An extension of the two-step staggered time discretization of linear elastodynamics in stress-velocity form to systems involving internal variables subjected to a possibly non-linear dissipative evolution is proposed. The original scheme is thus enhanced by another step for the internal variables which, in general, is implicit, although even this step might be explicit if no spatial gradients of the internal variables are involved. Using an abstract Banach-space formulation, a priori estimates and convergence are proved under a CFL condition. The developed three-step scheme finds applications in various problems of continuum mechanics at small strain. Here, we consider in particular plasticity, viscoelasticity (creep), diffusion in poroelastic media, and damage.
Keywords: Elastodynamics, explicit discretization, fractional steps, mixed finite-element method, plasticity, creep, poro-elasticity, damage
@article{M2AN_2021__55_S1_S397_0,
author = {Roub{\'\i}\v{c}ek, Tom\'a\v{s} and Tsogka, Chrysoula},
title = {Staggered explicit-implicit time-discretization for elastodynamics with dissipative internal variables},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
pages = {S397--S416},
year = {2021},
publisher = {EDP-Sciences},
volume = {55},
number = {Suppl\'ement},
doi = {10.1051/m2an/2020040},
mrnumber = {4221313},
language = {en},
url = {https://www.numdam.org/articles/10.1051/m2an/2020040/}
}
TY - JOUR AU - Roubíček, Tomáš AU - Tsogka, Chrysoula TI - Staggered explicit-implicit time-discretization for elastodynamics with dissipative internal variables JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2021 SP - S397 EP - S416 VL - 55 IS - Supplément PB - EDP-Sciences UR - https://www.numdam.org/articles/10.1051/m2an/2020040/ DO - 10.1051/m2an/2020040 LA - en ID - M2AN_2021__55_S1_S397_0 ER -
%0 Journal Article %A Roubíček, Tomáš %A Tsogka, Chrysoula %T Staggered explicit-implicit time-discretization for elastodynamics with dissipative internal variables %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2021 %P S397-S416 %V 55 %N Supplément %I EDP-Sciences %U https://www.numdam.org/articles/10.1051/m2an/2020040/ %R 10.1051/m2an/2020040 %G en %F M2AN_2021__55_S1_S397_0
Roubíček, Tomáš; Tsogka, Chrysoula. Staggered explicit-implicit time-discretization for elastodynamics with dissipative internal variables. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 55 (2021), pp. S397-S416. doi: 10.1051/m2an/2020040
, and , editors, Poromechanics III: Biot Centennial (1905–2005). Taylor & Francis, London (2005).
and , Approximation of functional depending on jumps via by elliptic functionals via -convergence. Comm. Pure Appl. Math. 43 (1990) 999–1036. | MR | Zbl
, and , Modelling and numerical simulation of martensitic transformation in shape memory alloys. Continuum Mech. Thermodyn. 15 (2003) 463–485. | MR | Zbl
and , Rectangular mixed finite elements for elasticity. Math. Models Methods Appl. Sci. 15 (2005) 1417–1429. | MR | Zbl
and , Mixed finite elements for elasticity. Numer. Math. 92 (2002) 401–419. | MR | Zbl
, and , Finite elements for symmetric tensors in three dimensions. Math. Comput. 77 (2008) 1229–1251. | MR | Zbl
, and , Fictitious domains, mixed finite elements and perfectly matched layers for 2D elastic wave propagation. J. of Comput. Acoustics 9 (2001) 1175–1202. | MR
, and , A new family of mixed finite elements for the linear elastodynamic problem. SIAM J. Numer. Anal. 39 (2002) 2109–2132. | MR | Zbl
, and , A mixed finite element approach for viscoelastic wave propagation. Comput. Geosci. 8 (2004) 255–299. | MR | Zbl
, and , An efficient numerical method for the resolution of the Kirchhoff-Love dynamic plate equation. Numer. Meth. Partial Differ. Equ. 21 (2005) 323–348. | MR | Zbl
, and , Convergence results of the fictitious domain method for a mixed formulation of the wave equation with a Neumann boundary condition. ESAIM:M2AN 43 (2009) 377–398. | MR | Zbl | Numdam
, General theory of three-dimensional consolidation. J. Appl. Phys. 12 (1941) 155–164. | JFM
, Parallel 3D viscoelastic finite difference seismic modelling. Comput. Geosci. 28 (2002) 887–899.
, , and , Effective transmission conditions for thin-layer transmission problems in elastodynamics. The case of a planar layer model. ESAIM:M2AN 50 (2016) 43–75. | MR | Zbl | Numdam
, , , and , A phase-field description of dynamic brittle fracture. Comput. Meth. Appl. Mech. Eng. 217–220 (2012) 77–95. | MR | Zbl
, Wave Fields in Real Media, Wave Propagation in Anisotropic, Anelastic, Porous and Electromagnetic Media. Elsevier, Amsterdam (2015).
, Poroelasticity. Springer, Switzerland (2016). | MR
, and , A staggered discontinuous Galerkin method for the simulation of seismic waves with surface topography. Geophysics 80 (2015) T119–T135.
and , Finite Element and Discontinuous Galerkin Methods for Transient Wave Equations. Springer, Dordrecht (2017). | MR
, and , Über die partiellen Differenzengleichungen der mathematischen Physik. Math. Ann. 100 (1928) 32–74. | MR | JFM
and , Analysis of a high-order space and time discontinuous Galerkin method for elastodynamic equations. Application to 3D wave propagation. ESAIM:M2AN 49 (2015) 1085–1126. | MR | Zbl | Numdam
, Modélisation mathématique et numérique de la propagation d’ondes dans les milieux viscoélastiques et poroélastiques. Ph.D. thesis, Univ. Paris IX Dauphine (2005).
, and , Mixed explicit/implicit time integration of coupled aeroelastic problems: three field formulation, geometric conservation and distributed solution. Int. J. Numer. Meth. Fluids 21 (1995) 807–835. | MR | Zbl
, and , Partitioned analysis of coupled mechanical systems. Comput. Methods Appl. Mech. Eng. 190 (2001) 3247–3270. | Zbl
, Simulating seismic wave propagation in 3D elastic media using staggered-grid finite differences. Bull. Seismol. Soc. Amer. 86 (1996) 1091–1106. | MR
and , A general theory of an elastic-plastic continuum. Arch. Rational Mech. Anal. 18 (1965) 251–281. | MR | Zbl
, Modélisation de la propagation des ondes élastiques générées par un séisme proche ou éloigné à l’intérieur d’une ville. Ph.D. thesis, Universit de la Méditerranée – Aix-Marseille II (2005).
and , Plasticity. Springer, New York (1999). | MR | Zbl
and , Continuum phase field modeling of dynamic fracture: variational principles and staggered FE implementation. Int. J. Fract. 178 (2012) 113–129.
, Nonlocal theories in continuum mechanics. Acta Polytech. 44 (2004) 16–34.
and , Finite Element Methods with Discontinuous Displacement. Chapter 11. Chapman & Hall/CRC, Boca Raton, FL (2008). | MR | Zbl
, Time of rupture process under creep conditions. Izv. Akad. Nauk SSSR 8 (1958) 26.
, , and , Grid dispersion analysis of plane square biquadratic serendipity finite elements in transient elastodynamics. Int. J. Numer. Meth. Eng. 96 (2013) 1–28. | MR
, , , and , Temporal-spatial dispersion and stability analysis of finite element method in explicit elastodynamics. Int. J. Numer. Meth. Eng. 106 (2016) 113–128. | MR
and , Mathematical Methods in Continuum Mechanics of Solids. Springer, Switzeland (2019). | MR
, The saga of internal variables of state in continuum thermo-mechanics (1893–2013). Mech. Res. Commun. 69 (2015) 79–86.
and , Rate-Independent Systems – Theory and Application. Springer, New York (2015). | MR
, Creep Problems in Structural Members. North-Holland, Amsterdam (1969). | Zbl
, Nonlinear Partial Differential Equations with Applications, 2nd edition. Birkhäuser, Basel (2013). | MR
, An energy-conserving time-discretisation scheme for poroelastic media with phase-field fracture emitting waves and heat. Disc. Cont. Dynam. Syst. S 10 (2017) 867–893. | MR
and , Energy-conserving time-discretisation of abstract dynamical problems with applications in continuum mechanics of solids. Numer. Funct. Anal. Optim. 38 (2017) 1143–1172. | MR
and , A monolithic model for phase-field fracture and waves in solid-fluid media towards earthquakes. Int. J. Fract. 219 (2019) 135.
, , , , and , Delamination and adhesive contacts, their mathematical modeling and numerical treatment, edited by , 2nd edition. In: Math. Methods and Models in Composites. Imperial College Press (2017).
, , and , Explicit time-discretisation of elastodynamics with some inelastic processes at small strains. Preprint arXiv:1903.11654 (2019).
, Etude théorique et numérique de la propagation d’ondes en présence de contact unilatéral dans un milieu fissuré. Ph.D. thesis, Univ. Paris Dauphine (2004).
, , and , Phase field approximation of dynamic brittle fracture. Comput. Mech. 54 (2014) 1141–1161. | MR | Zbl
, and , A staggered explicit-implicit finite element formulation for electroactive polymers. Comput. Methods Appl. Mech. Eng. 337 (2018) 150–164. | MR
, Stability and Wave Motion in Porous Media. Springer, New York (2008). | MR | Zbl
, Mathematical Problems in Plasticity (French original in 1983). Gauthier-Villars, Paris (1985). | MR
, Modelisation mathématique et numérique de la propagation des ondes élastiques tridimensionnelles dans des milieux fissurés. Ph.D. thesis, Univ. Paris IX Dauphine (1999).
, SH-wave propagation in heterogeneous media: Velocity-stress finite-difference method. Geophysics 49 (1984) 1933–1957.
Cité par Sources :





