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STAGGERED EXPLICIT-IMPLICIT TIME-DISCRETIZATION FOR
ELASTODYNAMICS WITH DISSIPATIVE INTERNAL VARIABLES

ToMAS ROUBICEKY?* AND CHRYSOULA TSOGKA®*

Abstract. An extension of the two-step staggered time discretization of linear elastodynamics in
stress-velocity form to systems involving internal variables subjected to a possibly non-linear dissipative
evolution is proposed. The original scheme is thus enhanced by another step for the internal variables
which, in general, is implicit, although even this step might be explicit if no spatial gradients of the
internal variables are involved. Using an abstract Banach-space formulation, a priori estimates and
convergence are proved under a CFL condition. The developed three-step scheme finds applications
in various problems of continuum mechanics at small strain. Here, we consider in particular plasticity,
viscoelasticity (creep), diffusion in poroelastic media, and damage.
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1. INTRODUCTION

In computational mechanics one can distinguish two main classes of time-dependent problems, quasistatic
and dynamic. Focusing on the latter one, one can further distinguish two other cases: (i) Low-frequency regimes,
which are typically related with vibrations of structures and where the energy is not dominantly transmitted
through space. In this case implicit time-discretization is relatively efficient, even though large systems of
algebraic equations are to be solved at each time step. (ii) High-frequency regimes which arise typically within
wave propagation and for which only explicit time-discretizations are reasonably efficient, in particular in three-
dimensions. These explicit methods can essentially be used in hyperbolic problems, as mere elastodynamics
(treated here) or the elasto-magnetic Maxwell system or some conservation laws. Yet, many applications need
to combine the convervative hyperbolic problems with various dissipative processes of a parabolic character,
involving typically some internal variables. For parabolic problems, however, explicit methods are known to be
problematic due to severe time-step restrictions. Therefore, we propose and analyse an explicit/implicit scheme,
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using the fractional-step (also called staggered) technique. In fact, the proposed method becomes completely
explicit in the absence of gradients of internal variables, as it can be in plasticicity or viscoelasticity as in
Section 5.1, or an interfacial variant of damage models (so-called delamination) as in [43].

Our starting point is the linear elastodynamic problem: Find the displacement u : [0, 7] x  — R? satisfying

ou —divCe(u) = f on Q for te (0,7, (1.1a)
[Ce(u)ln+Bu=g on T' for ¢ e (0,7, (1.1b)
ult=0 = g, TUlt=0 =vo on {, (L1c)

for T' > 0 a fixed time horizon. Here Q C R? is a bounded Lipschitz domain, d = 2 or 3, I is its boundary, and
n the unit outward normal. The dot-notation stands for the time derivative. In (1.1), o > 0 denotes the mass
density, C is the elasticity tensor which is symmetric and positive definite, e(u) denotes the small-strain tensor
defined as e(u) = 1(Vu)"+4Vu, and B is a symmetric positive semidefinite 2nd-order tensor determining the
elastic support on the boundary. The terms appearing in the second member of (1.1) are, the bulk force f
and the surface loading g. In (1.1c), uo denotes the initial displacement and vy the initial velocity. For a more
compact notation, we write the initial-boundary-value problem (1.1) in the following abstract form

T’?j + W'u = f;(f) for te (O,T], u|t:0 = Uog, ﬂ|t:0 = 0. (12)

Here 7 is the kinetic energy, W is the stored energy, and F is the external force, while (-)" denotes the Gateaux
derivative. In the context of (1.1), we have

T(u):/ﬂég|u|2dx, W(u)z/ﬂ%@@(u):e(u)der/%I&ruds

T

and

f(t,u):/Qf(t)~udx+/rg(t)-ud8.

Thus F, (t) is a linear functional, let us denote it shortly by F'(¢).

For high-frequency wave propagation problems, implicit time discretizations are computationally expensive,
especially in the three dimensional setting. Therefore, we focus our attention on explicit methods. The simplest
explicit scheme is the following second-order finite difference scheme

7otk 2 TUrh LWk, = Fu(kr). (1.3)

Here 7 > 0 denotes the time step, and W, (resp. F}) denote some discrete approximations of the respective
continuous functionals obtained by a suitable finite-element method (FEM) with mesh size h > 0. For simplicity,
we assume the mass density constant (or at least piecewise constant in space) so that the kinetic energy 7 does
not need any numerical approximation. In particular, a numerical approximation leading to a diagonal the mass
matrix 7’ in (1.3), typically referred to as mass lumping, is an important ingredient so as to obtain efficient
explicit methods. Here we will consider that u is discretized in an element-wise constant way so that 7’ leads
to a diagonal matrix even without any approximation. Multiplying (1.3) by ulj#%ufh
is easy to show that the energy preserved is

k+1 k k+1 k
1 T/uTh — ULy Uy — UL, + 1<WI uk+1 uk >
T ’ T 9\ ThTTh o ek

and using the scheme, it

2

This is an energy, i.e. a positive quantity under the following Courant—Fridrichs—Lewy (CFL) condition [20]

2
<T’uh,uh> 2 TZ<W]/—LUh»uh> (14)
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for any wuj, from the respective finite-dimensional subspace. The CFL typically bounds the time discretization
step 7 = O(hmin) With hpi, the smallest element size on a FEM discretization. This method has frequently
been used and analysed from various aspects, including comparison with implicit time discretizations, cf. e.g.
[33,34]. However, the form of the discrete stored energy $(Wjuf", uF,) makes this discretization less suitable
for the problem that we wish to consider in this paper where the stored energy is enhanced by some internal
variables and (possibly) nonlinear processes on them.

Therefore, we use another explicit discretization scheme, the so-called leap-frog scheme. To this end, we first

write the velocity /stress formulation of (1.1a). Introducing the velocity, v = @ and the stress tensor o := Ce(u),

we get
ov—dive=f and ¢ =Ce(v) on Q for te (0,77, (1.5a)
on+Bv=yg on I' for ¢ € (0,77, (1.5b)
V|t=0 = vo, Olt=0 = 00 := Ce(uyp) on . (1.5¢)

In the abstract form (1.2), when writing W = # oE with E denoting the linear operator u — (e, w) := (e(u), u|p)
and with u|. denoting the trace of u on the boundary I, this reads as

T+ E*Y =F(t) for t e (0,7, V| = vo, and (1.6a)
Y =%'Ev+G(t) for t € (0,7, Ylieo = o := #'Euy, (1.6b)

where E* is the adjoint operator to E. The stored energy governing (1.5) is
1 1
W (e, w) :/ f(Ce:edx—l—/wa-wdS
02 r 2
while the external loading is now split into two parts acting differently, namely
(F'(t),u) = / f(t) - udx and (G(t),w) = / g(t) - wdz.
Q r

Let us note that (1.6) involves the equation on €, as well as, the equation on I'. Thus 7 is to be understood
as the functional on Q x I', that is trivial on I since no inertia is considered on the (d—1)-dimensional boundary
I. In particular, the “generalized” stress ¥ = #”FEu = (Ce(u), Bu|r) contains, besides the bulk stress tensor,
also the traction stress vector. Relying on the linearity of #, we have 3 = #’FEv with v = 1, as used in (1.6b).
Let us note that the adjoint operator E* : (0,¢) — § in (1.6a) with the traction force ¢ = Bu|r determines a
bulk force § as a functional on test displacements u by

/Qg-udw = (8 u) = (E%(0,6),u) = ((0,¢), Bu) = ((0,5), (e(u), ulp))
:/QJ:e(u)dm+-/rg.ud5:/F(g.n-kg).udS—/Qdivmudx,

which clarifies the force E*Y = § in (1.6a). The leap-frog time discretization of (1.6) then reads as

shH1/2 _ ok—1/2 k+1_ k
ST = W Byl + DY, and T’w + EpyiE = pEi2 (1.7)

where #}, and Ej, are suitable FEM discretizations of # and E, ¢f. (3.1a) and (3.1c) below, and

o - Fu(t)dt and DF, == Gn(t)dt = - (1.8)

T J(k—1/2)7 T

prae L / e 1 /<’<+1/2>T. Gi((k+3)7) = Gal(k—1)7)
k (

T
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As mentioned before, we assume here that v is discretized in an element-wise constant way so that 7 leads to
a diagonal matrix. In this case we do not need to employ numerical integration to approximate the mass matrix.
For higher-order discretizations, however, mass lumping is necessary so as to obtain explicit discretization
schemes. We refer to [8,31,50] for details in the case G = 0. The proposed FEM leads to a block diagonal matrix
for W, = E; ), E,, which means that the resulting scheme does not require the solution of a big linear system
at each iteration in time. The spatial FEM discretization exploits regularity available in linear elastodynamics,
in particular that dive and e(v) in (1.5a) live in L?-spaces. Moreover, the equations in (1.7) are decoupled
in the sense that, first, Z]Hl/ % is calculated from the former equation and, second, vf;fl is calculated from
the latter equation assuming, that (v Th,E’:;I/z) is known from the previous time step. For k = 0, it starts
from v?, = vy and from a half time step El/ — 0, %%Ehvgh. For the space discretization, the lower
order Q%i’l Q. finite element is obtained for k= 0 and in this case the velocity is discretized as piecewise
constant on rectangular or cubic elements while the stress is discretized by piecewise bi-linear functions with
some continuities. Namely the normal component of the stress is continuous across edges of adjacent elements
while the tangential component is allowed to be discontinuous. For more details about the space discretization
we refer the interested reader to [8]. Alternative discretizations for the linear elasticity problem have been
proposed by D. Arnold and his collaborators who designed mixed finite elements for general rectangular and
triangular grids [4-6]. For tetrahedral leap-frog discretization of the elastodynamics see [21]. In general, the
leap-frog scheme has been frequently used in geophysics to calculate seismic wave propagation with the finite
differences method, cf. e.g. [13,25,51].

When taking the average (i.e. the sum with the weights £ and 3) of the second equation in (1.7) in the level

k and k—1 tested by v¥, and summing it with the first equation in (1.7) tested by [7/,{]’1(21:21/2 k 1/2)/2
we obtain

1 C1kt1/2 k12 1 C1gk—1/2 k—1/2
§<[Wh/} 127’h / 7zrh / >_ ngfﬂ 1Z'rh / 727’h / >
Ek+1/2+2k 1/2 Ek+1/2+2k 1/2
(B (g, B g
/ ’:2_ _Ufﬁl . Ek+1/2+zk 1/2 . Fk+1/2+Fk 1/2 X
<T T 7U‘rh> +< 9 ) hUTh> = < 9 ) Th>'
Summing it up, we get that the following discrete energy is conserved
1 1
ST k) + @ (S5) with (D) = (#4718, %), (L9)

Note that @, is the discrete stored energy expressed in terms of the generalized stress. In contrast to (1.3), this
formulation allows for enhancement of the discrete stored energy by some internal variables. The energy (1.9)
is shown to be a positive quantity under the following CFL condition

2
(VA" 4, 2h) = T (BiZa, (T) ' Ei ) (1.10)

for any X, from the respective finite-dimensional subspace. Moreover, F' = 0 is often considered, which makes
the a prior: estimation easier. Let us also note that the adjective “leap-frog” is sometimes used also for the
time-discretization (1.3) if written as a two-step scheme, cf. e.g. ([19], Sect. 7.1.1.1).

The plan of this article is as follows: In Section 2, we complement the abstract system (1.6) by another
equation for some internal variable and cast its weak formulation without relying on any regularity. Then, in
Section 3, we extend the two-step leap-frog discrete scheme (1.7) to a suitable three-step scheme, and study the
energy properties of the proposed scheme. Then, in Section 4, we prove the numerical stability of the 3-step
staggered approximation scheme and its convergence under the CFL condition (4.1). Such an abstract scheme
is then illustrated in Section 5 on several examples from continuum mechanics, in particular on models of
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plasticity, creep, diffusion, and damage. For illustration of computational efficiency, we refer to [44] where this
scheme was implemented for another problem, namely a delamination (i.e. interfacial damage).

It should be emphasized that, to the best of our knowledge, a rigorously justified (as far as numerical stability
and convergence) combination of the explicit staggered discretization with nonlinear dissipative processes on
some internal variables is new, although occasionally some dissipative nonlinear phenomena can be found in
literature as in [45] for a unilateral contact, in [13] for a Maxwell viscoelastic rheology, in [47] for electroactive
polymers, in [23] for an aeroelastic system, or in [24] for general thermomechanical systems, but without any
numerical stability (a priori estimates) and convergence guaranteed.

2. INTERNAL VARIABLES AND THEIR DISSIPATIVE EVOLUTION.

The concept of internal variables has a long tradition, cf. [36], and opens wide options for material modelling,
cf. e.g. [35,37] and references therein. Typically, internal variables are governed by a parabolic-type 1st-order
evolution. The abstract system (1.2) is thus generalized to

T'u+ W, (u,z) = F(t) for ¢t € (0,T], uli=o =wuo, 1ult=0 = vo, (2.1a)
O (%) + W.(u,z) 30 for t € (0,T], z|i=0 = 20- (2.1b)

The inclusion in (2.1b) refers to a possibility that the convex (pseudo)potential ¥ of dissipative forces may be
nonsmooth and then its subdifferential 0¥ can be multivalued.

Combination of the 2nd-order evolution (1.2) with such 1st-order evolution is to be handled carefully. In
contrast to the implicit staggered schemes, cf. [41], the constitutive equation is differentiated in time, cf. (1.5a),
and it seems necessary to use the staggered scheme so that the internal-variable flow rule can be used without
being differentiated in time, even for a quadratic stored energy W.

Moreover, to imitate the leap-frog scheme, it seems suitable (or maybe even necessary) that the stored energy
W may be expressed in terms of the generalized stress as

W(u,z) = ®(3,2) with X =CFu, and ®(-,2) and ®(X,-) quadratic, (2.2)

where € stands for a “generalized” elasticity tensor and E is an abstract gradient-type operator. Typically
Eu = (e(u),u|r) or simply Fu = e(u) are considered here in the context of continuum mechanics at small
strains, cf. the examples in Section 5. Here, ¥ may not directly enter the balance of forces and is thus to be
called rather as some “proto-stress”, while the actual generalized stress will be denoted by S. For a relaxation
of the last requirement of (2.2) see Remark 4.4 below. Then, likewise (1.6), we can write the system (2.1) in
the velocity/proto-stress formulation as

> =CEv+ G(t) for ¢t e (0,77, (2.3a)
TOo+ES=F() with S=¢C"®4(%,z2) for ¢t e (0,77, (2.3b)
OV (2)+PL(X,2)20 for t e (0,7, (2.3¢)
Yli=0 = Lo := €Eug + G(0), v|t=0 = vo, 2|t=0 = 20. (2.3d)

Here @5 (X, 2) is a “generalized” strain and, when multiplied by €*, it becomes a generalized stress. Actually,
(1.6) is a special case of (2.3) when ® = ®(X) = [,3C o : ode + [[B7'¢-¢dS and S = ¥ = (0,¢) while
¢ =%"=(C,B), so that indeed S = €*®L (%) = (C,B)(C~lo,B~ L) = (0,5) = .

The energy properties of this system can be revealed by testing the particular equations/inclusions in (2.3)
by @4 (3, 2), v, and 2. Thus, at least formally, we obtain

(P4(2,2),2) = (D5(2,2), CEv + G) = (€ DL(T, 2), Ev) + (D(X, 2), G), (2.4a)
(T'0,v) + (€ PG(S, 2), Bv) = (F(t),v), (2.4b)
E(2) + (PL(2,2),2) <0 with  E(2) := inf (9U(2), 2). (2.4c)
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The functional = is a dissipative rate and the “inf” in it refers to the fact that the dissipative potential ¥ can
be nonsmooth and thus the subdifferential O can be multivalued even at Z # 0, otherwise an equality in (2.4c)

holds. Summing it up and using the calculus $7(v) = (T7v,9) = (T0,v) and LO(T,2) = (P(Z,2), %) +

(D.(%, 2), 2), we obtain the following inequality for the energy,

d .
— T (v)+0(2,2) + 2(2) < (F(t),v) + (P%(2,2),G) . (2.5)
dt ~—_———— ~—~
kinetic and dissipation ower of
stored energies rate external force

Actually, (2.4c) and (2.5) often hold as equalities.

Let us now formulate some abstract functional setting of the system (2.3). For some Banach spaces S, Z,
and Z; D Z and for a Hilbert space H, let ® : S x Z — R be smooth and coercive, 7 : H — R be quadratic
and coercive, and let ¥ : Z — [0, +00] be convex, lower semicontinuous, and coercive on 2, cf. (4.2) below.
Intentionally, we do not want to rely on any regularity which is usually at disposal in linear problems but might
be restrictive in some nonlinear problems. For this reason, we reconstruct the abstract “displacement” and use
(2.3a) integrated in time, i.e.

t
Y=CEu+G with u(t):= /v(t) dt + uo. (2.6)
0
Moreover, we still need another Banach space £ and define the Banach space U := {u € H; Fu € £} equipped
with the standard graph norm. Then, by definition, we have the continuous embedding &/ — H and the contin-
uous linear operator E : U — £. We assume that U is embedded into H densely, so that H* C U* and that H
is identified with its dual H*, so that we have the so-called Gelfand triple

UCH=H CcU”.

We further consider the abstract elasticity tensor € as a linear continuous operator £ — S. Therefore €Eu € S
provided u € U so that the equation (2.6) is meant in S and one needs G(t) € S. Let us note that 7/ : H —
H* 2 H, DL : SXxZ — S E*: & - U*, and € : §* — &%, so that T'v € H* provided v € H and also
S =C*®f, € & and E*S € H*. In particular, the equation (2.3b) can be meant in H if integrated in time, and
one needs F(t) valued in H.

For a Banach space X, we will use the standard notation LP(0,7T;X) for Bochner spaces of the Bochner
measurable functions [0,7] — X whose norm is integrable with the power p or essentially bounded if p =
oo, and W1P(0,T;X) the space of functions from LP(0,T;X) whose distributional time derivative is also in
LP(0,T;X). Also, C*(0,T;X) will denote the space of functions [0, 7] — X whose kth-derivative is continuous,
and Cy(0,T;X) will denote the space of weakly continuous functions [0,7] — X. Later, we will also use
Lin(U, £), denoting the space of linear bounded operators & — £ normed by the usual sup-norm.

A weak formulation of (2.3b) can be obtained after by-part integration over the time interval I = [0, 7] when
tested by a smooth function. It is often useful to consider

D(3,2) = Do(X,2) + P1(2) with [®g],:Sx Z — Z] and @) :Z — Z* (2.7)
and to use integration by-parts for the term (®/(z), 2). We thus arrive to the following definition.

Definition 2.1 (Weak solution to (2.3)). The quadruple (u, X, v,z) € Cy (0, T;U) x Cy (0, T;8) x Cy (0, T5;H) x
Cyw(0,T;2) with ¥(2) € LY(I) and 2 € L*(0,T;21) will be called a weak solution to the initial-value problem
(2.3) with (2.6) if v = @ in the distributional sense, ¥ = €Eu + G holds a.e. on I, and if

T T
/O (D48, 2), €ET) . — (T'0,8),. dt = (T, 3(0)), ., + /0 (F),. .dt  (28)
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for any 7 € C*(0,T;H) N C(0, T;U) with o(T) = 0, and

T

/0‘11( %)+ (B0l (8,2).5-2) 5.5+ (B1(2).2) 5., dt+<I>1(zo)2<I>1(z(T))+/0 w(2) dt (2.8b)

for any Z € C(0,T;2Z), where indices in the dualities (-, ) indicate the respective spaces in dualities, and if also
u(0) = ug, X(0) = X, and z(0) = zo.

Let us note that the remaining initial condition v(0) = vg is contained in (2.8a). Definition 2.1 works suc-
cessfully for p > 1, i.e. for rate-dependent evolution of the abstract internal variable z, so that z € L?(0,T;2;).
For the rate-dependent evolution when p = 1, we would need to modify it. Here, we restrict ourselves to p > 2,
because of the a priori estimates in Proposition 4.1.

3. A THREE-STEP STAGGERED TIME DISCRETIZATION

We derive in this section the leap-frog discretization of (2.3a) and (2.3b) combined with an implicit dis-
cretization for (2.3c), using a fractional-step split (called also a staggered scheme) with a mid-point formula
for (2.3c). Instead of a two-step scheme (1.7), we obtain a three-step scheme and therefore, from now on, we
abandon the convention of a half-step notation as used in (1.7) and write k + 1 instead of k + 1/2.

To this aim, we consider sequences of nested finite-dimensional subspaces S, C S, Vj, C ‘H, and Z;, C Z
where the values of the respective discrete variables Xy, vy, and z, will be, assuming that their unions are
dense in the respective Banach spaces. We will use an interpolation operator Iy, : Lin(S, S,) and the embedding
operator Jy, : Z, — Z; it is important that the collection {.J,}, is uniformly bounded and, since |J,+ Z is
dense in Z, the sequence {J},-, converges to the identity on Z strongly. We consider Ej, € Lin(V},,£). Let us
note that we allow for a “non-conformal” approximation of v, i.e. V}, C H is not necessarily a subspace of U.
This is in agreement with discretizations of the velocity as in [7,8,11,18,50].

Considering that we know from previous step ¥ then the proposed discretization scheme is

k
7h1 Urho Th’

k+1 k
E‘I’h — Z7-h

(1) calculate X% - = I,¢Ek, + DF, | (3.1a)
k41 k
(2) calculate 2%, J5ov (M’) + @, (E’;;‘;l, ZT";—ZT}Z> >0, (3.1b)
oLk
(3) calculate v¥; ! T’%Th +ESRH = FERV2 ith SRR @ g (SR 2R,
and uft: ul = ok, okt (3.1c)

where Ff}j 2 and DF, are from (1.8). It seems important in the non-linear case to compute the variables
in the order given above. We note however, that for the linear viscoelastic problem with Maxwell rheology a
scheme with a different ordering has been proposed in Part I, Section 2 of [27]. The potentials ®, ¥, and T
are considered restricted on S}, X Zp, Zy,, and Vj,, so that their corresponding (sub)differentials ®%,, ®/,, 07,
and 7' are valued in S}, Z}, and V¥, respectively. The particular equations/inclusion in (3.1) are thus to be
understood in Sy, Zj, V¥, £%, and Vj, respectively. The only implicit equation is (3.1b). Note however that
even this equation becomes explicit if there are no spatial gradients in ® and W. In view of the definition of the
convex subdifferential, (3.1b) means the variational inequality

k+1_ _k E+1_ _k
W(Z) + <(I)/Z (Zf;l, Zrh 2+Z'rh> )g_ Zrh - Zrh> > U (Zrh - Z‘rh) (32)
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for any z € Vj,. In any case, the equation (3.1b) posseses a potential
2 242F z—2F
SQ(xk S tTh ) p g (2 3.3
oy ( o ) g (2 (3.3)

which is to be minimized on Z,. Therefore the existence of a solution to this inclusion (3.1b), or equivalently of
the variational inequality (3.2), can be shown by a direct method, cf. also [41]. The scheme (3.1) is thus to be
solved recurrently for k = 0,1,...,T/7 — 1, starting from the initial conditions (2.3d) assumed, for simplicity,
to live in the respective finite-dimensional spaces.

The energy properties of this scheme can be obtained by imitating (2.4) and (2.5). More specifically, we
proceed as follows: we test (3.1a) by %@’Z(Zle,zf;l) + $®4(3F,,2F,), then test (3.1b) by M, and
eventually test the average of (3.1c) at the level k+1 and k by v¥, . Using that ®(-,z) and (%, ) are quadratic
as assumed in (2.2), we have

<¢>'z<z’:#, HHY) + @4 (3, 2,) DA z¢h>
2 ’ T

_ <@g<z¢;% o) + B8k, k) B z’:h>
2 ’ T

LT <¢'E<z¢z% i) = ¥ o) S 2¢h>

)
2 T T

o) ash o) 7 L S e ) s
T 2 T ’ T ’ ’
where we used also (3.1a), and
k k k k k :
P’ (Ek’-l-l ZTiJLrl—’—Z‘l]fh) ZT;LLl — Z‘Irch _ (I)(ZT?;:L’ Z‘rfJLrl) — (I)(Zrzl’ th) . (3 4b)
z Th 9 ’ = - .
Therefore, using again the particular equations/inclusion in (3.1), we get respectively
k+1 k1 k41
T
_T (I)/E<2ﬁ;tl7 27]?2_1) - (I)/E(Eﬁ;tl’ Zﬂ}fh) Eﬁ#* Eﬁh (353)
2 T ’ T ’
k+1_ _k E+1 _k+1y _ k+1 _k
E(’ZTh zTh) 4 (I)(Z‘rh ' Zrh ) (I)(Zrh 7Z7'h) < 07 and (35b)
T T
k+1_ k-1 / Zk-‘rl k+1 (I)/ Zk k
(1 )+ (e Pt PG e (), (ase)

k+1_ _k
Let us also note that, if ¥(0) = 0 is assumed, the substitution z = 0 into the inequality (3.2) gives ¥ (M)

=
instead of the dissipation rate = (zf:%th) in (3.5b), which is a suboptimal estimate except if ¥ is degree-1
positively homogeneous.

Summing (3.5) up, we benefit from the cancellation of the terms £® (%1, 2¥, ), which is the usual goal and
attribute of well-designed fractional-split schemes. Thus, using also the simple algebra

<T/(U7]?itl_vljl:1)’ U£h> = <T/Ufitlv 'Ufh> - <T/'Ufh’ UI:}:1>7 (3'6)
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we obtain the analog of (2.5), namely

—_
—

(T k) — (T ) | @ (S ) @ (S, k) (- )
2T T T

Th »Urh 2

T <¢>’z (ZEF 250 — @y (S5 28,) sk — sk, >

k+1 _k+1 .
S <F/€+1/2 k >+ <q)/2 (E’T?l_ 727';:_ )+‘I)/23(Z§h7z7@h),th>

(3.7)

S )

2 T T

If ¥ is smooth except possibly at zero, there is even equality in (3.7).
Considering some approximate values {z’jh}kzow,, k of the variable z with K = T'/7, we define the piecewise-
constant and the piecewise affine interpolants respectively by

1 L k-1

Zra(t) = 25, Zop(t) = ith T 5% and (3.8a)
t— (k-1 kT —t
zrp(t) = szh + L 2kt for (k—1)7 <t < kr. (3.8b)
T T

Similar meaning is implied for Y.y, vrn, Xrn, Urh, Frp, etc. The discrete scheme (3.1) can be written in a
“compact” form as

27—}1 = I, CELTp + Grh and  Urp = Trp, (39&)
JroV (2.1) + @ (270,2,) 20, (3.9b)
T//l.]Th + E;gq—h = FT]’L with ?.,-h = Q:*I;;@/z] (iTh,fTh) (39C)

to be valid a.e. on the time interval [0, T7.

4. NUMERICAL STABILITY AND CONVERGENCE

Because the energy (1.9) involves now also the internal variable, the CFL condition has to be modified. More
specifically, we assume that

2

A9 > 0VILE Sh, 20€ Zr: D(Bp,2n) > 47;777<E;:Sh, (T/)_lE;:Sh>H* with S, = Q*IZQIE(Zh,zh% (4.1)

XH

where Y;, and z;, are considered from the corresponding finite-dimensional subspaces. Let us still introduce the
Banach space X := {X € §*; E*C*X € H*}. We further assume € € Lin(&, S) invertible and that the collection
of the interpolation operators {I, : S — Sp}r>0 is bounded in Lin(S, S).

Proposition 4.1 (Numerical stability). Let F' be constant in time, valued in H*, G € WH1(0,T;S), up € U
so that ¥g = €Eug € S, vog € H, 20 € Z, the functionals T, ®, and U be coercive and D% (X,-) be Lipschitz
continuous uniformly for ¥ € S in the sense

de>0p>2V(X,v,2) € SXHXZ:

T(v) > ellvllz;, (8,2) > €| B]5 +ell2lZ, U(2) 2 ell=]%,. (4.2a)
CVEES, z€ 2 [@5(2,2)]l5. <CA+Ils + 2l 2), (4.2b)
HERVEES, 2,2€ Z: [@5(2, 2) — 25(5,7)||s. < €z —Z| - (4.2¢c)

Let also the CFL condition (4.1) hold with T > 0 sufficiently small (in order to make the discrete Gronwall
inequality effective).
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Then the following a priori estimates hold:

Hu‘thWLOO(O,T;H) <C, (4.3a)
HZThHLOO(O,T;S) <C and HZThHLl(O,T;X*) <C, (4.3b)
HUThHLOC(O,T;H) <C and HT/@ThHLoo(o,T;u*) <C, (4.3¢)
HZTh”LOC(O,T;Z) <C and HéT}L”LP(O,T;Zl <C. (4~3d)

Proof. The energy imbalance that we have here is (3.7) which can be re-written as

) +E(Z£;1_Z7’fh) < (%, vk,) n L(EN B + O5(5E,, 28) Dk,
T T = Thy “Th/H*xH 2 Sexs
7t - a5 ) - o
2 T T S* xS
with an analog of the energy (1.9), namely

€k+1 <T/ ﬁ]-—i_la -rh>'H* XH + q)(zl—:;l7 f;l) (45)

We need to show that QS;“LH is indeed a sum of the kinetic and the stored energies at least up to some positive
coefficients. To do so, like e.g. Lemma 4.2 of [45] or Section 6.1.6 of [50], let us write

k k k i
(T5 b)) = (T T;LH'H’Th U+1+UT]‘L T’ T}Tl—vfh UT;{l v
Urh s Vrh B) s 5 5 , 5
— (7 ]:;1"‘7%}1 UkH—i—vfh
= 5 ; 5
2
_ TZ <E}>‘; (Q*I;;q)/ (Ei;l’ f;l) _Ff}jl/Q) 7(7/)_1E;’; (Q:*I;;q)/ (Zf_;% fil)—Ff}jl/2)>7
(4.6)

where all the duality pairings are between H* and H; here also (3.1c) has been used. Thus, using also 7 (v) =
1(T"v,v), we can write the energy (4.5) as

= T %) + b (S ) +

k+1 . _ 1—

2
ST B oS5 250,

T (B Lo (S5 25, (T) B L0 (S5 21h)

Fk+1/2> -

2
T k+1/22
Th ||F7'h

17

(4.7)

with Arp 4 q)(zkrzl k:}-]l;l)

k+1/2

and with v_ = Lyktl

2 Urn
which is Just ensured by our CFL condition (4.1) used for ¥j, =

from (4.1).

k—+1
E7'h

and zp, = 2

=z

+1 5 v¥, . The energy ¢, K1 vields a priori estimates if the coefficient a® ~ 1, is non-negative,

k+1
Th

. Here n > 0 in (4.7) is just
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Altogether, summing (4.4) for k =0,...,l <T/7 —1 and using (4.7), we obtain the estimate

l k+1  _k
2 =2 ||P
(H l+1/2HH l+1HEl+1HS l+1HZl+1HZ Z’ h - h Zl)
k=0
2 2
< T—HF””QHH—%<<T’>-1E;;¢*I;<1>’ (SN A ) = ()T B L (22, 2%), i)

4
l
l 2 k+1/2
T + a0 8(50, 20) + 7S (<FT; /2 k)
k=0

k+1 k
Erh 727'}7,

T

k
“rh _*rh
T

b LRbEE ) + Bt 7)o D2

’S>, (4.8)

where ¢, p, ¢ and a“}! come from (4.2) and (4.7). Here we also have used that the collection {Ip}p~¢ is
bounded. Using (4.2b), we estimate || % (25, , 25, )||ls- < C(1+ |25, 12 + |25, |Z) and [|@% (25, 25 ||s <

C(1+||IZF 2+ 25 1%), and then use the summability of || D¥, ||$ needed for the discrete Gronwall inequality;
here the assumption G € L1(0,T;S) is needed. The last term in (4.8) is to be estimated by the Young inequality
as

Z1

k+1_ _k k+1_ sk k+1_ k2 2
ZE‘ Zrh Zrh E‘rh Erh ’ < E Zrh Zrh ‘ 4+ = ¢ HEk+1 Ek H
2 T 2 T s~ 2 T z, 8¢ Thils
k
—ZIn |IP

< ST (1 I  ISR)

1
with some C), _, depending on p, €, and £. Here we needed p > 2; note that this is related with the specific
explicit time discretization due to the last term in (3.7) but not with the problem itself. Then we use the
discrete Gronwall inequality to obtain the former estimates in (4.3b), (4.3c) and the estimates (4.3a), (4.3d).
Using the discrete Gronwall inequality is a bit tricky because of the term ||vl+1/ 2||H on the left-hand side of

(4.8) while there is v¥, instead of vk+1/2 on the right-hand side of (4.8). To cope with it, we have to rely on

F being constant (as assumed). We prove the estimate for [ = 1, then we sum up (4.8) for I+1 and [ to get

<Fk+1/2, ’:2_1/2> also on the right-hand side. Note also that, in view of (3.6) for k = 0, we have obtained the

term 7 (v, 1/ 2) on the right-hand side of (4.8) which, however, can simply be ignored if taking the “fictitious”
velocity at level k=—-1as —?, = —v2

The equation X,4 = I,CELU+, + Grp gives the latter estimate in (4.3b) by estimating

T T
A <E7—h’X>X*><th:/O <IhQ:EhETh+G7—h;X>X*Xth
T T
:/0 (Orn, B} TEX ), dt—i—/o (Grny X) o dt (4.9)

for X € L*(0,T;X) and using also the already proved boundedness of T, in L*>(0,7T;H) and the assumed
boundedness of Ej, uniform in h > 0; here we used also that ¥, (t) € S C X*.

Eventually, the already obtained estimates (4.2b) give ®4(X,4,%,4) bounded in L*°(0,7;S8*). Therefore
Sen = €[OS (S h, Z-n) is bounded in L>®(0,T;E*), hence E; Sy, is bounded in L>(0,T;U*), so that T'i,, =
Fop— EhSTh gives the latter estimate in (4.3c). O

We will now need the approximation properties for i — O:

vel, vpb €V, vp—v in H = Epvpy— Ev in & with F € Lin(U,¢), (4.10a)
NES L,E€S, Sh— in S = LY —Y in S (4.10D)
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Proposition 4.2 (Convergence). Let (2.7) and (4.10a) hold, all the involved Banach spaces be separable, and
the assumptions of Proposition 4.1 hold. Moreover, let

Vz € Z: ®%(-, 2) continuous linear, and ®%, : Sx Zy — Lin(S,S*) continuous

or % :S x Z — S* is continuous linear, (4.11a)
Vz € Z: [®],(-, 2) continuous linear, and [®¢],, : Sx Z5 — Lin(Zy, Z1) continuous

or [®o],: S x Z — Z{ is continuous linear, and (4.11b)

&) : Z — Z* is linear continuous, (4.11c)

for some Banach space Zy into which Z is embedded compactly, where o and ®1 are from (2.7). Then there
is a selected subsequence, again denoted {(Urn, Xrh, Urh, 2rh) r>0 converging weakly® in the topologies indicated
in the estimates (4.3) to some (u, X, v, z). Moreover, any (u, X, v, z) obtained as such a limit is a weak solution
according Definition 2.1.

Proof. By the Banach selection principle, we can select the weakly* converging subsequence as claimed; here
the separability of the involved Banach spaces is used.
Referring to the compact embedding Z C Zj used in the former option in (4.11a), (4.11b) and relying on
a generalization the Aubin-Lions compact-embedding theorem with Z,, being bounded in the space of the
Z;-valued measures on I, cf. ([39], Cor. 7.9), we have Z,j, — z strongly in L"(0,7;2;) for any 1 < r < +o0.
Further, we realize that the approximate solution satisfy identities/inequality analogous to what is used in
Definition 2.1. In view of (2.8a), the equations (3.9¢c) now means

T T
/ <(I)/E(§Th’§"'h)’th:Eh6>S*><S - <T/v"'h’§>7{*><7i dt = <T/v0”6(0)>H*XH + / <Fh’§>H*XH dt (412&)
0 0

for any © € C*(0,T;H) valued in V}, and with 7(T) = 0. Like in (2.8b), the inclusion (3.9b) means

T
/0 )+ (R0l T Zo) E o) g, (B2 %) 5+ 21 (20)
T
Z CI)l(Z-,—h(T)) +/ \IJ(Z.J‘,—h) dt (412b)
0
for all Z € L*(0,T; Z). This is completed by (3.9a).

It is further important that the equations in (3.9a) and the first equation in (3.9¢) are linear, so that the weak
convergence is sufficient for the limit passage there. In particular, we use (4.10a) and the Lebesgue dominated-
convergence theorem.

As to the weak convergence of (3.9a) integrated in time towards (3.1a) integrated in time, i.e. towards
¥ = €Fu + G as used in Definition 2.1, we need to prove that

T T
/0 (Sn = G X)g g — (e, € X), dt — /O (5=G, X)g, g — (w, E'CX), _dt  (413)

forany X € L'(0,7;S8*). By (4.10a), we have also E; S — E*S in H for any S € £*, in particular for S = €* X (¢).
Thus certainly E;€*X — E*€*X in L*(0,T; H) strongly. Using the weak* convergence u,;, — uin L>(0,T;H),
we obtain (4.13). Moreover, in the limit Bu = ¢~} — G) € L>(0,T;€) so that u € L>(0,T;U).

For the limit passage in (4.12a), we also use ®% (X4, Z,,) — % (%, 2) weakly™ in L>°(0,T;S*) because ®f,
is continuous in the (weakxstrong,weak)-mode, cf. (4.11a), and because of the mentioned strong convergence
of Z,p — 2.

Furthermore, we need to show the convergence [®¢].(X,1,Z,,) — [®o].(%,2). For this, we use again the
mentioned generalized Aubin-Lions theorem to have the strong convergence zZ.;, — z in L"(0,7;21) for any
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1 <7 < 400 and then the continuity of [®], in the (weak xstrong,weak)-mode, cf. the former option in (4.11b).
The limit passage of (4.12b) towards (2.8b) then uses also the weak lower semicontinuity of ®; and the weak
convergence z-,(T) — z(T) in Z; here for this pointwise convergence in all time instants ¢ and in particular in
t =T, we also used that we have some information about Z,, cf. (4.3d).

So far, we have relied on the former options in (4.11a), (4.11b) and the Aubin-Lions compactness argument
as far as the z-variable is concerned. If ® is quadratic (as e.g. in the examples in Sects. 5.1 and 5.2 below),
we can use the latter options in (4.11a), (4.11b) and simplify the above arguments, relying merely on the weak
convergence zZ,p, — z and Z_,, — 2. O

Remark 4.3 (Alternative weak formulation). Here, we used the weak formulation of (2.3¢) containing the term
(D(%, 2), z> which often does not have a good meaning since Z may not be regular enough in some applications.
This term is thus eliminated by substituting it, after integration over the time interval, by ®(X(T), 2(T)) —
fOT<(I>/E (2,2), ) dt—®(Xg, 29) or even rather by &(X(T), z(T))—fOT<<I>’E(E, z), €Ev) dt—® (%, 29). This however,
would bring even more difficulties because we would need to prove a strong convergence of @4 (X, z), or of 3,
or €Fv in our explicit-discretization scheme, which seems not easy.

Remark 4.4 (Nonquadratic ®(%,-)). Some applications use such ®(%,-) which is not quadratic. This is still
consistent with the explicit leap-frog-type discretization if, instead of ® (%, z), we consider an abstract difference
quotient ®$(X, z,Z) with the properties

PN, 2,2) =P,(8,2) and (P(%,z,2),2—2) = B(2,2) — B(%, 2), (4.14)
k+1 k
cf. [41]. Then, instead of & (¥ %) in (3.1b), we should write ®2(X% 1 25F ok ).

Remark 4.5 (State-dependent dissipation). The generalization of ¥ dependent also on z or even on (X, z) is
easy. Then 0V is to be replaced by the partial subdifferential 9; ¥ and (3.1b) should use \II(EI;#, 2k, . +) instead
of U(.).

Remark 4.6 (Spatial numerical approximation). From the coercivity of the stored energy ®, we have Eﬁh eS
for any k = 0,1,... and thus, from (3.1a), E,v¥, € € so that v¥, € U, although the limit v cannot be assumed
valued in U in general. Similarly, from (3.1c), one can read that EZth € 'H although this cannot be expected
in the limit in general. Anyhow, on the time-discrete level, one can use the FEM discretization similarly as in
the linear elastodynamics where regularity can be employed, cf. [7,8,11,50] for a mixed finite-element method
and [18] for the more recently developed staggered discontinuous Galerkin method for elastodynamics.

Remark 4.7 (Other explicit-implicit schemes). Combination of explicit and implicit time discretization might
not only be due to parabolic evolution of internal variables but also due to geometrical reasons, e.g. transmission
through a thin layer, that lead to a very restrictive CFL condition, cf. [14].

5. PARTICULAR EXAMPLES

We present three examples from continuum mechanics of deformable bodies at small strains of different char-
acters to illustrate applicability of the ansatz (2.2) and the above discretization scheme. Various combinations
of these examples are possible, too, covering thus a relatively wide variety of models.

We use a standard notation concerning function spaces. Beside the Lebesgue LP-spaces, we denote by
H¥(Q;R™) the Sobolev space of functions whose distributional derivatives are from L?(; R”Xdk).
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5.1. Plasticity or creep

The simplest example with quadratic stored energy and local dissipation potential is the model of plasticity
or creep. The internal variable is then the plastic strain 7, valued in the set of symmetric trace-free matrices
Rg:vd ={P ¢ Rdxd. pT = p trpP = 0}. For simplicity, we consider only homogeneous Neumann or Dirichlet
boundary conditions, so that simply F = e(u) and € = C. The stored energy in terms of strain e(u) is

W (u,m) = /Q %C(e(u)—ﬂ) : (e(u)—m) d, (5.1)

which is actually a function of the elastic strain e,y = e—7. The additive decomposition e(u) = eq—+7 is referred
to as Green-Naghdi’s [26] decomposition. This energy leads to

O(o,m) = /Q %(C_laza —om+ %(Cﬂ':’i‘r dz with o = Ce(u). (5.2)

Let us note that ®/ (o,7) = C™lo — 7 = e—m, i.e. the elastic strain e., and that the proto-stress ¥ = o is
indeed different from the actual stress o — Cr.
The dissipation potential is standardly chosen as

1
W) = / oy il + 3D da (53)
Q

with o, > 0 a prescribed yield stress and D a positive semidefinite viscosity tensor. The dissipation rate is then
2(7) = [oy|7| + Dz da. For D > 0 and o, = 0, we obtain mere creep model or, in other words, the linear
wiscoelastic model in the Mazwell rheology. For both D > 0 and o, > 0, we obtain viscoplasticity. For D = 0
and o, > 0, we would obtain the rate-independent (perfect) plasticity but our Proposition 4.1 does not cover
this case (i.e. p =1 is not admitted).

The functional setting is H = L2(;RY), € = S = Z = 21 = L2(REXT) where REX? denotes symmetric
(dxd)-matrices. Thus U := {v € L?(;R?); e(v) € L2(Q; R4} = HY(Q;RY) by Korn’s inequality.

A modification of the stored energy models an isotropic hardening, enhancing (5.1) as

1 1
W (u, ) :/ §C1(e(u)—7r):(e(u)—7r) + 5@271‘:77 dz (5.4)
Q
so that the energy ® from (5.2) is modified as
1 . 1
O(o,m) = 5((:1 o0 — o+ 5(C1+C2)7T:7T dz. (5.5)
Q

In the pure creep variant o, = 0, this is actually the standard linear solid (in a so-called Zener form), considered
together with the leap-frog time discretization in [9]. The isochoric constraint trm = 0 can then be avoided,
assuming that C, is positive definite.

All these models lead to a flow rule which is localized on each element when an element-wise constant
approximation of 7 is used, and no large system of algebraic equations need to be solved so that the combination
with the explicit discretization of the other equations leads to a very fast computational procedure.

Another modification for gradient plasticity by adding terms %H|V7T|2 into the stored energy is easily possible,
too. This modification uses Z = H'((; REXY) and (2.7) with ®1(z) = [, 35/ V7|? and makes, however, the flow
rule nonlocal but at least one can benefit from that the usual space discretization of the proto-stress o uses
the continuous piecewise smooth elements which allows for handling gradients V if used consistently also for
m. For the quasistatic variant of this model, we refer to the classical monographs [28,49], while the dynamical
model with D = 0 is e.g. in Section 5.2 of [37].
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Noteworthy, all these models bear time regularity if the loading is smooth and initial conditions regular
enough, which can be advantageously reflected in space FEM approximation, too.

The Maxwell visco-elastodynamics was also studied by J.-P. Groby ([27], Part I, Sect. 2) using a slightly
modified time discretization scheme, namely the order of (3.1a) and (3.1c) was exchanged.

The CFL condition (4.1) here is actually the same as the standard one (1.4). This is because the internal
variable actually does not influence the elasticity response and, likewise, the inertia is independent of the internal
variable, so the wave speed is not influenced either. The CFL is thus of the form 7 < h\/¢/|Amax(C)| where
Amax(C) is the maximal eigenvalue of C.

5.2. Poroelasticity in isotropic materials

Another example with quadratic stored energy but less trivial dissipation potential is a saturated Darcy or
Fick flow of a diffusant in porous media, e.g. water in porous elastic rocks or in concrete, or a solvent in elastic
polymers. The most simple model is the classical Biot model [12], capturing effects as swelling or seepage. In a
one-component flow, the internal variable is then the scalar-valued diffusant content (or concentration) denoted
by (.

As in the previous Section 5.1 , we consider only Neumann or Dirichlet boundary conditions, so that E = e(u).
Here we use the orthogonal decomposition e = sph e+dev e with the spherical (volumetric) part sphe := (tre)l/d
and the deviatoric part dev e and confine ourselves to isotropic materials where the elastic-moduli tensor C;;i; =
K60k + G001 + 010, — 20;0k1/d) with K the bulk modulus and G the shear modulus (= the second Lamé
constant), which is the standard notation hopefully without any confusion with the notation used in (1.6). Then
the proto-stress ¥ = 0 = Ce = Ksphe + 2Gdev e. In particular, spho = Ksphe so that tre = K~ 'tro.

Adopting the gradient theory for this internal variable ¢, the stored energy in terms of strain is considered

W (u,¢) = / ~Ce(u):e(u) + M(ﬂtre( )—C)2 + %L(g—geq)2 + g|VC|2dx

1
= /Q 5([( + %M)|Sphe(u)|2 + Gldev e(u)[?
~ MG e(u) + 5 MC + SL(C~Gea)? + 51V d

which, in terms of the (here partial) stress o = Ce, reads as [, 5(# + dK2 M)\bpha|2 Eldevo|* — B¢ tro+
%M(Q + %L((—ch)z dx. Here M > 0 and (8 > 0 are so-called Biot modulus and coeﬂi(nent, respectively, k > 0
is a capillarity coefficient, and (q is a given equilibrium content. From (5.6), we arrive at the overall stored
energy as:

1/1 B 1 M
(0, () :/95 (KerKQM) lspho|? + a\deva|2fﬂggtradz

1 1
+ / M+ ZL(C—Coq)® + E|vg|2 dz. (5.6)
02 2 2
=: ®1(¢)

Let us note that @/ (0,() = C o + dK2 M (Bspho—CKT), i.e. the elastic strain, and that the proto-stress ¥ = o
indeed differs from an actual stress by the spherical pressure part (/BSpha CKT).
The driving force for the diffusion is the chemical potential y = <I>' (U (), i.e. here

pw=(M+L) - 6%‘51"0 — L(eq — KAC. (5.7a)

The diffusion equation is _
¢ —div(MVpu) =0 (5.7b)
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with M denoting the diffusivity tensor. The system (5.7) is called the Cahn-Hilliard equation, here combined
with elasticity so that the flow of the diffusant is driven both by the gradient of concentration (Fick’s law) and
the gradient of the mechanical pressure (Darcy’s law). The dissipation potential in terms of Vu, let us denote
it by R behind this system, is

R(,u)z/g%MVu-V,udx. (5.8)

For the analysis cf. e.g. ([35], Sect. 7.6).
One would expect the dissipation potential as a function of the rate of internal variables, as in (2.3c). In fact,

the system (5.7) turns into the form (2.3c) if one takes the dissipation potential ¥ = ¥(() as

v(() =R () (5.9)

with R* denoting the convex conjugate of R. Now, ¥ is nonlocal. The functional setting is as in the previous
example but now Z = H(Q) and Z; = H'(Q)*. For a discretization of the type (3.1b), see [40].

Often, the diffusivity is considered dependent on . Or even one can think about M = M(o, (). Then the
modification in Remark 4.5 is to be applied. In particular, R(o,¢, ) = [, %M(U, O)Vu-Vudz and ¥(o, ¢, C) =

[R(o, ¢, )] ().

For this Biot model in the dynamical variant, the reader is also referred to the books [1,16,17,48] or also
[35,37]. In any case, the diffusion involves gradients and in the implicit discretization it leads to large systems
of algebraic equations, which inevitably slows down the fast explicit discretization of the mechanical part itself.

For this case also the CFL condition (4.1) is the same as the standard one and leads to a restriction of the
form 7 < Ch/Vipax where V. denotes the maximal speed with which waves propagate in the medium. We note
that the pressure velocity which is the maximal speed of propagation in isotropic solids is enhanced in the Biot
model. The stability analysis of the discrete scheme is quite technical and does not always lead to a practical
CFL condition. A. Ezziani in his Ph.D. thesis [22] studied a discretization of Biot’s model similar to (5.6) but
the stability analysis of the discrete scheme is very nontrivial, ¢f. formula (7.4.11) of [22] and, as he points out,
cannot be translated into a practical condition. Therefore, in practice he proposes to use 7 < a,h/V¢ where Vi¢
is the speed of the fast wave and a, is a constant depending on the order of the particular space discretization
used. The attenuation caused by diffusion causes also some dispersion of wave velocities which stay however
bounded from above by a high-frequency limit, cf. also Figure 5.2.1 of [22], so the CFL condition expectedly
holds uniformly like for the pure elastodynamics.

5.3. Damage

The simplest examples of nonconvex stored energy are models of damage. The most typical models use as
an internal variable the scalar-valued bulk damage « having the interpretation as a phenomenological volume
fraction of microcracks or microvoids manifested macroscopically as a certain weakening of the elastic response.
This concept was invented by L.M. Kachanov [32] and Y.N. Rabotnov [38].

Considering gradient theories, the stored energy in terms of the strain and damage is here considered as

(e, ) = /Q %W(Q)Ce:e + o(a) + g|Voz|2 + %V(Ce):Ve dz, (5.10)

where ¢(-) is an energy of damage which gives rise to an activation threshold for damage evolution and may
also lead to healing (if allowed). The last term is mainly to facilitate the mathematics towards convergence and
existence of a weak solution in such purely elastic materials without involving any viscosity, cf. ([35], Sect. 7.5.3).
This regularization can also control dispersion of elastic waves. More specifically, the 4th-order term resulted in
the momentum-equilibrium equation from the e-term in (5.10) causes an anomalous dispersion, i.e. waves with
shorter wavelength propagate faster than longer wavelength ones, cf. e.g. ([35], Rem. 6.3.6). The Va-term also
facilitates the analysis and controls the internal length-scale of damage profiles.
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Let us consider the “generalized” elasticity tensor € = C independent of x. As in the previous examples,
Eu = e(u) and G = 0. According (2.3a), the proto-stress ¥ = €FEu + G, denoted by o, now looks as Ce =: o; in
damage mechanics, the proto-stress is also called an effective stress with a specific mechanical interpretation,
cf. [38]. In terms of o, the stored energy is then

1
O(o,a) = / 57(04)@_10:0 + %VC_l(TZVU de+ [ o(a) + g|Voz|2 dz. (5.11)
Q Q

=: P (a)

Then &/ = v(a)C~ 1o — div(eV(C~ o)) and the true stress S = C*®’ is then v(a)o — div(eVo) provided C is
constant and symmetric. The damage driving force (energy) is @/, (0, a) = 2+/(a)C ™o + ¢/ (o) — div(kVa).
When +/(0) = 0 and ¢'(0) < 0, then always a > 0 also in the discrete scheme if ag > 0.

The other ingredient is the dissipation potential. To comply with the coercivity on Z; = L?(Q2) with p > 2
as needed in Proposition 4.1, one can consider either

.2 . 2 . . <
W(a) = Joe16®dx or fQE-lza de ifa< O a.e. on , (5.12)
+00 Jo &*/e1dz  otherwise

with some (presumably small) coefficient €1 > 0. The former option corresponds to a unidirectional (i.e. irre-
versible) damage not allowing any healing (as used in engineering) while the latter option allows for (presumably
slow) healing as used in geophysical models on large time scales.

Since o appears nonlinearly in ®/ (o, ), the strong convergence &, — o in L?(Q; R?*4) is needed. For this,
the strain-gradient term with € > 0 is needed and the Aubin—Lions compact embedding theorem is used. This
gives the strong convergence even in the norm of L/€(0,T;L?%/(d=2)=¢(Q;R4*%)) for arbitrarily small e > 0
provided also ¢, is bounded in some norm, which can be shown by using &, = Ce(v,;,) and the Green formula

HdT}L||Lm(07T;H—1(Q;RdXd)) = <1/ / ornedrde

H HLl(O T; Hl(Q RAXd)) >

= sup / /(Ce (Urp):edadt
€ <1

| HLl(o,T;H(l)(n;RdXd))

= sup / / Urpdiv(Ce) dz dt < Cl[vrall o (o, 7, 12 (2r))

lle ”Ll(o T;HY (92 rdxdy) <1

with C' depending on |C|. Cf. also the abstract estimation (4.9).
When « or ¢ are not quadratic but continuously differentiable, one can use the abstract difference quotient
(4.14) defined, in the classical form, as

1y(a)— 7( ) ., la)—d(a) a4a _
UV, 0,a) =92 a- ot T Ty RATy vhae aza (5.13)
% "(a)C 1 o0+ ¢'(a) — KA« where o = a.

Of course, rigorously, the A-operator in (5.13) is to be understood in the weak form when using it in (3.1b).
Due to the gradient x-term in (5.11), the implicit incremental problem (3.1b) leads to an algebraic problem
with a full matrix, which may substantially slow down the otherwise fast explicit scheme. Like in the previous
model the capillarity, now this gradient theory controls the length-scale of the damage profile and also serves as
a regularization to facilitate mathematical analysis. Sometimes, a nonlocal “fractional” gradient can facilitate
the analysis, too. Then, some wavelet equivalent norm can be considered to accelerate the calculations, cf. also
[3]. As far as the stress-gradient term, it is important that the discretization of the proto-stress in the usual
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implementation of the leap-frog method is continuous piecewise smooth, so that Vo has a good sense in the
discretization without need to use higher-order elements. Here we use that the latter relation in (3.1c) is to
be understood in the weak form, namely [, SEFLE) do = (D (XK 2 €Ey) for E), = &, = e(iy,), which
means

T

/ S’:,J{l:Eh dx = / ’y(akjl)C_lakH:Céh + eVC1o*.VCe), dz
Q Q
for any €, from the corresponding finite-dimensional subspace of H 1(Q;ngxnﬁi). Thus we indeed do not need
higher-order elements, and also we do not need to specify explicitly homogeneous boundary conditions in this
boundary-value problem.

The functional setting is H = L*(€;R?), £ = § = HY(QRLY), Z = HY(Q), and Zy = Z; = L*(Q). Then
U = H*(R?), and E = e(-) is understood as an operator H2(€;R?) — H*(Q;RLY%Y), and €¢* = CT = C is
understood as an a operator from H'((; ngxrg) to itself.

A particular case of this model is a so-called phase-field fracture, taking as a basic choice

(@) :=e?/ei+a?,  d(a) :=g(1—a)?/e, and K :=eg. (5.14)

with g. denoting the energy of fracture and with e controlling a “characteristic” width of the phase-field fracture.
The physical dimension of €y as well as of ¢ is m (meters) while the physical dimension of g. is J/m?. This
is known as the so-called Ambrosio—Tortorelli functional [2]. In the dynamical context, only various implicit
discretization schemes seems to be used so far, cf. [15,29,42,46]. There are a lot of improvements of this basic
model, approximating a mode-sensitive fracture, or e-insensitive models (with ¢ referring to (5.14)), or ductile
fracture, cf. [40]. This last variant combines this model with the plasticity as in Section 5.1.

As mentioned above in this case we have anomalous dispersion, i.e. the high frequencies propagate faster, cf.
e.g. ([35], Rem. 6.3.6). The resulting CFL condition is a combination of the usual CFL (1.4) for the 2nd-order
elastodynamic model with the CFL condition for 4th-order plate as in [10]. More specifically, the speed of
elastic waves in such combined model is like v ~ vg4/14¢/A? with vy the speed in the elastodynamic case (i.e.
e = 0) and with A the wavelength, cf. ([35], Rem. 6.3.6) for a one-dimensional analysis. For particular space
discretisations, implementable wavelengths A\ are bounded from below just by h. This yields to a CFL condition
of the type

h

\/1+5/h2.

Asymptotically, for h — 0 we can see that 7 is to be small as &(¢~'/2h?). For fixed ¢ > 0, this is actually
very restrictive like in the explicit discretization of the heat equation where it practically prevents from efficient
usage of explicit discretizations. However, here the role of ¢ is primarily to facilitate rigorous existence of weak
solutions of this model and can be assumed to be small. Then the influence of this 4th-order term and this
restrictive asymptotics is presumably small, and the usual CFL condition resulting from (5.15) with ¢ = 0 will
dominate except on very fine space discretizations.

Let us eventually remark that better asymptotics of the type 7 ~ & (5’1/ 2p1+9) for h — 0 can be obtained
by replacing the 4th-order term by a nonlocal term of the order 2(1+4) for some ¢ > 0 small, which would even
allow for more general dispersion [30] and simultaneously make the analytically desired regularization of the
damage model, cf. ([35], Rems. 6.3.7 and 7.5.29).
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