝− |𝛾| ≥ 𝑖, (B.3)

and with 𝜓 ∈ 𝐶∞𝑏 (R𝑁 ), 𝑙𝑗 = 1, . . . , 𝑁 , 𝑗 = 1, . . . , 𝑝.

Proof. We show this by induction with respect to the integer 𝑖. When 𝑖 = 1, it is easy to check that the assertion
holds. Then, we assume that for all 𝑘 = 1, 2, . . . , 𝑛, 𝑛 ∈ N, each term of 𝑃 𝑘,𝑧

𝑠 𝜙(𝑥) is given by

𝑠𝑙𝜓(𝑧)
𝑝∏︁

𝑗=1

(𝑥𝑙𝑗 − 𝑧𝑙𝑗 )𝜕𝛾(𝑃 0,𝑧
𝑠 𝜙)(𝑥), (B.4)

with 𝜓 ∈ 𝐶∞𝑏 (R𝑁 ) and 𝑙, 𝑝 ∈ N and a multi-index 𝛾 such that 2𝑙 + 𝑝− |𝛾| ≥ 𝑘. From now on, we will show the
assertion holds for 𝑘 = 𝑛+ 1. Because of the above assumption, terms in 𝑃𝑛+1,𝑧

𝑠 𝜙(𝑥) are given by

∫︁ 𝑠

0

𝑃 0,𝑧
𝑠−𝑢

⎧⎨⎩𝑢𝑙𝜓(𝑧)L 𝑧
𝑛+1−𝑘

𝑝∏︁
𝑗=1

(𝑥𝑙𝑗 − 𝑧𝑙𝑗 )𝜕𝛾

⎫⎬⎭𝑃 0,𝑧
𝑢 𝜙(𝑥) d𝑢. (B.5)

Here, we note that L 𝑧
𝑛+1−𝑘

∏︀𝑝
𝑗=1(𝑥𝑙𝑗 − 𝑧𝑙𝑗 )𝜕𝛾(𝑃 0,𝑧

𝑢 𝜙)(𝑥) has the form of

2∑︁
𝑟=0

𝜒𝑟(𝑧)
𝑛+1−𝑘∏︁

𝑑=1

(𝑥𝜄𝑑
− 𝑧𝜄𝑑

)
𝑝−𝑟∏︁
𝑒=1

(𝑥𝜄𝑒
− 𝑧𝜄𝑒

)𝜕𝛽𝑟

𝜕𝛾(𝑃 0,𝑧
𝑢 𝜙)(𝑥)

=:
2∑︁

𝑟=0

L
𝑧,(𝛾)

𝑛+1−𝑘+𝑝−𝑟(𝑃 0,𝑧
𝑢 𝜙)(𝑥)

with some function 𝜒𝑟 ∈ 𝐶∞𝑏 (R𝑁 ), integers 1 ≤ 𝜄𝑑, 𝜄𝑒 ≤ 𝑁 and a multi-index 𝛽𝑟 satisfying |𝛽𝑟| ≤ 2 − 𝑟
(0 ≤ 𝑟 ≤ 2). Then, each term of (B.5) takes the form of∫︁ 𝑠

0

𝑢𝑙𝜓(𝑧)𝑃 0,𝑧
𝑠−𝑢L

𝑧,(𝛾)

𝑛+1−𝑘+𝑝−𝑟𝑃
0,𝑧
𝑢 𝜙(𝑥) d𝑢

= 𝜓(𝑧)
∫︁ 𝑠

0

(𝑠− 𝑢)𝑙𝑃 0,𝑧
𝑢 L

𝑧,(𝛾)

𝑛+1−𝑘+𝑝−𝑟𝑃
0,𝑧
𝑠−𝑢𝜙(𝑥) d𝑢 (B.6)

and we have

𝑃 0,𝑧
𝑢 L

𝑧,(𝛾)

𝑛+1−𝑘+𝑝−𝑟𝑃
0,𝑧
𝑠−𝑢𝜙(𝑥) (B.7)

= 𝑒𝑢L 𝑧
0 L

𝑧,(𝛾)

𝑛+1−𝑘+𝑝−𝑟𝑒
(𝑠−𝑢)L 𝑧

0 𝜙(𝑥)

=
𝑛+1−𝑘+𝑝−𝑟∑︁

𝑗=0

𝑢𝑗

𝑗!

[︁
L 𝑧

0 ,
[︁
L 𝑧

0 ,
[︁
. . . ,

[︁
L 𝑧

0 ,L
𝑧,(𝛾)

𝑛+1−𝑘+𝑝−𝑟

]︁
. . .
]︁]︁]︁

⏟  ⏞  
𝑗-times

(𝑃 0,𝑧
𝑠 𝜙)(𝑥). (B.8)

where the truncation in the above summation is justified by the same argument of Appendix A.
Note that we are able to show that for 𝑗 = 0, 1, 2, . . . , 𝑛+ 1− 𝑘 + 𝑝− 𝑟, the term

𝑢𝑗

𝑗!

[︁
L 𝑧

0 ,
[︁
L 𝑧

0 ,
[︁
. . . ,

[︁
L 𝑧

0 ,L
𝑧,(𝛾)

𝑛+1−𝑘+𝑝−𝑟

]︁
. . .
]︁]︁]︁

⏟  ⏞  
𝑗-times

(𝑃 0,𝑧
𝑠 𝜙)(𝑥)
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is expressed as

𝑢𝑗

𝑗!
𝜒𝑟(𝑧)𝑔𝑗(𝑧)×

∑︁
1≤𝑎1,...,𝑎𝑗≤2∑︀𝑗

𝑖=1 𝑎𝑖≤𝑛+1−𝑘+𝑝−𝑟

∑︁
𝑑1≤2−𝑎1

...
𝑑𝑗≤2−𝑎𝑗

∑︁
𝜆1∈{1,...𝑁}𝑑1

...

𝜆𝑗∈{1,...𝑁}𝑑𝑗

𝑛+1−𝑘+𝑝−𝑟−
∑︀𝑗

𝑖=1 𝑎𝑗∏︁
𝑒=1

(𝑥𝜄𝑒
− 𝑧𝜄𝑒

)𝜕𝛽𝑟

𝜕𝛾𝜕𝜆1 . . . 𝜕𝜆𝑗 (𝑃 0,𝑧
𝑠 𝜙)(𝑥)

where 𝑔𝑗 ∈ 𝐶∞𝑏 (R𝑁 ) and we assume
∏︀0

𝑖=1(𝑥𝑖 − 𝑧𝑖) = 1. Then, terms in (B.6) are given by

𝜓𝑗(𝑧)
∫︁ 𝑠

0

(𝑠− 𝑢)𝑙𝑢𝑗

𝑛+1−𝑘+𝑝−𝑟−
∑︀𝑗

𝑖=1 𝑎𝑖∏︁
𝑒=1

(𝑥𝜄𝑒
− 𝑧𝜄𝑒

)𝜕𝛽𝑟

𝜕𝛾𝜕𝜆1 . . . 𝜕𝜆𝑗 (𝑃 0,𝑧
𝑠 𝜙)(𝑥) d𝑢, (B.9)

with 𝑗 = 0, 1, 2, . . . , 𝑛 + 1 − 𝑘 + 𝑝 − 𝑟, 𝜓𝑗 ∈ 𝐶∞𝑏 (R𝑁 ), integers 1 ≤ 𝜄𝑒 ≤ 𝑁 and 1 ≤ 𝑎1, . . . , 𝑎𝑗 ≤ 2 satisfying∑︀𝑗
𝑖=1 𝑎𝑖 ≤ 𝑛+1−𝑘+𝑝−𝑟 and the multi-indices 𝛽𝑟, 𝛾, 𝜆𝑗 whose elements take values in {1, 2, . . . , 𝑁}. Moreover,

the multi-indices 𝛽𝑟 and 𝜆𝑖, 𝑖 = 1, 2, . . . , 𝑗 are defined so as to satisfy |𝛽𝑟| ≤ 2− 𝑟 (0 ≤ 𝑟 ≤ 2) and |𝜆𝑖| ≤ 2− 𝑎𝑖.
Changing the variable 𝑢 ↦→ 𝑠𝑢 in (B.9), we obtain

𝜓𝑗(𝑧)
∫︁ 𝑠

0

(𝑠− 𝑢)𝑙𝑢𝑗

𝑛+1−𝑘+𝑝−𝑟−
∑︀𝑗

𝑖=1 𝑎𝑖∏︁
𝑒=1

(𝑥𝜄𝑒
− 𝑧𝜄𝑒

)𝜕𝛽𝑟

𝜕𝛾𝜕𝜆1 . . . 𝜕𝜆𝑗 (𝑃 0,𝑧
𝑠 𝜙)(𝑥) d𝑢

= 𝜓𝑗(𝑧)𝑠𝑙+𝑗+1

∫︁ 1

0

(1− 𝑢)𝑙𝑢𝑗 d𝑢
𝑛+1−𝑘+𝑝−𝑟−

∑︀𝑗
𝑖=1 𝑎𝑖∏︁

𝑒=1

(𝑥𝜄𝑒
− 𝑧𝜄𝑒

)𝜕𝛽𝑟

𝜕𝛾𝜕𝜆1 . . . 𝜕𝜆𝑗 (𝑃 0,𝑧
𝑠 𝜙)(𝑥).

In particular, it follows that

𝑛+ 1− 𝑘 + 𝑝− 𝑟 −
𝑗∑︁

𝑖=1

𝑎𝑖 + 2𝑙 + 2𝑗 + 2− |𝛽𝑟| − |𝛾| −
𝑗∑︁

𝑖=1

|𝜆𝑖|

≥ 𝑛+ 1− 𝑘 + 𝑝− 𝑟 + 2𝑙 + 2− |𝛽𝑟| − |𝛾|
≥ 𝑛+ 1− 𝑘 + 𝑝+ 2𝑙 − |𝛾|
≥ 𝑛+ 1,

where we applied |𝜆𝑖| ≤ 2 − 𝑎𝑖, 𝑖 = 1, 2, . . . , 𝑗, |𝛽𝑟| ≤ 2 − 𝑟 and the assumption of induction 𝑝 + 2𝑙 − |𝛾| ≥ 𝑘.
This implies that 𝑃𝑛+1,𝑧

𝑠 𝜙(𝑥) is given as the summation of the terms

𝑠𝑙𝜓(𝑧)
𝑝∏︁

𝑗=1

(𝑥𝑙𝑗 − 𝑧𝑙𝑗 )𝜕𝛾(𝑃 0,𝑧
𝑠 𝜙)(𝑥), (B.10)

with 𝜓 ∈ 𝐶∞𝑏 (R𝑁 ) 𝑙 ≥ 1, 𝑝 ≥ 0 and 𝛾 ∈ {1, 2, . . . , 𝑁}|𝛾| such that 2𝑙 + 𝑝− |𝛾| ≥ 𝑛+ 1. �

Proof of Proposition 2.2. In the proof, let 𝑡 ∈ (0, 1], 𝑥 ∈ R𝑁 and 𝐶 be a generic function independent of 𝑡 and
𝑥. By the perturbation method, we have

𝑃𝑡𝜙(𝑥) = 𝑃 0,𝑧
𝑡 𝜙(𝑥)|𝑧=𝑥 +

∫︁ 𝑡

0

𝑃𝑡−𝑠(L −L 𝑧
0 )𝑃 0,𝑧

𝑠 𝜙(𝑥) d𝑠|𝑧=𝑥



OPERATOR SPLITTING AROUND EULER–MARUYAMA SCHEME S349

and expand it through the expansion of L . We can see L −L 𝑧
0 =

∑︀2𝑚+1
𝑖=1 L 𝑧

𝑖 + ̃︁L 𝑧, 𝑧 ∈ R𝑁 by Taylor’s
formula where L 𝑧

𝑖 , 𝑖 = 1, . . . , 2𝑚+ 1 are given in (2.14) and ̃︁L 𝑧 is defined as

̃︁L 𝑧𝑔(𝑥) =
𝑁∑︁

𝑙1,...,𝑙2𝑚+2=1

2𝑚+2∏︁
𝑘=1

(𝑥𝑙𝑘 − 𝑧𝑙𝑘)

{︃
𝑁∑︁

𝑟1=1

ℎ𝑙1,...,𝑙2𝑚+2
𝑟1

(𝑥, 𝑧)
𝜕

𝜕𝑥𝑟1

𝑔(𝑥)

+
𝑁∑︁

𝑟1,𝑟2=1

ℎ𝑙1,...,𝑙2𝑚+2
𝑟1,𝑟2

(𝑥, 𝑧)
𝜕2

𝜕𝑥𝑟1𝜕𝑥𝑟2

𝑔(𝑥)

}︃
, 𝑔 ∈ 𝐶∞𝑏 (R𝑁 ), 𝑥 ∈ R𝑁 ,

for some bounded functions ℎ𝑙1,...,𝑙2𝑚+2
𝑟1,...,𝑟𝑘 (·, 𝑧), 𝑙1, . . . , 𝑙2𝑚+2 = 1, . . . , 𝑁 , 𝑘 = 1, 2. We note that 𝑠 ↦→ 𝑃𝑡−𝑠(L −

L 𝑧
0 )𝑃 0,𝑧

𝑠 𝜙(𝑥) ∈ 𝐿1([0, 𝑡]) holds since we have∫︁ 𝑡

0

|𝑃𝑡−𝑠(L −L 𝑧
0 )𝑃 0,𝑧

𝑠 𝜙(𝑥)|d𝑠 ≤ 𝐶

{︃∫︁ 𝑡/2

0

‖𝜙‖∞
𝑡− 𝑠

d𝑠+
∫︁ 𝑡

𝑡/2

‖𝜙‖∞
𝑠

d𝑠

}︃
= 2 log 2× 𝐶‖𝜙‖∞, (B.11)

through the estimates ‖𝜕𝛼𝑃 0,𝑧
𝑠 𝜙‖∞ ≤ 𝐶 ‖𝜙‖∞

𝑠 and ‖𝐻𝛼(𝑋(𝑡− 𝑠, 𝑥), ℎ𝛼,𝛽(𝑋(𝑡− 𝑠, 𝑥))𝑝𝛼,𝛽(𝑋(𝑡− 𝑠, 𝑥)− 𝑧))‖𝑝

≤ 𝐶 ‖𝜙‖∞
𝑡−𝑠 , 𝑝 ≥ 1, |𝛼| = 2, for the terms appearing in the following representation through the integration

by parts:

𝑃𝑡−𝑠(L −L 𝑧
0 )𝑃 0,𝑧

𝑠 𝜙(𝑥)

=
∑︁

𝛼∈{1,...,𝑁}|𝛼|,
|𝛼|=1,2

∑︁
𝛽∈{1,...,𝑁}|𝛽|,

𝛽≤𝜈

𝐸[𝜕𝛼𝑃 0,𝑧
𝑠 𝜙(𝑋(𝑡− 𝑠, 𝑥))ℎ𝛼,𝛽(𝑋(𝑡− 𝑠, 𝑥))𝑝𝛼,𝛽(𝑋(𝑡− 𝑠, 𝑥)− 𝑧)] (B.12)

=
∑︁

𝛼∈{1,...,𝑁}|𝛼|,
|𝛼|=1,2

∑︁
𝛽∈{1,...,𝑁}|𝛽|,

𝛽≤𝜈

𝐸[𝑃 0,𝑧
𝑠 𝜙(𝑋(𝑡− 𝑠, 𝑥))𝐻𝛼(𝑋(𝑡− 𝑠, 𝑥), ℎ𝛼,𝛽(𝑋(𝑡− 𝑠, 𝑥))𝑝𝛼,𝛽(𝑋(𝑡− 𝑠, 𝑥)− 𝑧))],

(B.13)

for some 𝜈 ∈ N, ℎ𝛼,𝛽 ∈ 𝐶∞𝑏 (R𝑁 ) and polynomial functions 𝑝𝛼,𝛽 : R𝑁 → R, which is the same argument as in
(2.44).

We expand
∫︀ 𝑡

0
𝑃𝑡−𝑠(L −L 𝑧

0 )𝑃 0,𝑧
𝑠 𝜙(𝑥)|𝑧=𝑥 d𝑠 around

∑︀2𝑚+1
𝑖=1 𝑃 𝑖,𝑧

𝑡 𝜙(𝑥)|𝑧=𝑥. Since it holds 𝜕𝑡𝑃
0,𝑧
𝑡 𝜙(𝑥) =

L 𝑧
0 𝑃

0,𝑧
𝑡 𝜙(𝑥), we have

𝜕𝑡𝑃
𝑖,𝑧
𝑡 𝜙(𝑥) =

𝑖−1∑︁
𝑘=0

L 𝑧
𝑖−𝑘𝑃

𝑘,𝑧
𝑡 𝜙(𝑥) + L 𝑧

0

𝑖−1∑︁
𝑘=0

∫︁ 𝑡

0

𝑃 0,𝑧
𝑡−𝑠L

𝑧
𝑖−𝑘𝑃

𝑘,𝑧
𝑠 𝜙(𝑥) d𝑠

=
𝑖∑︁

𝑘=0

L 𝑧
𝑖−𝑘𝑃

𝑘,𝑧
𝑡 𝜙(𝑥), 𝑖 = 1, 2, . . . , 2𝑚+ 1.

Then we get

(𝜕𝑡 −L )

{︃
𝑃𝑡𝜙(𝑥)−

2𝑚+1∑︁
𝑖=0

𝑃 𝑖,𝑧
𝑡 𝜙(𝑥)

}︃
=

2𝑚+1∑︁
𝑘=0

(︃
L −

2𝑚+1−𝑘∑︁
𝑖=0

L 𝑧
𝑖

)︃
𝑃 𝑘,𝑧

𝑡 𝜙(𝑥),

by considering 𝜕𝑡𝑃𝑡𝜙(𝑥) = L𝑃𝑡𝜙(𝑥). Also note that

𝜕𝑡

∫︁ 𝑡

0

𝑃𝑡−𝑠

(︃
L −

2𝑚+1−𝑘∑︁
𝑖=0

L 𝑧
𝑖

)︃
𝑃 𝑘,𝑧

𝑠 𝜙(𝑥) d𝑠

=

(︃
L −

2𝑚+1−𝑘∑︁
𝑖=0

L 𝑧
𝑖

)︃
𝑃 𝑘,𝑧

𝑡 𝜙(𝑥) + L

∫︁ 𝑡

0

𝑃𝑡−𝑠

(︃
L −

2𝑚+1−𝑘∑︁
𝑖=0

L 𝑧
𝑖

)︃
𝑃 𝑘,𝑧

𝑠 𝜙(𝑥) d𝑠.
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Therefore, when we put 𝑢(𝑡, 𝑥) = 𝑃𝑡𝜙(𝑥) −
∑︀2𝑚+1

𝑖=0 𝑃 𝑖,𝑧
𝑡 𝜙(𝑥), 𝑢̂(𝑡, 𝑥) =

∑︀2𝑚+1
𝑘=0

∫︀ 𝑡

0
𝑃𝑡−𝑠(L −

∑︀2𝑚+1−𝑘
𝑖=0 L 𝑧

𝑖 )
𝑃 𝑘,𝑧

𝑠 𝜙(𝑥) d𝑠 and 𝑣(𝑡, 𝑥) =
∑︀2𝑚+1

𝑘=0 (L −
∑︀2𝑚+1−𝑘

𝑖=0 L 𝑧
𝑖 )𝑃 𝑘,𝑧

𝑡 𝜙(𝑥), we have

(𝜕𝑡 −L )𝑢(𝑡, 𝑥) = 𝑣(𝑡, 𝑥), (𝜕𝑡 −L )𝑢̂(𝑡, 𝑥) = 𝑣(𝑡, 𝑥).

Since lim𝑡→0 𝑢(𝑡, 𝑥) = lim𝑡→0 𝑢̂(𝑡, 𝑥) = 0, it holds that 𝑢(𝑡, 𝑥) = 𝑢̂(𝑡, 𝑥) by the uniqueness of the solution to the
PDE. Then we have the representation of R𝜙

𝑡 (𝑥) as follows:

R𝜙
𝑡 (𝑥) = 𝑃𝑡𝜙(𝑥)−

2𝑚+1∑︁
𝑖=0

𝑃 𝑖,𝑧
𝑡 𝜙(𝑥)|𝑧=𝑥 =

2𝑚+1∑︁
𝑘=0

∫︁ 𝑡

0

𝑃𝑡−𝑠

(︃
L −

2𝑚+1−𝑘∑︁
𝑖=0

L 𝑧
𝑖

)︃
𝑃 𝑘,𝑧

𝑠 𝜙(𝑥) d𝑠|𝑧=𝑥 (B.14)

=
∫︁ 𝑡

0

𝑃𝑡−𝑠
̃︁L 𝑧𝑃 0,𝑧

𝑠 𝜙(𝑥) d𝑠|𝑧=𝑥 +
2𝑚+1∑︁
𝑖=1

∫︁ 𝑡

0

𝑃𝑡−𝑠

(︁
L 𝑧

2𝑚+1 + . . .+ L 𝑧
2𝑚+1−(𝑖−1) + ̃︁L 𝑧

)︁
𝑃 𝑖,𝑧

𝑠 𝜙(𝑥) d𝑠|𝑧=𝑥.

Then, in order to estimate R𝜙
𝑡 (𝑥), let us consider the following terms:∫︁ 𝑡

0

𝑃𝑡−𝑠
̃︁L 𝑧𝑃 0,𝑧

𝑠 𝜙(𝑥) d𝑠|𝑧=𝑥 and
∫︁ 𝑡

0

𝑃𝑡−𝑠L
𝑧
2𝑚+1−𝑞𝑃

𝑖,𝑧
𝑠 𝜙(𝑥) d𝑠|𝑧=𝑥, 𝑖 = 1, 2, . . . , 2𝑚+ 1, (B.15)

where 𝑞 = 0, 1, . . . , 𝑖− 1. Due to the definition of the semi-group {𝑃𝑡}𝑡≥0 and the differential operators ̃︁L 𝑧 and
L 𝑧

2𝑚+1−𝑞, the integrands of the above terms are given by the sum of the form:

𝐸

⎡⎣𝜕𝛼(𝑃 𝑖,𝑧
𝑠 𝜙)(𝑋(𝑡− 𝑠, 𝑥))𝑔 (𝑋(𝑡− 𝑠, 𝑥))

2𝑚+2−𝑞∏︁
𝑗=1

(︀
𝑋 𝑙𝑗 (𝑡− 𝑠, 𝑥)− 𝑧𝑙𝑗

)︀⎤⎦ |𝑧=𝑥, (B.16)

where 𝛼 ∈ {1, 2, . . . 𝑁}|𝛼| is a multi-index of the length |𝛼| = 1, 2, 𝑞 = 0, 1, . . . , 𝑖, 𝑙𝑗 = 1, . . . , 𝑁 (𝑗 = 1, . . . , 2𝑚+
2− 𝑞) and a function 𝑔 ∈ 𝐶∞𝑏 (R𝑁 ).

For 𝑞 = 0, 1, . . . , 𝑖 and multi-index 𝛼 such that |𝛼| = 1, 2, let us define

Γ𝛼
𝑞 (𝑠, 𝑧) := 𝐸

⎡⎣𝜕𝛼
(︀
𝑃 𝑖,𝑧

𝑠 𝜙
)︀

(𝑋(𝑡− 𝑠, 𝑥))𝑔 (𝑋(𝑡− 𝑠, 𝑥))
2𝑚+2−𝑞∏︁

𝑗=1

(︀
𝑋 𝑙𝑗 (𝑡− 𝑠, 𝑥)− 𝑧𝑙𝑗

)︀⎤⎦
= 𝐸

⎡⎣(𝑃 𝑖,𝑧
𝑠 𝜙)(𝑋(𝑡− 𝑠, 𝑥))𝐻𝛼

⎛⎝𝑋(𝑡− 𝑠, 𝑥), 𝑔(𝑋(𝑡− 𝑠, 𝑥))
2𝑚+2−𝑞∏︁

𝑗=1

(︀
𝑋 𝑙𝑗 (𝑡− 𝑠, 𝑥)− 𝑧𝑙𝑗

)︀⎞⎠⎤⎦ , (B.17)

for 𝑠 < 𝑡, 𝑧 ∈ R𝑁 . Then, we have

|Γ𝛼
𝑞 (𝑠, 𝑧)| ≤

⃦⃦⃦
(𝑃 𝑖,𝑧

𝑠 𝜙)(𝑋(𝑡− 𝑠, 𝑥))
⃦⃦⃦

2

⃦⃦⃦
𝐻𝛼(𝑋(𝑡− 𝑠, 𝑥), 𝑔(𝑋(𝑡− 𝑠, 𝑥))

2𝑚+2−𝑞∏︁
𝑗=1

(𝑋 𝑙𝑗 (𝑡− 𝑠, 𝑥)− 𝑥𝑙𝑗 ))
⃦⃦⃦

2
. (B.18)

To show the bound of |Γ𝛼
𝑞 (𝑠, 𝑥)|, we need the following lemma of which proof is given after the proof of

Proposition 2.2.

Lemma B.2. Let 𝑞 = 0, 1, . . . , 𝑖 and 𝛼 be a multi-index such that |𝛼| = 1, 2. Then, when 𝑧 = 𝑥, we have⃦⃦⃦
(𝑃 𝑖,𝑧

𝑠 𝜙)(𝑋(𝑡− 𝑠, 𝑥))
⃦⃦⃦

2
≤ 𝐶‖𝜙‖∞𝑠

2𝑙−𝑟
2 (𝑡− 𝑠)

𝑝
2 , (B.19)

where 𝑙, 𝑟 ≥ 1 𝑝 ≥ 0 satisfy 2𝑙 − 𝑟 + 𝑝 ≥ 𝑖, and⃦⃦⃦
𝐻𝛼(𝑋(𝑡− 𝑠, 𝑥), 𝑔(𝑋(𝑡− 𝑠, 𝑥))

2𝑚+2−𝑞∏︁
𝑗=1

(𝑋 𝑙𝑗 (𝑡− 𝑠, 𝑥)− 𝑧𝑙𝑗 ))
⃦⃦⃦

2
≤ 𝐶(𝑡− 𝑠)

2𝑚−𝑖
2 , (B.20)

where 𝐶 > 0 is a constant independent of 𝑥, 𝑠 and 𝑡.
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Using (B.19) and (B.20) in the above lemma, we have for any 𝑞 = 0, 1, . . . , 𝑖 and 𝛼 be a multi-index such that
|𝛼| = 1, 2, ⃒⃒⃒⃒∫︁ 𝑡

0

Γ𝛼
𝑞 (𝑠, 𝑥) d𝑠

⃒⃒⃒⃒
≤ 𝐶‖𝜙‖∞

∫︁ 𝑡

0

(𝑡− 𝑠)
2𝑚−𝑖+𝑝

2 𝑠
2𝑙−𝑟

2 d𝑠

≤ 𝐶‖𝜙‖∞𝑡
2𝑚−𝑖+(2𝑙−𝑟+𝑝)+2

2 ≤ 𝐶‖𝜙‖∞𝑡
2𝑚−𝑖+𝑖+2

2 = 𝐶‖𝜙‖∞𝑡𝑚+1,

since 2𝑙 − 𝑟 + 𝑝 ≥ 𝑖. Therefore, the proof of Proposition 2.2 is completed. �

Proof of Lemma B.2. By Lemma B.1 and Hölder’s estimate, we have ‖(𝑃 𝑖,𝑧
𝑠 𝜙)(𝑋(𝑡 − 𝑠, 𝑥))‖2 ≤

𝐶‖𝜕𝛾𝑃 0,𝑧
𝑠 𝜙‖∞𝑠𝑙

∏︀𝑝
𝑖=1 ‖𝑋 𝑙𝑗 (𝑡 − 𝑠, 𝑥) − 𝑧𝑙𝑗‖𝑟𝑖

for some 𝑝, 𝑙 ∈ N, 𝑟𝑖 > 1, 𝑖 = 1, . . . , 𝑝 and a multi-index 𝛾 of
the length |𝛾| = 𝑟 satisfying 2𝑙 − 𝑟 + 𝑝 ≥ 𝑖. Then when 𝑧 = 𝑥 we have

‖(𝑃 𝑖,𝑧
𝑠 𝜙)(𝑋(𝑡− 𝑠, 𝑥))‖2 ≤ 𝐶‖𝜕𝛾𝑃 0,𝑧

𝑠 𝜙‖∞𝑠𝑙(𝑡− 𝑠)
𝑝
2 ≤ 𝐶 ′‖𝜙‖∞𝑠

2𝑙−|𝛾|
2 (𝑡− 𝑠)

𝑝
2 ,

where we used the basic estimates ‖𝜕𝛾𝑃 0,𝑧
𝑠 𝜙‖∞ ≤ 𝐶‖𝜙‖∞𝑠−

𝑟
2 and ‖𝑋 𝑙(𝑡 − 𝑠, 𝑥) − 𝑥𝑙‖𝜅 ≤ 𝐶(𝑡 − 𝑠)1/2,

𝜅 > 1. Furthermore, we have ‖𝐻𝛼(𝑋(𝑡 − 𝑠, 𝑥), 𝑔(𝑋(𝑡 − 𝑠, 𝑥))
∏︀2𝑚+2−𝑞

𝑗=1 (𝑋 𝑙𝑗 (𝑡 − 𝑠, 𝑥) − 𝑥𝑙𝑗 ))‖2 ≤ 𝐶(𝑡 −
𝑠)−|𝛼|/2‖

∏︀2𝑚+2−𝑞
𝑗=1 (𝑋 𝑙𝑗 (𝑡− 𝑠, 𝑥)− 𝑥𝑙𝑗 ))‖|𝛼|,𝜅 for some 𝜅 > 1. Then, when 𝑧 = 𝑥,⃦⃦⃦⃦

⃦⃦𝐻𝛼

⎛⎝𝑋(𝑡− 𝑠, 𝑥), 𝑔(𝑋(𝑡− 𝑠, 𝑥))
2𝑚+2−𝑞∏︁

𝑗=1

(𝑋 𝑙𝑗 (𝑡− 𝑠, 𝑥)− 𝑧𝑙𝑗 )

⎞⎠⃦⃦⃦⃦⃦⃦
2

≤ 𝐶(𝑡− 𝑠)
2𝑚+2−𝑞−|𝛼|

2 ≤ 𝐶(𝑡− 𝑠)
2𝑚+2−𝑖−2

2 ≤ 𝐶(𝑡− 𝑠)
2𝑚−𝑖

2 .

�

Appendix C. Proof of Proposition 2.3

From the definition of {𝑃 𝑖,𝑧
𝑡 }𝑡 given in (B.1) it holds that for a bounded and measurable 𝜙 : R𝑁 → R,

2𝑚+1∑︁
𝑖=1

𝑃 𝑖,𝑧
𝑡 𝜙(𝑥)|𝑧=𝑥 (C.1)

=
2𝑚+1∑︁
𝑖=1

∑︁
𝑖≤
∑︀𝑖

𝑗=1 𝑘𝑗≤2𝑚+1

∫︁ 𝑡

0

∫︁ 𝑡

𝑡𝑖

. . .

∫︁ 𝑡

𝑡2

𝑃 0,𝑧
𝑡𝑖

L 𝑧
𝑘1
𝑃 0,𝑧

𝑡𝑖−1−𝑡𝑖
L 𝑧

𝑘2
. . .L 𝑧

𝑘𝑖
𝑃 0,𝑧

𝑡−𝑡1𝜙(𝑥) d𝑡1 . . . d𝑡𝑖|𝑧=𝑥, 𝑡 > 0, 𝑥 ∈ R𝑁 .

Using the Baker–Campbell–Hausdorff formula for 𝑃 0,𝑧
𝑡𝑖

L 𝑧
𝑘1
𝑃 0,𝑧

𝑡𝑖−1−𝑡𝑖
L 𝑧

𝑘2
. . .L 𝑧

𝑘𝑖
𝑃 0,𝑧

𝑡−𝑡1𝜙(𝑥) in (C.1), we obtain

𝑃 0,𝑧
𝑡𝑖

L 𝑧
𝑘1
𝑃 0,𝑧

𝑡𝑖−1−𝑡𝑖
L 𝑧

𝑘2
. . .L 𝑧

𝑘𝑖
𝑃 0,𝑧

𝑡−𝑡1𝜙(𝑥) (C.2)

= 𝑒𝑡𝑖L
𝑧
0 L𝑘1𝑒

(𝑡𝑖−1−𝑡𝑖)L
𝑧
0 L𝑘2 . . .L𝑘𝑖

𝑒(𝑡−𝑡1)L
𝑧
0 𝜙(𝑥)

=
𝑖∏︁

𝑙=1

⎛⎜⎝ 𝑘𝑙∑︁
𝛼=0

(𝑡𝑖+1−𝑙)𝛼

𝛼!
[L 𝑧

0 , [L
𝑧
0 , . . . , [L

𝑧
0 ,L

𝑧
𝑘𝑙

]] . . .]]⏟  ⏞  
𝛼-times

⎞⎟⎠𝑃 0,𝑧
𝑡 𝜙(𝑥)

=
∑︁

0≤𝛼1≤𝑘1
...

0≤𝛼𝑖≤𝑘𝑖

(𝑡1)𝛼𝑖(𝑡2)𝛼𝑖−1 . . . (𝑡𝑖)𝛼1

𝛼1!𝛼2! . . . 𝛼𝑖!

𝑖∏︁
𝑙=1

⎛⎜⎝[L 𝑧
0 , [L

𝑧
0 , . . . , [L

𝑧
0 ,L

𝑧
𝑘𝑙

]] . . .]]⏟  ⏞  
𝛼𝑙-times

⎞⎟⎠𝑃 0,𝑧
𝑡 𝜙(𝑥).
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On the second equation of (C.2), the summation is truncated for all 𝑗 > 𝑘𝑙 due to (A.2). Also

[L 𝑧
0 , [L

𝑧
0 , . . . , [L

𝑧
0 ,L

𝑧
𝑘𝑙

]] . . .]]⏟  ⏞  
𝛼-times

= L𝑘𝑙
(C.3)

is used in (C.2) when 𝛼 = 0. Hence, substituting the equation (C.2) into (C.1), we have

2𝑚+1∑︁
𝑖=0

𝑃 𝑖,𝑧
𝑡 𝜙(𝑥)|𝑧=𝑥 (C.4)

= 𝑃 0,𝑧
𝑡 𝜙(𝑥)|𝑧=𝑥 +

2𝑚+1∑︁
𝑖=1

∑︁
𝑖≤
∑︀𝑖

𝑗=1 𝑘𝑗≤2𝑚+1

∑︁
0≤𝛼1≤𝑘1

...
0≤𝛼𝑖≤𝑘𝑖

∫︁ 𝑡

0

∫︁ 𝑡

𝑡𝑖

. . .

∫︁ 𝑡

𝑡2

(𝑡1)𝛼𝑖(𝑡2)𝛼𝑖−1 . . . (𝑡𝑖)𝛼1

𝛼1!𝛼2! . . . 𝛼𝑖!
d𝑡1. . . d𝑡𝑖

×
𝑖∏︁

𝑙=1

⎛⎜⎝[L 𝑧
0 , [L

𝑧
0 ,. . .,[L

𝑧
0 ,L

𝑧
𝑘𝑙

]]. . .]]⏟  ⏞  
𝛼𝑙-times

⎞⎟⎠𝑃 0,𝑧
𝑡 𝜙(𝑥)|𝑧=𝑥

= 𝑃 0,𝑧
𝑡 𝜙(𝑥)|𝑧=𝑥

+
2𝑚+1∑︁
𝑖=1

∑︁
𝑖≤
∑︀𝑖

𝑗=1 𝑘𝑗≤2𝑚+1

∑︁
1≤𝛼1≤𝑘1
0≤𝛼2≤𝑘2

...
0≤𝛼𝑖≤𝑘𝑖

𝑡
∑︀𝑖

𝑙=1 𝛼𝑙+𝑖

𝛼!
𝐼(𝛼)

𝑖∏︁
𝑙=1

⎛⎜⎝[L 𝑧
0 , [L

𝑧
0 , . . . , [L

𝑧
0 ,L

𝑧
𝑘𝑙

]] . . .]]⏟  ⏞  
𝛼𝑙-times

⎞⎟⎠𝑃 0,𝑧
𝑡 𝜙(𝑥)|𝑧=𝑥,

where 𝐼(𝛼) is given by (2.20). Note that we obtained the second equation through the changing variables in the
multiple time integral: 𝑡𝑘 ↦→ 𝑡𝑡𝑘, 𝑘 = 1, 2, . . . , 𝑖, and we took the summation for 𝛼1 ≥ 1 since whenever 𝛼1 = 0,

L 𝑧
𝑘1

𝑖∏︁
𝑙=2

⎛⎜⎝[L 𝑧
0 , [L

𝑧
0 , . . . , [L

𝑧
0 ,L

𝑧
𝑘𝑙

]] . . .]]⏟  ⏞  
𝛼𝑙-times

⎞⎟⎠𝑃 0,𝑧
𝑡 𝜙(𝑥)|𝑧=𝑥 = 0.

Then, we decompose the term (C.4) as follows:

𝑃 0,𝑧
𝑡 𝜙(𝑥)|𝑧=𝑥 +

𝑚−1∑︁
𝑖=1

∑︁
𝑖≤
∑︀𝑖

𝑗=1 𝑘𝑗≤2𝑚+1

∑︁
1≤𝛼1≤𝑘1
0≤𝛼2≤𝑘2

...
0≤𝛼𝑖≤𝑘𝑖∑︀𝑖
𝑙=1 𝛼𝑙+𝑖≤𝑚

𝑡
∑︀𝑖

𝑙=1 𝛼𝑙+𝑖

𝛼!
𝐼(𝛼)

𝑖∏︁
𝑙=1

⎛⎜⎝[L 𝑧
0 , [L 𝑧

0 , . . . , [L 𝑧
0 , L 𝑧

𝑘𝑙
]] . . .]]⏟  ⏞  

𝛼𝑙-times

⎞⎟⎠𝑃 0,𝑧
𝑡 𝜙(𝑥)|𝑧=𝑥

(C.5)

+

𝑚−1∑︁
𝑖=1

∑︁
𝑖≤
∑︀𝑖

𝑗=1 𝑘𝑗≤2𝑚+1

∑︁
1≤𝛼1≤𝑘1
0≤𝛼2≤𝑘2

...
0≤𝛼𝑖≤𝑘𝑖∑︀𝑖
𝑙=1 𝛼𝑙+𝑖>𝑚

𝑡
∑︀𝑖

𝑙=1 𝛼𝑙+𝑖

𝛼!
𝐼(𝛼)

𝑖∏︁
𝑙=1

⎛⎜⎝[L 𝑧
0 , [L 𝑧

0 , . . . , [L 𝑧
0 , L 𝑧

𝑘𝑙
]] . . .]]⏟  ⏞  

𝛼𝑙-times

⎞⎟⎠𝑃 0,𝑧
𝑡 𝜙(𝑥)|𝑧=𝑥 (C.6)

+

2𝑚+1∑︁
𝑖=𝑚

∑︁
𝑖≤
∑︀𝑖

𝑗=1 𝑘𝑗≤2𝑚+1

∑︁
1≤𝛼1≤𝑘1
0≤𝛼2≤𝑘2

...
0≤𝛼𝑖≤𝑘𝑖

𝑡
∑︀𝑖

𝑙=1 𝛼𝑙+𝑖

𝛼!
𝐼(𝛼)

𝑖∏︁
𝑙=1

⎛⎜⎝[L 𝑧
0 , [L 𝑧

0 , . . . , [L 𝑧
0 , L 𝑧

𝑘𝑙
]] . . .]]⏟  ⏞  

𝛼𝑙-times

⎞⎟⎠𝑃 0,𝑧
𝑡 𝜙(𝑥)|𝑧=𝑥. (C.7)
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Therefore, it is easy to see that
∑︀2𝑚+1

𝑖=0 𝑃 𝑖,𝑧
𝑡 𝜙(𝑥)|𝑧=𝑥 is given as the sum of terms (2.47), (2.48) and (2.49).

Furthermore, it is clear that all terms in (C.6) and (C.7) are given as

𝑡𝑚+1𝑎(𝑡)𝑏(𝑥)𝜕𝛽𝑃 0,𝑧
𝑡 𝜙(𝑥)|𝑧=𝑥,

for some multi-index 𝛽 ∈ {1, 2, . . . , 𝑁}|𝛽|, a non-decreasing function 𝑎(·) and 𝑏 ∈ 𝐶∞𝑏 (R𝑁 ). �

Appendix D. Proof of Lemma 2.1

We will use an abbreviate notation 𝐵(𝑗−1) 𝑇
𝑛 ,𝑗 𝑇

𝑛
for the Brownian increment 𝐵𝑗𝑇/𝑛−𝐵(𝑗−1)𝑇/𝑛 for 𝑗 = 1, . . . , 𝑛.

Let 𝑝 = 2𝑒, 𝑒 ∈ N. We show that there exist constants 𝐶, 𝑐 > 0 such that

𝐸

⎡⎣⃒⃒⃒⃒⃒⃒ 𝐽∏︁
𝑗=1

{︂
1 + 𝜋

(𝑚),𝑋̄(𝑛)((𝑗−1) 𝑇
𝑛 ,𝑥)

𝑇/𝑛 (𝐵(𝑗−1) 𝑇
𝑛 ,𝑗 𝑇

𝑛
)
}︂⃒⃒⃒⃒⃒⃒

𝑝⎤⎦
+

𝐾∑︁
𝑖=1

𝐸

⎡⎣⃦⃦⃦⃦⃦⃦𝐷𝑖
𝐽∏︁

𝑗=1

{︂
1 + 𝜋

(𝑚),𝑋̄(𝑛)((𝑗−1) 𝑇
𝑛 ,𝑥)

𝑇/𝑛 (𝐵(𝑗−1) 𝑇
𝑛 ,𝑗 𝑇

𝑛
)
}︂⃦⃦⃦⃦⃦⃦

𝑝

𝐻⊗𝑖

⎤⎦ ≤ 𝐶 (1 + 𝑐𝑇/𝑛)𝐽
, (D.1)

for 𝐽 = 1, . . . , 𝑛 and 𝐾 ∈ N. If the inequality (D.1) holds, we reach to the conclusion:⃦⃦⃦⃦
⃦⃦ 𝐽∏︁

𝑗=1

{︁
1 + 𝜋

(𝑚),𝑋̄(𝑛)((𝑗−1)𝑇/𝑛,𝑥)
𝑇/𝑛 (𝐵(𝑗−1) 𝑇

𝑛 ,𝑗 𝑇
𝑛

)
}︁⃦⃦⃦⃦⃦⃦

𝐾,𝑝

≤ 𝐶 (1 + 𝑐𝑇/𝑛)𝐽/𝑝 ≤ 𝐶 (1 + 𝑐𝑇/𝑛)𝑛 ≤ 𝐶𝑒𝑐𝑇 . (D.2)

We first note that 𝜋(𝑚),𝑋̄(𝑛)((𝑗−1) 𝑇
𝑛 ,𝑥)

𝑇/𝑛 (𝐵(𝑗−1) 𝑇
𝑛 ,𝑗 𝑇

𝑛
) is given by the sum of Wiener functionals of the form:

𝑔(𝑋̄(𝑛)((𝑗 − 1)𝑇/𝑛, 𝑥))(𝑇/𝑛)𝑟P𝑖(𝐵(𝑗−1) 𝑇
𝑛 ,𝑗 𝑇

𝑛
), 𝑟 + 𝑖 ≥ 2, 𝑟 ∈ Z, 𝑖 ∈ N ∪ {0},

where 𝑔 ∈ 𝐶∞𝑏 (R𝑁 ) and P𝑖 : R𝑑 ∋ 𝜉 ↦→ P𝑖(𝜉) =
∏︀𝑑

𝑗=1 𝜉
𝑖𝑗

𝑗 with 𝑖1 + . . .+ 𝑖𝑑 = 𝑖.
First, we show the bound for the first term of the left-hand side of (D.1). Let ℱ𝑡 := 𝜎(𝐵𝑠; 𝑠 ≤ 𝑡), 𝑡 ≤ 𝑇 . Due

to the tower property of conditional expectation, we obtain

𝐸

⎡⎣⃒⃒⃒⃒⃒⃒ 𝐽∏︁
𝑗=1

(︂
1 + 𝜋

(𝑚),𝑋̄(𝑛)((𝑗−1) 𝑇
𝑛 ,𝑥)

𝑇/𝑛 (𝐵(𝑗−1) 𝑇
𝑛 ,𝑗 𝑇

𝑛
)
)︂⃒⃒⃒⃒⃒⃒

𝑝⎤⎦ (D.3)

= 𝐸

⎡⎣⃒⃒⃒⃒⃒⃒𝐽−1∏︁
𝑗=1

(︂
1 + 𝜋

(𝑚),𝑋̄(𝑛)((𝑗−1) 𝑇
𝑛 ,𝑥)

𝑇/𝑛 (𝐵(𝑗−1) 𝑇
𝑛 ,𝑗 𝑇

𝑛
)
)︂⃒⃒⃒⃒⃒⃒

𝑝

𝐸

[︂⃒⃒⃒
1 + 𝜋

(𝑚),𝑋̄(𝑛)((𝐽−1)𝑇/𝑛,𝑥)
𝑇/𝑛 (𝐵(𝐽−1) 𝑇

𝑛 ,𝐽 𝑇
𝑛

)
⃒⃒⃒𝑝 ⃒⃒⃒⃒
ℱ(𝐽−1) 𝑇

𝑛

]︂⎤⎦
= 𝐸

⎡⎣⃒⃒⃒⃒⃒⃒𝐽−1∏︁
𝑗=1

(︂
1 + 𝜋

(𝑚),𝑋̄(𝑛)((𝑗−1) 𝑇
𝑛 ,𝑥)

𝑇/𝑛 (𝐵(𝑗−1) 𝑇
𝑛 ,𝑗 𝑇

𝑛
)
)︂⃒⃒⃒⃒⃒⃒

𝑝

𝐸
[︁⃒⃒⃒

1 + 𝜋
(𝑚),𝜂
𝑇/𝑛 (𝐵(𝐽−1) 𝑇

𝑛 ,𝐽 𝑇
𝑛

)
⃒⃒⃒𝑝]︁⃒⃒⃒

𝜂=𝑋̄(𝑛)((𝐽−1) 𝑇
𝑛 ,𝑥)

⎤⎦ .
Noting that 𝐵1

𝑡 , 𝐵
2
𝑡 , . . . , 𝐵

𝑑
𝑡 are independent with each other and for 𝑡 > 0 and 𝑘 = 1, 2, . . . , 𝑑,

𝐸[(𝐵𝑘
𝑡 )𝑟] =

{︃
0 (𝑟 : odd)

𝑟!
2𝑟/2(𝑟/2)!

𝑡𝑟/2 (𝑟 : even)
, (D.4)



S354 Y. IGUCHI AND T. YAMADA

it follows that there exists a constant 𝑐 > 0 such that 𝐸[|1 + 𝜋
(𝑚),𝜂
𝑇/𝑛 (𝐵(𝐽−1) 𝑇

𝑛 ,𝐽 𝑇
𝑛

)|𝑝] ≤ 1 + 𝑐𝑇/𝑛 for all 𝜂 ∈ R𝑁

under the assumption that the coefficients 𝑏, 𝜎 and their derivatives are bounded. Then we have

𝐸

⎡⎣⃒⃒⃒⃒⃒⃒ 𝐽∏︁
𝑗=1

(︂
1 + 𝜋

(𝑚),𝑋̄(𝑛)((𝑗−1) 𝑇
𝑛 ,𝑥)

𝑇/𝑛 (𝐵(𝑗−1) 𝑇
𝑛 ,𝑗 𝑇

𝑛
)
)︂⃒⃒⃒⃒⃒⃒

𝑝⎤⎦ ≤ (1 + 𝑐𝑇/𝑛)𝐽 (D.5)

for some positive constant 𝑐 > 0.
Next, we assume 𝐾 = 1 and estimate the upper bound of

𝐸

⎡⎣⃦⃦⃦⃦⃦⃦𝐷 𝐽∏︁
𝑗=1

(︂
1 + 𝜋

(𝑚),𝑋̄(𝑛)((𝑗−1) 𝑇
𝑛 ,𝑥)

𝑇/𝑛 (𝐵(𝑗−1) 𝑇
𝑛 ,𝑗 𝑇

𝑛
)
)︂⃦⃦⃦⃦⃦⃦

𝑝

𝐻

⎤⎦
= 𝐸

⎡⎢⎣
⎛⎜⎝ 𝑑∑︁

𝑘=1

∫︁ 𝑇

0

⎛⎝𝐷𝑘,𝑡

⎧⎨⎩
𝐽∏︁

𝑗=1

(︂
1 + 𝜋

(𝑚),𝑋̄(𝑛)((𝑗−1) 𝑇
𝑛 ,𝑥)

𝑇/𝑛 (𝐵(𝑗−1) 𝑇
𝑛 ,𝑗 𝑇

𝑛
)
)︂⎫⎬⎭

⎞⎠2

d𝑡

⎞⎟⎠
𝑒⎤⎥⎦

with 𝑝 = 2𝑒. The chain rule of Malliavin derivative gives

∫︁ 𝑇

0

⎛

⎝𝐷𝑘,𝑡

⎧
⎨

⎩

𝐽∏︁

𝑗=1

(︂
1 + 𝜋

(𝑚),𝑋̄(𝑛)((𝑗−1) 𝑇
𝑛

,𝑥)
𝑇/𝑛

(︁
𝐵

(𝑗−1) 𝑇
𝑛

,𝑗 𝑇
𝑛

)︁)︂
⎫
⎬

⎭

⎞

⎠
2

d𝑡 (D.6)

=

∫︁ 𝑇

0

⃒⃒
⃒⃒
⃒⃒

⎧
⎨

⎩𝐷𝑘,𝑡

𝐽−1∏︁

𝑗=1

(︂
1 + 𝜋

(𝑚),𝑋̄(𝑛)((𝑗−1) 𝑇
𝑛

,𝑥)
𝑇/𝑛

(︁
𝐵

(𝑗−1) 𝑇
𝑛

,𝑗 𝑇
𝑛

)︁)︂
⎫
⎬

⎭

(︂
1 + 𝜋

(𝑚),𝑋̄(𝑛)((𝐽−1) 𝑇
𝑛

,𝑥)
𝑇/𝑛

(︁
𝐵

(𝐽−1) 𝑇
𝑛

,𝐽 𝑇
𝑛

)︁)︂

+

⎧
⎨

⎩

𝐽−1∏︁

𝑗=1

(︂
1 + 𝜋

(𝑚),𝑋̄(𝑛)((𝑗−1) 𝑇
𝑛

,𝑥)
𝑇/𝑛

(︁
𝐵

(𝑗−1) 𝑇
𝑛

,𝑗 𝑇
𝑛

)︁)︂
⎫
⎬

⎭𝐷𝑘,𝑡𝜋
(𝑚),𝑋̄(𝑛)((𝐽−1) 𝑇

𝑛
,𝑥)

𝑇/𝑛

(︁
𝐵

(𝐽−1) 𝑇
𝑛

,𝐽 𝑇
𝑛

)︁
⃒⃒
⃒⃒
⃒⃒

2

d𝑡

=
𝐽∑︁

𝑙1,𝑙2=1

⎛

⎜⎜⎜⎝
∏︁

𝑗1∈{1,...,𝐽}∖{𝑙1}
𝑗2∈{1,...,𝐽}∖{𝑙2}

(︂
1 + 𝜋

(𝑚),𝑋̄(𝑛)((𝑗1−1) 𝑇
𝑛

,𝑥)
𝑇/𝑛

(︁
𝐵

(𝑗1−1) 𝑇
𝑛

,𝑗1
𝑇
𝑛

)︁)︂(︁
1 + 𝜋(𝑚),𝑋̄(𝑛)((𝑗2−1) 𝑇

𝑛
,𝑥)
(︁
𝐵

(𝑗2−1) 𝑇
𝑛

,𝑗2
𝑇
𝑛

)︁)︁

⎞

⎟⎟⎟⎠

×
∫︁ 𝑇

0
𝐷𝑘,𝑡

{︂
𝜋

(𝑚),𝑋̄(𝑛)((𝑙1−1) 𝑇
𝑛

,𝑥)
𝑇/𝑛

(︁
𝐵

(𝑙1−1) 𝑇
𝑛

,𝑙1
𝑇
𝑛

)︁}︂
𝐷𝑘,𝑡

{︂
𝜋

(𝑚),𝑋̄(𝑛)((𝑙2−1) 𝑇
𝑛

,𝑥)
𝑇/𝑛

(︁
𝐵

(𝑙2−1) 𝑇
𝑛

,𝑙2
𝑇
𝑛

)︁}︂
d𝑡.

In particular, 𝐷𝑘,𝑡{𝜋
(𝑚),𝑋̄(𝑛)((𝑙−1) 𝑇

𝑛 ,𝑥)

𝑇/𝑛 (𝐵(𝑙−1) 𝑇
𝑛 ,𝑙 𝑇

𝑛
)} is reduced to the following term:

𝐷𝑘,𝑡𝑔
(︁
𝑋̄(𝑛)((𝑙 − 1)𝑇/𝑛, 𝑥)

)︁
(𝑇/𝑛)𝑟P𝑖

(︁
𝐵(𝑙−1) 𝑇

𝑛 ,𝑙 𝑇
𝑛

)︁
(D.7)

= 𝑔
(︁
𝑋̄(𝑛)((𝑙 − 1)𝑇/𝑛, 𝑥)

)︁
(𝑇/𝑛)𝑟𝜕𝑘P𝑖

(︁
𝐵(𝑙−1) 𝑇

𝑛 ,𝑙 𝑇
𝑛

)︁
1((𝑙−1)𝑇/𝑛,𝑙𝑇/𝑛](𝑡)

+
𝑁∑︁

𝑞=1

𝜕𝑞𝑔
(︁
𝑋̄(𝑛)((𝑙 − 1)𝑇/𝑛, 𝑥)

)︁
𝐷𝑘,𝑡𝑋̄

(𝑛),𝑞((𝑙 − 1)𝑇/𝑛, 𝑥)1(0,(𝑙−1)𝑇/𝑛](𝑡)(𝑇/𝑛)𝑟P𝑖
(︁
𝐵(𝑙−1) 𝑇

𝑛 ,𝑙 𝑇
𝑛

)︁
.

Using again the argument of conditional expectation in (D.3) with (D.4) inductively, we obtain

𝐸

⎡⎢⎣
⎛⎜⎝∫︁ 𝑇

0

⎛⎝𝐷𝑡

⎧⎨⎩
𝐽∏︁

𝑗=1

(︂
1 + 𝜋

(𝑚),𝑋̄(𝑛)((𝑗−1) 𝑇
𝑛 ,𝑥)

𝑇/𝑛

(︁
𝐵(𝑗−1) 𝑇

𝑛 ,𝑗 𝑇
𝑛

)︁)︂⎫⎬⎭
⎞⎠2

d𝑡

⎞⎟⎠
𝑒⎤⎥⎦ ≤ 𝐶

(︂
1 + 𝑐

𝑇

𝑛

)︂𝐽

, (D.8)
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by applying the estimate sup1≤𝑗≤𝑛 ‖
∫︀ 𝑇

0
|𝐷𝑡𝑋̄

(𝑛)((𝑗 − 1)𝑇/𝑛, 𝑥)|2 d𝑡‖𝑝 ≤ 𝑐′ (by Bally and Talay [3]), where
constants 𝐶, 𝑐, 𝑐′ > 0 are independent of 𝐽 and 𝑛. Therefore, there exist 𝐶, 𝑐 > 0 (which are independent of 𝐽
and 𝑛) such that

𝐸

⎡⎢⎢⎣
⎛⎜⎝∫︁ 𝑇

0

⎛⎝𝐷𝑡

⎧⎨⎩
𝐽∏︁

𝑗=1

(︂
1 + 𝜋

(𝑚),𝑋̄(𝑛)((𝑗−1) 𝑇
𝑛 ,𝑥)

𝑇/𝑛

(︁
𝐵𝑗 𝑇

𝑛 ,(𝑗−1) 𝑇
𝑛

)︁)︂⎫⎬⎭
⎞⎠2

d𝑡

⎞⎟⎠
𝑝/2
⎤⎥⎥⎦ ≤ 𝐶𝑒𝑐𝑇 , (D.9)

for all 𝐽 = 1, . . . , 𝑛. For 𝐾 ≥ 2, we proceed in the same way and obtain the bound (D.1). �

Appendix E. Proof of Lemma 2.2

We prepare some notation and basic facts on Watanabe distributions on Wiener space. Let us denote the
Dirac delta function mass at 𝑦 ∈ R𝑁 by 𝛿𝑦 which is an element of the space of Schwartz tempered distributions
𝒮 ′(R𝑁 ), the dual of the space of Schwartz rapidly decreasing functions 𝒮(R𝑁 ). We define the space of Watanabe
distributions D−∞ as the dual of D∞ and denote by −∞⟨Φ, 𝐺⟩∞ the coupling between Φ ∈ D−∞ and 𝐺 ∈ D∞.
Note that the composition 𝛿𝑦(𝐹 ) of 𝛿𝑦 and a nondegenerate 𝐹 ∈ (D∞)𝑁 is well-defined as an element of D−∞
and we have for any bounded and measurable function 𝑓 : R𝑁 → R and 𝐺 ∈ D∞,

𝐸[𝑓(𝐹 )𝐺] =
∫︁

R𝑁

𝑓(𝑦)−∞⟨𝛿𝑦(𝐹 ), 𝐺⟩∞ d𝑦. (E.1)

Furthermore, for 𝑆 ∈ 𝒮 ′(R𝑁 ), it holds that

−∞⟨𝜕𝑖𝑆(𝐹 ), 𝐺⟩∞ = −∞⟨𝑆(𝐹 ), 𝐻(𝑖)(𝐹,𝐺)⟩∞ = 𝒮′⟨𝑆,𝐸[𝐻(𝑖)(𝐹,𝐺)|𝐹 = ·]𝑝𝐹 (·)⟩𝒮 , (E.2)

where 𝒮′⟨·, ·⟩𝒮 is the coupling on 𝒮 ′(R𝑁 )× 𝒮(R𝑁 ), and 𝑝𝐹 is the density of 𝐹 .
Hereafter we write 𝑋̄𝑥

𝑡 for 𝑋̄(𝑡, 𝑥) = 𝑋̄𝑧(𝑡, 𝑥)|𝑧=𝑥 for 𝑡 > 0, 𝑥 ∈ R𝑁 . We give a representation of
(𝑄(𝑚)

𝑇/𝑛)𝑛−1Ψ𝑓
𝑇/𝑛(𝑥) where Ψ𝑓

𝑡 (·) =
∑︀

𝑙≤𝜈ℎ𝑙(𝑡)𝑔𝑙(·)𝜕𝛽(𝑙)
𝑃 0,𝑧

𝑡 𝑓(·)|𝑧=·. Since we have for 𝛽 = (𝛽1, . . . , 𝛽𝑒), 𝑒 ∈ N,

𝜕𝛽𝑃 0,𝑧
𝑡 𝑓(𝑥)|𝑧=𝑥 =

𝜕𝑒

𝜕𝑥𝛽1 . . . 𝜕𝑥𝛽𝑒

∫︁
R𝑁

𝑓(𝑦)−∞⟨𝛿𝑦(𝑋̄𝑧(𝑡, 𝑥)), 1⟩∞ d𝑦|𝑧=𝑥 (E.3)

=
𝜕𝑒−1

𝜕𝑥𝛽1 . . . 𝜕𝑥𝛽𝑒−1

∫︁
R𝑁

𝑓(𝑦)
𝑁∑︁

𝑘=1

−∞⟨𝜕𝑘𝛿𝑦(𝑋̄𝑧(𝑡, 𝑥)),1𝑘=𝛽𝑒⟩∞ d𝑦|𝑧=𝑥

=
𝜕𝑒−1

𝜕𝑥𝛽1 . . . 𝜕𝑥𝛽𝑒−1

∫︁
R𝑁

𝑓(𝑦)−∞⟨𝜕𝛽𝑒
𝛿𝑦(𝑋̄𝑧(𝑡, 𝑥)), 1⟩∞ d𝑦|𝑧=𝑥

=
∫︁

R𝑁

𝑓(𝑦)−∞⟨𝜕𝛽𝛿𝑦(𝑋̄𝑧(𝑡, 𝑥)), 1⟩∞ d𝑦|𝑧=𝑥

=
∫︁

R𝑁

𝑓(𝑦)−∞⟨𝛿𝑦(𝑋̄𝑧(𝑡, 𝑥)), 𝐻𝛽(𝑋̄𝑧(𝑡, 𝑥), 1)⟩∞ d𝑦|𝑧=𝑥,

one gets

(𝑄(𝑚)
𝑇/𝑛)𝑛−1Ψ𝑓

𝑇/𝑛(𝑥) (E.4)

= 𝐸

⎡⎣Ψ𝑓
𝑇/𝑛

(︁
𝑋̄(𝑛)((𝑛− 1)𝑇/𝑛, 𝑥)

)︁ 𝑛−1∏︁
𝑗=1

(︁
1 + 𝜋

(𝑚),𝑋̄(𝑛)((𝑗−1)𝑇/𝑛,𝑥)
𝑇/𝑛 (𝐵𝑗𝑇/𝑛 −𝐵(𝑗−1)𝑇/𝑛)

)︁⎤⎦
=
∑︁
𝑙≤𝜈

ℎ𝑙(𝑇/𝑛)𝐸
[︂∫︁

R𝑁

𝑓(𝑦)−∞
⟨
𝛿𝑦

(︁
𝑋̄𝜉

𝑇/𝑛

)︁
, 𝐻𝛽(𝑙)

(︁
𝑋̄𝜉

𝑇/𝑛, 1
)︁⟩

∞
d𝑦
⃒⃒⃒
𝜉=𝑋̄(𝑛)((𝑛−1)𝑇/𝑛,𝑥)

𝐺
(𝑛−1)
𝑙

]︂
,
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where the ℱ(𝑛−1)𝑇/𝑛-measurable random variable 𝐺(𝑛−1)
𝑙 ∈ D∞ is defined as

𝐺
(𝑛−1)
𝑙 = 𝑔𝑙(𝑋̄(𝑛)((𝑛− 1)𝑇/𝑛, 𝑥))

𝑛−1∏︁
𝑗=1

{︁
1 + 𝜋

(𝑚),𝑋̄(𝑛)((𝑗−1)𝑇/𝑛,𝑥)
𝑇/𝑛 (𝐵𝑗𝑇/𝑛 −𝐵(𝑗−1)𝑇/𝑛)

}︁
. (E.5)

Furthermore, using Fubini’s theorem, we obtain

𝐸

[︂∫︁
R𝑁

𝑓(𝑦)−∞
⟨
𝛿𝑦

(︁
𝑋̄𝜉

𝑇/𝑛

)︁
, 𝐻𝛽(𝑙)

(︁
𝑋̄𝜉

𝑇/𝑛, 1
)︁⟩

∞
d𝑦
⃒⃒⃒
𝜉=𝑋̄(𝑛)((𝑛−1)𝑇/𝑛,𝑥)

𝐺
(𝑛−1)
𝑙

]︂
=
∫︁

R𝑁

𝑓(𝑦)𝐸
[︁
−∞

⟨
𝛿𝑦

(︁
𝑋̄𝜉

𝑇/𝑛

)︁
, 𝐻𝛽(𝑙)

(︁
𝑋̄𝜉

𝑇/𝑛, 1
)︁⟩

∞

⃒⃒
𝜉=𝑋̄(𝑛)((𝑛−1)𝑇/𝑛,𝑥)

𝐺
(𝑛−1)
𝑙

]︁
d𝑦.

If we show that it holds

𝐸
[︁
−∞

⟨
𝛿𝑦

(︁
𝑋̄𝜉

𝑇/𝑛

)︁
, 𝐻𝛽(𝑙)

(︁
𝑋̄𝜉

𝑇/𝑛, 1
)︁⟩

∞

⃒⃒
𝜉=𝑋̄(𝑛)((𝑛−1)𝑇/𝑛,𝑥)

𝐺
(𝑛−1)
𝑙

]︁
(E.6)

= 𝐸
[︁
𝛿𝑦

(︁
𝑋̄(𝑛)(𝑇, 𝑥)

)︁
𝐻𝛽(𝑙)

(︁
𝑋̄(𝑛)(𝑇, 𝑥), 𝐺(𝑛−1)

𝑙

)︁]︁
,

then from the equations (E.4) and (E.6) we get

(𝑄(𝑚)
𝑇/𝑛)𝑛−1Ψ𝑓

𝑇/𝑛(𝑥) =
∑︁
𝑙≤𝜈

ℎ𝑙(𝑇/𝑛)
∫︁

R𝑁

𝑓(𝑦)−∞
⟨
𝛿𝑦

(︁
𝑋̄(𝑛)(𝑇, 𝑥)

)︁
, 𝐻𝛽(𝑙)

(︁
𝑋̄(𝑛)(𝑇, 𝑥), 𝐺(𝑛−1)

𝑙

)︁⟩
∞

d𝑦

=
∑︁
𝑙≤𝜈

ℎ𝑙(𝑇/𝑛)𝐸
[︁
𝑓
(︁
𝑋̄(𝑛)(𝑇, 𝑥)

)︁
𝐻𝛽(𝑙)

(︁
𝑋̄(𝑛)(𝑇, 𝑥), 𝐺(𝑛−1)

𝑙

)︁]︁
and easily reach to the conclusion with the same argument we gave in the last part of proof of Theorem 2.1.

In order to complete the proof, let us show that the equation (E.6) holds. We note that the distribution 𝛿𝑦
is represented as the weak derivative of Heaviside function, namely, 𝛿𝑦(·) = 𝜕𝛾𝑇𝑦(·), where 𝛾 = (1, 2, . . . , 𝑁)
and for 𝑥 ∈ R𝑁 , 𝑇𝑦(𝑥) = 1 if 𝑥𝑖 ≥ 𝑦𝑖 for all 𝑖 = 1, 2, . . . , 𝑁 and 𝑇𝑦(𝑥) = 0 otherwise. Then, we introduce the
mollifier of Heaviside function 𝑇𝑦 given by 𝑇 𝜀

𝑦 := 𝑇𝑦 * 𝜓𝜀 ∈ 𝐶∞(R𝑁 ) with some suitable smooth function 𝜓𝜀,
𝜀 > 0 on R𝑁 such that 𝑇 𝜀

𝑦 → 𝑇𝑦 (𝜀 → 0) where the limit is understood in the space of Schwartz distributions.
We consider the following function on R𝑁 depending on 𝜀 > 0:

𝐹 𝜀(𝑦) := 𝐸
[︁
−∞

⟨
𝜕𝛾𝑇 𝜀

𝑦

(︁
𝑋̄𝜉

𝑇/𝑛

)︁
, 𝐻𝛽(𝑙)

(︁
𝑋̄𝜉

𝑇/𝑛, 1
)︁⟩

∞

⃒⃒
𝜉=𝑋̄(𝑛)((𝑛−1)𝑇/𝑛,𝑥)

𝐺
(𝑛−1)
𝑙

]︁
, 𝑦 ∈ R𝑁 . (E.7)

From now on, we transform 𝐹 𝜀(𝑦) in two ways. First, we have

𝐹 𝜀(𝑦) = 𝐸
[︁
−∞

⟨
𝜕𝛽(𝑙)

𝜕𝛾𝑇 𝜀
𝑦

(︁
𝑋̄𝜉

𝑇/𝑛

)︁
, 1
⟩
∞

⃒⃒
𝜉=𝑋̄(𝑛)((𝑛−1)𝑇/𝑛,𝑥)

𝐺
(𝑛−1)
𝑙

]︁
(E.8)

= 𝐸
[︁
𝜕𝛽(𝑙)

𝜕𝛾𝑇 𝜀
𝑦

(︁
𝑋̄(𝑛)(𝑇, 𝑥)

)︁
𝐺

(𝑛−1)
𝑙

]︁
= 𝐸

[︁
𝑇 𝜀

𝑦

(︁
𝑋̄(𝑛)(𝑇, 𝑥)

)︁
𝐻𝛽(𝑙)*𝛾

(︁
𝑋̄(𝑛)(𝑇, 𝑥), 𝐺(𝑛−1)

𝑙

)︁]︁
,

where 𝛽(𝑙) * 𝛾 := (𝛽(𝑙)
1 , . . . , 𝛽

(𝑙)
𝑙 , 1, 2, . . . , 𝑁). On the other hand, we get

𝐹 𝜀(𝑦) = 𝐸
[︁
−∞

⟨
𝑇 𝜀

𝑦

(︁
𝑋̄𝜉

𝑇/𝑛

)︁
, 𝐻𝛽(𝑙)*𝛾

(︁
𝑋̄𝜉

𝑇/𝑛, 1
)︁⟩

∞

⃒⃒
𝜉=𝑋̄(𝑛)((𝑛−1)𝑇/𝑛,𝑥)

𝐺
(𝑛−1)
𝑙

]︁
. (E.9)

Now, we take the limit 𝜀 ↓ 0 for both terms (E.8) and (E.9). For (E.8), since 𝑇 𝜀
𝑦 is a bounded function and there

exists a constant 𝑀 > 0 such that |𝑇 𝜀
𝑦 (𝑋̄(𝑛)(𝑇, 𝑥)(𝜔))| ≤ 𝑀 for all 𝜔 ∈ Ω, 𝜀 > 0, the dominated convergence
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theorem allows us to exchange the limit and integration and get

lim
𝜀↓0

𝐸
[︁
𝑇 𝜀

𝑦

(︁
𝑋̄(𝑛)(𝑇, 𝑥)

)︁
𝐻𝛽(𝑙)*𝛾

(︁
𝑋̄(𝑛)(𝑇, 𝑥), 𝐺(𝑛−1)

𝑙

)︁]︁
(E.10)

= 𝐸
[︁
𝑇𝑦

(︁
𝑋̄(𝑛)(𝑇, 𝑥)

)︁
𝐻𝛽(𝑙)*𝛾

(︁
𝑋̄(𝑛)(𝑇, 𝑥), 𝐺(𝑛−1)

𝑙

)︁]︁
= 𝐸

[︁
𝛿𝑦

(︁
𝑋̄(𝑛)(𝑇, 𝑥)

)︁
𝐻𝛽(𝑙)

(︁
𝑋̄(𝑛)(𝑇, 𝑥), 𝐺(𝑛−1)

𝑙

)︁]︁
.

For (E.9), let ℎ𝜀
𝑦(𝜉) := −∞⟨𝑇 𝜀

𝑦 (𝑋̄𝜉
𝑇/𝑛), 𝐻𝛽(𝑙)*𝛾(𝑋̄𝜉

𝑇/𝑛, 1)⟩∞ = 𝐸[𝑇 𝜀
𝑦 (𝑋̄𝜉

𝑇/𝑛)𝐻𝛽(𝑙)*𝛾(𝑋̄𝜉
𝑇/𝑛, 1)], then there exists

constants 𝐶, 𝑞 > 0 (which do not depend on 𝜉 and 𝜀) such that

sup
𝜉∈R𝑁 ,𝜀>0

⃒⃒
ℎ𝜀

𝑦(𝜉)
⃒⃒
≤ sup

𝜉∈R𝑁 ,𝜀>0

{︁
‖𝑇 𝜀

𝑦 ‖∞‖𝐻𝛽(𝑙)*𝛾

(︁
𝑋̄𝜉

𝑇/𝑛, 1
)︁
‖1
}︁
≤ 𝐶

1
(𝑇/𝑛)𝑞

· (E.11)

Therefore when 𝜀 ↓ 0 we have

lim
𝜀↓0

𝐸[ℎ𝜀
𝑦(𝑍)𝐺] = 𝐸[lim

𝜀↓0
ℎ𝜀

𝑦(𝑍)𝐺] (E.12)

for 𝑍,𝐺 ∈ D∞. Also, since 𝑇 𝜀
𝑦 → 𝑇𝑦 in 𝒮 ′(R𝑁 ) (𝜀→ 0) we have

ℎ𝜀
𝑦(𝜉) = 𝒮′

⟨
𝑇 𝜀

𝑦 , 𝐸[𝐻𝛽(𝑙)*𝛾

(︁
𝑋̄𝜉

𝑇/𝑛, 1
)︁
|𝑋̄𝜉

𝑇/𝑛 = · ]𝑝𝑋̄𝜉
𝑇/𝑛(·)

⟩
𝒮

→ 𝒮′
⟨
𝑇𝑦, 𝐸[𝐻𝛽(𝑙)*𝛾

(︁
𝑋̄𝜉

𝑇/𝑛, 1
)︁
|𝑋̄𝜉

𝑇/𝑛 = · ]𝑝𝑋̄𝜉
𝑇/𝑛(·)

⟩
𝒮

(E.13)

by (E.2) and by the basic argument on the Schwartz distribution theory. Therefore, we get

lim
𝜀↓0

𝐸
[︁
−∞

⟨
𝑇 𝜀

𝑦

(︁
𝑋̄𝜉

𝑇/𝑛

)︁
, 𝐻𝛽(𝑙)*𝛾

(︁
𝑋̄𝜉

𝑇/𝑛, 1
)︁⟩

∞

⃒⃒
𝜉=𝑋̄(𝑛)((𝑛−1)𝑇/𝑛,𝑥)

𝐺
(𝑛−1)
𝑙

]︁
(E.14)

= lim
𝜀↓0

𝐸
[︁
ℎ𝜀

𝑦

(︁
𝑋̄(𝑛)((𝑛− 1)𝑇/𝑛, 𝑥)

)︁
𝐺

(𝑛−1)
𝑙

]︁
= 𝐸

[︂
lim
𝜀↓0

ℎ𝜀
𝑦

(︁
𝑋̄(𝑛)((𝑛− 1)𝑇/𝑛, 𝑥)

)︁
𝐺

(𝑛−1)
𝑙

]︂
= 𝐸

[︂
lim
𝜀↓0

−∞

⟨
𝑇 𝜀

𝑦

(︁
𝑋̄𝜉

𝑇/𝑛

)︁
, 𝐻𝛽(𝑙)*𝛾

(︁
𝑋̄𝜉

𝑇/𝑛, 1
)︁⟩

∞

⃒⃒
𝜉=𝑋̄(𝑛)((𝑛−1)𝑇/𝑛,𝑥)

𝐺
(𝑛−1)
𝑙

]︂
= 𝐸

[︁
−∞

⟨
𝑇𝑦

(︁
𝑋̄𝜉

𝑇/𝑛

)︁
, 𝐻𝛽(𝑙)*𝛾

(︁
𝑋̄𝜉

𝑇/𝑛, 1
)︁⟩

∞

⃒⃒
𝜉=𝑋̄(𝑛)((𝑛−1)𝑇/𝑛,𝑥)

𝐺
(𝑛−1)
𝑙

]︁
= 𝐸

[︁
−∞

⟨
𝛿𝑦

(︁
𝑋̄𝜉

𝑇/𝑛

)︁
, 𝐻𝛽(𝑙)

(︁
𝑋̄𝜉

𝑇/𝑛, 1
)︁⟩

∞

⃒⃒
𝜉=𝑋̄(𝑛)((𝑛−1)𝑇/𝑛,𝑥)

𝐺
(𝑛−1)
𝑙

]︁
.

In conclusion, we obtain

lim
𝜀↓0

𝐹 𝜀(𝑦) = 𝐸
[︁
𝛿𝑦

(︁
𝑋̄(𝑛)(𝑇, 𝑥)

)︁
𝐻𝛽(𝑙)

(︁
𝑋̄(𝑛)(𝑇, 𝑥), 𝐺(𝑛−1)

𝑙

)︁]︁
= 𝐸

[︁
−∞

⟨
𝛿𝑦

(︁
𝑋̄𝜉

𝑇/𝑛

)︁
, 𝐻𝛽(𝑙)

(︁
𝑋̄𝜉

𝑇/𝑛, 1
)︁⟩

∞

⃒⃒
𝜉=𝑋̄(𝑛)((𝑛−1)𝑇/𝑛,𝑥)

𝐺
(𝑛−1)
𝑙

]︁
, 𝑦 ∈ R𝑁 .

�

Appendix F. Proof of Theorem 3.1

We prepare the following three results which play an important role in the proof of Theorem 3.1.
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Lemma F.1. It holds that there exist constants 𝐶, 𝑐 > 0 such that

1

𝑟
𝑁
2

∫︁
RN

exp
(︂
−𝑐1

|𝑥− 𝑧|2

𝑟

)︂
exp

(︂
−𝑐2

|𝑦 − 𝑧|2

𝑠− 𝑟

)︂
d𝑧 ≤ 𝐶

(︂
𝑠− 𝑟

𝑠

)︂𝑁
2

exp
(︂
−𝑐 |𝑥− 𝑦|2

𝑠

)︂
(F.1)

for any constants 𝑐1, 𝑐2 > 0 and (𝑟, 𝑥, 𝑦, 𝑧) ∈ (0, 𝑠) × R𝑁 × R𝑁 × R𝑁 . Furthermore, it holds for any (𝑟, 𝑥, 𝑦) ∈
[0, 𝑠)× R𝑁 × R𝑁 and 𝑐 > 0,

𝐸

[︂
exp

(︂
−𝑐 |𝑦 − 𝑋̄(𝑛)(𝑟, 𝑥)|2

𝑠− 𝑟

)︂]︂
≤ 𝐾(𝑇 )

(︂
𝑠− 𝑟

𝑠

)︂𝑁
2

exp
(︂
−𝑐′ |𝑥− 𝑦|2

𝑠

)︂
, (F.2)

where 𝑐′ > 0 and 𝐾(·) is a non decreasing function.

Proof. See Gobet and Labart [9]. �

Lemma F.2 (Small time expansion of heat kernel). It holds for any (𝑡, 𝑥, 𝑦) ∈ (0, 1]× R𝑁 × R𝑁

𝑝𝑋
𝑡 (𝑥, 𝑦)− 𝑝

𝑋̄,(𝑚)
𝑡 (𝑥, 𝑦) = R𝑡(𝑥, 𝑦) + 𝑡𝑚+1Ψ𝑡(𝑥, 𝑦), (F.3)

where

|R𝑡(𝑥, 𝑦)| ≤ 𝐶𝑡𝑚+1 1

𝑡
𝑁
2

exp
(︂
−𝑐 |𝑦 − 𝑥|2

𝑡

)︂
(F.4)

with some constants 𝐶, 𝑐 > 0 and Ψ𝑡(𝑥, 𝑦) has the following representation:

Ψ𝑡(𝑥, 𝑦) =
∑︁
𝑙≤𝜈

ℎ𝑙(𝑡)𝑔𝑙(𝑥)𝜕𝛽𝑙𝑝𝑋̄𝑧

𝑡 (𝑥, 𝑦)|𝑧=𝑥 (F.5)

for some 𝜈 ∈ N, functions ℎ𝑙, 𝑙 ≤ 𝜈 at most polynomial growth, 𝑔𝑙 ∈ 𝐶∞𝑏 (R𝑁 ), 𝑙 ≤ 𝜈 and multi-indices
𝛽(𝑙) ∈ {1, 2, . . . , 𝑁}𝑙, 𝑙 ≤ 𝜈.

Proof. To give the upper bound of (F.4), it is enough to estimate⃒⃒⃒⃒
⃒
∫︁ 𝑡

0

𝑠𝑘𝐸

[︃
𝜕𝛼
(︁
𝑝𝑋̄𝑥

𝑠 (𝑋(𝑡− 𝑠, 𝑥), 𝑦)
)︁
𝑔(𝑋(𝑡− 𝑠, 𝑥))

𝑒∏︁
𝑖=1

(︀
𝑋 𝑙𝑖(𝑡− 𝑠, 𝑥)− 𝑥𝑙𝑖

)︀]︃
d𝑠

⃒⃒⃒⃒
⃒ (F.6)

=

⃒⃒⃒⃒
⃒
∫︁ 𝑡

0

𝑠𝑘𝐸
[︁
𝑝𝑋̄𝑥

𝑠 (𝑋(𝑡− 𝑠, 𝑥), 𝑦)𝐻𝛼

(︁
𝑋(𝑡− 𝑠, 𝑥), 𝑔(𝑋(𝑡− 𝑠, 𝑥))

𝑒∏︁
𝑖=1

(𝑋 𝑙𝑖(𝑡− 𝑠, 𝑥)− 𝑥𝑙𝑖)
)︁]︁

d𝑠

⃒⃒⃒⃒
⃒,

for 𝑘 ≥ 1, 𝑒 ≥ 0 and a multi-index 𝛼 satisfying 𝑘 + 𝑒−|𝛼|
2 ≥ 𝑚, by (B.16) with Lemma 2.3. We note that Hölder’s

inequality and the estimate in Lemma B.2 give⃒⃒⃒⃒
⃒𝐸
[︃
𝑝𝑋̄𝑥

𝑠 (𝑋(𝑡− 𝑠, 𝑥), 𝑦)𝐻𝛼

(︃
𝑋(𝑡− 𝑠, 𝑥), 𝑔(𝑋(𝑡− 𝑠, 𝑥))

𝑒∏︁
𝑖=1

(𝑋 𝑙𝑖(𝑡− 𝑠, 𝑥)− 𝑥𝑙𝑖)

)︃]︃⃒⃒⃒⃒
⃒

≤ 𝐶
{︁
𝐸
[︁⃒⃒⃒
𝑝𝑋̄𝑥

𝑠 (𝑋(𝑡− 𝑠, 𝑥), 𝑦)
⃒⃒⃒𝑞]︁}︁1/𝑞

(𝑡− 𝑠)
𝑒−|𝛼|

2
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for some 𝑞 > 1 and 𝐶 > 0. Now, due to the explicit formula of 𝑝𝑋̄
𝑠 (𝑥, 𝑦), (𝑠, 𝑥, 𝑦) ∈ (0,∞) × R𝑁 × R𝑁 , there

exist constants 𝐾, 𝑐 > 0 such that{︁
𝐸
[︁⃒⃒⃒
𝑝𝑋̄𝑥

𝑠 (𝑋(𝑡− 𝑠, 𝑥), 𝑦)
⃒⃒⃒𝑞]︁}︁1/𝑞

≤
{︂
𝐸

[︂
𝐾𝑞

𝑠
𝑁𝑞
2

exp
(︂
−𝑐′𝑞 |𝑦 −𝑋(𝑡− 𝑠, 𝑥)|2

𝑠

)︂]︂}︂1/𝑞

≤ 𝐾

𝑠
𝑁
2

{︂
𝐸

[︂
exp

(︂
−𝑐 |𝑦 −𝑋(𝑡− 𝑠, 𝑥)|2

𝑠

)︂]︂}︂1/𝑞

≤ 𝐾

𝑠
𝑁
2

(︁𝑠
𝑡

)︁ 𝑁
2𝑞

exp
(︂
−𝑐 |𝑦 − 𝑥|2

𝑡

)︂
,

where on the last inequality we used the following result which is derived from the similar argument in the proof
of Lemma F.1: There exists some constant 𝐶 > 0 such that for 𝑐 > 0

𝐸

[︂
exp

(︂
−𝑐 |𝑦 −𝑋(𝑡− 𝑠, 𝑥)|2

𝑠

)︂]︂
≤ 𝐶

(︁𝑠
𝑡

)︁𝑁
2

exp
(︂
−𝑐 |𝑦 − 𝑥|2

𝑡

)︂
· (F.7)

Hence, we have ⃒⃒⃒⃒
⃒
∫︁ 𝑡

0

𝑠𝑘𝐸[𝜕𝛼𝑝𝑋̄𝑥

𝑠 (𝑋(𝑡− 𝑠, 𝑥), 𝑦)𝑔(𝑋(𝑡− 𝑠, 𝑥))
𝑒∏︁

𝑖=1

(𝑋 𝑙𝑖(𝑡− 𝑠, 𝑥)− 𝑥𝑙𝑖)] d𝑠

⃒⃒⃒⃒
⃒

≤ 𝐶

∫︁ 𝑡

0

𝑠𝑘+ 𝑁
2𝑞−

𝑁
2 (𝑡− 𝑠)

𝑒−|𝛼|
2 d𝑠× 1

𝑡
𝑁
2𝑞

exp
(︂
−𝑐 |𝑦 − 𝑥|2

𝑡

)︂
≤ 𝐶𝑡𝑘+

𝑒−|𝛼|
2 +1 1

𝑡
𝑁
2

exp
(︂
−𝑐 |𝑦 − 𝑥|2

𝑡

)︂
≤ 𝐶𝑡𝑚+1 1

𝑡
𝑁
2

exp
(︂
−𝑐 |𝑦 − 𝑥|2

𝑡

)︂
,

since 𝑘 + 𝑒−|𝛼|
2 ≥ 𝑚. The representation (F.5) is immediately obtained from (2.50) of Lemma 2.3 by replacing

𝑃 0,𝑧
𝑡 𝜙(𝑦) with the kernel 𝑝𝑋̄𝑧

𝑡 (𝑥, 𝑦). �

Lemma F.3. Let (𝑠, 𝑥, 𝑦) ∈ (0, 𝑇 ] × R𝑁 × R𝑁 . Also let 𝑇𝑦 be the Heaviside function defined in Appendix E.
Then, for a multi-index 𝛼 = (𝛼1, . . . , 𝛼ℓ) ∈ {1, . . . , 𝑁}ℓ, where ℓ is an integer satisfying ℓ = |𝛼| ≥ 0 and
𝛾 = (1, . . . , 𝑁), it holds⃒⃒⃒⃒

⃒⃒𝐸
⎡⎣𝑇𝑦(𝑋̄(𝑛)(𝑠, 𝑥))𝐻𝛾*𝛼

⎛⎝𝑋̄(𝑛)(𝑠, 𝑥),
𝐽∏︁

𝑗=1

(︁
1 + 𝜋

(𝑚),𝑋̄(𝑛)((𝑗−1)𝑇/𝑛,𝑥)
𝑇/𝑛

(︀
𝐵𝑗𝑇/𝑛 −𝐵(𝑗−1)𝑇/𝑛

)︀)︁⎞⎠⎤⎦⃒⃒⃒⃒⃒⃒
≤ 𝐾(𝑇 )

𝑠
𝑁+|𝛼|

2

exp
(︂
−𝑐 |𝑦 − 𝑥|2

𝑠

)︂
with some non-decreasing function 𝐾(·) and constant 𝑐 > 0 both of which are independent of 𝐽 = 1, 2, . . . , 𝑛.
Here, a notation 𝛾 * 𝛼 := (1, . . . , 𝑁, 𝛼1, . . . , 𝛼ℓ) is used.

Proof. Hölder’s inequality gives⃒⃒⃒⃒
⃒⃒𝐸
⎡⎣𝑇𝑦

(︁
𝑋̄(𝑛)(𝑠, 𝑥)

)︁
𝐻𝛾*𝛼

⎛⎝𝑋̄(𝑛)(𝑠, 𝑥),
𝐽∏︁

𝑗=1

(︁
1 + 𝜋

(𝑚),𝑋̄(𝑛)((𝑗−1)𝑇/𝑛,𝑥)
𝑇/𝑛

(︀
𝐵𝑗𝑇/𝑛 −𝐵(𝑗−1)𝑇/𝑛

)︀)︁⎞⎠⎤⎦⃒⃒⃒⃒⃒⃒
≤ ‖𝑇𝑦

(︁
𝑋̄(𝑛)(𝑠, 𝑥)

)︁
‖2

⃦⃦⃦⃦
⃦⃦𝐻𝛾*𝛼

⎛⎝𝑋̄(𝑛)(𝑠, 𝑥),
𝐽∏︁

𝑗=1

(︁
1 + 𝜋

(𝑚),𝑋̄(𝑛)((𝑗−1)𝑇/𝑛,𝑥)
𝑇/𝑛

(︀
𝐵𝑗𝑇/𝑛 −𝐵(𝑗−1)𝑇/𝑛

)︀)︁⎞⎠⃦⃦⃦⃦⃦⃦
2

.

(F.8)
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Using the upper bound of the density of the Euler–Maruyama scheme given in [9], we obtain

𝐸[|𝑇𝑦(𝑋̄(𝑛)(𝑠, 𝑥))|2] = 𝐸[𝑇𝑦(𝑋̄(𝑛)(𝑠, 𝑥))] ≤ 𝐾(𝑇 )

𝑠
𝑁
2

∫︁
R𝑁

𝑇𝑦(𝜉) exp
(︂
−𝑐 |𝜉 − 𝑥|2

𝑠

)︂
d𝜉

≤ 𝐾(𝑇 )
𝑁∏︁

𝑖=1

1√
𝑠

∫︁
R
𝑇𝑦𝑖

(𝜉𝑖) exp
(︂
−𝑐 |𝜉𝑖 − 𝑥𝑖|2

𝑠

)︂
d𝜉𝑖

for some non-decreasing function 𝐾(·). When 𝑦𝑖 − 𝑥𝑖 ≥
√
𝑠, 𝑖 = 1, 2, . . . , 𝑁 , we have

1√
𝑠

∫︁
R
𝑇𝑦𝑖

(𝜉𝑖) exp
(︂
−𝑐 |𝜉𝑖 − 𝑥𝑖|2

𝑠

)︂
d𝜉𝑖 =

1√
𝑠

∫︁ ∞

𝑦𝑖−𝑥𝑖

exp
(︂
−𝑐𝑧

2

𝑠

)︂
d𝑧

≤ 1√
𝑠

∫︁ ∞

𝑦𝑖−𝑥𝑖

𝑧

𝑦𝑖 − 𝑥𝑖
exp

(︂
−𝑐𝑧

2

𝑠

)︂
d𝑧 ≤ 𝐶1 exp

(︂
−𝑐 |𝑦𝑖 − 𝑥𝑖|2

𝑠

)︂
for some 𝐶1 > 0. On the other hand, for 𝑦𝑖 − 𝑥𝑖 ≤

√
𝑠, 𝑖 = 1, 2, . . . , 𝑁 ,

1√
𝑠

∫︁
R
𝑇𝑦𝑖

(𝜉𝑖) exp
(︂
−𝑐 |𝜉𝑖 − 𝑥𝑖|2

𝑠

)︂
d𝜉𝑖 ≤

1√
𝑠

∫︁
R

exp
(︂
−𝑐 |𝜉𝑖 − 𝑥𝑖|2

𝑠

)︂
d𝜉𝑖 ≤ 𝐶

≤ 𝐶 exp
(︂
𝑐
(𝑦𝑖 − 𝑥𝑖)2

𝑠

)︂
exp

(︂
−𝑐 (𝑦𝑖 − 𝑥𝑖)2

𝑠

)︂
≤ 𝐶2 exp

(︂
−𝑐 (𝑦𝑖 − 𝑥𝑖)2

𝑠

)︂
for some constant 𝐶2 > 0. Therefore, we have

𝐸[|𝑇𝑦(𝑋̄(𝑛)(𝑠, 𝑥))|2]1/2 ≤ 𝐾(𝑇 ) exp
(︂
−𝑐1

|𝑦 − 𝑥|2

𝑠

)︂
· (F.9)

Furthermore, by Kusuoka–Stroock’s integration by parts, there exists a constant 𝑐 > 0 such that⃦⃦⃦⃦
⃦⃦𝐻𝛾*𝛼

⎛⎝𝑋̄(𝑛)(𝑠, 𝑥),
𝐽∏︁

𝑗=1

(︁
1 + 𝜋

(𝑚),𝑋̄(𝑛)((𝑗−1)𝑇/𝑛,𝑥)
𝑇/𝑛

(︀
𝐵𝑗𝑇/𝑛 −𝐵(𝑗−1)𝑇/𝑛

)︀)︁⎞⎠⃦⃦⃦⃦⃦⃦
2

≤ 𝑐

𝑠
𝑁+|𝛼|

2

⃦⃦⃦⃦
⃦⃦ 𝐽∏︁

𝑗=1

(︁
1 + 𝜋

(𝑚),𝑋̄(𝑛)((𝑗−1)𝑇/𝑛,𝑥)
𝑇/𝑛

(︀
𝐵𝑗𝑇/𝑛 −𝐵(𝑗−1)𝑇/𝑛

)︀)︁⃦⃦⃦⃦⃦⃦
𝑁+|𝛼|,4

.

By Lemma 2.1, we have the bound 𝐾(𝑇 ) independent of 𝐽 = 1, . . . , 𝑛 such that⃦⃦⃦⃦
⃦⃦𝐻𝛾*𝛼

⎛⎝𝑋̄(𝑛)(𝑠, 𝑥),
𝐽∏︁

𝑗=1

(︁
1 + 𝜋

(𝑚),𝑋̄(𝑛)((𝑗−1)𝑇/𝑛,𝑥)
𝑇/𝑛

(︀
𝐵𝑗𝑇/𝑛 −𝐵(𝑗−1)𝑇/𝑛

)︀)︁⎞⎠⃦⃦⃦⃦⃦⃦
2

≤ 𝑐

𝑠
𝑁+|𝛼|

2

𝐾(𝑇 ). (F.10)

Applying (F.9) and (F.10) to (F.8), we have the assertion. �

Proof of Theorem 3.1. The global approximation is written using 𝑄(𝑚)
𝑡 , 𝑡 > 0 given in (2.19) of Theorem 2.1 as

follows:

𝑝𝑋
𝑇 (𝑥, 𝑦)− 𝐸

⎡⎣𝑝𝑋̄,(𝑚)
𝑇/𝑛

(︁
𝑋̄(𝑛)((𝑛− 1)𝑇/𝑛, 𝑥), 𝑦

)︁ 𝑛−1∏︁
𝑗=1

{︁
1 + 𝜋

(𝑚),𝑋̄(𝑛)((𝑗−1)𝑇/𝑛,𝑥)
𝑇/𝑛

(︀
𝐵𝑗𝑇/𝑛 −𝐵(𝑗−1)𝑇/𝑛

)︀}︁⎤⎦
= 𝑝𝑋

𝑇 (𝑥, 𝑦)−
(︁
𝑄

(𝑚)
𝑇/𝑛

)︁𝑛−1

𝑝
𝑋̄,(𝑚)
𝑇/𝑛 (·, 𝑦)|·=𝑥

=
𝑛−2∑︁
𝑘=0

(︁
𝑄

(𝑚)
𝑇/𝑛

)︁𝑘 (︁
𝑃𝑇/𝑛 −𝑄

(𝑚)
𝑇/𝑛

)︁
𝑝𝑋

𝑇−(𝑘+1)𝑇/𝑛(·, 𝑦)|·=𝑥 +
(︁
𝑄

(𝑚)
𝑇/𝑛

)︁𝑛−1 (︁
𝑝𝑋

𝑇/𝑛(·, 𝑦)− 𝑝
𝑋̄,(𝑚)
𝑇/𝑛 (·, 𝑦)

)︁
|·=𝑥.
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By Lemma F.2, we have for every 𝑘 = 0, 1, 2, . . . , 𝑛− 2,

(︁
𝑃𝑇/𝑛 −𝑄

(𝑚)
𝑇/𝑛

)︁
𝑝𝑋

𝑇−(𝑘+1)𝑇/𝑛(·, 𝑦)|·=𝑥 (F.11)

=
∫︁

R𝑁

𝑝𝑋
𝑇−(𝑘+1)𝑇/𝑛(𝑧, 𝑦)

(︁
𝑝𝑋

𝑇/𝑛(𝑥, 𝑧)− 𝑝
𝑋̄,(𝑚)
𝑇/𝑛 (𝑥, 𝑧)

)︁
d𝑧

=
∫︁

R𝑁

𝑝𝑋
𝑇−(𝑘+1)𝑇/𝑛(𝑧, 𝑦)

(︀
R𝑇/𝑛(𝑥, 𝑧) + (𝑇/𝑛)𝑚+1Ψ𝑇/𝑛(𝑥, 𝑧)

)︀
d𝑧

=
(︁
R𝑇/𝑛 * 𝑝𝑋

𝑇−(𝑘+1)𝑇/𝑛

)︁
(𝑥, 𝑦) + (𝑇/𝑛)𝑚+1

(︁
Ψ𝑇/𝑛 * 𝑝𝑋

𝑇−(𝑘+1)𝑇/𝑛

)︁
(𝑥, 𝑦).

Hence, we obtain

(︁
𝑄

(𝑚)
𝑇/𝑛

)︁𝑘 (︁
𝑃𝑇/𝑛 −𝑄

(𝑚)
𝑇/𝑛

)︁
𝑝𝑋

𝑇−(𝑘+1)𝑇/𝑛(·, 𝑦)|·=𝑥

=

⎛⎜⎝𝑝𝑋̄,(𝑚)
𝑇/𝑛 * . . . * 𝑝𝑋̄,(𝑚)

𝑇/𝑛⏟  ⏞  
𝑘-times

*R𝑇/𝑛 * 𝑝𝑋
𝑇−(𝑘+1)𝑇/𝑛

⎞⎟⎠ (𝑥, 𝑦) + (𝑇/𝑛)𝑚+1
(︁
𝑄

(𝑚)
𝑇/𝑛

)︁𝑘 (︁
Ψ𝑇/𝑛 * 𝑝𝑋

𝑇−(𝑘+1)𝑇/𝑛

)︁
(𝑥, 𝑦)

=: ℳ1(𝑥, 𝑦) + (𝑇/𝑛)𝑚+1ℳ2(𝑥, 𝑦), (𝑥, 𝑦) ∈ R𝑁 × R𝑁 .

Moreover, we define a function ℳ3 : R𝑁 × R𝑁 → R by

ℳ3(𝑥, 𝑦) =
(︁
𝑄

(𝑚)
𝑇/𝑛

)︁𝑛−1 (︁
𝑝𝑋

𝑇/𝑛(·, 𝑦)− 𝑝
𝑋̄,(𝑚)
𝑇/𝑛 (·, 𝑦)

)︁
|·=𝑥, (𝑥, 𝑦) ∈ R𝑁 × R𝑁 . (F.12)

Since we are able to show that the terms ℳ1(𝑥, 𝑦), (𝑇/𝑛)𝑚+1ℳ2(𝑥, 𝑦) and ℳ3(𝑥, 𝑦) are bounded by

(︂
𝑇

𝑛

)︂𝑚+1
𝐾(𝑇 )
𝑇𝑄

exp
(︂
−𝑐 |𝑦 − 𝑥|2

𝑇

)︂

for some non-decreasing function 𝐾(·) and constants 𝑐 > 0, 𝑄 ≥ 𝑁/2, we have

⃒⃒⃒⃒
⃒⃒𝑝𝑋

𝑇 (𝑥, 𝑦)− 𝐸

⎡⎣𝑝𝑋̄,(𝑚)
𝑇/𝑛 (𝑋̄(𝑛)((𝑛− 1)𝑇/𝑛, 𝑥), 𝑦)

𝑛−1∏︁
𝑗=1

{︁
1 + 𝜋

(𝑚),𝑋̄(𝑛)((𝑗−1)𝑇/𝑛,𝑥)
𝑇/𝑛

(︀
𝐵𝑗𝑇/𝑛 −𝐵(𝑗−1)𝑇/𝑛

)︀}︁⎤⎦⃒⃒⃒⃒⃒⃒
≤

𝑛∑︁
𝑘=1

(︂
𝑇

𝑛

)︂𝑚+1
𝐾(𝑇 )
𝑇𝑄

exp
(︂
−𝑐 |𝑦 − 𝑥|2

𝑇

)︂
=
(︂
𝑇

𝑛

)︂𝑚
𝐾(𝑇 )
𝑇𝑄

exp
(︂
−𝑐 |𝑦 − 𝑥|2

𝑇

)︂
·

Then, in what follows, we shall estimate the terms ℳ1(𝑥, 𝑦), ℳ2(𝑥, 𝑦) and ℳ3(𝑥, 𝑦), using the key results;
Lemmas F.1–F.3. �



S362 Y. IGUCHI AND T. YAMADA

F.1. Upper bound for ℳ1

At first, we will give the upper bound for the first term of (F.11). Taking advantage of Lemma F.1 and
Lemma F.2, we have⃒⃒⃒(︁

R𝑇/𝑛 * 𝑝𝑋
𝑇−(𝑘+1)𝑇/𝑛

)︁
(𝑥, 𝑦)

⃒⃒⃒
(F.13)

≤ 𝐶
(𝑇/𝑛)𝑚+1

(𝑇/𝑛)
𝑁
2

1

(𝑇 − (𝑘 + 1)𝑇/𝑛)
𝑁
2

∫︁
R𝑁

exp
(︂
−𝑐1

|𝑧 − 𝑥|2

𝑇/𝑛

)︂
exp

(︂
−𝑐2

|𝑦 − 𝑧|2

𝑇 − (𝑘 + 1)𝑇/𝑛

)︂
d𝑧

≤ 𝐶
(𝑇/𝑛)𝑚+1

(𝑇/𝑛)
𝑁
2

(𝑇/𝑛)
𝑁
2

(𝑇 − 𝑘𝑇/𝑛)
𝑁
2

exp
(︂
−𝑐 |𝑦 − 𝑥|2

𝑇 − 𝑘𝑇/𝑛

)︂
= 𝐶

(𝑇/𝑛)𝑚+1

(𝑇 − 𝑘𝑇/𝑛)
𝑁
2

exp
(︂
−𝑐 |𝑦 − 𝑥|2

𝑇 − 𝑘𝑇/𝑛

)︂
,

where 𝑐1, 𝑐2, 𝑐 and 𝐶 are some positive constants.
Since we have for 𝑘 = 1, . . . , 𝑛− 2,⎛⎜⎝𝑝𝑋̄,(𝑚)

𝑇/𝑛 * . . . * 𝑝𝑋̄,(𝑚)
𝑇/𝑛⏟  ⏞  

𝑘-times

⎞⎟⎠ (𝑥, 𝜉)

=−∞

⟨
𝛿𝜉

(︁
𝑋̄(𝑛)(𝑘𝑇/𝑛, 𝑥)

)︁
,

𝑘∏︁
𝑗=1

(︁
1 + 𝜋

(𝑚),𝑋̄(𝑛)((𝑗−1)𝑇/𝑛,𝑥)
𝑇/𝑛

(︀
𝐵𝑗𝑇/𝑛 −𝐵(𝑗−1)𝑇/𝑛

)︀)︁⟩
∞

= 𝐸

⎡⎣𝑇𝜉(𝑋̄(𝑛)(𝑘𝑇/𝑛, 𝑥))𝐻𝛾

⎛⎝𝑋̄(𝑛)(𝑘𝑇/𝑛, 𝑥),
𝑘∏︁

𝑗=1

(︁
1 + 𝜋

(𝑚),𝑋̄(𝑛)((𝑗−1)𝑇/𝑛,𝑥)
𝑇/𝑛

(︀
𝐵𝑗𝑇/𝑛 −𝐵(𝑗−1)𝑇/𝑛

)︀)︁⎞⎠⎤⎦ ,
(F.14)

where 𝛾 = (1, . . . , 𝑁) and 𝑇𝜉(·) is the Heaviside function introduced in Appendix E, it follows that⃒⃒⃒⃒
⃒⃒⃒
⎛⎜⎝𝑝𝑋̄,(𝑚)

𝑇/𝑛 * . . . * 𝑝𝑋̄,(𝑚)
𝑇/𝑛⏟  ⏞  

𝑘-times

⎞⎟⎠ (𝑥, 𝜉)

⃒⃒⃒⃒
⃒⃒⃒ ≤ 𝐶(𝑇 )

(𝑘𝑇/𝑛)
𝑁
2

exp
(︂
−𝑐 |𝜉 − 𝑥|2

𝑘𝑇/𝑛

)︂
, (F.15)

where 𝐶(𝑇 ) > 0 is a constant which does not depend on 𝑘 = 1, . . . , 𝑛− 2 by applying Lemma F.3 with |𝛼| = 0
to (F.14).

Then, using the bounds (F.13) and (F.15), we obtain for 𝑘 = 1, . . . , 𝑛− 2,

|ℳ1(𝑥, 𝑦)| =

⃒⃒⃒⃒
⃒⃒⃒
⎛⎜⎝𝑝𝑋̄,(𝑚)

𝑇/𝑛 * . . . * 𝑝𝑋̄,(𝑚)
𝑇/𝑛⏟  ⏞  

𝑘-times

*R𝑇/𝑛 * 𝑝𝑋
𝑇−(𝑘+1)𝑇/𝑛

⎞⎟⎠ (𝑥, 𝑦)

⃒⃒⃒⃒
⃒⃒⃒

≤
∫︁

R𝑁

⃒⃒⃒⃒
⃒⃒⃒
⎛⎜⎝𝑝𝑋̄,(𝑚)

𝑇/𝑛 * . . . * 𝑝𝑋̄,(𝑚)
𝑇/𝑛⏟  ⏞  

𝑘-times

⎞⎟⎠ (𝑥, 𝑧)
(︁
R𝑇/𝑛 * 𝑝𝑋

𝑇−(𝑘+1)𝑇/𝑛

)︁
(𝑧, 𝑦)

⃒⃒⃒⃒
⃒⃒⃒d𝑧

≤ 𝐶(𝑇 )
(𝑘𝑇/𝑛)𝑁/2

(𝑇/𝑛)𝑚+1

(𝑇 − 𝑘𝑇/𝑛)
𝑁
2

∫︁
R𝑁

exp
(︂
−𝑐1

|𝑧 − 𝑥|2

𝑘𝑇/𝑛

)︂
exp

(︂
−𝑐2

|𝑦 − 𝑧|2

𝑇 − 𝑘𝑇/𝑛

)︂
d𝑧
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≤ 𝐶(𝑇 )
(𝑇/𝑛)𝑚+1

(𝑇 − 𝑘𝑇/𝑛)
𝑁
2

(︂
𝑇 − 𝑘𝑇/𝑛

𝑇

)︂𝑁
2

exp
(︂
−𝑐3

|𝑦 − 𝑥|2

𝑇

)︂
= 𝐶(𝑇 )

(𝑇/𝑛)𝑚+1

𝑇
𝑁
2

exp
(︂
−𝑐3

|𝑦 − 𝑥|2

𝑇

)︂
, (F.16)

where 𝐶(𝑇 ), 𝑐1, 𝑐2 and 𝑐3 are some positive constants (which are independent of 𝑘 and 𝑛) and on the third
inequality we applied Lemma F.1 again. When 𝑘 = 0, it is easy to see from the inequality (F.13) that |ℳ1(𝑥, 𝑦)|
has the same bound as (F.16).

F.2. Upper bound for ℳ2

We will give the upper bound for
(︁
𝑄

(𝑚)
𝑇/𝑛

)︁𝑘

(Ψ𝑇/𝑛 *𝑝𝑋
𝑇−(𝑘+1)𝑇/𝑛)(·, 𝑦)|·=𝑥, 𝑘 = 0, 1, 2, . . . , 𝑛−2. In particular,

we proceed the derivation differently for the cases 𝑘 is small or large. Due to the explicit form of Ψ𝑇/𝑛 and the
operator 𝑄𝑇/𝑛, we have⃒⃒⃒⃒(︁

𝑄
(𝑚)
𝑇/𝑛

)︁𝑘 (︁
Ψ𝑇/𝑛 * 𝑝𝑋

𝑇−(𝑘+1)𝑇/𝑛

)︁
(·, 𝑦)|·=𝑥

⃒⃒⃒⃒
≤
∑︁
𝑙≤𝜈

ℎ𝑙

(︂
𝑇

𝑛

)︂ ⃒⃒⃒
𝐸
[︁
𝜕𝛼(𝑙)

𝑝𝑋
𝑇−(𝑘+1)𝑇/𝑛

(︁
𝑋̄(𝑛)((𝑘 + 1)𝑇/𝑛, 𝑥), 𝑦

)︁
𝐺

(𝑘)
𝑙

)︀]︁⃒⃒⃒

with some multi-indices 𝛼(𝑙), 𝑙 ≤ 𝜈 ∈ N and the random variable 𝐺(𝑘)
𝑙 is given by

𝐺
(𝑘)
𝑙 = 𝑔𝑙

(︁
𝑋̄(𝑛)(𝑘𝑇/𝑛, 𝑥)

)︁ 𝑘∏︁
𝑗=1

(︁
1 + 𝜋

(𝑚),𝑋̄(𝑛)((𝑗−1)𝑇/𝑛,𝑥)
𝑇/𝑛

(︀
𝐵𝑗𝑇/𝑛 −𝐵(𝑗−1)𝑇/𝑛

)︀)︁
, (F.17)

for some 𝑔𝑙 ∈ 𝐶∞𝑏 (R𝑁 ), which is the same one we defined in (2.59). Then it suffices to give the estimate for the
above expectation.

F.2.1. The case (𝑘 + 1)𝑇/𝑛 ∈ (0, 𝑇/2)

First, it holds,

𝐸
[︁
𝜕𝛼(𝑙)

𝑝𝑋
𝑇−(𝑘+1)𝑇/𝑛

(︁
𝑋̄(𝑛)((𝑘 + 1)𝑇/𝑛, 𝑥), 𝑦

)︁
𝐺

(𝑘)
𝑙

]︁
=
∫︁

R𝑁

𝜕𝛼(𝑙)
𝑝𝑋

𝑇−(𝑘+1)𝑇/𝑛(𝜉, 𝑦)−∞
⟨
𝛿𝜉

(︁
𝑋̄(𝑛)((𝑘 + 1)𝑇/𝑛, 𝑥)

)︁
, 𝐺

(𝑘)
𝑙

⟩
∞

d𝜉. (F.18)

Applying the result in [8], we obtain

|𝜕𝛼(𝑙)
𝑝𝑋

𝑇−(𝑘+1)𝑇/𝑛(𝜉, 𝑦)| ≤ 𝐶

(𝑇 − (𝑘 + 1)𝑇/𝑛)
𝑁+|𝛼(𝑙)|

2

exp
(︂
−𝑐1

|𝑦 − 𝜉|2

𝑇 − (𝑘 + 1)𝑇/𝑛

)︂

and by Lemma F.3 we also have⃒⃒⃒
−∞

⟨
𝛿𝜉

(︁
𝑋̄(𝑛)((𝑘 + 1)𝑇/𝑛, 𝑥)

)︁
, 𝐺

(𝑘)
𝑙

⟩
∞

⃒⃒⃒
=
⃒⃒⃒
𝐸
[︁
𝑇𝜉

(︁
𝑋̄(𝑛)((𝑘 + 1)𝑇/𝑛, 𝑥)

)︁
𝐻𝛾

(︁
𝑋̄(𝑛)((𝑘 + 1)𝑇/𝑛, 𝑥), 𝐺(𝑘)

𝑙

)︁]︁⃒⃒⃒
≤ 𝐾(𝑇 )

((𝑘 + 1)𝑇/𝑛)
𝑁
2

exp
(︂
−𝑐2

|𝜉 − 𝑥|2

(𝑘 + 1)𝑇/𝑛

)︂
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with some non-decreasing function 𝐾(·) and positive constants 𝐶, 𝑐1 and 𝑐2 which are independent of 𝑛. Hence,
it follows that⃒⃒⃒

𝐸
[︁
𝜕𝛼(𝑙)

𝑝𝑋
𝑇−(𝑘+1)𝑇/𝑛

(︁
𝑋̄(𝑛)((𝑘 + 1)𝑇/𝑛, 𝑥), 𝑦

)︁
𝐺

(𝑘)
𝑙

]︁⃒⃒⃒
≤ 𝐶

(𝑇 − (𝑘 + 1)𝑇/𝑛)
𝑁+|𝛼(𝑙)|

2

𝐾(𝑇 )

((𝑘 + 1)𝑇/𝑛)
𝑁
2

∫︁
R𝑁

exp
(︂
−𝑐1

|𝑦 − 𝜉|2

𝑇 − (𝑘 + 1)𝑇/𝑛

)︂
exp

(︂
−𝑐2

|𝜉 − 𝑥|2

(𝑘 + 1)𝑇/𝑛

)︂
d𝜉

≤ 𝐾 ′(𝑇 )

(𝑇 − (𝑘 + 1)𝑇/𝑛)
𝑁+|𝛼(𝑙)|

2

(︂
𝑇 − (𝑘 + 1)𝑇/𝑛

𝑇

)︂𝑁
2

exp
(︂
−𝑐 |𝑦 − 𝑥|2

𝑇

)︂

=
𝐾 ′(𝑇 )

(𝑇 − (𝑘 + 1)𝑇/𝑛)
|𝛼(𝑙)|

2

1

𝑇
𝑁
2

exp
(︂
−𝑐 |𝑦 − 𝑥|2

𝑇

)︂
with some non-decreasing function 𝐾 ′(·) and constant 𝑐 > 0. In particular, we applied Lemma F.1 on the second
inequality.

Since we assume 𝑇/2 ≤ 𝑇 − (𝑘 + 1)𝑇/𝑛 < 𝑇 , we conclude that⃒⃒⃒
𝐸
[︁
𝜕𝛼(𝑙)

𝑝𝑋
𝑇−(𝑘+1)𝑇/𝑛

(︁
𝑋̄(𝑛)((𝑘 + 1)𝑇/𝑛, 𝑥), 𝑦

)︁
𝐺

(𝑘)
𝑙

]︁⃒⃒⃒
≤ 𝐾(𝑇 )

𝑇𝑄
exp

(︂
−𝑐 |𝑦 − 𝑥|2

𝑇

)︂
,

with some non-decreasing function 𝐾(·), some constants 𝑐 > 0 and 𝑄 ≥ 𝑁
2 which are independent of 𝑛.

F.2.2. the case (𝑘 + 1)𝑇/𝑛 ∈ [𝑇/2, 𝑇 )

Applying the integration by parts on Wiener space, we obtain⃒⃒⃒
𝐸
[︁
𝜕𝛼(𝑙)

𝑝𝑋
𝑇−(𝑘+1)𝑇/𝑛

(︁
𝑋̄(𝑛)((𝑘 + 1)𝑇/𝑛, 𝑥), 𝑦

)︁
𝐺

(𝑘)
𝑙

]︁⃒⃒⃒
=
⃒⃒⃒
𝐸
[︁
𝑝𝑋

𝑇−(𝑘+1)𝑇/𝑛

(︁
𝑋̄(𝑛)((𝑘 + 1)𝑇/𝑛, 𝑥), 𝑦

)︁
𝐻𝛼(𝑙)

(︁
𝑋̄(𝑛)((𝑘 + 1)𝑇/𝑛, 𝑥), 𝐺(𝑘)

𝑙

)︁]︁⃒⃒⃒
=
⃒⃒⃒⃒∫︁

R𝑁

𝑝𝑋
𝑇−(𝑘+1)𝑇/𝑛(𝜉, 𝑦)−∞

⟨
𝛿𝜉

(︁
𝑋̄(𝑛)((𝑘 + 1)𝑇/𝑛, 𝑥)

)︁
, 𝐻𝛼(𝑙)

(︁
𝑋̄(𝑛)((𝑘 + 1)𝑇/𝑛, 𝑥), 𝐺(𝑘)

𝑙

)︁⟩
∞

d𝜉
⃒⃒⃒⃒
.

Again, due to Lemma F.3 we have⃒⃒⃒
−∞

⟨
𝛿𝜉

(︁
𝑋̄(𝑛)((𝑘 + 1)𝑇/𝑛, 𝑥)

)︁
, 𝐻𝛼(𝑙)

(︁
𝑋̄(𝑛)((𝑘 + 1)𝑇/𝑛, 𝑥), 𝐺(𝑘)

𝑙

)︁⟩
∞

⃒⃒⃒
≤ 𝐾(𝑇 )

((𝑘 + 1)𝑇/𝑛)
𝑁+|𝛼(𝑙)|

2

exp
(︂
−𝑐 |𝜉 − 𝑥|2

(𝑘 + 1)𝑇/𝑛

)︂
and since 𝑇/2 ≤ (𝑘 + 1)𝑇/𝑛 < 𝑇 , we obtain⃒⃒⃒

𝐸
[︁
𝜕𝛼(𝑙)

𝑝𝑋
𝑇−(𝑘+1)𝑇/𝑛

(︁
𝑋̄(𝑛)((𝑘 + 1)𝑇/𝑛, 𝑥), 𝑦

)︁
𝐺

(𝑘)
𝑙

]︁⃒⃒⃒
≤ 𝐶

(𝑇 − (𝑘 + 1)𝑇/𝑛)
𝑁
2

𝐾(𝑇 )

((𝑘 + 1)𝑇/𝑛)
𝑁+|𝛼(𝑙)|

2

∫︁
R𝑁

exp
(︂
−𝑐1

|𝑦 − 𝜉|2

𝑇 − (𝑘 + 1)𝑇/𝑛

)︂
exp

(︂
−𝑐2

|𝜉 − 𝑥|2

(𝑘 + 1)𝑇/𝑛

)︂
𝑑𝜉

≤ 𝐾 ′(𝑇 )

((𝑘 + 1)𝑇/𝑛)
𝑁+|𝛼(𝑙)|

2

(︂
(𝑘 + 1)𝑇/𝑛

𝑇

)︂𝑁
2

exp
(︂
−𝑐 |𝑦 − 𝑥|2

𝑇

)︂

=
𝐾 ′(𝑇 )

((𝑘 + 1)𝑇/𝑛)
|𝛼(𝑙)|

2

1

𝑇
𝑁
2

exp
(︂
−𝑐 |𝑦 − 𝑥|2

𝑇

)︂

≤ 𝐾 ′(𝑇 )
𝑇𝑄

exp
(︂
−𝑐 |𝑦 − 𝑥|2

𝑇

)︂
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with some non-decreasing function 𝐾 ′(·) and constants 𝑐 > 0, 𝑄 ≥ 𝑁/2 which are independent of 𝑛.

F.3. Upper bound for ℳ3

By the small time expansion formula (F.3), we get

(︁
𝑄

(𝑚)
𝑇/𝑛

)︁𝑛−1

(𝑝𝑋
𝑇/𝑛(·, 𝑦)− 𝑝

𝑋̄,(𝑚)
𝑇/𝑛 (·, 𝑦))|·=𝑥

=

⎛⎜⎜⎝𝑝𝑋̄,(𝑚)
𝑇/𝑛 * . . . * 𝑝𝑋̄,(𝑚)

𝑇/𝑛⏟  ⏞  
(𝑛−1)-times

*R𝑇/𝑛

⎞⎟⎟⎠ (𝑥, 𝑦) + (𝑇/𝑛)𝑚+1
(︁
𝑄

(𝑚)
𝑇/𝑛

)︁𝑛−1

Ψ𝑇/𝑛(·, 𝑦)|·=𝑥. (F.19)

For the first term of (F.19), using the bound (F.15) with 𝑘 = 𝑛− 1 and Lemma F.1, we obtain⃒⃒⃒⃒
⃒⃒⃒⃒
⎛⎜⎜⎝𝑝𝑋̄,(𝑚)

𝑇/𝑛 * . . . * 𝑝𝑋̄,(𝑚)
𝑇/𝑛⏟  ⏞  

(𝑛−1)-times

*R𝑇/𝑛

⎞⎟⎟⎠ (𝑥, 𝑦)

⃒⃒⃒⃒
⃒⃒⃒⃒ (F.20)

≤ 𝐾(𝑇 )

((𝑛− 1)𝑇/𝑛)
𝑁
2

1

(𝑇/𝑛)
𝑁
2

(︂
𝑇

𝑛

)︂𝑚+1 ∫︁
R𝑁

exp
(︂
−𝑐1

|𝜉 − 𝑥|2

(𝑛− 1)𝑇/𝑛

)︂
exp

(︂
−𝑐2

|𝑦 − 𝜉|2

𝑇/𝑛

)︂
d𝜉

≤
(︂
𝑇

𝑛

)︂𝑚+1
𝐾(𝑇 )

((𝑛− 1)𝑇/𝑛)
𝑁
2

(︂
(𝑛− 1)𝑇/𝑛

𝑇

)︂𝑁
2

exp
(︂
−𝑐 |𝑦 − 𝑥|2

𝑇

)︂
=
(︂
𝑇

𝑛

)︂𝑚+1
𝐾(𝑇 )

𝑇
𝑁
2

exp
(︂
−𝑐 |𝑦 − 𝑥|2

𝑇

)︂
,

for some non-decreasing function 𝐾(·) and a constant 𝑐 > 0 which are independent of 𝑛.
Finally we consider the second term of (F.19). We notice that

𝜕𝑙

𝜕𝑥𝛼1 . . . 𝜕𝑥𝛼𝑙

𝑝𝑋̄𝑧

𝑡 (𝑥, 𝑦)|𝑧=𝑥 =
𝜕𝑙

𝜕𝑥𝛼1 . . . 𝜕𝑥𝛼𝑙

−∞
⟨︀
𝛿𝑦(𝑋̄𝑧(𝑡, 𝑥)), 1

⟩︀
∞ |𝑧=𝑥 (F.21)

= −∞
⟨︀
𝛿𝑦
(︀
𝑋̄𝑧(𝑡, 𝑥)

)︀
, 𝐻𝛼

(︀
𝑋̄𝑧(𝑡, 𝑥), 1

)︀⟩︀
∞ |𝑧=𝑥

for any multi-index 𝛼 ∈ {1, . . . , 𝑁}𝑙, 𝑙 ∈ N and (𝑡, 𝑥, 𝑦) ∈ [0,∞)× R𝑁 × R𝑁 . From now on, we briefly write 𝑋̄𝑧
𝑡

for 𝑋̄𝑧(𝑡, 𝑥). Then, Ψ𝑇/𝑛(𝑥, 𝑦) is given by

Ψ𝑇/𝑛(𝑥, 𝑦) =
∑︁
𝑙≤𝜈

ℎ𝑙

(︂
𝑇

𝑛

)︂
𝑔𝑙(𝑥)−∞

⟨
𝛿𝑦

(︁
𝑋̄𝑧

𝑇/𝑛

)︁
, 𝐻𝛽(𝑙)

(︁
𝑋̄𝑧

𝑇/𝑛, 1
)︁⟩

∞
|𝑧=𝑥 (F.22)

and hence we have(︁
𝑄

(𝑚)
𝑇/𝑛

)︁𝑛−1

Ψ𝑇/𝑛(𝑥, 𝑦)

=
∑︁
𝑙≤𝜈

ℎ𝑙

(︂
𝑇

𝑛

)︂
𝐸
[︁
−∞

⟨
𝛿𝑦

(︁
𝑋̄𝑧

𝑇/𝑛

)︁
, 𝐻𝛽(𝑙)(𝑋̄𝑧

𝑇/𝑛, 1)
⟩
∞
|𝑧=𝑋̄(𝑛)((𝑛−1)𝑇/𝑛,𝑥)𝐺

(𝑛−1)
𝑙

]︁
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where ℱ(𝑛−1)𝑇/𝑛-measurable random variable 𝐺(𝑛−1)
𝑙 is the same one we defined in (E.5) on Appendix E. Since

we have seen the equation (E.6) holds, we obtain

|
(︁
𝑄

(𝑚)
𝑇/𝑛

)︁𝑛−1

Ψ𝑇/𝑛(𝑥, 𝑦)| ≤
∑︁
𝑙≤𝜈

ℎ𝑙

(︂
𝑇

𝑛

)︂ ⃒⃒⃒
𝐸
[︁
𝛿𝑦

(︁
𝑋̄(𝑛)(𝑇, 𝑥)

)︁
𝐻𝛽(𝑙)

(︁
𝑋̄(𝑛)(𝑇, 𝑥), 𝐺(𝑛−1)

𝑙

)︁]︁⃒⃒⃒
=
∑︁
𝑙≤𝜈

ℎ𝑙

(︂
𝑇

𝑛

)︂ ⃒⃒⃒
𝐸
[︁
𝑇𝑦

(︁
𝑋̄(𝑛)(𝑇, 𝑥)

)︁
𝐻𝛽(𝑙)*𝛾

(︁
𝑋̄(𝑛)(𝑇, 𝑥), 𝐺(𝑛−1)

𝑙

)︁]︁⃒⃒⃒
where 𝛾 = (1, 2, . . . , 𝑁). Applying Lemma F.3, we easily obtain⃒⃒⃒⃒(︁

𝑄
(𝑚)
𝑇/𝑛

)︁𝑛−1

Ψ𝑇/𝑛(𝑥, 𝑦)
⃒⃒⃒⃒
≤ 𝐾(𝑇 )

𝑇𝑄
exp

(︂
−𝑐 |𝑦 − 𝑥|2

𝑇

)︂
(F.23)

for some non-decreasing function 𝐾(·) and constants 𝑐 > 0, 𝑄 ≥ 𝑁/2 which are independent of 𝑛.
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