Guaranteed and robust L 2 -norm a posteriori error estimates for 1D linear advection problems
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 55 (2021), pp. S447-S474

We propose a reconstruction-based a posteriori error estimate for linear advection problems in one space dimension. In our framework, a stable variational ultra-weak formulation is adopted, and the equivalence of the L2-norm of the error with the dual graph norm of the residual is established. This dual norm is showed to be localizable over vertex-based patch subdomains of the computational domain under the condition of the orthogonality of the residual to the piecewise affine hat functions. We show that this condition is valid for some well-known numerical methods including continuous/discontinuous Petrov–Galerkin and discontinuous Galerkin methods. Consequently, a well-posed local problem on each patch is identified, which leads to a global conforming reconstruction of the discrete solution. We prove that this reconstruction provides a guaranteed upper bound on the L2 error. Moreover, up to a generic constant, it also gives local lower bounds on the L2 error, where the constant only depends on the mesh shape-regularity. This, in particular, leads to robustness of our estimates with respect to the polynomial degree. All the above properties are verified in a series of numerical experiments, additionally leading to asymptotic exactness. Motivated by these results, we finally propose a heuristic extension of our methodology to any space dimension, achieved by solving local least-squares problems on vertex-based patches. Though not anymore guaranteed, the resulting error indicator is still numerically robust with respect to both advection velocity and polynomial degree in our collection of two-dimensional test cases including discontinuous solutions aligned and not aligned with the computational mesh.

DOI : 10.1051/m2an/2020041
Classification : 65N15, 65N30, 35F05
Keywords: linear advection problem, discontinuous Galerkin method, Petrov–Galerkin method, $$ error estimate, local efficiency, advection robustness, polynomial-degree robustness
@article{M2AN_2021__55_S1_S447_0,
     author = {Ern, Alexandre and Vohral{\'\i}k, Martin and Zakerzadeh, Mohammad},
     title = {Guaranteed and robust $L^2$-norm \protect\emph{a posteriori} error estimates for {1D} linear advection problems},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {S447--S474},
     year = {2021},
     publisher = {EDP-Sciences},
     volume = {55},
     number = {Suppl\'ement},
     doi = {10.1051/m2an/2020041},
     mrnumber = {4221303},
     zbl = {1490.65270},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/m2an/2020041/}
}
TY  - JOUR
AU  - Ern, Alexandre
AU  - Vohralík, Martin
AU  - Zakerzadeh, Mohammad
TI  - Guaranteed and robust $L^2$-norm a posteriori error estimates for 1D linear advection problems
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2021
SP  - S447
EP  - S474
VL  - 55
IS  - Supplément
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/m2an/2020041/
DO  - 10.1051/m2an/2020041
LA  - en
ID  - M2AN_2021__55_S1_S447_0
ER  - 
%0 Journal Article
%A Ern, Alexandre
%A Vohralík, Martin
%A Zakerzadeh, Mohammad
%T Guaranteed and robust $L^2$-norm a posteriori error estimates for 1D linear advection problems
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2021
%P S447-S474
%V 55
%N Supplément
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/m2an/2020041/
%R 10.1051/m2an/2020041
%G en
%F M2AN_2021__55_S1_S447_0
Ern, Alexandre; Vohralík, Martin; Zakerzadeh, Mohammad. Guaranteed and robust $L^2$-norm a posteriori error estimates for 1D linear advection problems. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 55 (2021), pp. S447-S474. doi: 10.1051/m2an/2020041

[1] O. Axelsson, J. Karátson and B. Kovács, Robust preconditioning estimates for convection-dominated elliptic problems via a streamline Poincaré-Friedrichs inequality. SIAM J. Numer. Anal. 52 (2014) 2957–2976. | MR | Zbl

[2] B. Ayuso and L. D. Marini, Discontinuous Galerkin methods for advection-diffusion-reaction problems. SIAM J. Numer. Anal. 47 (2009) 1391–1420. | MR | Zbl

[3] P. Azérad and J. Pousin, Inégalité de Poincaré courbe pour le traitement variationnel de l’équation de transport. C. R. Acad. Sci. Paris Sér. I Math. 322 (1996) 721–727. | MR | Zbl

[4] R. Becker, D. Capatina and R. Luce, Reconstruction-based a posteriori error estimators for the transport equation. In: Numerical Mathematics and Advanced Applications 2011. Springer, Berlin-Heidelberg (2013) 13–21. | MR | Zbl

[5] K. S. Bey and J. T. Oden, h p -version discontinuous Galerkin methods for hyperbolic conservation laws. Comput. Methods Appl. Mech. Eng. 133 (1996) 259–286. | MR | Zbl

[6] J. Blechta, J. Málek and M. Vohralík, Localization of the W - 1 , q norm for local a posteriori efficiency. IMA J. Numer. Anal. 40 (2019) 914–950. | MR | Zbl

[7] D. Braess, V. Pillwein and J. Schöberl, Equilibrated residual error estimates are p -robust. Comput. Methods Appl. Mech. Eng. 198 (2009) 1189–1197. | MR | Zbl

[8] P. Cantin, Well-posedness of the scalar and the vector advection-reaction problems in Banach graph spaces. C. R. Math. Acad. Sci. Paris 355 (2017) 892–902. | MR | Zbl

[9] P. Cantin and A. Ern, An edge-based scheme on polyhedral meshes for vector advection-reaction equations. ESAIM: M2AN 51 (2017) 1561–1581. | MR | Zbl | Numdam

[10] C. Carstensen and S. A. Funken, Fully reliable localized error control in the FEM. SIAM J. Sci. Comput. 21 (1999) 1465–1484. | MR | Zbl

[11] W. Dahmen and R. P. Stevenson, Adaptive strategies for transport equations. Comput. Methods Appl. Math. 19 (2019) 431–464. | MR | Zbl

[12] W. Dahmen, C. Huang, C. Schwab and G. Welper, Adaptive Petrov-Galerkin methods for first order transport equations. SIAM J. Numer. Anal. 50 (2012) 2420–2445. | MR | Zbl

[13] A. Devinatz, R. Ellis and A. Friedman, The asymptotic behavior of the first real eigenvalue of second order elliptic operators with a small parameter in the highest derivatives. II. Indiana Univ. Math. J. 23 (1973–1974) 991–1011. | MR | Zbl

[14] A. Ern and J.-L. Guermond, Discontinuous Galerkin methods for Friedrichs’ systems. I. General theory. SIAM J. Numer. Anal. 44 (2006) 753–778. | MR | Zbl

[15] A. Ern and M. Vohralík, Polynomial-degree-robust a posteriori estimates in a unified setting for conforming, nonconforming, discontinuous Galerkin, and mixed discretizations. SIAM J. Numer. Anal. 53 (2015) 1058–1081. | MR | Zbl

[16] A. Ern and M. Vohralík, Stable broken H 1 and H ( div ) polynomial extensions for polynomial-degree-robust potential and flux reconstruction in three space dimensions. Math. Comput. 89 (2020) 551–594. | MR | Zbl

[17] A. Ern, A. F. Stephansen and M. Vohralík, Guaranteed and robust discontinuous Galerkin a posteriori error estimates for convection-diffusion-reaction problems. J. Comput. Appl. Math. 234 (2010) 114–130. | MR | Zbl

[18] K. O. Friedrichs, Symmetric positive linear differential equations. Comm. Pure Appl. Math. 11 (1958) 333–418. | MR | Zbl

[19] E. H. Georgoulis, E. Hall and C. Makridakis, Error control for discontinuous Galerkin methods for first order hyperbolic problems. In: Vol. 157 of Recent Developments in Discontinuous Galerkin Finite Element Methods for Partial Differential Equations. IMA Vol. Math. Appl. Springer, Cham (2014) 195–207. | MR | Zbl

[20] E. H. Georgoulis, E. Hall and C. Makridakis, An a posteriori error bound for discontinuous Galerkin approximations of convection-diffusion problems. IMA J. Numer. Anal. 39 (2019) 34–60. | MR | Zbl

[21] J.-L. Guermond, A finite element technique for solving first-order PDEs in L p . SIAM J. Numer. Anal. 42 (2004) 714–737. | MR | Zbl

[22] F. Hecht, New development in FreeFEM++. J. Numer. Math. 20 (2012) 251–265. | MR | Zbl

[23] P. Houston, J. A. Mackenzie, E. Süli and G. Warnecke, A posteriori error analysis for numerical approximations of Friedrichs systems. Numer. Math. 82 (1999) 433–470. | MR | Zbl

[24] P. D. Lax and R. S. Phillips, Local boundary conditions for dissipative symmetric linear differential operators. Comm. Pure Appl. Math. 13 (1960) 427–455. | MR | Zbl

[25] C. Makridakis and R. H. Nochetto, A posteriori error analysis for higher order dissipative methods for evolution problems. Numer. Math. 104 (2006) 489–514. | MR | Zbl

[26] I. Muga, M. J. Tyler and K. Van Der Zee, The discrete-dual minimal-residual method (DDMRes) for weak advection-reaction problems in Banach spaces. Preprint arXiv:1808.04542 (2018). | MR

[27] G. Sangalli, Analysis of the advection-diffusion operator using fractional order norms. Numer. Math. 97 (2004) 779–796. | MR | Zbl

[28] G. Sangalli, A uniform analysis of nonsymmetric and coercive linear operators. SIAM J. Math. Anal. 36 (2005) 2033–2048. | MR | Zbl

[29] G. Sangalli, Robust a posteriori estimator for advection-diffusion-reaction problems. Math. Comput. 77 (2008) 41–70. | MR | Zbl

[30] D. Schötzau and L. Zhu, A robust a posteriori error estimator for discontinuous Galerkin methods for convection-diffusion equations. Appl. Numer. Math. 59 (2009) 2236–2255. | MR | Zbl | DOI

[31] E. Süli, A posteriori error analysis and adaptivity for finite element approximations of hyperbolic problems. In: An Introduction to Recent Developments in Theory and Numerics for Conservation Laws (Freiburg/Littenweiler, 1997) Vol. 5 of Lect. Notes Comput. Sci. Eng. Springer, Berlin-Heidelberg (1999) 123–194. | MR | Zbl

[32] Z. Tang, https://who.rocq.inria.fr/Zuqi.Tang/freefem++.html (2015).

[33] D. S. Tartakoff, Regularity of solutions to boundary value problems for first order systems. Indiana Univ. Math. J. 21 (1972) 1113–1129. | MR | Zbl | DOI

[34] R. Verfürth, Robust a posteriori error estimates for stationary convection–diffusion equations. SIAM J. Numer. Anal. 43 (2005) 1766–1782. | MR | Zbl | DOI

[35] M. Vohralík and M. Zakerzadeh, Guaranteed and robust L 2 -norm a posteriori error estimates for 1D linear advection–reaction problems. In preparation (2020). | MR

Cité par Sources :