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GUARANTEED AND ROBUST 𝐿2-NORM A POSTERIORI ERROR ESTIMATES
FOR 1D LINEAR ADVECTION PROBLEMS

Alexndre Ern1,2, Martin Vohraĺık2,1 and Mohammad Zakerzadeh2,1,*

Abstract. We propose a reconstruction-based a posteriori error estimate for linear advection problems
in one space dimension. In our framework, a stable variational ultra-weak formulation is adopted, and
the equivalence of the 𝐿2-norm of the error with the dual graph norm of the residual is established. This
dual norm is showed to be localizable over vertex-based patch subdomains of the computational domain
under the condition of the orthogonality of the residual to the piecewise affine hat functions. We show
that this condition is valid for some well-known numerical methods including continuous/discontinuous
Petrov–Galerkin and discontinuous Galerkin methods. Consequently, a well-posed local problem on each
patch is identified, which leads to a global conforming reconstruction of the discrete solution. We prove
that this reconstruction provides a guaranteed upper bound on the 𝐿2 error. Moreover, up to a generic
constant, it also gives local lower bounds on the 𝐿2 error, where the constant only depends on the mesh
shape-regularity. This, in particular, leads to robustness of our estimates with respect to the polynomial
degree. All the above properties are verified in a series of numerical experiments, additionally leading
to asymptotic exactness. Motivated by these results, we finally propose a heuristic extension of our
methodology to any space dimension, achieved by solving local least-squares problems on vertex-based
patches. Though not anymore guaranteed, the resulting error indicator is still numerically robust with
respect to both advection velocity and polynomial degree in our collection of two-dimensional test cases
including discontinuous solutions aligned and not aligned with the computational mesh.
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1. Introduction

This work deals with a linear advection equation of the form: find 𝑢 : Ω ⊂ R𝑑 → R such that

𝑏·∇𝑢 = 𝑓, in Ω, (1.1a)
𝑢 = 0, on 𝜕−Ω. (1.1b)

The velocity field 𝑏 ∈ 𝒞1(Ω; R𝑑), 𝑏 ̸= 0, is considered to be divergence-free and we take into account a general
source term 𝑓 ∈ 𝐿2(Ω). The inflow, outflow, and characteristic parts of the boundary are denoted by 𝜕−Ω, 𝜕+Ω,
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and 𝜕0Ω, respectively, with the definitions

𝜕±Ω := {𝑥 ∈ 𝜕Ω : ±𝑏(𝑥)·𝑛(𝑥) > 0}, 𝜕0Ω := {𝑥 ∈ 𝜕Ω : 𝑏(𝑥)·𝑛(𝑥) = 0}.

In the main body of the paper, we focus on the one-dimensional case 𝑑 = 1, where Ω ⊂ R is a bounded interval;
then 𝑏 is a constant scalar. We keep the notation in multi-dimensional form in order to be applicable when we
discuss extensions of our results to the multi-dimensional case. For simplicity, we only consider a homogeneous
boundary condition, but all the results can be extended to the non-homogeneous case, see Remarks 4.9 and 10.9
below.

The a posteriori error analysis for problem (1.1) admits a range of functional frameworks and consequently
different norms in which the error can be measured. Our goal is to derive an 𝐿2-norm error estimate of the
form

‖𝑢− 𝑢ℎ‖𝐿2(Ω) ≤ 𝜂, (1.2)

where 𝑢 is the weak solution of (1.1) in 𝐿2(Ω), 𝑢ℎ is its numerical approximation, and 𝜂 is an a posteriori error
estimator that is fully computable from 𝑢ℎ by some local procedure. We seek to have a bound that is guaranteed,
i.e., featuring no unknown constant, in contrast to reliability where a bound up to a generic constant is sufficient.
We develop a unified framework treating several classical numerical methods at once. Importantly, we also prove
a converse estimate to (1.2) in the form

𝜂 ≤ 𝐶‖𝑢− 𝑢ℎ‖𝐿2(Ω) + data oscillation. (1.3)

This is called global efficiency and yields equivalence between the incomputable error ‖𝑢 − 𝑢ℎ‖𝐿2(Ω) and the
computable estimator 𝜂, up to the data oscillation term that vanishes for piecewise polynomial datum 𝑓 and
that is of higher order than the error for piecewise smooth datum 𝑓 . Crucially, in our developments, the generic
constant 𝐶 in (1.3) only depends on the mesh shape regularity, requesting for 𝑑 = 1 that any two neighboring
elements be of comparable size. In particular, 𝐶 is independent of the problem parameters 𝑏 and 𝑓 as well as
of the polynomial degree of the approximation 𝑘, yielding both data- and polynomial-degree-robustness. We
actually also show local efficiency, i.e., a localized version of (1.3), which is highly desirable on the practical
side in view of adaptive mesh refinement. We observe that in one space dimension with constant velocity field 𝑏,
data-robustness boils down to a linear behavior of the error indicator with respect to the magnitude of the
velocity field. Data robustness is thus expected to be true for any reasonable result from literature for this
particular case.

To achieve the above-mentioned goals, we start with the ultra-weak variational formulation at the infinite-
dimensional level, where the solution lies in the 𝐿2(Ω) trial space and the test space is formed by functions in
the graph space of the formal adjoint operator taking zero value at the outflow boundary (𝐻1(Ω) with zero
value at the outflow in one space dimension). In this setting, we prove the equality of the 𝐿2-norm of the
error with the dual graph norm (relying on ‖𝑏·∇(·)‖𝐿2(Ω)) of the residual. In the one-dimensional case, we
are able to prove that the global dual norm can be localized over vertex-based patches of elements under an
orthogonality condition against the hat basis functions. Consequently, suitable discrete local problems posed
over these patches are identified which lead to local reconstructions 𝑠𝑎

ℎ combined into a global reconstruction
𝑠ℎ such that ‖𝑢ℎ − 𝑠ℎ‖𝐿2(Ω) forms the main ingredient of the estimator 𝜂 satisfying (1.2) and (1.3).

Let us recall some important contributions to a posteriori error estimation for problem (1.1). Bey and Oden [5]
proposed an a posteriori error estimate for a discontinuous Galerkin (dG) formulation of the multi-dimensional
advection–reaction problem. In this framework, two infinite-dimensional problems have to be solved on each
mesh element; one to obtain the lower bound on the error and one for the upper bound, in two different
and inequivalent weighted energy norms. This gives estimates similar to (1.2) and (1.3), but for two different
estimators and in two different norms of the error. Additionally, one cannot solve analytically the infinite-
dimensional elementwise problems, and, in practice, one needs to approximate them by some higher-order finite
element approximation. Hence, neither simultaneous reliability and efficiency, nor robustness, are granted.
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Süli in [31] applied the 𝐻1-stability result of Tartakoff [33] to the adjoint problem of (1.1) (with the presence
of the reaction term and in the multi-dimensional case), and obtained a global reliable upper bound on the
𝐻−1-norm of the error in terms of the 𝐿2-norm of the residual for a weak formulation of (1.1) with distinct
trial and test spaces. He further turned this bound into a reliable 𝐻−1-norm a posteriori error indicator for
the streamline-diffusion finite element and the cell-vertex finite volume methods. However, neither the efficiency
nor the robustness of this error indicator are theoretically discussed. Furthermore, in [31] by Süli and in [23]
by Houston et al., an a posteriori error analysis of the multi-dimensional advection–reaction problem in the
graph space equipped with the full norm ‖ · ‖𝐿2(Ω) + ‖𝑏·∇(·)‖𝐿2(Ω) is provided. This functional setting yields
the equivalence between the 𝐿2-norm of the error and the dual graph norm of the residual, up to some generic
constants. Propositions 2.1 and 10.4 below are actually closely related to these results, upon replacing the
full graph norm by only ‖𝑏·∇(·)‖𝐿2(Ω), which leads to a constant-free error–residual equivalence. The rigorous
reliability and efficiency results of [23, 31] in this functional setting for the 𝐿2-norm of the error are restricted
to the part of the 𝐿2-error generated inside each mesh element, by neglecting the advected 𝐿2-error from
the upwind. In numerical experiments, the estimates of [23] behave well in different flow fields and adaptive
meshes.

Becker et al. [4] derived reconstruction-based error estimators for the advection problem (1.1) in two space
dimensions. An 𝐻(div,Ω)-conforming reconstruction is proposed for the flux vector 𝑏𝑢 (instead of 𝑢 in the
present work) which is designed to produce a guaranteed upper bound on the error measured in some dual
norm of the advection operator. A unified framework is built, covering the dG, nonconforming, and conforming
finite element methods with stabilization terms. This dual norm is hard to evaluate even for a known exact
solution, and, in practice, the authors replace it by the 𝐿2-norm, so that the guaranteed upper bound property is
eventually lost. Proofs of efficiency or robustness are not given, but optimal convergence orders of the estimator
are observed in numerical experiments. It is worth mentioning that, restricted to one space dimension, the dual
norm of [4] reduces to the weak graph norm we employ. Our contribution in this respect consists in the proofs
of (1.2) and (1.3), not given in [4] (where, recall, two space dimensions are treated).

In a recent result by Georgoulis et al. [20], the authors used the reconstruction proposed by Makridakis
and Nochetto [25] for a dG approximation and provided a reliable upper bound on the error in the energy
norm for one-dimensional advection–diffusion–reaction problems, as well as a reliable 𝐿2-norm estimate for the
problem (1.1) in one space dimension. Though a proof of (1.3) is not given, efficiency is numerically observed.
One might also note the earlier work of these authors [19], dedicated to the two-dimensional advection–reaction
problem with a similar reconstruction. In that work, a reliable bound on the energy norm of the error is
presented, though again without a theoretical elaboration on the efficiency and robustness.

Furthermore we mention the recent result of Dahmen and Stevenson [11] where the authors provide
a posteriori error estimates for the discontinuous Petrov–Galerkin method tailored to the transport equations
in multiple space dimensions. The equivalence of the errors of the bulk and skeleton quantities with the dual
norm of the residual is established. This dual norm is later approximated by some equivalent yet computable
indicator. The absorbed constants translate into a constant 𝐶 in (1.3) which depends on the advective field 𝑏
and the polynomial degree of approximation, but one might obtain stronger results by employing the approach
of [11] in the simplified settings of this paper, i.e., one-dimensional pure advection with constant velocity, for a
specific discontinuous Petrov–Galerkin scheme. This is not in the scope of the present paper. Another important
result of [11] is the adaptive mesh refinement strategy to guarantee a fixed error reduction in the one-dimensional
case.

Finally, we also mention that in the case of advection–diffusion(–reaction) problems, other approaches were
previously considered to obtain robustness with respect to the advective field. Among them, Verfürth [34]
proposed to augment the energy norm by a dual norm coming from the skew-symmetric part of the differential
operator, and Sangalli [27, 28] used interpolated spaces and a fractional-order norm for the advective term.
Extensions of these approaches can be found in [17,29,30]. However, the above results are not applicable when
the diffusion parameter vanishes, i.e., as the advection–diffusion problem reduces to (1.1), because the diffusive
part of the operator is needed to evaluate the dual norm. We extend our approach to the advection–reaction
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case in [35], where a guaranteed a posteriori error estimate that is locally efficient and robust with respect to
the interplay of the advection and reaction phenomena is derived.

We treat problem (1.1) in one space dimension in Sections 2–9. Section 2 deals with the functional setting,
whereby adopting the ultra-weak variational formulation. We prove, in particular, the equality of the 𝐿2-norm of
the error and the dual norm of the residual. Section 3 introduces some numerical schemes for approximating (1.1).
Section 4 presents a local potential reconstruction on the patch level and collects the main results. Section 5
discusses the localization of the dual norm of the residual over vertex-based patches, and Section 6 shows that
this is possible for the schemes discussed in Section 3. Sections 7 and 8 then present the proofs for the upper and
lower bounds as well as robustness in the form of (1.2)–(1.3). Section 9 then contains results of several numerical
experiments to illustrate the developed theory. Finally, in Section 10, we consider the advection problem (1.1)
in multiple space dimensions and derive a heuristic extension of our methodology to this case. Although we
cannot prove here the guaranteed upper bound, (local) efficiency, and robustness, numerical experiments indicate
appreciable properties of the derived estimates also in this case, including discontinuous solutions aligned and
not aligned with the computational mesh.

2. Abstract framework

We start with the presentation of the abstract framework.

2.1. Spaces

In the one-dimensional case, the constraint of 𝑏 being a non-zero divergence-free field is translated to 𝑏 being
a constant nonzero scalar. Consequently, we are lead to work with the spaces

𝐻1
−(Ω) =

{︀
𝑤 ∈ 𝐻1(Ω), 𝑤 = 0, on 𝜕−Ω

}︀
, 𝐻1

+(Ω) =
{︀
𝑤 ∈ 𝐻1(Ω), 𝑤 = 0, on 𝜕+Ω

}︀
. (2.1)

The trace operator in these spaces is well-defined and the following integration-by-parts formula holds:

(𝑣, 𝑏·∇𝑤)Ω + (𝑏·∇𝑣, 𝑤)Ω = (𝑏·𝑛𝑣, 𝑤)𝜕Ω ∀𝑣, 𝑤 ∈ 𝐻1(Ω), (2.2)

where the notation (𝑣, 𝑤)𝐷 :=
∫︀

𝐷
𝑣𝑤 is used for an open subdomain 𝐷 ⊆ Ω or its boundary 𝜕𝐷 and for integrable

functions 𝑣 and 𝑤. Henceforth, ‖𝑣‖𝐷 denotes the norm ‖𝑣‖𝐿2(𝐷) =
√︀

(𝑣, 𝑣)𝐷. We will drop the subscript when
𝐷 = Ω.

2.2. Poincaré inequalities

The Poincaré inequality states that

‖𝑣 − 𝑣‖𝐷 ≤ ℎ𝐷𝐶P,𝐷‖∇𝑣‖𝐷 ∀𝑣 ∈ 𝐻1(𝐷), (2.3a)

with 𝐶P,𝐷 > 0 a generic constant, in particular equal to 1/𝜋 for convex 𝐷 ⊂ Ω; here 𝑣 is the mean value of 𝑣
over 𝐷 defined as 𝑣 = (𝑣, 1)𝐷/|𝐷| and ℎ𝐷 is the diameter of 𝐷. Similarly, another Poincaré (sometimes called
Friedrichs) inequality states that

‖𝑣‖𝐷 ≤ ℎ𝐷𝐶P,𝐷,Γ𝐷
‖∇𝑣‖𝐷, ∀𝑣 ∈

{︀
𝐻1(𝐷), 𝑣|Γ𝐷

= 0, |Γ𝐷| ≠ 0
}︀
, (2.3b)

where Γ𝐷 ⊂ 𝜕𝐷; typically 𝐶P,𝐷,Γ𝐷
= 1. Henceforth, we will use 𝐶PF,𝐷 as a general notation for both 𝐶P,𝐷 and

𝐶P,𝐷,Γ𝐷
. It follows from the above that for a one-dimensional interval 𝐷, 𝐶PF,𝐷 can be taken as 1.
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2.3. Ultra-weak variational formulation and residual

The variational framework hinges upon an appropriate choice of the trial and test spaces and their corre-
sponding norms. In particular, it turns out natural to work on spaces well-suited to the non-symmetric structure
of the problem. Here we consider Hilbert spaces (non-symmetric formulations in Banach spaces can be found
in [8, 26]).

The (usual) weak formulation of (1.1) reads: find 𝑢 ∈ 𝐻1
−(Ω) such that

(𝑏·∇𝑢, 𝑣) = (𝑓, 𝑣) ∀𝑣 ∈ 𝐿2(Ω). (2.4)

It is classically well-posed as one might confer with [18,24], and Proposition 6 of [31], cf. also [14] and Remark 2.2
of [12]. Here, we rather adopt the so-called ultra-weak formulation of problem (1.1) where the bilinear form is
obtained by casting the derivatives on the test function, using integration-by-parts. It reads: find 𝑢 ∈ 𝐿2(Ω)
such that

−(𝑢, 𝑏·∇𝑣) = (𝑓, 𝑣) ∀𝑣 ∈ 𝐻1
+(Ω). (2.5)

The well-posedness of (2.5) can be shown by inf–sup arguments (cf. [14], Thm. 2.6 and [12], Thm. 2.4).
Denote by 𝐻1

+(Ω)′ the dual space to 𝐻1
+(Ω). For an arbitrary 𝑢ℎ ∈ 𝐿2(Ω), the formulation (2.5) leads to the

definition of the residual ℛ(𝑢ℎ), a bounded linear functional on 𝐻1
+(Ω)′, by

⟨ℛ(𝑢ℎ), 𝑣⟩ := (𝑓, 𝑣) + (𝑢ℎ, 𝑏·∇𝑣) ∀𝑣 ∈ 𝐻1
+(Ω). (2.6)

We define its velocity-scaled dual norm by

‖ℛ(𝑢ℎ)‖𝑏; 𝐻1
+(Ω)′ := sup

𝑣∈𝐻1
+(Ω)∖{0}

⟨ℛ(𝑢ℎ), 𝑣⟩
‖𝑏·∇𝑣‖

· (2.7)

2.4. Error–residual equivalence

In this section, we present an important connection between the 𝐿2(Ω)-norm of the error and the residual
norm (2.7). To be self-contained, though this is not a new finding of this work, we include a proof of the following
proposition:

Proposition 2.1 (Error–residual equivalence). Let 𝑢 be the ultra-weak solution of (2.5). Then

‖𝑢− 𝑢ℎ‖ = ‖ℛ(𝑢ℎ)‖𝑏; 𝐻1
+(Ω)′ ∀𝑢ℎ ∈ 𝐿2(Ω).

Proof. The well-posedness of the weak formulation (2.4), for the velocity field −𝑏, implies that for all 𝑣 ∈ 𝐿2(Ω),
there exists a unique 𝑧 ∈ 𝐻1

+(Ω) such that

−(𝑏·∇𝑧, 𝑤) = (𝑣, 𝑤) ∀𝑤 ∈ 𝐿2(Ω).

This clearly gives ‖𝑏·∇𝑧‖ = ‖𝑣‖. Hence, for any 𝑤 ∈ 𝐿2(Ω), we have

‖𝑤‖ = sup
𝑣∈𝐿2(Ω)∖{0}

(𝑤, 𝑣)
‖𝑣‖

= sup
𝑧∈𝐻1

+(Ω)∖{0}

−(𝑤, 𝑏·∇𝑧)
‖𝑏·∇𝑧‖

,

and the claim follows by the choice 𝑤 = 𝑢− 𝑢ℎ and using the definitions (2.5) and (2.6). �

Compared to the similar equivalence provided in Theorem 3.3 of [23], Proposition 2.1 shows a form of equality
which highlights the optimality of the chosen spaces and norms. This is advantageous for the sharpness of the
a posteriori error estimation.
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3. Examples of numerical methods

Let 𝒯ℎ = {𝐾} be a mesh of Ω, i.e., a division of the one-dimensional domain Ω into non-overlapping
intervals covering Ω, shape regular in the sense that two neighboring intervals are of comparable size, up
to a constant 𝜅𝒯ℎ

. Let us denote ℎ𝐾 := diam(𝐾) and ℎ := max𝐾∈𝒯ℎ
ℎ𝐾 . We also denote by ℰℎ := ∪𝐾∈𝒯ℎ

𝜕𝐾
the skeleton of the triangulation 𝒯ℎ, coinciding with the set of mesh vertices 𝒱ℎ in the present one-dimensional
case. Moreover, we need to consider the decompositions ℰℎ = ℰ int

ℎ ∪ ℰbnd
ℎ into internal and boundary faces

and 𝒱ℎ = 𝒱 int
ℎ ∪ 𝒱𝜕−Ω

ℎ ∪ 𝒱𝜕+Ω
ℎ into internal, inflow, and outflow vertices, so that in the one-dimensional case

ℰℎ = 𝒱ℎ and ℰbnd
ℎ = 𝒱𝜕−Ω

ℎ ∪ 𝒱𝜕+Ω
ℎ . Let 𝒫𝑘(𝒯ℎ) denote piecewise polynomial functions of at most degree 𝑘 on

the mesh 𝒯ℎ. The following three numerical methods are classical examples of discretizations of (1.1). Please
note that in Examples 3.1 and 3.3, we exclude the lowest polynomial degrees. We need to do so to comply with
the orthogonality condition in Assumption 4.1, see Lemma 6.1 below.

The first finite element scheme is a finite-dimensional version of the weak formulation (2.4):

Example 3.1 (Continuous trial Petrov–Galerkin (PG1) finite element). Find 𝑢ℎ ∈ 𝑋ℎ := 𝐻1
−(Ω) ∩ 𝒫𝑘(𝒯ℎ),

𝑘 ≥ 2, such that

(𝑏·∇𝑢ℎ, 𝑣ℎ) = (𝑓, 𝑣ℎ) ∀𝑣ℎ ∈ 𝑌ℎ := 𝒫𝑘−1(𝒯ℎ). (3.1)

The second finite element scheme stems from the ultra-weak formulation (2.5):

Example 3.2 (Discontinuous trial Petrov–Galerkin (PG2) finite element). Find 𝑢ℎ ∈ 𝑋ℎ := 𝒫𝑘(𝒯ℎ), 𝑘 ≥ 0,
such that

−(𝑢ℎ, 𝑏·∇𝑣ℎ) = (𝑓, 𝑣ℎ) ∀𝑣ℎ ∈ 𝑌ℎ := 𝐻1
+(Ω) ∩ 𝒫𝑘+1(𝒯ℎ). (3.2)

Finally, the dG method for problem (1.1) (letting ∇ also denote the broken (elementwise) gradient) reads:

Example 3.3 (dG finite element). Find 𝑢ℎ ∈ 𝑋ℎ := 𝒫𝑘(𝒯ℎ), 𝑘 ≥ 1, such that

ℬℎ(𝑢ℎ, 𝑣ℎ) = (𝑓, 𝑣ℎ) ∀𝑣ℎ ∈ 𝑌ℎ := 𝒫𝑘(𝒯ℎ), (3.3a)

where

ℬℎ(𝑢ℎ, 𝑣ℎ) := −
∑︁

𝐾∈𝒯ℎ

(𝑢ℎ, 𝑏·∇𝑣ℎ)𝐾

−
∑︁

𝑒∈ℰint
ℎ

𝑏·𝑛{{𝑢ℎ}}J𝑣ℎK +
∑︁

𝑒∈ℰint
ℎ

1
2
|𝑏·𝑛|J𝑢ℎKJ𝑣ℎK +

∑︁
𝑒∈ℰbnd

ℎ

(𝑏·𝑛)+ 𝑢ℎ𝑣ℎ. (3.3b)

Here the notation 𝑢−ℎ and 𝑢+
ℎ stands for the trace value on a vertex from left and from right, respectively, the

average is defined as {{𝑢ℎ}} := (𝑢−ℎ + 𝑢+
ℎ )/2, and the jump is defined as J𝑢ℎK := 𝑢+

ℎ − 𝑢−ℎ . In this formulation,
the upwind dG flux is applied on the cell interfaces.

4. Main results

We first present here the heart of our approach, a local potential reconstruction on the patch level. We then
collect and discuss our main results.
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4.1. Patchwise potential reconstruction

Let 𝒱𝐾 be the set of vertices of a mesh element 𝐾 and let 𝒯𝑎 denote the patch of all simplices which share
the given vertex 𝑎, 𝒯𝑎 := {𝐾,𝑎 ∈ 𝒱𝐾}. Let 𝜔𝑎 be the corresponding open subdomain with ℎ𝜔𝑎

:= diam(𝜔𝑎).
Then ∪𝑎∈𝒱ℎ

𝜔𝑎 forms an overlapping partition of Ω, with 𝒩 = 2 maximal overlap in one space dimension. For
all 𝑎 ∈ 𝒱ℎ, let 𝜓𝑎 ∈ 𝐻1(Ω)∩𝒫1(𝒯ℎ) be the piecewise affine hat function, taking value 1 in vertex 𝑎 and 0 in all
other vertices. The hat functions verify supp(𝜓𝑎) = 𝜔𝑎 and form a partition of unity as∑︁

𝑎∈𝒱ℎ

𝜓𝑎 = 1. (4.1)

The following assumption on the 𝜓𝑎-orthogonality of the residual will be crucial to localize the error:

Assumption 4.1 (𝜓𝑎-orthogonality). The residual ℛ(𝑢ℎ) ∈ 𝐻1
+(Ω)′ defined in (2.6) satisfies

⟨ℛ(𝑢ℎ), 𝜓𝑎⟩ = (𝑓, 𝜓𝑎)𝜔𝑎
+ (𝑢ℎ, 𝑏·∇𝜓𝑎)𝜔𝑎

= 0 ∀𝑎 ∈ 𝒱 int
ℎ ∪ 𝒱𝜕−Ω

ℎ . (4.2)

Having Assumption 4.1 satisfied, a local reconstruction technique which provides the key ingredient to eval-
uate our a posteriori error estimator is:

Definition 4.2 (Patchwise potential reconstruction). Let 𝑢ℎ ∈ 𝐿2(Ω) satisfy Assumption 4.1. For all vertices
𝑎 ∈ 𝒱ℎ, let 𝑠𝑎

ℎ ∈ 𝑋𝑎
ℎ be the solution of the following advection–reaction problem on the patch 𝜔𝑎

(𝑏·∇(𝜓𝑎𝑠
𝑎
ℎ), 𝑣ℎ)𝜔𝑎 = (𝑓𝜓𝑎 + (𝑏·∇𝜓𝑎)𝑢ℎ, 𝑣ℎ)𝜔𝑎 ∀𝑣ℎ ∈ 𝑌 𝑎

ℎ , (4.3)

with the finite-dimensional spaces

𝑋𝑎
ℎ := 𝒫𝑘′(𝒯𝑎) ∩𝐻1(𝜔𝑎), 𝑌 𝑎

ℎ := 𝒫𝑘′(𝒯𝑎),

and 𝑘′ ≥ 0. Define the global reconstruction 𝑠ℎ by

𝑠ℎ :=
∑︁

𝑎∈𝒱ℎ

𝜓𝑎𝑠
𝑎
ℎ . (4.4)

4.2. Main results

Our guaranteed upper bound on the 𝐿2-error can be presented as the following theorem:

Theorem 4.3 (Guaranteed a posteriori error estimate). Let 𝑢 ∈ 𝐿2(Ω) be the ultra-weak solution of (2.5) and
let 𝑢ℎ ∈ 𝐿2(Ω) be arbitrary subject to the 𝜓𝑎-orthogonality in Assumption 4.1. Furthermore, consider 𝑠ℎ to be
the reconstruction from Definition 4.2 with 𝑘′ ≥ 0. Then

‖𝑢− 𝑢ℎ‖ ≤ 𝜂 :=

{︃ ∑︁
𝐾∈𝒯ℎ

(𝜂NC,𝐾 + 𝜂Osc,𝐾)2
}︃1/2

,

where
𝜂NC,𝐾 := ‖𝑢ℎ − 𝑠ℎ‖𝐾

and the data oscillation estimator is given as

𝜂Osc,𝐾 :=
ℎ𝐾

𝜋|𝑏|
‖(𝐼 −Π𝒫𝑘′ (𝒯ℎ))𝑓‖𝐾 , (4.5)

with Π𝒫𝑘′ (𝒯ℎ) the 𝐿2(Ω)-orthogonal projection onto 𝒫𝑘′(𝒯ℎ).
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The lower bound on the error and main theorem on local efficiency as well as robustness is presented in the
following theorem:

Theorem 4.4 (Local efficiency and robustness). Let 𝑢 ∈ 𝐿2(Ω) be the ultra-weak solution of (2.5) and let
𝑢ℎ ∈ 𝒫𝑘(𝒯ℎ), 𝑘 ≥ 0, be arbitrary subject to Assumption 4.1. Consider 𝑠ℎ as obtained by Definition 4.2 with
𝑘′ ≥ 𝑘 and 𝜂NC,𝐾 as defined in Theorem 4.3. Then, for all the mesh elements 𝐾 ∈ 𝒯ℎ, the following holds:

𝜂NC,𝐾 ≤ 𝐶cont,PF

∑︁
𝑎∈𝒱𝐾

‖𝑢− 𝑢ℎ‖𝜔𝑎
+
∑︁

𝑎∈𝒱𝐾

ℎ𝜔𝑎

𝜋|𝑏|
‖(𝐼 −Π𝒫𝑘′ (𝒯𝑎))(𝑓𝜓𝑎)‖𝜔𝑎

.

Here, 𝐶cont,PF is a generic positive constant that only depends on the mesh shape-regularity constant 𝜅𝒯ℎ
via

𝐶cont,PF := max
𝑎∈𝒱ℎ

(1 + 𝐶PF,𝜔𝑎ℎ𝜔𝑎‖∇𝜓𝑎‖∞) . (4.6)

Provided that 𝜓𝑎𝑓 is piecewise polynomial, one can obtain the global efficiency of the error indicator as an
immediate consequence of Theorem 4.4 as:

Corollary 4.5 (Global efficiency and maximal overestimation). Let the assumptions of Theorem 4.4 be verified
and assume in addition that 𝜓𝑎𝑓 ∈ 𝑌 𝑎

ℎ for all the mesh vertices 𝑎 ∈ 𝒱ℎ. Then

‖𝑢ℎ − 𝑠ℎ‖ ≤ 2𝐶cont,PF‖𝑢− 𝑢ℎ‖.

4.3. Remarks

A few remarks are in order.

Remark 4.6 (Potential reconstruction and its local conservation). Lemma 5.4 below shows that

𝑠ℎ ∈ 𝒫𝑘′+1(𝒯ℎ) ∩𝐻1
−(Ω), (4.7)

i.e., it lies in a natural finite-dimensional functional space corresponding to the weak formulation (2.4). Moreover,
the following orthogonality is satisfied

(𝑓 − 𝑏·∇𝑠ℎ, 𝑣ℎ)𝐾 = 0 ∀𝑣ℎ ∈ 𝒫𝑘′(𝐾), ∀𝐾 ∈ 𝒯ℎ. (4.8)

Remark 4.7 (Lifting of the local residual). The potential reconstruction 𝑠𝑎
ℎ of Definition 4.2 is such that the

hat-function-weighted difference 𝜓𝑎(𝑠𝑎
ℎ−𝑢ℎ) is a lifting of the local hat-function-weighted residual ⟨ℛ(𝑢ℎ), 𝜓𝑎·⟩

by a local advection problem. Indeed, let 𝑣ℎ ∈ 𝑌 𝑎
ℎ ∩𝐻1(𝜔𝑎), 𝑣ℎ(𝑎) = 0 when 𝑎 ∈ 𝒱𝜕+Ω

ℎ . Then integration-by-
parts, the property 𝑠𝑎

ℎ |𝜕−Ω = 0 from Remark 4.6, and definition (2.6) of the residual give

(𝜓𝑎(𝑢ℎ − 𝑠𝑎
ℎ), 𝑏·∇𝑣ℎ)𝜔𝑎

= (𝜓𝑎𝑢ℎ, 𝑏·∇𝑣ℎ)𝜔𝑎
+ (𝑏·∇(𝜓𝑎𝑠

𝑎
ℎ), 𝑣ℎ)𝜔𝑎

= (𝜓𝑎𝑢ℎ, 𝑏·∇𝑣ℎ)𝜔𝑎 + (𝑓𝜓𝑎 + (𝑏·∇𝜓𝑎)𝑢ℎ, 𝑣ℎ)𝜔𝑎

= (𝑓, 𝜓𝑎𝑣ℎ)𝜔𝑎
+ (𝑢ℎ, 𝑏·∇(𝜓𝑎𝑣ℎ))𝜔𝑎

= ⟨ℛ(𝑢ℎ), 𝜓𝑎𝑣ℎ⟩.

Remark 4.8 (Data oscillation). We call the estimator 𝜂Osc,𝐾 in (4.5) “data oscillation” for the following reason:
if 𝑢ℎ is piecewise polynomial of degree 𝑘≥ 0, the error ‖𝑢− 𝑢ℎ‖ may converge as 𝒪(ℎ𝑘+1). By choosing 𝑘′ ≥ 𝑘
one obtains, for sufficiently piecewise smooth data 𝑓 , the higher convergence order 𝒪(ℎ𝑘′+2) for 𝜂Osc,𝐾 .

Remark 4.9 (Non-homogeneous boundary condition). For the sake of simplicity, we have just presented the
case of a homogenous Dirichlet boundary condition. A non-homogeneous boundary condition 𝑢 = 𝑔 on 𝜕−Ω is
handled in the ultra-weak formulation (2.5) by subtracting 𝑏·𝑛|𝜕−Ω(𝑔, 𝑣)𝜕−Ω from the right-hand side, and in
the definition of residual (2.6) as well. Employing Definition 4.2 leads to a reconstruction 𝑠ℎ which satisfies the
boundary condition 𝑠ℎ = 𝑔 on 𝜕−Ω, following the same arguments as those of Lemma 5.4. In the one-dimensional
case, the boundary is a point, and its values can be captured in the finite-dimensional setting without any error.
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Remark 4.10 (Specificity of the one-dimensional case). The solution of the one-dimensional problem (1.1) can
actually be obtained by integration of the right-hand side. Importantly, no step above uses this fact. For this
reason, most of the developments extend to multiple space dimensions, as we show in Section 10 below. Two
specific points, though, do not seem to easily extend to multiple space dimensions, namely the reconstruction
from Definition 4.2 and the use of the inverse operator in (8.2) in the proof of Theorem 4.4 in Section 8 below.
There is a possible hope to overcome the latter obstacle with the multi-dimensional developments as for elliptic
operators in [7,15,16]. The former obstacle, though, seems to be the true bottleneck that is not fully overcome
in Definition 10.5 below.

Remark 4.11 (Extension to advection–reaction). In the advection–reaction problem, one replaces equa-
tion (1.1a) by 𝑏·∇𝑢 + 𝑐𝑢 = 𝑓 , where 𝑐 ≥ 0 is a constant. Our results can be extended to this case, while
providing a guaranteed a posteriori error estimate that is locally efficient and robust with respect to the inter-
play of the advection and reaction phenomena (mutual sizes of the constants 𝑏 and 𝑐), although the polynomial
degree robustness is theoretically lost. Namely, in Definition 4.2, one merely replaces 𝑓 by 𝑓 − 𝑐𝑢ℎ in the
right-hand side of (4.3). The analysis of the extension is, however, not straightforward, and is the subject of a
stand-alone work [35].

5. Cut-off estimates, error localization, and well-posedness of the
patchwise problems

In this section, we show that under Assumption 4.1, one can obtain a two-sided bound on the dual norm of
the residual ‖ℛ(𝑢ℎ)‖𝑏; 𝐻1

+(Ω)′ by identifying some (infinite-dimensional) problems on patches of elements around
vertices. This identification allows us to localize the error. We then prove the well-posedness of the patchwise
problems from Definition 4.2, as motivated by this localization.

5.1. Cut-off estimates

Similarly to (2.1), let 𝐻1
+(𝜔𝑎) contain those functions from 𝐻1(𝜔𝑎) whose trace is zero on the outflow

boundary of 𝜔𝑎. Define two patchwise spaces

𝐻1
#(𝜔𝑎) :=

{︃
𝐻1

0 (𝜔𝑎), 𝑎 /∈ 𝒱𝜕−Ω
ℎ ,

𝐻1
+(𝜔𝑎), 𝑎 ∈ 𝒱𝜕−Ω

ℎ ,
(5.1)

and

𝐻1
* (𝜔𝑎) :=

{︃
{𝐻1(𝜔𝑎) : (𝑣, 1)𝜔𝑎 = 0}, 𝑎 /∈ 𝒱𝜕+Ω

ℎ ,

𝐻1
+(𝜔𝑎), 𝑎 ∈ 𝒱𝜕+Ω

ℎ .
(5.2)

In the sequel, we will use several times the following fact:

𝑣 ∈ 𝐻1
* (𝜔𝑎) =⇒ 𝜓𝑎𝑣 ∈ 𝐻1

#(𝜔𝑎). (5.3)

Recall the constant 𝐶cont,PF from (4.6). The following important cut-off Poincaré estimate follows immediately
from Theorem 3.1 of [10] or Section 3 of [7], cf. also Lemma 3.12 of [15], using that the present one-dimensional
setting, 𝑏 is a constant scalar:

Lemma 5.1 (Local cut-off estimate). For any mesh vertex 𝑎 ∈ 𝒱ℎ, we have

‖𝑏·∇(𝜓𝑎𝑣)‖𝜔𝑎
≤ 𝐶cont,PF‖𝑏·∇𝑣‖𝜔𝑎

∀𝑣 ∈ 𝐻1
* (𝜔𝑎).
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5.2. Error localization

We have seen in Remark 4.7 that the reconstruction of Definition 4.2 is based on the 𝜓𝑎-orthogonality
Assumption 4.1 and builds upon lifting the localized residual ⟨ℛ(𝑢ℎ), 𝜓𝑎·⟩. This is tightly connected with an
equivalent, localized expression of the error/residual (recall Prop. 5.1). Define the restriction of ℛ(𝑢ℎ) from (2.6)
to the space 𝐻1

#(𝜔𝑎) as

‖ℛ(𝑢ℎ)‖𝑏; 𝐻1
#(𝜔𝑎)′ := sup

𝑣∈𝐻1
#(𝜔𝑎)∖{0}

⟨ℛ(𝑢ℎ), 𝑣⟩
‖𝑏·∇𝑣‖𝜔𝑎

· (5.4)

We then have:

Proposition 5.2 (Localizaion of residual dual norms with 𝜓𝑎-orthogonality). Provided ℛ(𝑢ℎ) satisfies Assump-
tion 4.1, we have

‖ℛ(𝑢ℎ)‖2𝑏; 𝐻1
+(Ω)′ ≤ 2𝐶2

cont,PF

∑︁
𝑎∈𝒱ℎ

‖ℛ(𝑢ℎ)‖2𝑏; 𝐻1
#(𝜔𝑎)′ . (5.5a)

Independently of Assumption 4.1, the following always holds true:∑︁
𝑎∈𝒱ℎ

‖ℛ(𝑢ℎ)‖2𝑏; 𝐻1
#(𝜔𝑎)′ ≤ 2‖ℛ(𝑢ℎ)‖2𝑏; 𝐻1

+(Ω)′ . (5.5b)

Proof. The proof proceeds along the lines in [6,7,10,15]. In particular, noting the partition of unity property (4.1)
and the 𝜓𝑎-orthogonality of Assumption 4.1, one can use 𝑣 =

∑︀
𝑎∈𝒱ℎ

𝜓𝑎𝑣 as the test function to obtain, for
each 𝑣 ∈ 𝐻1

+(Ω),

⟨ℛ(𝑢ℎ), 𝑣⟩ (4.1),(4.2)
=

∑︁
𝑎∈𝒱int

ℎ ∪𝒱
𝜕−Ω
ℎ

⟨ℛ(𝑢ℎ), 𝜓𝑎(𝑣 − 𝑣𝑎)⟩+
∑︁

𝑎∈𝒱
𝜕+Ω
ℎ

⟨ℛ(𝑢ℎ), 𝜓𝑎𝑣⟩,

where 𝑣𝑎 is the mean value of 𝑣 on 𝜔𝑎. Let 𝑤𝑎 := (𝑣 − 𝑣𝑎)|𝜔𝑎
if 𝑎 ∈ 𝒱 int

ℎ ∪ 𝒱𝜕−Ω
ℎ and 𝑤𝑎 := 𝑣|𝜔𝑎

if 𝑎 ∈ 𝒱𝜕+Ω
ℎ .

Then, 𝑤𝑎 ∈ 𝐻1
* (𝜔𝑎), so that 𝜓𝑎𝑤𝑎 ∈ 𝐻1

#(𝜔𝑎) by (5.3). Using the cut-off estimate of Lemma 5.1 for 𝑣 = 𝑤𝑎 and
the definition (5.4), one can in particular obtain

⟨ℛ(𝑢ℎ), 𝑣⟩ =
∑︁

𝑎∈𝒱ℎ

⟨ℛ(𝑢ℎ), 𝜓𝑎𝑤𝑎⟩ ≤
∑︁

𝑎∈𝒱ℎ

‖ℛ(𝑢ℎ)‖𝑏; 𝐻1
#(𝜔𝑎)′‖𝑏·∇(𝜓𝑎𝑤𝑎)‖𝜔𝑎

≤ 𝐶cont,PF

∑︁
𝑎∈𝒱ℎ

‖ℛ(𝑢ℎ)‖𝑏; 𝐻1
#(𝜔𝑎)′‖𝑏·∇𝑣‖𝜔𝑎

C.S.
≤ 𝐶cont,PF21/2

(︃∑︁
𝑎∈𝒱ℎ

‖ℛ(𝑢ℎ)‖2𝑏; 𝐻1
#(𝜔𝑎)′

)︃1/2

‖𝑏·∇𝑣‖,

which gives (5.5a).
To prove (5.5b), using the Riesz representation theorem one observes that there exists 𝜉𝑎 ∈ 𝐻1

#(𝜔𝑎) such
that

(𝑏·∇𝜉𝑎, 𝑏·∇𝑣)𝜔𝑎
= ⟨ℛ(𝑢ℎ), 𝑣⟩ ∀𝑣 ∈ 𝐻1

#(𝜔𝑎). (5.6)

Consequently ‖ℛ(𝑢ℎ)‖𝑏; 𝐻1
#(𝜔𝑎)′ = ‖𝑏·∇𝜉𝑎‖𝜔𝑎

. By extending 𝜉𝑎 by zero outside of the patch 𝜔𝑎 and defining∑︀
𝑎∈𝒱ℎ

𝜉𝑎 =: 𝜉 ∈ 𝐻1
+(Ω), one has∑︁

𝑎∈𝒱ℎ

‖ℛ(𝑢ℎ)‖2𝑏; 𝐻1
#(𝜔𝑎)′ =

∑︁
𝑎∈𝒱ℎ

(𝑏·∇𝜉𝑎, 𝑏·∇𝜉𝑎)𝜔𝑎

(5.6)
=

∑︁
𝑎∈𝒱ℎ

⟨ℛ(𝑢ℎ), 𝜉𝑎⟩

= ⟨ℛ(𝑢ℎ), 𝜉⟩ ≤ ‖ℛ(𝑢ℎ)‖𝑏; 𝐻1
+(Ω)′‖𝑏·∇𝜉‖. (5.7)
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The application of the Cauchy–Schwarz inequality gives

‖𝑏·∇𝜉‖2 =
∑︁

𝐾∈𝒯ℎ

‖𝑏·∇𝜉‖2𝐾 =
∑︁

𝐾∈𝒯ℎ

⃦⃦⃦⃦
⃦ ∑︁

𝑎∈𝒱𝐾

𝑏·∇𝜉𝑎

⃦⃦⃦⃦
⃦

2

𝐾

≤ 2
∑︁

𝐾∈𝒯ℎ

∑︁
𝑎∈𝒱𝐾

‖𝑏·∇𝜉𝑎‖2𝐾

= 2
∑︁

𝑎∈𝒱ℎ

∑︁
𝐾∈𝒯𝑎

‖𝑏·∇𝜉𝑎‖2𝐾 = 2
∑︁

𝑎∈𝒱ℎ

‖𝑏·∇𝜉𝑎‖2𝜔𝑎
= 2

∑︁
𝑎∈𝒱ℎ

‖ℛ(𝑢ℎ)‖2𝑏; 𝐻1
#(𝜔𝑎)′ ,

which proves (5.5b) in combination with (5.7). �

5.3. Well-posedness of the local problems

In order to use the reconstruction proposed in Definition 4.2, it is important to make sure of its well-posedness.
We check it now.

A priori, the number of degrees of freedom in 𝑋𝑎
ℎ and 𝑌 𝑎

ℎ for an interior vertex 𝑎 ∈ 𝒱 int
ℎ does not match;

while there exist 2(𝑘′ + 1) linarly independent test functions in 𝑌 𝑎
ℎ , the trial space 𝑋𝑎

ℎ has only 2𝑘′ + 1 degrees
of freedom. For any 𝑎 ∈ 𝒱 int

ℎ , though, the test function in (4.3) given by 𝑣ℎ = 1 on both elements 𝐾 ∈ 𝒯𝑎 is
actually superfluous. Indeed, on the one hand, we have

(𝑏·∇(𝜓𝑎𝑠
𝑎
ℎ), 1)𝜔𝑎

= (𝑏·𝑛, 𝜓𝑎𝑠
𝑎
ℎ)𝜕𝜔𝑎

= 0, (5.8)

according to the definition of 𝜓𝑎. On the other hand, Assumption 4.1 guarantees that the right-hand side
vanishes in such a case, hence

(𝑓𝜓𝑎 + (𝑏·∇𝜓𝑎)𝑢ℎ, 1)𝜔𝑎 = ⟨ℛ(𝑢ℎ), 𝜓𝑎⟩ = 0.

Then, we can show that the solution of (4.3) uniquely exists and the proposed reconstruction is well-posed:

Lemma 5.3 (Well-posedness of Def. 4.2). There exists a unique solution 𝑠𝑎
ℎ ∈ 𝑋𝑎

ℎ of problem (4.3).

Proof. For all 𝑤ℎ ∈ 𝑋𝑎
ℎ , 𝜓𝑎𝑤ℎ ∈ 𝐻1

0 (𝜔𝑎) for all 𝑎 ∈ 𝒱 int
ℎ , 𝜓𝑎𝑤ℎ ∈ 𝐻1

+(𝜔𝑎) for 𝑎 ∈ 𝒱𝜕−Ω
ℎ , and 𝜓𝑎𝑤ℎ ∈ 𝐻1

−(𝜔𝑎)
for 𝑎 ∈ 𝒱𝜕+Ω

ℎ ; hence ‖𝑏·∇(𝜓𝑎·)‖𝜔𝑎 is a norm on 𝑋𝑎
ℎ . Noting that 𝑏 is constant and 𝑏·∇(𝜓𝑎𝑤ℎ) ∈ 𝒫𝑘′(𝒯𝑎) = 𝑌 𝑎

ℎ ,
one can write the inf–sup condition of the bilinear form associated with the left-hand side of (4.3) as

sup
𝑣ℎ∈𝑌 𝑎

ℎ ∖{0}

(𝑏·∇(𝜓𝑎𝑤ℎ), 𝑣ℎ)𝜔𝑎

‖𝑣ℎ‖𝜔𝑎

= ‖𝑏·∇(𝜓𝑎𝑤ℎ)‖𝜔𝑎
∀𝑤ℎ ∈ 𝑋𝑎

ℎ ,

with unit inf–sup constant. Since the dimensions of 𝑋𝑎
ℎ and 𝑌 𝑎

ℎ that count are the same, this injectivity implies
the bijectivity of the operator.

�

Lemma 5.4 (Properties of the reconstruction). Definition 4.2 yields 𝑠ℎ satisfying (4.7) and (4.8).

Proof. For (4.7) is clear from (4.4) that 𝑠ℎ ∈ 𝒫𝑘′+1(𝒯ℎ) ∩ 𝐻1(Ω), and we only need to show that 𝑠ℎ satisfies
the boundary condition requirement of the space 𝐻1

−(Ω), i.e., 𝑠ℎ

⃒⃒
𝜕−Ω

= 0. We check this by showing that

𝑠𝑎
ℎ

⃒⃒
𝜕𝜔𝑎∩𝜕−Ω

= 0 for 𝑎 ∈ 𝒱𝜕−Ω
ℎ . We see from (4.3) and Assumption 4.1 that

(𝑏·∇(𝜓𝑎𝑠
𝑎
ℎ), 1)𝜔𝑎

= (𝑓𝜓𝑎 + (𝑏·∇𝜓𝑎)𝑢ℎ, 1)𝜔𝑎
= ⟨ℛ(𝑢ℎ), 𝜓𝑎⟩ = 0,

so that the requested equality follows from integration-by-parts similarly to (5.8),

(𝑏·∇(𝜓𝑎𝑠
𝑎
ℎ), 1)𝜔𝑎

= 𝑏·𝑛𝑠𝑎
ℎ |𝜕−Ω,
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and since 𝑏·𝑛 ̸= 0 on 𝜕−Ω by definition.
To prove (4.8), first note that

∑︀
𝑎∈𝒱𝐾

𝜓𝑎

⃒⃒
𝐾

= 1 and
∑︀

𝑎∈𝒱𝐾
(𝑏·∇𝜓𝑎)𝑢ℎ

⃒⃒
𝐾

= 0. Thus, since 𝑌 𝑎
ℎ |𝐾 = 𝒫𝑘′(𝐾),

extending the function 𝑣ℎ∈ 𝒫𝑘′(𝐾) by zero outside 𝐾, and using respectively definitions (4.4) of 𝑠ℎ and (4.3)
of 𝑠𝑎

ℎ , one has

(𝑓 − 𝑏·∇𝑠ℎ, 𝑣ℎ)𝐾 =

(︃ ∑︁
𝑎∈𝒱𝐾

{︀
𝜓𝑎𝑓 + (𝑏·∇𝜓𝑎)𝑢ℎ − 𝑏·∇(𝜓𝑎𝑠

𝑎
ℎ)
}︀
, 𝑣ℎ

)︃
𝐾

=
∑︁

𝑎∈𝒱𝐾

(𝜓𝑎𝑓 + (𝑏·∇𝜓𝑎)𝑢ℎ − 𝑏·∇(𝜓𝑎𝑠
𝑎
ℎ), 𝑣ℎ)𝜔𝑎

= 0.

�

6. 𝜓𝑎-orthogonality of the residual for the methods of Section 3

We now return to the three methods presented in Section 3 and show the validity of Assumption 4.1 for
them:

Lemma 6.1 (𝜓𝑎-orthogonality of the residual). For methods PG1 of Example 3.1 with 𝑘 ≥ 2, PG2 of Exam-
ple 3.2 with 𝑘 ≥ 0, and dG of Example 3.3 with 𝑘 ≥ 1, Assumption 4.1 holds true.

Proof. Let 𝑎 ∈ 𝒱 int
ℎ ∪ 𝒱𝜕−Ω

ℎ . We verify the condition for each method:
– From definition (2.6), for the PG1 method (3.1), we have

⟨ℛ(𝑢ℎ), 𝜓𝑎⟩ =
∑︁

𝐾∈𝒯𝑎

{︀
(𝑓, 𝜓𝑎)𝐾 + (𝑢ℎ, 𝑏·∇𝜓𝑎)𝐾

}︀
I.B.P.=

∑︁
𝐾∈𝒯𝑎

{︀
(𝑓, 𝜓𝑎)𝐾 − (𝑏·∇𝑢ℎ, 𝜓𝑎)𝐾 + (𝑏·𝑛𝑢ℎ, 𝜓𝑎)𝜕𝐾

}︀
. (6.1)

For all 𝑎 ∈ 𝒱 int
ℎ , the jump J𝜓𝑎K vanishes at the vertex 𝑎 and 𝜓𝑎 = 0 on the boundary face of the patch.

Hence, since 𝑢ℎ is also continuous in 𝑎 in the PG1 method, the last term in (6.1) disappears and one infers
that

⟨ℛ(𝑢ℎ), 𝜓𝑎⟩ = (𝑓, 𝜓𝑎) − (𝑏·∇𝑢ℎ, 𝜓𝑎)
(3.1)
= 0,

since we assume 𝑘 ≥ 2, so that 𝜓𝑎 ∈ 𝑌ℎ. The same result is valid for 𝑎 ∈ 𝒱𝜕−Ω
ℎ since 𝑢ℎ = 0 on the inflow

as imposed in the definition of 𝑋ℎ.
– From definition (2.6) and employing the PG2 characterization (3.2), we obtain in a straightforward manner

that

⟨ℛ(𝑢ℎ), 𝜓𝑎⟩ = 0

for all 𝑘 ≥ 0.
– For the dG method (3.3), noting that (𝑏·𝑛)+ = 0 on the inflow and using the same arguments on the

vanishing of the jump J𝜓𝑎K and some 𝑘 ≥ 1 by assumption, we have for any vertex 𝑎 ∈ 𝒱 int
ℎ ∪ 𝒱𝜕−Ω

ℎ∑︁
𝑒∈ℰint

ℎ

{︂
1
2
|𝑏·𝑛|J𝑢ℎK− 𝑏·𝑛{{𝑢ℎ}}

}︂
J𝜓𝑎K +

∑︁
𝑒∈ℰbnd

ℎ

(𝑏·𝑛)+ 𝑢ℎ𝜓𝑎 = 0.

Hence, also employing definition (2.6), we infer that

⟨ℛ(𝑢ℎ), 𝜓𝑎⟩ =
∑︁

𝐾∈𝒯𝑎

{︀
(𝑓, 𝜓𝑎)𝐾 + (𝑢ℎ, 𝑏·∇𝜓𝑎)𝐾

}︀
= 0

for all 𝑘 ≥ 1 which implies 𝜓𝑎 ∈ 𝑌ℎ.
�
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7. Proof of guaranteed reliability (Thm. 4.3)

We prove here Theorem 4.3. Since 𝑠ℎ ∈ 𝐻1
−(Ω) by Lemma 5.4, for any 𝑣 ∈ 𝐻1

+(Ω) the integration-by-parts
formula (2.2) implies that

(𝑠ℎ, 𝑏·∇𝑣) + (𝑏·∇𝑠ℎ, 𝑣) = (𝑠ℎ, 𝑣ℎ𝑏·𝑛) = 0. (7.1)

By using the error–residual identity of Proposition 2.1, definitions (2.6) and (2.7), and the above equality, one
can write

‖𝑢− 𝑢ℎ‖Ω = ‖ℛ(𝑢ℎ)‖𝑏; 𝐻1
+(Ω)′ = sup

𝑣∈𝐻1
+(Ω)∖{0}

(𝑓 − 𝑏·∇𝑠ℎ, 𝑣) + (𝑢ℎ − 𝑠ℎ, 𝑏·∇𝑣)
‖𝑏·∇𝑣‖

·

Owing to (4.8), denoting by 𝑣𝐾 the mean value of 𝑣 over the element 𝐾, we infer that

‖𝑢− 𝑢ℎ‖
(4.8)
= sup

𝑣∈𝐻1
+(Ω)∖{0}

∑︁
𝐾∈𝒯ℎ

[︁
(𝑢ℎ − 𝑠ℎ, 𝑏·∇𝑣)𝐾 + (𝑓 − 𝑏·∇𝑠ℎ, 𝑣 − 𝑣𝐾)𝐾

]︁
‖𝑏·∇𝑣‖

(2.3a)

≤ sup
𝑣∈𝐻1

+(Ω)∖{0}

∑︁
𝐾∈𝒯ℎ

[︁
‖𝑢ℎ − 𝑠ℎ‖𝐾‖𝑏·∇𝑣‖𝐾 +

ℎ𝐾

𝜋|𝑏|
‖𝑓 − 𝑏·∇𝑠ℎ‖𝐾‖𝑏·∇𝑣‖𝐾

]︁
‖𝑏·∇𝑣‖

≤

{︃ ∑︁
𝐾∈𝒯ℎ

[︂
‖𝑢ℎ − 𝑠ℎ‖𝐾 +

ℎ𝐾

𝜋|𝑏|
‖𝑓 − 𝑏·∇𝑠ℎ‖𝐾

]︂2}︃1/2

.

Noting that 𝑏·∇𝑠ℎ ∈ 𝒫𝑘′(𝒯ℎ), it follows from (4.8) that 𝑏·∇𝑠ℎ = Π𝒫𝑘′ (𝒯ℎ)𝑓 so that

‖𝑓 − 𝑏·∇𝑠ℎ‖𝐾 = ‖(𝐼 −Π𝒫𝑘′ (𝒯ℎ))𝑓‖𝐾 ,

which completes the proof.

8. Proof of efficiency and robustness

This section presents proofs of Theorem 4.4 and Corollary 4.5.

8.1. Proof of Theorem 4.4 (local efficiency and robustness)

Fix an element 𝐾 ∈ 𝒯ℎ. Noting that
∑︀

𝑎∈𝒱𝐾
𝜓𝑎

⃒⃒
𝐾

= 1 and using definition (4.4), one has

‖𝑢ℎ − 𝑠ℎ‖𝐾 =

⃦⃦⃦⃦
⃦ ∑︁

𝑎∈𝒱𝐾

𝜓𝑎(𝑢ℎ − 𝑠𝑎
ℎ)

⃦⃦⃦⃦
⃦

𝐾

≤
∑︁

𝑎∈𝒱𝐾

‖𝜓𝑎(𝑢ℎ − 𝑠𝑎
ℎ)‖𝜔𝑎 . (8.1)

Recalling (5.2), we easily see that for any vertex 𝑎 ∈ 𝒱ℎ, there is a unique 𝑣𝑎 ∈ 𝐻1
* (𝜔𝑎) such that

𝑏·∇𝑣𝑎 = 𝜓𝑎(𝑢ℎ − 𝑠𝑎
ℎ) (8.2)

in 𝜔𝑎, and 𝑣𝑎 is nonzero unless 𝜓𝑎𝑢ℎ = 𝜓𝑎𝑠
𝑎
ℎ , in which case ‖𝜓𝑎(𝑢ℎ− 𝑠𝑎

ℎ)‖𝜔𝑎 = 0. Moreover, first, (𝜓𝑎𝑠
𝑎
ℎ) (𝑎) =

𝑠ℎ(𝑎) = 0 when 𝑎 ∈ 𝒱𝜕−Ω
ℎ , using (4.7), and, second, 𝑣𝑎(𝑎) = 0 when 𝑎 ∈ 𝒱𝜕+Ω

ℎ , using (5.2). Thus, similarly
to (7.1), for any 𝑎 ∈ 𝒱ℎ, we have

(𝜓𝑎𝑠
𝑎
ℎ , 𝑏·∇𝑣𝑎)𝜔𝑎

+ (𝑏·∇(𝜓𝑎𝑠
𝑎
ℎ), 𝑣𝑎)𝜔𝑎

= 0.
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From the two above identities, we infer that

‖𝜓𝑎(𝑢ℎ − 𝑠𝑎
ℎ)‖𝜔𝑎

=
(𝜓𝑎(𝑢ℎ − 𝑠𝑎

ℎ), 𝑏·∇𝑣𝑎)𝜔𝑎

‖𝑏·∇𝑣𝑎‖𝜔𝑎

=
(𝜓𝑎𝑢ℎ, 𝑏·∇𝑣𝑎)𝜔𝑎 + (𝑓𝜓𝑎 + 𝑏·∇𝜓𝑎𝑢ℎ, 𝑣

𝑎)𝜔𝑎

‖𝑏·∇𝑣𝑎‖𝜔𝑎

+
(𝑏·∇(𝜓𝑎𝑠

𝑎
ℎ), 𝑣𝑎)𝜔𝑎

− (𝑓𝜓𝑎 + 𝑏·∇𝜓𝑎𝑢ℎ, 𝑣
𝑎)𝜔𝑎

‖𝑏·∇𝑣𝑎‖𝜔𝑎

=: I + II.

(8.3)

For the term I, remark first that from (5.3) and from the definition of 𝐻1
#(𝜔𝑎) in (5.1), we have

𝜓𝑎𝑣
𝑎 ∈ 𝐻1

#(𝜔𝑎) ⊆ 𝐻1
+(Ω).

Second, recalling the residual definition (2.6) and the ultra-weak formulation (2.5), we have

(𝑓𝜓𝑎 + 𝑏·∇𝜓𝑎𝑢ℎ, 𝑣
𝑎)𝜔𝑎

+ (𝑢ℎ𝜓𝑎, 𝑏·∇𝑣𝑎)𝜔𝑎
= ⟨ℛ(𝑢ℎ), 𝜓𝑎𝑣

𝑎⟩= −(𝑢− 𝑢ℎ, 𝑏·∇(𝜓𝑎𝑣
𝑎)).

Consequently, employing the Cauchy–Schwarz inequality and Lemma 5.1, we infer that

I =
−(𝑢− 𝑢ℎ, 𝑏·∇(𝜓𝑎𝑣

𝑎))
‖𝑏·∇(𝜓𝑎𝑣𝑎)‖𝜔𝑎

‖𝑏·∇(𝜓𝑎𝑣
𝑎)‖𝜔𝑎

‖𝑏·∇𝑣𝑎‖𝜔𝑎

≤ 𝐶cont,PF‖𝑢− 𝑢ℎ‖𝜔𝑎
. (8.4)

To bound the term II, we use the fact that (𝑏·∇𝜓𝑎)𝑢ℎ ∈ 𝑌 𝑎
ℎ when 𝑘′ ≥ 𝑘 and that 𝑏·∇(𝜓𝑎𝑠

𝑎
ℎ) ∈ 𝑌 𝑎

ℎ , so
that (4.3) actually holds pointwise, in the form

𝑏·∇ (𝜓𝑎𝑠
𝑎
ℎ) = Π𝒫𝑘′ (𝒯𝑎)(𝑓𝜓𝑎) + (𝑏·∇𝜓𝑎)𝑢ℎ.

Hence, denoting 𝑣𝑎
𝐾 the mean value of 𝑣𝑎 over the element 𝐾 ∈ 𝒯𝑎 and using (2.3a), we obtain

II =
(Π𝒫𝑘′ (𝒯𝑎)(𝑓𝜓𝑎)− 𝑓𝜓𝑎, 𝑣

𝑎)𝜔𝑎

‖𝑏·∇𝑣𝑎‖𝜔𝑎

=

∑︀
𝐾∈𝒯𝑎

(Π𝒫𝑘′ (𝒯𝑎)(𝑓𝜓𝑎)− 𝑓𝜓𝑎, 𝑣
𝑎−𝑣𝑎

𝐾)𝐾

‖𝑏·∇𝑣𝑎‖𝜔𝑎

≤ max𝐾∈𝒯𝑎
ℎ𝐾

𝜋|𝑏|
‖Π𝒫𝑘′ (𝒯𝑎)(𝑓𝜓𝑎)− 𝑓𝜓𝑎‖𝜔𝑎

.

The assertion follows by combining the bounds on I and II with (8.1).

8.2. Proof of Corollary 4.5 (global efficiency and maximal overestimation)

Proceeding as in the proof of Theorem 4.4, one has

‖𝑢ℎ − 𝑠ℎ‖2 =
∑︁

𝐾∈𝒯ℎ

⃦⃦⃦⃦
⃦ ∑︁

𝑎∈𝒱𝐾

𝜓𝑎 (𝑢ℎ − 𝑠𝑎
ℎ)

⃦⃦⃦⃦
⃦

2

𝐾

≤ 2
∑︁

𝐾∈𝒯ℎ

∑︁
𝑎∈𝒱𝐾

‖𝜓𝑎 (𝑢ℎ − 𝑠𝑎
ℎ) ‖2𝐾

= 2
∑︁

𝑎∈𝒱ℎ

‖𝜓𝑎 (𝑢ℎ − 𝑠𝑎
ℎ) ‖2𝜔𝑎

(8.3),(8.4)

≤ 2𝐶2
cont,PF

∑︁
𝑎∈𝒱ℎ

‖𝑢− 𝑢ℎ‖2𝜔𝑎
.

Another estimate for the overlapping of the patches yields
∑︀

𝑎∈𝒱ℎ
‖𝑢− 𝑢ℎ‖2𝜔𝑎

≤ 2‖𝑢− 𝑢ℎ‖2 and leads to the
assertion.
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Table 1. Effectivity indices 𝐼eff for 𝑢ℎ obtained by the PG2 method (3.2) and dG method (3.3);
𝑘 = 𝑘′ = 1.

# Elements # DOF PG2 dG

4 8 1.234 1.126
16 32 1.058 1.032
64 128 1.014 1.008
256 512 1.004 1.002

9. Numerical experiments

We provide in this section a numerical illustration of our results in one space dimension. In the first set
of examples in Section 9.1, we consider a polynomial right-hand side function 𝑓 and study the efficiency of
the estimator. Then, in Section 9.2, we consider a more general case to investigate the effect of the increase
of the polynomial degree on the quality of the estimators. Henceforth, we consider Ω = (0, 1) with the mesh
𝒯ℎ = {𝐾𝑖}𝑛

1 with 𝐾𝑖 = [𝑥𝑖−1, 𝑥𝑖] of uniform size. In the experiments, the numerical solution 𝑢ℎ ∈ 𝒫𝑘(𝒯ℎ) will
be computed by two methods:

– the PG2 method (3.2) with the finite-dimensional spaces as in Example 3.2, 𝑘 ≥ 0,
– the dG method (3.3) with the finite-dimensional spaces as in Example 3.3, 𝑘 ≥ 1.

The effectivity index is defined as 𝐼eff := 𝜂/‖𝑢 − 𝑢ℎ‖, i.e., as the ratio of the estimated and the actual error
from Theorem 4.3.

We always take 𝑏 = 1; recall that solely scaling 𝑏 in (1.1) by a factor implies the same scaling of the exact
solution 𝑢, the numerical approximation 𝑢ℎ, the error ‖𝑢− 𝑢ℎ‖, the reconstruction 𝑠ℎ, and of the estimators in
Theorem 4.3 by the inverse of this factor. Thus, in particular, the effectivity index is independent of 𝑏.

9.1. Efficiency of the estimator

Here we consider the advection problem (1.1) with the piecewise quadratic right-hand side defined as

𝑓(𝑥) = 𝑥2 + 𝑥+ sin(2𝜋𝑥𝑖−1), on 𝐾𝑖, 1 ≤ 𝑖 ≤ 𝑛,

whose exact solution can be easily computed by integration of the right-hand side. The numerical solutions 𝑢ℎ

are obtained by both PG2 and dG methods with 𝑘 = 1, 2.
If one sets 𝑘′ = 2 in Definition 4.2, the oscillation estimators 𝜂Osc,𝐾 from (4.5) disappear, since 𝑓 ∈ 𝒫2(𝒯ℎ).

In this case, actually, one has 𝑠ℎ ∈ 𝒫3(𝒯ℎ) ∩𝐻1
−(Ω), see (4.7). Moreover, owing to (4.8), 𝑏·∇𝑠ℎ = 𝑓 pointwise.

Hence, 𝑠ℎ in this setting coincides with the exact solution 𝑢, 𝜂 = ‖𝑢 − 𝑢ℎ‖, and 𝐼eff = 1 (up to the machine
precision).

To assess the behavior in the case where the reconstruction 𝑠ℎ does not coincide with the exact solution, we
also test the choice 𝑘′ = 1 in Definition 4.2 together with 𝑘 = 1. The effectivity indices, for different mesh sizes,
and for PG2 and dG methods have been reported in Table 1.

Moreover, we numerically observe asymptotic exactness with mesh refinement, for both tested schemes.

9.2. Robustness with respect to the polynomial degree

We now consider the advection problem (1.1) with a non-polynomial right-hand side 𝑓(𝑥) = tan−1(𝑥), for
different polynomial degrees 0 ≤ 𝑘 ≤ 4. The results are presented in Table 2 for the PG2 method and in
Table 3 for the dG method. We always set 𝑘′ = 𝑘. We use the notation 𝜂NC :=

(︀∑︀
𝐾∈𝒯ℎ

𝜂2
NC,𝐾

)︀1/2 and

𝜂Osc :=
(︀∑︀

𝐾∈𝒯ℎ
𝜂2
Osc,𝐾

)︀1/2. The mesh is refined uniformly until the error estimator 𝜂 ≤ 10−14; we encountered
some irregularities in 𝐼eff beyond this point due to machine precision. We observe optimal convergence order of
the estimators and the independence of 𝐼eff from the polynomial degree, in accordance with the theory.
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Table 2. Convergence of the error ‖𝑢 − 𝑢ℎ‖, the error estimators 𝜂, 𝜂NC, and 𝜂Osc, and the
effectivity indices 𝐼eff for the PG2 method (3.2) with different polynomial degrees 𝑘.

𝑘 = 0, 𝑘′ = 0

# Elements # DOF ‖𝑢− 𝑢ℎ‖ 𝜂 𝜂NC 𝜂Osc 𝐼eff

4 4 3.562e-02 3.951e-02 3.574e-02 4.601e-03 1.11
16 16 8.934e-03 9.161e-03 8.936e-03 2.877e-04 1.03
64 64 2.234e-03 2.248e-03 2.234e-03 1.798e-05 1.01
256 256 5.585e-04 5.593e-05 5.585e-04 1.124e-06 1.00
1024 1024 1.396e-04 1.397e-05 1.396e-04 7.025e-08 1.00

𝑘 = 1, 𝑘′ = 1
# Elements # DOF ‖𝑢− 𝑢ℎ‖ 𝜂 𝜂NC 𝜂Osc 𝐼eff

4 8 1.868e-03 1.955e-03 1.867e-03 9.783e-05 1.05
16 32 1.167e-04 1.181e-04 1.167e-04 1.531e-06 1.02
64 128 7.294e-06 7.315e-06 7.294e-06 2.393e-08 1.00
256 512 4.559e-07 4.562e-07 4.559e-07 3.739e-10 1.00
1024 2048 2.849e-08 2.849e-08 2.849e-08 5.843e-12 1.00

𝑘 = 2, 𝑘′ = 2
# Elements # DOF ‖𝑢− 𝑢ℎ‖ 𝜂 𝜂NC 𝜂Osc 𝐼eff

4 12 2.600e-05 2.844e-05 2.598e-05 3.967e-06 1.09
16 48 4.066e-07 4.154e-07 4.066e-07 1.558e-08 1.02
64 192 6.354e-09 6.387e-09 6.354e-09 6.091e-11 1.01
256 768 9.928e-11 9.941e-11 9.928e-11 2.379e-13 1.00
1024 3072 1.552e-12 1.551e-12 1.551e-12 9.294e-16 1.00

𝑘 = 3, 𝑘′ = 3
# Elements # DOF ‖𝑢− 𝑢ℎ‖ 𝜂 𝜂NC 𝜂Osc 𝐼eff

4 16 7.859e-07 9.299e-07 7.852e-07 1.803e-07 1.18
16 64 3.085e-09 3.213e-09 3.085e-09 1.775e-10 1.04
64 256 1.205e-11 1.217e-11 1.205e-11 1.735e-13 1.01
256 1024 4.730e-14 4.730e-14 4.718e-14 1.694e-16 1.00

𝑘 = 4, 𝑘′ = 4
# Elements # DOF ‖𝑢− 𝑢ℎ‖ 𝜂 𝜂NC 𝜂Osc 𝐼eff

4 20 2.851e-08 3.517e-08 2.847e-08 8.486e-09 1.23
16 80 2.804e-11 2.948e-11 2.804e-11 2.095e-12 1.05
64 320 2.753e-14 2.776e-14 2.742e-14 5.118e-16 1.01

10. Extension to multiple space dimensions

In this section, we investigate a possible extension of the ideas presented so far to the multi-dimensional
case. We consider the advection equation (1.1) on a simply-connected Lipschitz polytope Ω ⊂ R𝑑 for 𝑑 ≥ 2.
The velocity field 𝑏 ∈ 𝒞1(Ω; R𝑑) is considered to be divergence-free. We also assume that 𝑏 is Ω-filling, i.e.,
its trajectories starting from the inflow boundary 𝜕−Ω fill Ω almost everywhere in a finite time. A sufficient
condition for the validity of this property is given by [3] (see Lem. 10.1 below). One can find necessary and
sufficient conditions in Lemma 2.3 of [13], see also [2, 8, 9, 12,21].

10.1. Spaces

We start by introducing proper generalizations of (2.1). Let us define the operator related to (1.1) and its
formal adjoint as

ℒ : 𝑣 ↦→ 𝑏·∇𝑣, ℒ* : 𝑣 ↦→ −∇· (𝑏𝑣) = −𝑏·∇𝑣,
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Table 3. Convergence of the error ‖𝑢 − 𝑢ℎ‖, the error estimators 𝜂, 𝜂NC, and 𝜂Osc, and the
effectivity indices 𝐼eff for the dG method (3.3) with different polynomial degrees 𝑘.

𝑘 = 1, 𝑘′ = 1
# Elements # DOF ‖𝑢− 𝑢ℎ‖ 𝜂 𝜂NC 𝜂Osc 𝐼eff

4 8 3.021e-03 3.136e-03 3.048e-03 9.783e-05 1.04
16 32 1.901e-04 1.919e-03 1.906e-04 1.531e-06 1.01
64 128 1.190e-05 1.193e-05 1.191e-05 2.393e-08 1.00
256 512 7.444e-07 7.447e-07 7.445e-07 3.739e-10 1.00
1024 2048 4.653e-08 4.653e-08 4.653e-08 5.843e-12 1.00

𝑘 = 2, 𝑘′ = 2
# Elements # DOF ‖𝑢− 𝑢ℎ‖ 𝜂 𝜂NC 𝜂Osc 𝐼eff

4 12 4.045e-05 4.260e-05 4.210e-05 3.967e-06 1.05
16 48 6.307e-07 6.386e-07 6.299e-07 1.558e-08 1.01
64 192 9.847e-09 9.877e-09 9.844e-09 6.091e-11 1.00
256 768 1.538e-10 1.539e-10 1.538e-10 2.379e-13 1.00
1024 3072 2.403e-12 2.403e-12 2.403e-12 9.294e-16 1.00

𝑘 = 3, 𝑘′ = 3
# Elements # DOF ‖𝑢− 𝑢ℎ‖ 𝜂 𝜂NC 𝜂Osc 𝐼eff

4 16 1.169e-06 1.328e-06 1.186e-06 1.803e-07 1.14
16 64 4.647e-09 4.791e-09 4.664e-09 1.775e-10 1.03
64 256 1.821e-11 1.834e-11 1.822e-11 1.735e-13 1.01
256 1024 7.181e-14 7.184e-14 7.172e-14 1.694e-16 1.00

𝑘 = 4, 𝑘′ = 4
# Elements # DOF ‖𝑢− 𝑢ℎ‖ 𝜂 𝜂NC 𝜂Osc 𝐼eff

4 20 4.252e-08 4.895e-08 4.240e-08 8.486e-09 1.15
16 80 4.180e-11 4.323e-11 4.179e-11 2.095e-12 1.03
64 320 4.094e-14 4.117e-14 4.083e-14 5.118e-16 1.01

together with the following graph spaces

𝐻(ℒ,Ω) :=
{︀
𝑣 ∈ 𝐿2(Ω), ℒ𝑣 ∈ 𝐿2(Ω)

}︀
, 𝐻(ℒ*,Ω) :=

{︀
𝑣 ∈ 𝐿2(Ω), ℒ*𝑣 ∈ 𝐿2(Ω)

}︀
.

Then ℒ : 𝐻(ℒ,Ω) → 𝐿2(Ω) and ℒ* : 𝐻(ℒ*,Ω) → 𝐿2(Ω), and 𝐻(ℒ,Ω) = 𝐻(ℒ*,Ω). Moreover, one can define
the following subspaces of the graph spaces with incorporated boundary conditions:

𝐻0(ℒ,Ω) := {𝑣 ∈ 𝐻(ℒ,Ω), 𝑣 = 0 on 𝜕−Ω} ,
𝐻0(ℒ*,Ω) := {𝑣 ∈ 𝐻(ℒ*,Ω), 𝑣 = 0 on 𝜕+Ω} .

These definitions are consistent extensions from 𝑑 = 1 in that the spaces 𝐻(ℒ,Ω), 𝐻(ℒ*,Ω), 𝐻0(ℒ,Ω), 𝐻0(ℒ*,Ω)
become respectively 𝐻1(Ω), 𝐻1(Ω), 𝐻1

−(Ω), and 𝐻1
+(Ω). One might confer with [31], page 131 and Theo-

rems 2.1 and 2.2 of [23] for the justification of the trace operator which is discussed as an operator from 𝐻(ℒ,Ω)
to 𝐻− 1

2 (𝜕−Ω) (or from 𝐻(ℒ*,Ω) to 𝐻− 1
2 (𝜕+Ω), respectively). The extension to 𝐿2(|𝑏·𝑛|; 𝜕−Ω) is possible under

slightly more restrictive conditions, see [31], page 133, Lemma 3.1 of [14], and more recently Proposition 2.3 of
[12]. Moreover the following integration-by-parts formula holds true:

(𝑣, 𝑏·∇𝑤) + (𝑏·∇𝑣, 𝑤) = (𝑏·𝑛𝑣, 𝑤) ∀𝑣 ∈ 𝐻(ℒ,Ω), ∀𝑤 ∈ 𝐻1(Ω). (10.1)

The result (10.1) can be extended to 𝑤 ∈ 𝐻(ℒ*,Ω) if traces are meaningful in 𝐿2(|𝑏·𝑛|; 𝜕−Ω).
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10.2. Streamline Poincaré inequality

The following sufficient condition for the field 𝑏 to be Ω-filling is given in [3]:

Lemma 10.1 (Ω-filling sufficient condition). Let 𝑏 ∈ 𝒞1(Ω; R𝑑) and assume that there is a fixed unit vector
𝑘 ∈ R𝑑 and a real number 𝛼 > 0 such that

∀𝑥 ∈ Ω, 𝑏·𝑘 ≥ 𝛼. (10.2)

Then 𝑏 is Ω-filling.

For Ω-filling 𝑏, we can extend the inequality (2.3b) along the flow of 𝑏, cf. [3]:

Lemma 10.2 (Streamline Poincaré inequality). Let the field 𝑏 ∈ 𝒞1(Ω; R𝑑) be divergence-free and Ω-filling.
Then there exists a streamline Poincaré constant 𝐶P,𝑏,Ω such that

‖𝑣‖ ≤ 𝐶P,𝑏,Ω‖𝑏·∇𝑣‖ ∀𝑣 ∈ 𝐻0(ℒ,Ω). (10.3)

The constant 𝐶P,𝑏,Ω is bounded by 𝐶P,𝑏,Ω ≤ 2𝑇 , where 𝑇 is the longest time that trajectories of the field 𝑏 spend
in the domain Ω. In particular, 𝑇 ≤ diam(Ω)/𝛼 under assumption (10.2).

A similar result can also be obtained for a non divergence-free field, see [1]. In the case where the field 𝑏 is
constant, one can easily set 𝑘 as the direction of the flow and 𝛼 = |𝑏|. A crucial consequence of Lemma 10.2 is
that one can equip the spaces 𝐻0(ℒ,Ω) and 𝐻0(ℒ*,Ω) with the norm ‖𝑏·∇(·)‖.

Remark 10.3 (Functions with zero mean value). While, following from Lemma 10.2, the streamline Poincaré
inequality holds true for functions with zero trace on the inflow of an arbitrary domain Ω, such a result is
not valid for functions with zero mean value as a variant of the Poincaré inequality (2.3a) in multiple spatial
dimensions. This leads to significant differences in the analysis of the multi-dimensional case compared to the
one-dimensional one, and less complete results that we are able to present here.

10.3. Error–residual equivalence

We consider the multi-dimensional extension of the ultra-weak formulation (2.5): find 𝑢 ∈ 𝐿2(Ω) such that

−(𝑢, 𝑏·∇𝑣) = (𝑓, 𝑣) ∀𝑣 ∈ 𝐻0(ℒ*,Ω). (10.4)

Define the residual operator ℛ(𝑢ℎ) ∈ 𝐻0(ℒ*,Ω)′ and its dual norm as in (2.6) and (2.7), upon replacing 𝐻1
+(Ω)

by 𝐻0(ℒ*,Ω). One can extend the equivalence of Proposition 2.1 to the multi-dimensional case as follows:

Proposition 10.4 (Error–residual equivalence). Let the field 𝑏 ∈ 𝒞1(Ω; R𝑑) be divergence-free and Ω-filling.
Let 𝑢 ∈ 𝐿2(Ω) be the ultra-weak solution of (10.4). Then

‖𝑢− 𝑢ℎ‖ = ‖ℛ(𝑢ℎ)‖𝑏; 𝐻0(ℒ*,Ω)′ ∀𝑢ℎ ∈ 𝐿2(Ω).

Proof. We use the fact that for all 𝑣 ∈ 𝐿2(Ω), there exists a unique 𝑧 ∈ 𝐻0(ℒ*,Ω) such that

−(𝑏·∇𝑧, 𝑤) = (𝑣, 𝑤) ∀𝑤 ∈ 𝐿2(Ω).

The rest of the proof goes along the lines of that of Proposition 2.1. �
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10.4. Local problems and the error indicator

In this section, we propose a heuristic approach inspired by the rigorous discussions in the one-dimensional
case. First, let us consider the following reconstruction, mimicking Definition 4.2. Here 𝒯ℎ is a simplicial mesh
of Ω, 𝒯𝑎 the patch of all simplices which share the given vertex 𝑎 ∈ 𝒱ℎ, 𝜔𝑎 the corresponding open subdomain,
and 𝜓𝑎 the associated hat basis function.

Definition 10.5 (Patchwise problems). Let 𝑢ℎ ∈ 𝐿2(Ω). For all vertices 𝑎 ∈ 𝒱ℎ, let 𝑠𝑎
ℎ ∈ 𝑋𝑎

ℎ be the solution
of the following least-squares problem on the patch subdomain 𝜔𝑎:

𝑠𝑎
ℎ := arg min

𝑣ℎ∈𝑋𝑎
ℎ

{︁
‖𝜓𝑎(𝑢ℎ − 𝑣ℎ)‖2𝜔𝑎

+ 𝐶2
opt‖𝑓𝜓𝑎 + (𝑏·∇𝜓𝑎)𝑢ℎ − 𝑏·∇(𝜓𝑎𝑣ℎ)‖2𝜔𝑎

}︁
. (10.5)

For 𝑘′ ≥ 0, we take the finite-dimensional space 𝑋𝑎
ℎ := 𝒫𝑘′(𝒯𝑎)∩𝐻0(ℒ, 𝜔𝑎) when the vertex 𝑎 lies in the closure

of the inflow boundary 𝜕−Ω and 𝑋𝑎
ℎ := 𝒫𝑘′(𝒯𝑎)∩𝐻(ℒ, 𝜔𝑎) otherwise. Here 𝐶opt > 0 is a constant to be chosen.

The global reconstruction 𝑠ℎ is defined by

𝑠ℎ :=
∑︁

𝑎∈𝒱ℎ

𝜓𝑎𝑠
𝑎
ℎ , (10.6)

leading to 𝑠ℎ ∈ 𝒫𝑘′+1(𝒯ℎ) ∩𝐻0(ℒ,Ω).

Remark 10.6 (Continuity of 𝑠ℎ). One might note that the reconstruction 𝑠ℎ of Definition 10.5, lying in the
space 𝐻0(ℒ,Ω), possibly allows capturing the discontinuity that may appear in the exact solution 𝑢 across the
streamlines. This is, however, only in reach if the triangulation is aligned with the streamlines. If this is not the
case, the reconstruction 𝑠ℎ actually lies in the smoother space 𝐻1(Ω).

In order to see the rationale behind the above reconstruction, one might note the following upper bound on the
error exploiting Proposition 10.4, the integration-by-parts formula (10.1), the Cauchy–Schwarz inequality, and
the streamline Poincaré inequality (10.3): for any 𝑠ℎ ∈ 𝐻0(ℒ,Ω), we have

‖𝑢− 𝑢ℎ‖ = ‖ℛ(𝑢ℎ)‖𝑏; 𝐻0(ℒ*,Ω)′ = sup
𝑣∈𝐻0(ℒ*,Ω)∖{0}

(𝑓 − 𝑏·∇𝑠ℎ, 𝑣) + (𝑢ℎ − 𝑠ℎ, 𝑏·∇𝑣)
‖𝑏·∇𝑣‖

≤ ‖𝑢ℎ − 𝑠ℎ‖ + 𝐶P,𝑏,Ω‖𝑓 − 𝑏·∇𝑠ℎ‖.

Furthermore, using that almost each point in Ω belongs to (𝑑 + 1) patch subdomains 𝜔𝑎 and the partition of
unity (4.1), the construction of 𝑠ℎ via (10.6) gives the following upper bound:

‖𝑢− 𝑢ℎ‖ ≤

{︃
2(𝑑+ 1)

∑︁
𝑎∈𝒱ℎ

[︁
‖𝜓𝑎(𝑢ℎ − 𝑠𝑎

ℎ)‖2𝜔𝑎
+ 𝐶2

P,𝑏,Ω‖𝑓𝜓𝑎+ (𝑏·∇𝜓𝑎)𝑢ℎ − 𝑏·∇(𝜓𝑎𝑠
𝑎
ℎ)‖2𝜔𝑎

]︁}︃1/2

.

In particular, the idea of adding 0 =
∑︀

𝑎∈𝒱ℎ
𝑏·∇𝜓𝑎𝑢ℎ is inspired by the analysis in the one-dimensional case.

By comparison to Definition 10.5 one can see that the least-squares problems (10.5) minimize contributions to
the upper bound on the error, and a theoretically-motivated choice for 𝐶opt would be 𝐶opt = 𝐶P,𝑏,Ω. This in
particular leads to the guaranteed estimate as the following theorem:

Theorem 10.7 (Guaranteed a posteriori error estimate). Let 𝑢 ∈ 𝐿2(Ω) be the ultra-weak solution of (10.4)
and let 𝑢ℎ ∈ 𝐿2(Ω) be arbitrary. Furthermore, consider 𝑠ℎ to be the reconstruction from Definition 10.5 with
𝑘′ ≥ 0 and arbitrary 𝐶opt. Then

‖𝑢− 𝑢ℎ‖ ≤ 𝜂 :=

{︃ ∑︁
𝐾∈𝒯ℎ

𝜂2
NC,𝐾

}︃1/2

+

{︃ ∑︁
𝐾∈𝒯ℎ

𝜂2
R,𝐾

}︃1/2

, (10.7)

where
𝜂NC,𝐾 := ‖𝑢ℎ − 𝑠ℎ‖𝐾 , 𝜂R,𝐾 := 𝐶P,𝑏,Ω‖𝑓 − 𝑏·∇𝑠ℎ‖𝐾 .



S466 A. ERN ET AL.

Numerical experiments show that the estimate (10.7) is rather sharp when the solution 𝑢 is discontinuous and
the discontinuity line of 𝑢 is not aligned with the triangulation. When, however, (i) the solution 𝑢 is smooth;
(ii) 𝑢 is discontinuous and the discontinuity line of 𝑢 is aligned with the triangulation, the estimators 𝜂R,𝐾 do not
converge with the right order so that the corresponding effectivity indices increase with mesh refinement. This
apparently comes from the special structure of the minimization term which cannot be approximated up to the
projection error (see Rem. 10.6), in contrast to the one-dimensional case, where (4.8) holds true. Congruently,
the lack of the Poincaré inequality in the streamline form (see Rem. 10.3) implies the loss of the scaling by
the mesh element diameters ℎ𝐾 in the second term in (10.7), compare with 𝜂Osc given by (4.5) in one space
dimension.

The following remark provides a heuristic rectification for this under assumption (10.2):

Remark 10.8 (Heuristic modification). In both cases (i) or (ii) mentioned above, we heuristically replace 𝐶P,𝑏,Ω

(which typically scales as 2 diam(Ω)/𝛼, see Lem. 10.2) in the estimator 𝜂R,𝐾 of (10.7) by local terms 𝐶 ′ℎ𝐾/𝛼,
where 𝐶 ′ is a user-dependent constant and ℎ𝐾 the diameter of the mesh element 𝐾. Then the modification of
the guaranteed estimator 𝜂 from (10.7) is the non-guaranteed error indicator

𝜂mod :=

{︃ ∑︁
𝐾∈𝒯ℎ

(︀
𝜂2
NC,𝐾 + (𝜂mod

R,𝐾)2
)︀}︃1/2

, (10.8a)

𝜂NC,𝐾 := ‖𝑢ℎ − 𝑠ℎ‖𝐾 , 𝜂mod
R,𝐾 :=

𝐶 ′ℎ𝐾

𝛼
‖𝑓 − 𝑏·∇𝑠ℎ‖𝐾 , (10.8b)

where 𝑠ℎ is the reconstruction from Definition 10.5 with 𝑘′ ≥ 0 and arbitrary 𝐶opt.

Overall, one has in cases (i) or (ii) two free parameters to choose, 𝐶opt for the local problems in (10.5) and
𝐶 ′ in (10.8b). We set below 𝐶opt = 2 diam(Ω)/𝛼, as suggested by Lemma 10.2, and 𝐶 ′ = 2. Numerically, our
results are actually not sensitive to the choice of the parameter 𝐶opt.

Remark 10.9 (Non-homogeneous boundary condition). The treatment of the non-homogeneous boundary con-
dition 𝑢 = 𝑔 on 𝜕−Ω for 𝑔 ∈ 𝐻 1

2 (𝜕Ω) is similar to Remark 4.9 in the one-dimensional setting. In the reconstruc-
tion (10.5), one, however, needs to impose the boundary condition in the definition of the space 𝑋𝑎

ℎ strongly
by a piecewise polynomial projection of the datum 𝑔. Then an additional technicality comes from the difference
between this projection and 𝑔, which then appears as a second data oscillation term in the estimator.

10.5. Numerical experiments

In this section, we provide some numerical tests in two space dimensions. We consider Ω = (0, 1)2 and uni-
formly refined structured triangulations aligned with the slope 45∘. We only test here the dG method (3.3),
since it is the only method among those considered in Section 3 which is well-defined in multiple space dimen-
sions. The implementation is done in the framework of FreeFEM++ [22] and based on the scripts for the
reconstruction-based a posteriori estimation by [32].

Below, we will consider three different test cases: In Section 10.5.1, we show an example where both the exact
solution 𝑢 and the reconstruction 𝑠ℎ are in 𝐻1(Ω). Section 10.5.2 deals with a case with discontinuous solu-
tion 𝐻0(ℒ,Ω) ∖𝐻1(Ω) aligned with the triangulation and discontinuous reconstruction 𝑠ℎ ∈ 𝐻0(ℒ,Ω) ∖𝐻1(Ω).
Finally, Section 10.5.3 discusses the case of a discontinuous solution 𝑢 ∈ 𝐻0(ℒ,Ω) ∖ 𝐻1(Ω) not aligned with
the triangulation, where the reconstruction becomes continuous, 𝑠ℎ ∈ 𝐻1(Ω). In Sections 10.5.1 and 10.5.2 the
heuristic indicator 𝜂mod of (10.8) is used, whereas in Section 10.5.3, we will show that the guaranteed error indi-
cator 𝜂 of (10.7) actually works well. In the former case, 𝜂mod

R :=
(︀∑︀

𝐾∈𝒯ℎ
(𝜂mod

R,𝐾)2
)︀1/2 from (10.8b) with 𝐶 ′ = 2

is employed, whereas in the latter case, 𝜂R :=
{︀∑︀

𝐾∈𝒯ℎ
𝜂2
R,𝐾

}︀1/2; we always set 𝜂NC :=
(︀∑︀

𝐾∈𝒯ℎ
𝜂2
NC,𝐾

)︀1/2 and
rely on Definition 10.5 with the choice 𝑘′ = 𝑘+1 and typically 𝐶opt = 2diam(Ω)/𝛼. We set 𝐼mod

eff := 𝜂mod/‖𝑢−𝑢ℎ‖
and 𝐼eff := 𝜂/‖𝑢− 𝑢ℎ‖, where only 𝐼eff ≥ 1 is guaranteed.
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Table 4. Smooth solution (10.9); error ‖𝑢 − 𝑢ℎ‖, error estimators 𝜂mod, 𝜂NC, and 𝜂mod
R , and

effectivity indices 𝐼mod
eff and 𝐼eff for the dG method (3.3); 𝑏 = (1, 1)𝑡 and different polynomial

degrees 𝑘.

𝑘 = 1, 𝑘′ = 2

# Elements # DOF ‖𝑢− 𝑢ℎ‖ 𝜂mod 𝜂NC 𝜂mod
R 𝐼mod

eff 𝐼eff

8 24 1.097e-01 2.284e-01 9.365e-02 2.083e-01 2.08 2.67
32 96 2.963e-02 4.894e-02 2.584e-02 4.156e-02 1.65 4.03
128 384 7.553e-03 1.101e-02 6.786e-03 8.666e-03 1.45 6.54
512 1536 1.897e-03 2.630e-03 1.727e-03 1.983e-03 1.38 11.8
2048 6144 4.749e-04 6.456e-04 4.347e-04 4.773e-04 1.35 22.7
8192 24576 1.187e-04 1.601e-04 1.088e-04 1.173e-04 1.34 44.7

𝑘 = 2, 𝑘′ = 3

# Elements # DOF ‖𝑢− 𝑢ℎ‖ 𝜂mod 𝜂NC 𝜂mod
R 𝐼mod

eff 𝐼eff

8 48 1.882e-02 5.317e-02 2.271e-02 4.807e-02 2.82 3.81
32 192 2.476e-03 4.896e-03 3.106e-03 3.785e-03 1.97 4.50
128 768 3.135e-04 5.742e-04 3.972e-04 4.147e-04 1.83 7.58
512 3072 3.929e-05 7.076e-05 4.995e-05 5.012e-05 1.80 14.4
2048 12288 4.934e-06 8.817e-06 6.253e-06 6.216e-06 1.78 28.5
8192 49152 6.270e-07 1.107e-06 7.822e-07 7.843e-07 1.76 56.6

Table 5. Smooth solution (10.9); error ‖𝑢 − 𝑢ℎ‖, error estimators 𝜂mod, 𝜂NC, and 𝜂mod
R , and

effectivity indices 𝐼mod
eff for the dG method (3.3); different velocity fields 𝑏 and 𝑘 = 1.

𝑘 = 1, 𝑘′ = 2, 𝑏 = (100, 100)𝑡

# Elements # DOF ‖𝑢− 𝑢ℎ‖ 𝜂mod 𝜂NC 𝜂mod
R 𝐼mod

eff

8 24 1.097e-01 2.284e-01 9.365e-02 2.083e-01 2.08
32 96 2.963e-02 4.894e-02 2.584e-02 4.156e-02 1.65
128 384 7.553e-03 1.101e-02 6.786e-03 8.666e-03 1.45
512 1536 1.897e-03 2.630e-03 1.727e-03 1.983e-03 1.38
2048 6144 4.749e-04 6.456e-04 4.347e-04 4.773e-04 1.35
8192 24576 1.187e-04 1.601e-04 1.088e-04 1.173e-04 1.34

𝑘 = 1, 𝑘′ = 2, 𝑏 = (10, 1)𝑡

# Elements # DOF ‖𝑢− 𝑢ℎ‖ 𝜂mod 𝜂NC 𝜂mod
R 𝐼mod

eff

8 24 1.009e-01 2.361e-01 8.299e-02 2.216e-01 2.33
32 96 2.896e-02 5.140e-02 2.057e-02 4.714e-02 1.77
128 384 7.965e-03 1.188e-02 5.325e-03 1.062e-02 1.49
512 1536 2.069e-03 3.014e-03 1.370e-03 2.684e-03 1.45
2048 6144 5.241e-04 7.636e-04 3.459e-04 6.807e-04 1.45
8192 24576 1.316e-04 1.918e-04 8.667e-05 1.711e-04 1.45

𝑘 = 1, 𝑘′ = 2, 𝑏 = (𝑦, 𝑥 + 1)𝑡 (𝛼 = 1)

# Elements # DOF ‖𝑢− 𝑢ℎ‖ 𝜂mod 𝜂NC 𝜂mod
R 𝐼mod

eff

8 24 1.134e-01 2.435e-01 9.582e-02 2.239e-01 2.14
32 96 3.152e-02 5.787e-02 2.513e-02 5.212e-02 1.83
128 384 8.007e-03 1.393e-02 6.478e-03 1.233e-02 1.74
512 1536 2.013e-03 3.409e-03 1.636e-03 2.991e-03 1.69
2048 6144 5.053e-04 8.443e-04 4.103e-04 7.379e-04 1.67
8192 24576 1.267e-04 2.101e-04 1.027e-04 1.833e-04 1.65
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Figure 1. Smooth solution (10.9); distribution of the errors ‖𝑢− 𝑢ℎ‖𝐾 (left) and of the local
error estimators 𝜂mod

𝐾 (right) for the dG method (3.3) with 512 elements; 𝑏 = (1, 1)𝑡 and
different polynomial degrees 𝑘.

Table 6. Discontinuous solution (10.10) with aligned triangulation; error ‖𝑢 − 𝑢ℎ‖, error
estimators 𝜂mod, 𝜂NC, and 𝜂mod

R , and effectivity indices 𝐼mod
eff and 𝐼eff for the dG method (3.3);

𝑏 = (1, 1)𝑡 and different polynomial degrees 𝑘.

𝑘 = 1, 𝑘′ = 2

# DOF ‖𝑢− 𝑢ℎ‖ 𝜂mod 𝜂NC 𝜂mod
R 𝐼mod

eff 𝐼eff

24 7.75e-02 1.61e-01 6.62e-02 1.47e-01 2.08 2.67
96 2.09e-02 3.46e-02 1.82e-02 2.94e-02 1.65 4.04
384 5.34e-03 7.78e-03 4.79e-03 6.12e-03 1.46 6.55
1536 1.34e-03 1.86e-03 1.22e-03 1.40e-03 1.38 11.8
6144 3.35e-04 4.56e-04 3.07e-04 3.37e-04 1.36 22.7
24576 8.39e-05 1.13e-04 7.70e-05 8.29e-05 1.35 44.7

𝑘 = 2, 𝑘′ = 3

# DOF ‖𝑢− 𝑢ℎ‖ 𝜂mod 𝜂NC 𝜂mod
R 𝐼mod

eff 𝐼eff

48 1.33e-02 3.75e-02 1.61e-02 3.39e-02 2.82 3.81
192 1.75e-03 3.46e-03 2.19e-03 2.67e-03 1.97 4.50
768 2.21e-04 4.06e-04 2.81e-04 2.93e-04 1.83 7.58
3072 2.77e-05 5.00e-05 3.53e-05 3.54e-05 1.80 14.4
12288 3.48e-06 6.23e-06 4.42e-06 4.39e-06 1.78 28.5
49152 4.43e-07 7.83e-07 5.53e-07 5.54e-07 1.76 56.6
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Figure 2. Discontinuous solution (10.10) with aligned triangulation; distribution of the errors
‖𝑢 − 𝑢ℎ‖𝐾 (left) and of the local error estimators 𝜂mod

𝐾 (right) for the dG method (3.3) with
512 elements; 𝑏 = (1, 1)𝑡 and different polynomial degrees 𝑘.

Table 7. Discontinuous solution (10.11a) with non-aligned triangulation; error ‖𝑢 − 𝑢ℎ‖,
error estimators 𝜂, 𝜂NC, and 𝜂R with convergence rates, and effectivity indices 𝐼eff for the
dG method (3.3); different polynomial degrees 𝑘.

𝑘 = 1, 𝑘′ = 2
# DOF ‖𝑢− 𝑢ℎ‖ 𝜂 𝜂NC 𝜂R 𝐼eff

24 1.41e-01 5.70e-01 7.60e-02 5.65e-01 4.03
96 8.36e-02 (0.76) 4.02e-01 (0.50) 3.11e-02 (1.29) 4.01e-01 (0.50) 4.80
384 5.34e-02 (0.65) 2.89e-01 (0.48) 1.17e-02 (1.41) 2.89e-01 (0.47) 5.42
1536 4.08e-02 (0.39) 2.31e-01 (0.32) 5.51e-03 (1.09) 2.31e-01 (0.32) 5.67
6144 3.16e-02 (0.37) 1.93e-01 (0.26) 2.93e-03 (0.91) 1.94e-01 (0.26) 6.13
24576 2.45e-02 (0.37) 1.70e-01 (0.18) 1.62e-03 (0.86) 1.71e-01 (0.18) 6.97

𝑘 = 2, 𝑘′ = 3
# DOF ‖𝑢− 𝑢ℎ‖ 𝜂 𝜂NC 𝜂R 𝐼eff

48 1.28e-01 4.17e-01 4.31e-02 4.15e-01 3.24
192 7.08e-02 (0.85) 2.82e-01 (0.56) 1.12e-02 (1.94) 2.82e-01 (0.54) 3.99
768 4.75e-02 (0.58) 2.29e-01 (0.30) 5.59e-03 (1.00) 2.29e-01 (0.30) 4.83
3072 3.50e-02 (0.44) 1.84e-01 (0.32) 2.83e-03 (0.98) 1.84e-01 (0.31) 5.26
12288 2.54e-02 (0.46) 1.45e-01 (0.33) 1.50e-03 (0.92) 1.45e-01 (0.33) 5.73
49152 1.85e-02 (0.46) 1.20e-01 (0.28) 8.41e-04 (0.83) 1.20e-01 (0.27) 6.47
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Table 8. Discontinuous solution (10.11b) with non-aligned triangulation; error ‖𝑢 − 𝑢ℎ‖,
error estimators 𝜂, 𝜂NC, and 𝜂R with convergence rates, and effectivity indices 𝐼eff for the
dG method (3.3); different polynomial degrees 𝑘.

𝑘 = 1, 𝑘′ = 2
# DOF ‖𝑢− 𝑢ℎ‖ 𝜂 𝜂NC 𝜂R 𝐼eff

24 1.70e-01 6.14e-01 7.30e-02 6.09e-01 3.60
96 9.31e-02 (0.87) 4.42e-01 (0.47) 2.99e-02 (1.29) 4.41e-01 (0.47) 4.75
384 6.01e-02 (0.63) 3.24e-01 (0.45) 1.16e-02 (1.37) 3.24e-01 (0.44) 5.39
1536 4.62e-02 (0.38) 2.67e-01 (0.28) 5.31e-03 (1.13) 2.68e-01 (0.27) 5.79
6144 3.57e-02 (0.37) 2.36e-01 (0.18) 2.79e-03 (0.93) 2.37e-01 (0.18) 6.61
24576 2.78e-02 (0.36) 2.29e-01 (0.04) 1.54e-03 (0.86) 2.29e-01 (0.05) 8.26

𝑘 = 2, 𝑘′ = 3
# DOF ‖𝑢− 𝑢ℎ‖ 𝜂 𝜂NC 𝜂R 𝐼eff

48 9.83e-02 4.31e-01 3.72e-02 4.29e-01 4.38
192 5.72e-02 (0.78) 2.85e-01 (0.59) 1.06e-02 (1.81) 2.85e-01 (0.59) 4.98
768 4.64e-02 (0.30) 2.34e-01 (0.29) 5.14e-03 (1.04) 2.34e-01 (0.28) 5.03
3072 3.31e-02 (0.48) 1.90e-01 (0.29) 2.78e-03 (0.89) 1.90e-01 (0.30) 5.75
12288 2.59e-02 (0.35) 1.72e-01 (0.14) 1.55e-03 (0.84) 1.72e-01 (0.14) 6.63
49152 1.92e-02 (0.43) 1.58e-01 (0.12) 8.44e-04 (0.88) 1.58e-01 (0.12) 8.27

Figure 3. Discontinuous solution (10.11a) with non-aligned triangulation; distribution of the
errors ‖𝑢 − 𝑢ℎ‖𝐾 (left) and of the local error estimators 𝜂𝐾 (right) for the dG method (3.3)
with 512 elements; different polynomial degrees 𝑘.
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Figure 4. Discontinuous solution (10.11b) with non-aligned triangulation; distribution of the
errors ‖𝑢 − 𝑢ℎ‖𝐾 (left) and of the local error estimators 𝜂𝐾 (right) for the dG method (3.3)
with 512 elements; different polynomial degrees 𝑘.

10.5.1. Smooth solution

We apply the right-hand side 𝑓 such that the solution of (1.1) is

𝑢(𝑥, 𝑦) = sin(𝜋𝑥) sin(𝜋𝑦), (10.9)

for different velocity fields 𝑏. The results are presented in Tables 4 and 5 for various polynomial degrees 𝑘. We use
𝛼 = |𝑏| except for the non-constant velocity where 𝛼 = 1 is taken. The error indicator 𝜂mod of (10.8) performs
well in actually providing an upper bound on the error and simultaneously not overestimating it excessively.
Moreover, the efficiency results numerically appear to be robust with respect to both the velocity field 𝑏 and the
polynomial degree 𝑘. As in Section 9.1, both 𝑢 and 𝑢ℎ, but actually also 𝑠ℎ constructed following Definition 10.5,
turn out to be insensitive to the scaling of 𝑏 by a constant, so that the estimators in (10.8) do not change either.
In Figure 1, the distributions of the errors ‖𝑢−𝑢ℎ‖𝐾 and of the error estimators 𝜂mod

𝐾 :=
(︀
𝜂2
NC,𝐾 + (𝜂mod

R,𝐾)2
)︀1/2
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are presented. These distributions show a very close behavior, which suggests that the presented indicators
should be suitable for adaptive mesh/polynomial degree refinement.

10.5.2. Discontinuous solution with aligned triangulation

In this example, we consider a discontinuous exact solution for (1.1). For the velocity field 𝑏 = (1, 1)𝑡 with
𝛼 = |𝑏|, we set

𝑢(𝑥, 𝑦) =

{︃
0, 𝑥 < 𝑦,

sin(𝜋𝑥) sin(𝜋𝑦), 𝑥 > 𝑦,
(10.10)

and prescribe accordingly the right-hand side 𝑓 . As the triangulation is set to be aligned with this discontinuity,
the reconstruction 𝑠ℎ is continuous everywhere but not at the discontinuity line of the exact solution. The
results are presented in Table 6 for different polynomial degrees 𝑘. They show robustness with respect to the
polynomial degree of approximation. In Figure 2, the distributions of the error and of the error estimators 𝜂mod

𝐾

are presented, showing again a very close behavior.

10.5.3. Discontinuous solution with non-aligned triangulation

In this section, we finally consider a discontinuous exact solution whose discontinuity is not aligned with the
triangulation. We consider the following two examples:

𝑢(𝑥, 𝑦) =

{︃
0, 2𝑥 < 𝑦,

sin(𝜋𝑥) sin(𝜋𝑦), 2𝑥 > 𝑦,
𝑏 = (1, 2)𝑡, (10.11a)

which gives rise to straight streamlines which are not aligned with the triangulation, and

𝑢(𝑥, 𝑦) =

{︃
0, 𝑥2 + 𝑦2 > 1,
sin(𝜋𝑥) sin(𝜋𝑦), 𝑥2 + 𝑦2 < 1,

𝑏 = (𝑦,−𝑥)𝑡, (10.11b)

with a circular rotation around the origin that cannot be captured by triangular elements. We define accordingly
the right-hand side functions 𝑓 . In the spirit of Remark 10.6 and following Definition 10.5, we obtain 𝑠ℎ ∈ 𝐻1(Ω),
whereas the exact solution has a discontinuity and lies in 𝐻0(ℒ,Ω)∖𝐻1(Ω). The velocity field 𝑏 of (10.11b) does
not satisfy the sufficient condition (10.2) to be Ω-filling. Nevertheless, one can verify that it is in fact Ω-filling
with 𝑇 = 1/4, so that we take 𝐶opt = 1/2. In the first case, 𝛼 = |𝑏|, and we take 𝐶opt = 2diam(Ω)/𝛼.

The results are presented in Tables 7 and 8. One first observes that the rate of convergence of 𝜂NC can be
much worse compared to ‖𝑢−𝑢ℎ‖, originating from the fact that 𝑠ℎ is a less accurate reconstruction of 𝑢. Despite
the fact that the effectively indices are larger, they still remain rather independent of the mesh refinement and
the polynomial degree of approximation. In Figures 3 and 4, the distributions of the error and of the error
estimators 𝜂𝐾 :=

(︀
𝜂2
NC,𝐾 + (𝜂R,𝐾)2

)︀1/2 are presented, showing again a very close behavior.

11. Conclusions

In this work, we proposed a local reconstruction for numerical approximations of the one-dimensional linear
advection equation, easily and independently obtained on each vertex patch. The reconstruction is proved to be
well-posed and leads to a guaranteed upper bound of the 𝐿2-norm error between the actual solution 𝑢 and the
approximation 𝑢ℎ. This error estimator is also proved to be locally efficient with the local efficiency constant only
depending on mesh shape-regularity. These results hold in a unified framework that only requires the residual of
𝑢ℎ to satisfy an orthogonality condition with respect to the hat basis functions. Numerical illustrations support
the theory and additionally suggest asymptotic exactness. Motivated by these results, a heuristic extension to
any space dimension is presented, with numerical experiments in 2D being rather encouraging.
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[35] M. Vohraĺık and M. Zakerzadeh, Guaranteed and robust 𝐿2-norm a posteriori error estimates for 1D linear advection–reaction
problems. In preparation (2020).

https://who.rocq.inria.fr/Zuqi.Tang/freefem++.html

	Introduction
	Abstract framework
	Spaces
	Poincaré inequalities
	Ultra-weak variational formulation and residual
	Error–residual equivalence

	Examples of numerical methods
	Main results
	Patchwise potential reconstruction
	Main results
	Remarks

	Cut-off estimates, error localization, and well-posedness of the patchwise problems
	Cut-off estimates
	Error localization
	Well-posedness of the local problems

	a-orthogonality of the residual for the methods of Section 3
	Proof of guaranteed reliability (Thm. 4.3)
	Proof of efficiency and robustness
	Proof of Theorem 4.4 (local efficiency and robustness)
	Proof of Corollary 4.5 (global efficiency and maximal overestimation)

	Numerical experiments
	Efficiency of the estimator
	Robustness with respect to the polynomial degree

	Extension to multiple space dimensions
	Spaces
	Streamline Poincaré inequality
	Error–residual equivalence
	Local problems and the error indicator
	Numerical experiments
	Smooth solution
	Discontinuous solution with aligned triangulation
	Discontinuous solution with non-aligned triangulation


	Conclusions
	References

