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STAGGERED EXPLICIT-IMPLICIT TIME-DISCRETIZATION FOR
ELASTODYNAMICS WITH DISSIPATIVE INTERNAL VARIABLES

Tomáš Roub́ıček1,2,* and Chrysoula Tsogka3,4

Abstract. An extension of the two-step staggered time discretization of linear elastodynamics in
stress-velocity form to systems involving internal variables subjected to a possibly non-linear dissipative
evolution is proposed. The original scheme is thus enhanced by another step for the internal variables
which, in general, is implicit, although even this step might be explicit if no spatial gradients of the
internal variables are involved. Using an abstract Banach-space formulation, a priori estimates and
convergence are proved under a CFL condition. The developed three-step scheme finds applications
in various problems of continuum mechanics at small strain. Here, we consider in particular plasticity,
viscoelasticity (creep), diffusion in poroelastic media, and damage.
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1. Introduction

In computational mechanics one can distinguish two main classes of time-dependent problems, quasistatic
and dynamic. Focusing on the latter one, one can further distinguish two other cases: (i) Low-frequency regimes,
which are typically related with vibrations of structures and where the energy is not dominantly transmitted
through space. In this case implicit time-discretization is relatively efficient, even though large systems of
algebraic equations are to be solved at each time step. (ii) High-frequency regimes which arise typically within
wave propagation and for which only explicit time-discretizations are reasonably efficient, in particular in three-
dimensions. These explicit methods can essentially be used in hyperbolic problems, as mere elastodynamics
(treated here) or the elasto-magnetic Maxwell system or some conservation laws. Yet, many applications need
to combine the convervative hyperbolic problems with various dissipative processes of a parabolic character,
involving typically some internal variables. For parabolic problems, however, explicit methods are known to be
problematic due to severe time-step restrictions. Therefore, we propose and analyse an explicit/implicit scheme,
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using the fractional-step (also called staggered) technique. In fact, the proposed method becomes completely
explicit in the absence of gradients of internal variables, as it can be in plasticicity or viscoelasticity as in
Section 5.1, or an interfacial variant of damage models (so-called delamination) as in [43].

Our starting point is the linear elastodynamic problem: Find the displacement 𝑢 : [0, 𝑇 ]×Ω → R𝑑 satisfying

𝜚
..
𝑢 − div C𝑒(𝑢) = 𝑓 on Ω for 𝑡 ∈ (0, 𝑇 ], (1.1a)

[C𝑒(𝑢)]𝑛 + B𝑢 = 𝑔 on Γ for 𝑡 ∈ (0, 𝑇 ], (1.1b)
𝑢|𝑡=0 = 𝑢0, 𝑢̇|𝑡=0 = 𝑣0 on Ω, (1.1c)

for 𝑇 > 0 a fixed time horizon. Here Ω ⊂ R𝑑 is a bounded Lipschitz domain, 𝑑 = 2 or 3, Γ is its boundary, and
𝑛 the unit outward normal. The dot-notation stands for the time derivative. In (1.1), 𝜚 > 0 denotes the mass
density, C is the elasticity tensor which is symmetric and positive definite, 𝑒(𝑢) denotes the small-strain tensor
defined as 𝑒(𝑢) = 1

2 (∇𝑢)⊤+ 1
2∇𝑢, and B is a symmetric positive semidefinite 2nd-order tensor determining the

elastic support on the boundary. The terms appearing in the second member of (1.1) are, the bulk force 𝑓
and the surface loading 𝑔. In (1.1c), 𝑢0 denotes the initial displacement and 𝑣0 the initial velocity. For a more
compact notation, we write the initial-boundary-value problem (1.1) in the following abstract form

𝒯 ′ ..𝑢 +𝒲 ′𝑢 = ℱ ′𝑢(𝑡) for 𝑡 ∈ (0, 𝑇 ], 𝑢|𝑡=0 = 𝑢0, 𝑢̇|𝑡=0 = 𝑣0. (1.2)

Here 𝒯 is the kinetic energy, 𝒲 is the stored energy, and ℱ is the external force, while (·)′ denotes the Gâteaux
derivative. In the context of (1.1), we have

𝒯 (𝑢̇) =
∫︁

Ω

1
2
𝜚|𝑢̇|2 d𝑥, 𝒲(𝑢) =

∫︁
Ω

1
2

C𝑒(𝑢):𝑒(𝑢) d𝑥 +
∫︁

Γ

1
2

B𝑢 · 𝑢 d𝑆

and
ℱ(𝑡, 𝑢) =

∫︁
Ω

𝑓(𝑡)·𝑢 d𝑥 +
∫︁

Γ

𝑔(𝑡)·𝑢 d𝑆.

Thus ℱ ′𝑢(𝑡) is a linear functional, let us denote it shortly by 𝐹 (𝑡).
For high-frequency wave propagation problems, implicit time discretizations are computationally expensive,

especially in the three dimensional setting. Therefore, we focus our attention on explicit methods. The simplest
explicit scheme is the following second-order finite difference scheme

𝒯 ′
𝑢𝑘+1

𝜏ℎ − 2𝑢𝑘
𝜏ℎ + 𝑢𝑘−1

𝜏ℎ

𝜏2
+𝒲 ′

ℎ𝑢𝑘
𝜏ℎ = 𝐹ℎ(𝑘𝜏). (1.3)

Here 𝜏 > 0 denotes the time step, and 𝒲ℎ (resp. 𝐹ℎ) denote some discrete approximations of the respective
continuous functionals obtained by a suitable finite-element method (FEM) with mesh size ℎ > 0. For simplicity,
we assume the mass density constant (or at least piecewise constant in space) so that the kinetic energy 𝒯 does
not need any numerical approximation. In particular, a numerical approximation leading to a diagonal the mass
matrix 𝒯 ′ in (1.3), typically referred to as mass lumping, is an important ingredient so as to obtain efficient
explicit methods. Here we will consider that 𝑢 is discretized in an element-wise constant way so that 𝒯 ′ leads
to a diagonal matrix even without any approximation. Multiplying (1.3) by 𝑢𝑘+1

𝜏ℎ −𝑢𝑘
𝜏ℎ

𝜏 and using the scheme, it
is easy to show that the energy preserved is

1
2

⟨
𝒯 ′

𝑢𝑘+1
𝜏ℎ − 𝑢𝑘

𝜏ℎ

𝜏
,
𝑢𝑘+1

𝜏ℎ − 𝑢𝑘
𝜏ℎ

𝜏

⟩
+

1
2
⟨𝒲 ′

ℎ𝑢𝑘+1
𝜏ℎ , 𝑢𝑘

𝜏ℎ⟩.

This is an energy, i.e. a positive quantity under the following Courant–Fridrichs–Lewy (CFL) condition [20]

⟨︀
𝒯 ′𝑢ℎ, 𝑢ℎ

⟩︀
≥ 𝜏2

4
⟨︀
𝒲 ′

ℎ𝑢ℎ, 𝑢ℎ

⟩︀
(1.4)
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for any 𝑢ℎ from the respective finite-dimensional subspace. The CFL typically bounds the time discretization
step 𝜏 = O(ℎmin) with ℎmin the smallest element size on a FEM discretization. This method has frequently
been used and analysed from various aspects, including comparison with implicit time discretizations, cf. e.g.
[33,34]. However, the form of the discrete stored energy 1

2 ⟨𝒲
′
ℎ𝑢𝑘+1

𝜏ℎ , 𝑢𝑘
𝜏ℎ⟩ makes this discretization less suitable

for the problem that we wish to consider in this paper where the stored energy is enhanced by some internal
variables and (possibly) nonlinear processes on them.

Therefore, we use another explicit discretization scheme, the so-called leap-frog scheme. To this end, we first
write the velocity/stress formulation of (1.1a). Introducing the velocity, 𝑣 = 𝑢̇ and the stress tensor 𝜎 := C𝑒(𝑢),
we get

𝜚𝑣̇ − div 𝜎 = 𝑓 and 𝜎̇ = C𝑒(𝑣) on Ω for 𝑡 ∈ (0, 𝑇 ], (1.5a)
𝜎̇𝑛 + B𝑣 = 𝑔̇ on Γ for 𝑡 ∈ (0, 𝑇 ], (1.5b)
𝑣|𝑡=0 = 𝑣0, 𝜎|𝑡=0 = 𝜎0 := C𝑒(𝑢0) on Ω. (1.5c)

In the abstract form (1.2), when writing𝒲 = W ∘𝐸 with 𝐸 denoting the linear operator 𝑢 ↦→ (𝑒, 𝑤) := (𝑒(𝑢), 𝑢|Γ)
and with 𝑢|Γ denoting the trace of 𝑢 on the boundary Γ, this reads as

𝒯 ′𝑣̇ + 𝐸*Σ = 𝐹 (𝑡) for 𝑡 ∈ (0, 𝑇 ], 𝑣|𝑡=0 = 𝑣0, and (1.6a)

Σ̇ = W ′𝐸𝑣 + 𝐺̇(𝑡) for 𝑡 ∈ (0, 𝑇 ], Σ|𝑡=0 = Σ0 := W ′𝐸𝑢0, (1.6b)

where 𝐸* is the adjoint operator to 𝐸. The stored energy governing (1.5) is

W (𝑒, 𝑤) =
∫︁

Ω

1
2

C𝑒:𝑒 d𝑥 +
∫︁

Γ

1
2

B𝑤·𝑤 d𝑆

while the external loading is now split into two parts acting differently, namely

⟨𝐹 (𝑡), 𝑢⟩ =
∫︁

Ω

𝑓(𝑡) · 𝑢 d𝑥 and ⟨𝐺(𝑡), 𝑤⟩ =
∫︁

Γ

𝑔(𝑡) · 𝑤 d𝑥.

Let us note that (1.6) involves the equation on Ω, as well as, the equation on Γ. Thus 𝒯 is to be understood
as the functional on Ω×Γ, that is trivial on Γ since no inertia is considered on the (𝑑−1)-dimensional boundary
Γ. In particular, the “generalized” stress Σ = W ′𝐸𝑢 = (C𝑒(𝑢), B𝑢|Γ) contains, besides the bulk stress tensor,
also the traction stress vector. Relying on the linearity of W ′, we have Σ̇ = W ′𝐸𝑣 with 𝑣 = 𝑢̇, as used in (1.6b).
Let us note that the adjoint operator 𝐸* : (𝜎, 𝜍) ↦→ F in (1.6a) with the traction force 𝜍 = B𝑢|Γ determines a
bulk force F as a functional on test displacements 𝑢 by∫︁

Ω

F · 𝑢 d𝑥 = ⟨F, 𝑢⟩ = ⟨𝐸*(𝜎, 𝜍), 𝑢⟩ = ⟨(𝜎, 𝜍), 𝐸𝑢⟩ = ⟨(𝜎, 𝜍), (𝑒(𝑢), 𝑢|Γ)⟩

=
∫︁

Ω

𝜎 : 𝑒(𝑢) d𝑥 +
∫︁

Γ

𝜍 · 𝑢 d𝑆 =
∫︁

Γ

(𝜎 · 𝑛 + 𝜍) · 𝑢 d𝑆 −
∫︁

Ω

div 𝜎 · 𝑢 d𝑥,

which clarifies the force 𝐸*Σ = F in (1.6a). The leap-frog time discretization of (1.6) then reads as

Σ𝑘+1/2
𝜏ℎ − Σ𝑘−1/2

𝜏ℎ

𝜏
= W ′

ℎ𝐸ℎ𝑣𝑘
𝜏ℎ + 𝐷𝑘

𝜏ℎ and 𝒯 ′
𝑣𝑘+1

𝜏ℎ −𝑣𝑘
𝜏ℎ

𝜏
+ 𝐸*ℎΣ𝑘+1/2

𝜏ℎ = 𝐹
𝑘+1/2
𝜏ℎ , (1.7)

where Wℎ and 𝐸ℎ are suitable FEM discretizations of W and 𝐸, cf. (3.1a) and (3.1c) below, and

𝐹
𝑘+1/2
𝜏ℎ :=

1
𝜏

∫︁ (𝑘+1)𝜏

𝑘𝜏

𝐹ℎ(𝑡) d𝑡 and 𝐷𝑘
𝜏ℎ :=

1
𝜏

∫︁ (𝑘+1/2)𝜏

(𝑘−1/2)𝜏

𝐺̇ℎ(𝑡) d𝑡 =
𝐺ℎ((𝑘+ 1

2 )𝜏)−𝐺ℎ((𝑘− 1
2 )𝜏)

𝜏
· (1.8)
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As mentioned before, we assume here that 𝑣 is discretized in an element-wise constant way so that 𝒯 leads to
a diagonal matrix. In this case we do not need to employ numerical integration to approximate the mass matrix.
For higher-order discretizations, however, mass lumping is necessary so as to obtain explicit discretization
schemes. We refer to [8,31,50] for details in the case 𝐺 ≡ 0. The proposed FEM leads to a block diagonal matrix
for 𝒲 ′

ℎ = 𝐸*ℎW ′
ℎ𝐸ℎ, which means that the resulting scheme does not require the solution of a big linear system

at each iteration in time. The spatial FEM discretization exploits regularity available in linear elastodynamics,
in particular that div 𝜎 and 𝑒(𝑣) in (1.5a) live in 𝐿2-spaces. Moreover, the equations in (1.7) are decoupled
in the sense that, first, Σ𝑘+1/2

𝜏ℎ is calculated from the former equation and, second, 𝑣𝑘+1
𝜏ℎ is calculated from

the latter equation assuming, that (𝑣𝑘
𝜏ℎ, Σ𝑘−1/2

𝜏ℎ ) is known from the previous time step. For 𝑘 = 0, it starts
from 𝑣0

𝜏ℎ = 𝑣0 and from a half time step Σ1/2
𝜏ℎ = Σ0

𝜏ℎ + 𝜏
2W ′

ℎ𝐸ℎ𝑣0
𝜏ℎ. For the space discretization, the lower

order 𝑄div
𝑘+1 − 𝑄𝑘 finite element is obtained for 𝑘 = 0 and in this case the velocity is discretized as piecewise

constant on rectangular or cubic elements while the stress is discretized by piecewise bi-linear functions with
some continuities. Namely the normal component of the stress is continuous across edges of adjacent elements
while the tangential component is allowed to be discontinuous. For more details about the space discretization
we refer the interested reader to [8]. Alternative discretizations for the linear elasticity problem have been
proposed by D. Arnold and his collaborators who designed mixed finite elements for general rectangular and
triangular grids [4–6]. For tetrahedral leap-frog discretization of the elastodynamics see [21]. In general, the
leap-frog scheme has been frequently used in geophysics to calculate seismic wave propagation with the finite
differences method, cf. e.g. [13, 25,51].

When taking the average (i.e. the sum with the weights 1
2 and 1

2 ) of the second equation in (1.7) in the level
𝑘 and 𝑘−1 tested by 𝑣𝑘

𝜏ℎ and summing it with the first equation in (1.7) tested by [W ′
ℎ ]−1(Σ𝑘+1/2

𝜏ℎ +Σ𝑘−1/2
𝜏ℎ )/2,

we obtain

1
2𝜏

⟨︀
[W ′

ℎ ]−1Σ𝑘+1/2
𝜏ℎ , Σ𝑘+1/2

𝜏ℎ

⟩︀
− 1

2𝜏

⟨︀
[W ′

ℎ ]−1Σ𝑘−1/2
𝜏ℎ , Σ𝑘−1/2

𝜏ℎ

⟩︀
=
⟨Σ𝑘+1/2

𝜏ℎ +Σ𝑘−1/2
𝜏ℎ

2
, 𝐸ℎ𝑣𝑘

𝜏ℎ

⟩
+
⟨

[W ′
ℎ ]−1𝐷𝑘

𝜏ℎ,
Σ𝑘+1/2

𝜏ℎ +Σ𝑘−1/2
𝜏ℎ

2

⟩
and⟨

𝒯 ′
𝑣𝑘+1

𝜏ℎ −𝑣𝑘−1
𝜏ℎ

𝜏
, 𝑣𝑘

𝜏ℎ

⟩
+
⟨Σ𝑘+1/2

𝜏ℎ +Σ𝑘−1/2
𝜏ℎ

2
, 𝐸ℎ𝑣𝑘

𝜏ℎ

⟩
=
⟨𝐹

𝑘+1/2
𝜏ℎ +𝐹

𝑘−1/2
𝜏ℎ

2
, 𝑣𝑘

𝜏ℎ

⟩
.

Summing it up, we get that the following discrete energy is conserved

1
2
⟨𝒯 ′𝑣𝑘+1

𝜏ℎ , 𝑣𝑘
𝜏ℎ⟩+ Φℎ(Σ𝑘+1/2

𝜏ℎ ) with Φℎ(Σ) =
1
2
⟨[W ′

ℎ ]−1Σ, Σ⟩. (1.9)

Note that Φℎ is the discrete stored energy expressed in terms of the generalized stress. In contrast to (1.3), this
formulation allows for enhancement of the discrete stored energy by some internal variables. The energy (1.9)
is shown to be a positive quantity under the following CFL condition⟨︀

[𝒲 ′
ℎ]−1Σℎ, Σℎ

⟩︀
≥ 𝜏2

4
⟨︀
𝐸*ℎΣℎ, (𝒯 ′)−1𝐸*ℎΣℎ

⟩︀
(1.10)

for any Σℎ from the respective finite-dimensional subspace. Moreover, 𝐹 = 0 is often considered, which makes
the a priori estimation easier. Let us also note that the adjective “leap-frog” is sometimes used also for the
time-discretization (1.3) if written as a two-step scheme, cf. e.g. ([19], Sect. 7.1.1.1).

The plan of this article is as follows: In Section 2, we complement the abstract system (1.6) by another
equation for some internal variable and cast its weak formulation without relying on any regularity. Then, in
Section 3, we extend the two-step leap-frog discrete scheme (1.7) to a suitable three-step scheme, and study the
energy properties of the proposed scheme. Then, in Section 4, we prove the numerical stability of the 3-step
staggered approximation scheme and its convergence under the CFL condition (4.1). Such an abstract scheme
is then illustrated in Section 5 on several examples from continuum mechanics, in particular on models of
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plasticity, creep, diffusion, and damage. For illustration of computational efficiency, we refer to [44] where this
scheme was implemented for another problem, namely a delamination (i.e. interfacial damage).

It should be emphasized that, to the best of our knowledge, a rigorously justified (as far as numerical stability
and convergence) combination of the explicit staggered discretization with nonlinear dissipative processes on
some internal variables is new, although occasionally some dissipative nonlinear phenomena can be found in
literature as in [45] for a unilateral contact, in [13] for a Maxwell viscoelastic rheology, in [47] for electroactive
polymers, in [23] for an aeroelastic system, or in [24] for general thermomechanical systems, but without any
numerical stability (a priori estimates) and convergence guaranteed.

2. Internal variables and their dissipative evolution.

The concept of internal variables has a long tradition, cf. [36], and opens wide options for material modelling,
cf. e.g. [35, 37] and references therein. Typically, internal variables are governed by a parabolic-type 1st-order
evolution. The abstract system (1.2) is thus generalized to

𝒯 ′ ..𝑢 +𝒲 ′
𝑢(𝑢, 𝑧) = 𝐹 (𝑡) for 𝑡 ∈ (0, 𝑇 ], 𝑢|𝑡=0 = 𝑢0, 𝑢̇|𝑡=0 = 𝑣0, (2.1a)

𝜕Ψ(𝑧̇) +𝒲 ′
𝑧(𝑢, 𝑧) ∋ 0 for 𝑡 ∈ (0, 𝑇 ], 𝑧|𝑡=0 = 𝑧0. (2.1b)

The inclusion in (2.1b) refers to a possibility that the convex (pseudo)potential Ψ of dissipative forces may be
nonsmooth and then its subdifferential 𝜕Ψ can be multivalued.

Combination of the 2nd-order evolution (1.2) with such 1st-order evolution is to be handled carefully. In
contrast to the implicit staggered schemes, cf. [41], the constitutive equation is differentiated in time, cf. (1.5a),
and it seems necessary to use the staggered scheme so that the internal-variable flow rule can be used without
being differentiated in time, even for a quadratic stored energy 𝒲.

Moreover, to imitate the leap-frog scheme, it seems suitable (or maybe even necessary) that the stored energy
𝒲 may be expressed in terms of the generalized stress as

𝒲(𝑢, 𝑧) = Φ(Σ, 𝑧) with Σ = C𝐸𝑢, and Φ(·, 𝑧) and Φ(Σ, ·) quadratic, (2.2)

where C stands for a “generalized” elasticity tensor and 𝐸 is an abstract gradient-type operator. Typically
𝐸𝑢 = (𝑒(𝑢), 𝑢|Γ) or simply 𝐸𝑢 = 𝑒(𝑢) are considered here in the context of continuum mechanics at small
strains, cf. the examples in Section 5. Here, Σ may not directly enter the balance of forces and is thus to be
called rather as some “proto-stress”, while the actual generalized stress will be denoted by 𝑆. For a relaxation
of the last requirement of (2.2) see Remark 4.4 below. Then, likewise (1.6), we can write the system (2.1) in
the velocity/proto-stress formulation as

Σ̇ = C𝐸𝑣 + 𝐺̇(𝑡) for 𝑡 ∈ (0, 𝑇 ], (2.3a)
𝒯 ′𝑣̇ + 𝐸*𝑆 = 𝐹 (𝑡) with 𝑆 = C*Φ′Σ(Σ, 𝑧) for 𝑡 ∈ (0, 𝑇 ], (2.3b)
𝜕Ψ(𝑧̇) + Φ′𝑧(Σ, 𝑧) ∋ 0 for 𝑡 ∈ (0, 𝑇 ], (2.3c)
Σ|𝑡=0 = Σ0 := C𝐸𝑢0 + 𝐺(0), 𝑣|𝑡=0 = 𝑣0, 𝑧|𝑡=0 = 𝑧0. (2.3d)

Here Φ′Σ(Σ, 𝑧) is a “generalized” strain and, when multiplied by C*, it becomes a generalized stress. Actually,
(1.6) is a special case of (2.3) when Φ = Φ(Σ) =

∫︀
Ω

1
2C−1𝜎 : 𝜎 d𝑥 +

∫︀
Γ

B−1𝜍 · 𝜍 d𝑆 and 𝑆 = Σ = (𝜎, 𝜍) while
C = W ′ = (C, B), so that indeed 𝑆 = C*Φ′Σ(Σ) = (C, B)(C−1𝜎, B−1𝜍) = (𝜎, 𝜍) = Σ.

The energy properties of this system can be revealed by testing the particular equations/inclusions in (2.3)
by Φ′Σ(Σ, 𝑧), 𝑣, and 𝑧̇. Thus, at least formally, we obtain⟨︀

Φ′Σ(Σ, 𝑧), Σ̇
⟩︀

=
⟨︀
Φ′Σ(Σ, 𝑧), C𝐸𝑣 + 𝐺̇

⟩︀
=
⟨︀
C*Φ′Σ(Σ, 𝑧), 𝐸𝑣

⟩︀
+
⟨︀
Φ′Σ(Σ, 𝑧), 𝐺̇

⟩︀
, (2.4a)⟨︀

𝒯 ′𝑣̇, 𝑣
⟩︀

+
⟨︀
C*Φ′Σ(Σ, 𝑧), 𝐸𝑣

⟩︀
=
⟨︀
𝐹 (𝑡), 𝑣

⟩︀
, (2.4b)

Ξ(𝑧̇) +
⟨︀
Φ′𝑧(Σ, 𝑧), 𝑧̇

⟩︀
≤ 0 with Ξ(𝑧̇) := inf

⟨︀
𝜕Ψ(𝑧̇), 𝑧̇

⟩︀
. (2.4c)
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The functional Ξ is a dissipative rate and the “inf” in it refers to the fact that the dissipative potential Ψ can
be nonsmooth and thus the subdifferential 𝜕Ψ can be multivalued even at 𝑧̇ ̸= 0, otherwise an equality in (2.4c)
holds. Summing it up and using the calculus d

d𝑡𝒯 (𝑣) = ⟨𝒯 ′𝑣, 𝑣̇⟩ = ⟨𝒯 ′𝑣̇, 𝑣⟩ and d
d𝑡Φ(Σ, 𝑧) = ⟨Φ′Σ(Σ, 𝑧), Σ̇⟩ +

⟨Φ′𝑧(Σ, 𝑧), 𝑧̇⟩, we obtain the following inequality for the energy,

d
d𝑡

(︀
𝒯 (𝑣) + Φ(Σ, 𝑧)⏟  ⏞  

kinetic and
stored energies

)︀
+ Ξ(𝑧̇)⏟ ⏞ 
dissipation

rate

≤
⟨︀
𝐹 (𝑡), 𝑣

⟩︀
+
⟨︀
Φ′Σ(Σ, 𝑧), 𝐺̇

⟩︀⏟  ⏞  
power of

external force

. (2.5)

Actually, (2.4c) and (2.5) often hold as equalities.
Let us now formulate some abstract functional setting of the system (2.3). For some Banach spaces 𝒮, 𝒵,

and 𝒵1 ⊃ 𝒵 and for a Hilbert space ℋ, let Φ : 𝒮 × 𝒵 → R be smooth and coercive, 𝒯 : ℋ → R be quadratic
and coercive, and let Ψ : 𝒵 → [0, +∞] be convex, lower semicontinuous, and coercive on 𝒵1, cf. (4.2) below.
Intentionally, we do not want to rely on any regularity which is usually at disposal in linear problems but might
be restrictive in some nonlinear problems. For this reason, we reconstruct the abstract “displacement” and use
(2.3a) integrated in time, i.e.

Σ = C𝐸𝑢 + 𝐺 with 𝑢(𝑡) :=
∫︁ 𝑡

0

𝑣(𝑡) d𝑡 + 𝑢0. (2.6)

Moreover, we still need another Banach space ℰ and define the Banach space 𝒰 := {𝑢 ∈ ℋ; 𝐸𝑢 ∈ ℰ} equipped
with the standard graph norm. Then, by definition, we have the continuous embedding 𝒰 → ℋ and the contin-
uous linear operator 𝐸 : 𝒰 → ℰ . We assume that 𝒰 is embedded into ℋ densely, so that ℋ* ⊂ 𝒰* and that ℋ
is identified with its dual ℋ*, so that we have the so-called Gelfand triple

𝒰 ⊂ ℋ ∼= ℋ* ⊂ 𝒰*.

We further consider the abstract elasticity tensor C as a linear continuous operator ℰ → 𝒮. Therefore C𝐸𝑢 ∈ 𝒮
provided 𝑢 ∈ 𝒰 so that the equation (2.6) is meant in 𝒮 and one needs 𝐺(𝑡) ∈ 𝒮. Let us note that 𝒯 ′ : ℋ →
ℋ* ∼= ℋ, Φ′Σ : 𝒮 × 𝒵 → 𝒮*, 𝐸* : ℰ* → 𝒰*, and C* : 𝒮* → ℰ*, so that 𝒯 ′𝑣 ∈ ℋ* provided 𝑣 ∈ ℋ and also
𝑆 = C*Φ′Σ ∈ ℰ* and 𝐸*𝑆 ∈ ℋ*. In particular, the equation (2.3b) can be meant in ℋ if integrated in time, and
one needs 𝐹 (𝑡) valued in ℋ.

For a Banach space 𝒳 , we will use the standard notation 𝐿𝑝(0, 𝑇 ;𝒳 ) for Bochner spaces of the Bochner
measurable functions [0, 𝑇 ] → 𝒳 whose norm is integrable with the power 𝑝 or essentially bounded if 𝑝 =
∞, and 𝑊 1,𝑝(0, 𝑇 ;𝒳 ) the space of functions from 𝐿𝑝(0, 𝑇 ;𝒳 ) whose distributional time derivative is also in
𝐿𝑝(0, 𝑇 ;𝒳 ). Also, 𝐶𝑘(0, 𝑇 ;𝒳 ) will denote the space of functions [0, 𝑇 ] → 𝒳 whose 𝑘th-derivative is continuous,
and 𝐶w(0, 𝑇 ;𝒳 ) will denote the space of weakly continuous functions [0, 𝑇 ] → 𝒳 . Later, we will also use
Lin(𝒰 , ℰ), denoting the space of linear bounded operators 𝒰 → ℰ normed by the usual sup-norm.

A weak formulation of (2.3b) can be obtained after by-part integration over the time interval 𝐼 = [0, 𝑇 ] when
tested by a smooth function. It is often useful to consider

Φ(Σ, 𝑧) = Φ0(Σ, 𝑧) + Φ1(𝑧) with [Φ0]′𝑧 : 𝒮 × 𝒵 → 𝒵*1 and Φ′1 : 𝒵 → 𝒵* (2.7)

and to use integration by-parts for the term ⟨Φ′1(𝑧), 𝑧̇⟩. We thus arrive to the following definition.

Definition 2.1 (Weak solution to (2.3)). The quadruple (𝑢, Σ, 𝑣, 𝑧) ∈ 𝐶w(0, 𝑇 ;𝒰)×𝐶w(0, 𝑇 ;𝒮)×𝐶w(0, 𝑇 ;ℋ)×
𝐶w(0, 𝑇 ;𝒵) with Ψ(𝑧̇) ∈ 𝐿1(𝐼) and 𝑧̇ ∈ 𝐿1(0, 𝑇 ;𝒵1) will be called a weak solution to the initial-value problem
(2.3) with (2.6) if 𝑣 = 𝑢̇ in the distributional sense, Σ = C𝐸𝑢 + 𝐺 holds a.e. on 𝐼, and if∫︁ 𝑇

0

⟨︀
Φ′Σ(Σ, 𝑧), C𝐸̃︀𝑣

⟩︀
𝒮*×𝒮 −

⟨︀
𝒯 ′𝑣, ̃̇︀𝑣

⟩︀
ℋ*×ℋ d𝑡 =

⟨︀
𝒯 ′𝑣0, ̃︀𝑣(0)

⟩︀
ℋ*×ℋ +

∫︁ 𝑇

0

⟨︀
𝐹, ̃︀𝑣

⟩︀
ℋ*×ℋ d𝑡 (2.8a)
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for any ̃︀𝑣 ∈ 𝐶1(0, 𝑇 ;ℋ) ∩ 𝐶(0, 𝑇 ;𝒰) with ̃︀𝑣(𝑇 ) = 0, and∫︁ 𝑇

0

Ψ(̃︀𝑧) +
⟨︀
[Φ0]′𝑧(Σ, 𝑧), ̃︀𝑧−𝑧̇

⟩︀
𝒵*1×𝒵1

+
⟨︀
Φ′1(𝑧), ̃︀𝑧

⟩︀
𝒵*×𝒵 d𝑡 + Φ1(𝑧0) ≥ Φ1(𝑧(𝑇 )) +

∫︁ 𝑇

0

Ψ(𝑧̇) d𝑡 (2.8b)

for any ̃︀𝑧 ∈ 𝐶(0, 𝑇 ;𝒵), where indices in the dualities ⟨·, ·⟩ indicate the respective spaces in dualities, and if also
𝑢(0) = 𝑢0, Σ(0) = Σ0, and 𝑧(0) = 𝑧0.

Let us note that the remaining initial condition 𝑣(0) = 𝑣0 is contained in (2.8a). Definition 2.1 works suc-
cessfully for 𝑝 > 1, i.e. for rate-dependent evolution of the abstract internal variable 𝑧, so that 𝑧̇ ∈ 𝐿𝑝(0, 𝑇 ;𝒵1).
For the rate-dependent evolution when 𝑝 = 1, we would need to modify it. Here, we restrict ourselves to 𝑝 ≥ 2,
because of the a priori estimates in Proposition 4.1.

3. A three-step staggered time discretization

We derive in this section the leap-frog discretization of (2.3a) and (2.3b) combined with an implicit dis-
cretization for (2.3c), using a fractional-step split (called also a staggered scheme) with a mid-point formula
for (2.3c). Instead of a two-step scheme (1.7), we obtain a three-step scheme and therefore, from now on, we
abandon the convention of a half-step notation as used in (1.7) and write 𝑘 + 1 instead of 𝑘 + 1/2.

To this aim, we consider sequences of nested finite-dimensional subspaces 𝑆ℎ ⊂ 𝒮, 𝑉ℎ ⊂ ℋ, and 𝑍ℎ ⊂ 𝒵
where the values of the respective discrete variables Σℎ, 𝑣ℎ, and 𝑧ℎ will be, assuming that their unions are
dense in the respective Banach spaces. We will use an interpolation operator 𝐼ℎ : Lin(𝒮, 𝑆ℎ) and the embedding
operator 𝐽ℎ : 𝑍ℎ → 𝒵; it is important that the collection {𝐽ℎ}ℎ>0 is uniformly bounded and, since

⋃︀
ℎ>0 𝑍ℎ is

dense in 𝒵, the sequence {𝐽ℎ}ℎ>0 converges to the identity on 𝒵 strongly. We consider 𝐸ℎ ∈ Lin(𝑉ℎ, ℰ). Let us
note that we allow for a “non-conformal” approximation of 𝑣, i.e. 𝑉ℎ ⊂ ℋ is not necessarily a subspace of 𝒰 .
This is in agreement with discretizations of the velocity as in [7, 8, 11,18,50].

Considering that we know from previous step Σ𝑘
𝜏ℎ, 𝑣𝑘

𝜏ℎ, 𝑧𝑘
𝜏ℎ, then the proposed discretization scheme is

(1) calculate Σ𝑘+1
𝜏ℎ :

Σ𝑘+1
𝜏ℎ − Σ𝑘

𝜏ℎ

𝜏
= 𝐼ℎC𝐸ℎ𝑣𝑘

𝜏ℎ + 𝐷𝑘
𝜏ℎ, (3.1a)

(2) calculate 𝑧𝑘+1
𝜏ℎ : 𝐽*ℎ𝜕Ψ

(︃
𝑧𝑘+1
𝜏ℎ −𝑧𝑘

𝜏ℎ

𝜏

)︃
+ Φ′𝑧

(︃
Σ𝑘+1

𝜏ℎ ,
𝑧𝑘+1
𝜏ℎ +𝑧𝑘

𝜏ℎ

2

)︃
∋ 0, (3.1b)

(3) calculate 𝑣𝑘+1
𝜏ℎ : 𝒯 ′

𝑣𝑘+1
𝜏ℎ −𝑣𝑘

𝜏ℎ

𝜏
+ 𝐸*ℎ𝑆𝑘+1

𝜏ℎ = 𝐹
𝑘+1/2
𝜏ℎ with 𝑆𝑘+1

𝜏ℎ = C*𝐼*ℎΦ′Σ(Σ𝑘+1
𝜏ℎ , 𝑧𝑘+1

𝜏ℎ ),

and 𝑢𝑘+1
𝜏ℎ : 𝑢𝑘+1

𝜏ℎ = 𝑢𝑘
𝜏ℎ + 𝜏𝑣𝑘+1

𝜏ℎ , (3.1c)

where 𝐹
𝑘+1/2
𝜏ℎ and 𝐷𝑘

𝜏ℎ are from (1.8). It seems important in the non-linear case to compute the variables
in the order given above. We note however, that for the linear viscoelastic problem with Maxwell rheology a
scheme with a different ordering has been proposed in Part I, Section 2 of [27]. The potentials Φ, Ψ, and 𝒯
are considered restricted on 𝑆ℎ × 𝑍ℎ, 𝑍ℎ, and 𝑉ℎ, so that their corresponding (sub)differentials Φ′Σ, Φ′𝑧, 𝜕Ψ,
and 𝒯 ′ are valued in 𝑆*ℎ, 𝑍*ℎ, and 𝑉 *

ℎ , respectively. The particular equations/inclusion in (3.1) are thus to be
understood in 𝑆ℎ, 𝑍*ℎ, 𝑉 *

ℎ , ℰ*, and 𝑉ℎ, respectively. The only implicit equation is (3.1b). Note however that
even this equation becomes explicit if there are no spatial gradients in Φ and Ψ. In view of the definition of the
convex subdifferential, (3.1b) means the variational inequality

Ψ
(︀̃︀𝑧)︀+

⟨
Φ′𝑧

(︃
Σ𝑘+1

𝜏ℎ ,
𝑧𝑘+1
𝜏ℎ +𝑧𝑘

𝜏ℎ

2

)︃
, ̃︀𝑧 − 𝑧𝑘+1

𝜏ℎ −𝑧𝑘
𝜏ℎ

𝜏

⟩
≥ Ψ

(︃
𝑧𝑘+1
𝜏ℎ −𝑧𝑘

𝜏ℎ

𝜏

)︃
(3.2)
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for any ̃︀𝑧 ∈ 𝑉ℎ. In any case, the equation (3.1b) posseses a potential

𝑧 ↦→ 2
𝜏

Φ
(︂

Σ𝑘+1
𝜏ℎ ,

𝑧+𝑧𝑘
𝜏ℎ

2

)︂
+ Ψ

(︂
𝑧−𝑧𝑘

𝜏ℎ

𝜏

)︂
(3.3)

which is to be minimized on 𝑍ℎ. Therefore the existence of a solution to this inclusion (3.1b), or equivalently of
the variational inequality (3.2), can be shown by a direct method, cf. also [41]. The scheme (3.1) is thus to be
solved recurrently for 𝑘 = 0, 1, . . . , 𝑇/𝜏 − 1, starting from the initial conditions (2.3d) assumed, for simplicity,
to live in the respective finite-dimensional spaces.

The energy properties of this scheme can be obtained by imitating (2.4) and (2.5). More specifically, we

proceed as follows: we test (3.1a) by 1
2Φ′Σ(Σ𝑘+1

𝜏ℎ , 𝑧𝑘+1
𝜏ℎ ) + 1

2Φ′Σ(Σ𝑘
𝜏ℎ, 𝑧𝑘

𝜏ℎ), then test (3.1b) by 𝑧𝑘+1
𝜏ℎ −𝑧𝑘

𝜏ℎ

𝜏 , and
eventually test the average of (3.1c) at the level 𝑘+1 and 𝑘 by 𝑣𝑘

𝜏ℎ. Using that Φ(·, 𝑧) and Φ(Σ, ·) are quadratic
as assumed in (2.2), we have⟨

Φ′Σ(Σ𝑘+1
𝜏ℎ , 𝑧𝑘+1

𝜏ℎ ) + Φ′Σ(Σ𝑘
𝜏ℎ, 𝑧𝑘

𝜏ℎ)
2

,
Σ𝑘+1

𝜏ℎ − Σ𝑘
𝜏ℎ

𝜏

⟩

=

⟨
Φ′Σ(Σ𝑘+1

𝜏ℎ , 𝑧𝑘
𝜏ℎ) + Φ′Σ(Σ𝑘

𝜏ℎ, 𝑧𝑘
𝜏ℎ)

2
,

Σ𝑘+1
𝜏ℎ − Σ𝑘

𝜏ℎ

𝜏

⟩

+
𝜏

2

⟨
Φ′Σ(Σ𝑘+1

𝜏ℎ , 𝑧𝑘+1
𝜏ℎ )− Φ′Σ(Σ𝑘+1

𝜏ℎ , 𝑧𝑘
𝜏ℎ)

𝜏
,

Σ𝑘+1
𝜏ℎ − Σ𝑘

𝜏ℎ

𝜏

⟩

=
Φ(Σ𝑘+1

𝜏ℎ , 𝑧𝑘
𝜏ℎ)−Φ(Σ𝑘

𝜏ℎ, 𝑧𝑘
𝜏ℎ)

𝜏
+

𝜏

2

⟨
Φ′Σ(Σ𝑘+1

𝜏ℎ , 𝑧𝑘+1
𝜏ℎ )− Φ′Σ(Σ𝑘+1

𝜏ℎ , 𝑧𝑘
𝜏ℎ)

𝜏
,

Σ𝑘+1
𝜏ℎ − Σ𝑘

𝜏ℎ

𝜏

⟩
, (3.4a)

where we used also (3.1a), and⟨
Φ′𝑧
(︁

Σ𝑘+1
𝜏ℎ ,

𝑧𝑘+1
𝜏ℎ +𝑧𝑘

𝜏ℎ

2

)︁
,
𝑧𝑘+1
𝜏ℎ − 𝑧𝑘

𝜏ℎ

𝜏

⟩
=

Φ(Σ𝑘+1
𝜏ℎ , 𝑧𝑘+1

𝜏ℎ )− Φ(Σ𝑘+1
𝜏ℎ , 𝑧𝑘

𝜏ℎ)
𝜏

· (3.4b)

Therefore, using again the particular equations/inclusion in (3.1), we get respectively

Φ(Σ𝑘+1
𝜏ℎ , 𝑧𝑘

𝜏ℎ)− Φ(Σ𝑘
𝜏ℎ, 𝑧𝑘

𝜏ℎ)
𝜏

=
⟨

Φ′Σ(Σ𝑘+1
𝜏ℎ , 𝑧𝑘+1

𝜏ℎ ) + Φ′Σ(Σ𝑘
𝜏ℎ, 𝑧𝑘

𝜏ℎ)
2

, 𝐼ℎC𝐸ℎ𝑣𝑘
𝜏ℎ + 𝐷𝑘

𝜏ℎ

⟩
−𝜏

2

⟨
Φ′Σ(Σ𝑘+1

𝜏ℎ , 𝑧𝑘+1
𝜏ℎ )− Φ′Σ(Σ𝑘+1

𝜏ℎ , 𝑧𝑘
𝜏ℎ)

𝜏
,

Σ𝑘+1
𝜏ℎ − Σ𝑘

𝜏ℎ

𝜏

⟩
, (3.5a)

Ξ
(︁𝑧𝑘+1

𝜏ℎ −𝑧𝑘
𝜏ℎ

𝜏

)︁
+

Φ(Σ𝑘+1
𝜏ℎ , 𝑧𝑘+1

𝜏ℎ )− Φ(Σ𝑘+1
𝜏ℎ , 𝑧𝑘

𝜏ℎ)
𝜏

≤ 0, and (3.5b)

⟨︀
𝒯 ′

𝑣𝑘+1
𝜏ℎ −𝑣𝑘−1

𝜏ℎ

2𝜏
, 𝑣𝑘

𝜏ℎ

⟩︀
+
⟨

𝐸*ℎC*𝐼*ℎ
Φ′Σ(Σ𝑘+1

𝜏ℎ , 𝑧𝑘+1
𝜏ℎ )+Φ′Σ(Σ𝑘

𝜏ℎ, 𝑧𝑘
𝜏ℎ)

2
, 𝑣𝑘

𝜏ℎ

⟩
=
⟨︀
𝐹

𝑘+1/2
𝜏ℎ , 𝑣𝑘

𝜏ℎ

⟩︀
. (3.5c)

Let us also note that, if Ψ(0) = 0 is assumed, the substitution ̃︀𝑧 = 0 into the inequality (3.2) gives Ψ
(︁

𝑧𝑘+1
𝜏ℎ −𝑧𝑘

𝜏ℎ

𝜏

)︁
instead of the dissipation rate Ξ

(︁
𝑧𝑘+1

𝜏ℎ −𝑧𝑘
𝜏ℎ

𝜏

)︁
in (3.5b), which is a suboptimal estimate except if Ψ is degree-1

positively homogeneous.
Summing (3.5) up, we benefit from the cancellation of the terms ±Φ

(︀
Σ𝑘+1

𝜏ℎ , 𝑧𝑘
𝜏ℎ

)︀
, which is the usual goal and

attribute of well-designed fractional-split schemes. Thus, using also the simple algebra⟨︀
𝒯 ′(𝑣𝑘+1

𝜏ℎ −𝑣𝑘−1
𝜏ℎ ), 𝑣𝑘

𝜏ℎ

⟩︀
=
⟨︀
𝒯 ′𝑣𝑘+1

𝜏ℎ , 𝑣𝑘
𝜏ℎ

⟩︀
−
⟨︀
𝒯 ′𝑣𝑘

𝜏ℎ, 𝑣𝑘−1
𝜏ℎ

⟩︀
, (3.6)



STAGGERED EXPLICIT-IMPLICIT TIME-DISCRETIZATION S405

we obtain the analog of (2.5), namely⟨︀
𝒯 ′𝑣𝑘+1

𝜏ℎ , 𝑣𝑘
𝜏ℎ

⟩︀
−
⟨︀
𝒯 ′𝑣𝑘

𝜏ℎ, 𝑣𝑘−1
𝜏ℎ

⟩︀
2𝜏

+
Φ
(︀
Σ𝑘+1

𝜏ℎ , 𝑧𝑘+1
𝜏ℎ

)︀
− Φ

(︀
Σ𝑘

𝜏ℎ, 𝑧𝑘
𝜏ℎ

)︀
𝜏

+ Ξ

(︃
𝑧𝑘+1
𝜏ℎ − 𝑧𝑘

𝜏ℎ

𝜏

)︃

≤
⟨
𝐹

𝑘+1/2
𝜏ℎ , 𝑣𝑘

𝜏ℎ

⟩
+

⟨
Φ′Σ
(︀
Σ𝑘+1

𝜏ℎ , 𝑧𝑘+1
𝜏ℎ

)︀
+ Φ′Σ(Σ𝑘

𝜏ℎ, 𝑧𝑘
𝜏ℎ)

2
, 𝐷𝑘

𝜏ℎ

⟩

−𝜏

2

⟨
Φ′Σ
(︀
Σ𝑘+1

𝜏ℎ , 𝑧𝑘+1
𝜏ℎ

)︀
− Φ′Σ

(︀
Σ𝑘+1

𝜏ℎ , 𝑧𝑘
𝜏ℎ

)︀
𝜏

,
Σ𝑘+1

𝜏ℎ − Σ𝑘
𝜏ℎ

𝜏

⟩
. (3.7)

If Ψ is smooth except possibly at zero, there is even equality in (3.7).
Considering some approximate values {𝑧𝑘

𝜏ℎ}𝑘=0,...,𝐾 of the variable 𝑧 with 𝐾 = 𝑇/𝜏 , we define the piecewise-
constant and the piecewise affine interpolants respectively by

𝑧𝜏ℎ(𝑡) = 𝑧𝑘
𝜏ℎ, 𝑧𝜏ℎ(𝑡) =

1
2
𝑧𝑘
𝜏ℎ +

1
2
𝑧𝑘−1
𝜏ℎ , and (3.8a)

𝑧𝜏ℎ(𝑡) =
𝑡− (𝑘−1)𝜏

𝜏
𝑧𝑘
𝜏ℎ +

𝑘𝜏 − 𝑡

𝜏
𝑧𝑘−1
𝜏ℎ for (𝑘−1)𝜏 < 𝑡 ≤ 𝑘𝜏. (3.8b)

Similar meaning is implied for Σ𝜏ℎ, 𝑣𝜏ℎ, Σ𝜏ℎ, 𝑣𝜏ℎ, 𝐹 𝜏ℎ, etc. The discrete scheme (3.1) can be written in a
“compact” form as

Σ̇𝜏ℎ = 𝐼ℎC𝐸ℎ𝑣𝜏ℎ + 𝐺̇𝜏ℎ and 𝑢̇𝜏ℎ = 𝑣𝜏ℎ, (3.9a)

𝐽*ℎ𝜕Ψ
(︀
𝑧̇𝜏ℎ

)︀
+ Φ′𝑧

(︀
Σ𝜏ℎ, 𝑧𝜏ℎ

)︀
∋ 0, (3.9b)

𝒯 ′𝑣̇𝜏ℎ + 𝐸*ℎ𝑆𝜏ℎ = 𝐹 𝜏ℎ with 𝑆𝜏ℎ = C*𝐼*ℎΦ′Σ(Σ𝜏ℎ, 𝑧𝜏ℎ) (3.9c)

to be valid a.e. on the time interval [0, 𝑇 ].

4. Numerical stability and convergence

Because the energy (1.9) involves now also the internal variable, the CFL condition has to be modified. More
specifically, we assume that

∃ 𝜂 > 0 ∀Σℎ∈ 𝑆ℎ, 𝑧ℎ∈ 𝑍ℎ : Φ(Σℎ, 𝑧ℎ) ≥ 𝜏2

4−𝜂

⟨︀
𝐸*ℎ𝑆ℎ, (𝒯 ′)−1𝐸*ℎ𝑆ℎ

⟩︀
ℋ*×ℋ with 𝑆ℎ = C*𝐼*ℎΦ′𝛴(Σℎ, 𝑧ℎ), (4.1)

where Σℎ and 𝑧ℎ are considered from the corresponding finite-dimensional subspaces. Let us still introduce the
Banach space 𝒳 := {𝑋 ∈ 𝒮*; 𝐸*C*𝑋 ∈ ℋ*}. We further assume C ∈ Lin(ℰ ,𝒮) invertible and that the collection
of the interpolation operators {𝐼ℎ : 𝒮 → 𝑆ℎ}ℎ>0 is bounded in Lin(𝒮,𝒮).

Proposition 4.1 (Numerical stability). Let 𝐹 be constant in time, valued in ℋ*, 𝐺 ∈𝑊 1,1(0, 𝑇 ;𝒮), 𝑢0 ∈ 𝒰
so that Σ0 = C𝐸𝑢0 ∈ 𝒮, 𝑣0 ∈ ℋ, 𝑧0 ∈ 𝒵, the functionals 𝒯 , Φ, and Ψ be coercive and Φ′Σ(Σ, ·) be Lipschitz
continuous uniformly for Σ ∈ 𝒮 in the sense

∃𝜖 > 0 𝑝 ≥ 2 ∀(Σ, 𝑣, 𝑧) ∈ 𝒮×ℋ×𝒵 :
𝒯 (𝑣) ≥ 𝜖‖𝑣‖2ℋ, Φ(Σ, 𝑧) ≥ 𝜖‖Σ‖2𝒮 + 𝜖‖𝑧‖2𝒵 , Ψ(𝑧) ≥ 𝜖‖𝑧‖𝑝

𝒵1
, (4.2a)

∃𝐶 ∀Σ ∈ 𝒮, 𝑧 ∈ 𝒵 :
⃦⃦

Φ′Σ(Σ, 𝑧)
⃦⃦
𝒮* ≤ 𝐶

(︀
1 + ‖Σ‖𝒮 + ‖𝑧‖𝒵

)︀
, (4.2b)

∃ℓ ∈ R ∀Σ ∈ 𝒮, 𝑧, ̃︀𝑧 ∈ 𝒵 :
⃦⃦

Φ′Σ(Σ, 𝑧)− Φ′Σ(Σ, ̃︀𝑧)
⃦⃦
𝒮* ≤ ℓ‖𝑧 − ̃︀𝑧

⃦⃦
𝒵1

. (4.2c)

Let also the CFL condition (4.1) hold with 𝜏 > 0 sufficiently small (in order to make the discrete Gronwall
inequality effective).
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Then the following a priori estimates hold:

‖𝑢𝜏ℎ‖𝑊 1,∞(0,𝑇 ;ℋ) ≤ 𝐶, (4.3a)

‖Σ𝜏ℎ‖𝐿∞(0,𝑇 ;𝒮) ≤ 𝐶 and ‖Σ̇𝜏ℎ‖𝐿1(0,𝑇 ;𝒳*) ≤ 𝐶, (4.3b)

‖𝑣𝜏ℎ‖𝐿∞(0,𝑇 ;ℋ) ≤ 𝐶 and ‖𝒯 ′𝑣̇𝜏ℎ‖𝐿∞(0,𝑇 ;𝒰*) ≤ 𝐶, (4.3c)

‖𝑧𝜏ℎ‖𝐿∞(0,𝑇 ;𝒵) ≤ 𝐶 and ‖𝑧̇𝜏ℎ‖𝐿𝑝(0,𝑇 ;𝒵1)
≤ 𝐶. (4.3d)

Proof. The energy imbalance that we have here is (3.7) which can be re-written as

E𝑘+1
ℎ −E𝑘

ℎ

𝜏
+ Ξ

(︁𝑧𝑘+1
𝜏ℎ −𝑧𝑘

𝜏ℎ

𝜏

)︁
≤
⟨︀
𝐹 𝑘

𝜏ℎ, 𝑣𝑘
𝜏ℎ

⟩︀
ℋ*×ℋ +

⟨
Φ′Σ(Σ𝑘+1

𝜏ℎ , 𝑧𝑘+1
𝜏ℎ ) + Φ′Σ(Σ𝑘

𝜏ℎ, 𝑧𝑘
𝜏ℎ)

2
, 𝐷𝑘

𝜏ℎ

⟩
𝒮*×𝒮

−𝜏

2

⟨
Φ′Σ(Σ𝑘+1

𝜏ℎ , 𝑧𝑘+1
𝜏ℎ )− Φ′Σ(Σ𝑘+1

𝜏ℎ , 𝑧𝑘
𝜏ℎ)

𝜏
,

Σ𝑘+1
𝜏ℎ − Σ𝑘

𝜏ℎ

𝜏

⟩
𝒮*×𝒮

(4.4)

with an analog of the energy (1.9), namely

E𝑘+1
ℎ =

1
2
⟨𝒯 ′𝑣𝑘+1

𝜏ℎ , 𝑣𝑘
𝜏ℎ⟩ℋ*×ℋ + Φ(Σ𝑘+1

𝜏ℎ , 𝑧𝑘+1
𝜏ℎ ). (4.5)

We need to show that E𝑘+1
ℎ is indeed a sum of the kinetic and the stored energies at least up to some positive

coefficients. To do so, like e.g. Lemma 4.2 of [45] or Section 6.1.6 of [50], let us write

⟨𝒯 ′𝑣𝑘+1
𝜏ℎ , 𝑣𝑘

𝜏ℎ⟩ =

⟨
𝒯 ′

𝑣𝑘+1
𝜏ℎ + 𝑣𝑘

𝜏ℎ

2
,
𝑣𝑘+1

𝜏ℎ + 𝑣𝑘
𝜏ℎ

2

⟩
−

⟨
𝒯 ′

𝑣𝑘+1
𝜏ℎ − 𝑣𝑘

𝜏ℎ

2
,
𝑣𝑘+1

𝜏ℎ − 𝑣𝑘
𝜏ℎ

2

⟩

=

⟨
𝒯 ′

𝑣𝑘+1
𝜏ℎ + 𝑣𝑘

𝜏ℎ

2
,
𝑣𝑘+1

𝜏ℎ + 𝑣𝑘
𝜏ℎ

2

⟩

− 𝜏2

4

⟨
𝐸*ℎ

(︁
C*𝐼*ℎΦ′𝛴

(︀
Σ𝑘+1

𝜏ℎ , 𝑧𝑘+1
𝜏ℎ

)︀
−𝐹

𝑘+1/2
𝜏ℎ

)︁
, (𝒯 ′)−1𝐸*ℎ

(︁
C*𝐼*ℎΦ′𝛴(Σ𝑘+1

𝜏ℎ , 𝑧𝑘+1
𝜏ℎ )−𝐹

𝑘+1/2
𝜏ℎ

)︁⟩
,

(4.6)

where all the duality pairings are between ℋ* and ℋ; here also (3.1c) has been used. Thus, using also 𝒯 (𝑣) =
1
2 ⟨𝒯

′𝑣, 𝑣⟩, we can write the energy (4.5) as

E𝑘+1
ℎ = 𝒯 (𝑣𝑘+1/2

𝜏ℎ ) + 𝑎𝑘+1
𝜏ℎ Φ(Σ𝑘+1

𝜏ℎ , 𝑧𝑘+1
𝜏ℎ ) +

𝜏2

2
⟨︀
(𝒯 ′)−1𝐸*ℎC*𝐼*ℎΦ′𝛴(Σ𝑘+1

𝜏ℎ , 𝑧𝑘+1
𝜏ℎ ), 𝐹 𝑘+1/2

𝜏ℎ

⟩︀
− 𝜏2

4
‖𝐹 𝑘+1/2

𝜏ℎ ‖2ℋ

with 𝑎𝑘+1
𝜏ℎ := 1− 𝜏2

4

⟨︀
𝐸*ℎC*𝐼*ℎΦ′𝛴(Σ𝑘+1

𝜏ℎ , 𝑧𝑘+1
𝜏ℎ ), (𝒯 ′)−1𝐸*ℎC*𝐼*ℎΦ′𝛴(Σ𝑘+1

𝜏ℎ , 𝑧𝑘+1
𝜏ℎ )

⟩︀
Φ(Σ𝑘+1

𝜏ℎ , 𝑧𝑘+1
𝜏ℎ )

≥ 𝜂 (4.7)

and with 𝑣
𝑘+1/2
𝜏ℎ := 1

2𝑣𝑘+1
𝜏ℎ + 1

2𝑣𝑘
𝜏ℎ. The energy E𝑘+1

ℎ yields a priori estimates if the coefficient 𝑎𝑘
𝜏ℎ is non-negative,

which is just ensured by our CFL condition (4.1) used for Σℎ = Σ𝑘+1
𝜏ℎ and 𝑧ℎ = 𝑧𝑘+1

𝜏ℎ . Here 𝜂 > 0 in (4.7) is just
from (4.1).
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Altogether, summing (4.4) for 𝑘 = 0, . . . , 𝑙 ≤ 𝑇/𝜏 − 1 and using (4.7), we obtain the estimate

𝜖

(︃⃦⃦
𝑣

𝑙+1/2
𝜏ℎ

⃦⃦2

ℋ + 𝑎𝑙+1
𝜏ℎ

⃦⃦
Σ𝑙+1

𝜏ℎ

⃦⃦2

𝒮 + 𝑎𝑙+1
𝜏ℎ

⃦⃦
𝑧𝑙+1
𝜏ℎ

⃦⃦2

𝒵 + 𝜏

𝑙∑︁
𝑘=0

⃦⃦⃦𝑧𝑘+1
𝜏ℎ −𝑧𝑘

𝜏ℎ

𝜏

⃦⃦⃦𝑝

𝒵1

)︃

≤ 𝜏2

4
‖𝐹 𝑙+1/2

𝜏ℎ ‖2ℋ −
𝜏2

2
⟨︀
(𝒯 ′)−1𝐸*ℎC*𝐼*ℎΦ′𝛴(Σ𝑙+1

𝜏ℎ , 𝑧𝑙+1
𝜏ℎ ), 𝐹 𝑙+1/2

𝜏ℎ

⟩︀
− 𝜏2

2
⟨︀
(𝒯 ′)−1𝐸*ℎC*𝐼*ℎΦ′𝛴(Σ0

𝜏ℎ, 𝑧0
𝜏ℎ), 𝐹 1/2

𝜏ℎ

⟩︀
+ 𝒯 (𝑣−1/2

𝜏ℎ ) + 𝑎0
𝜏ℎΦ(Σ0

𝜏ℎ, 𝑧0
𝜏ℎ) + 𝜏

𝑙∑︁
𝑘=0

(︂⟨︀
𝐹

𝑘+1/2
𝜏ℎ , 𝑣𝑘

𝜏ℎ

⟩︀
+

1
2

⃦⃦
Φ′Σ(Σ𝑘+1

𝜏ℎ , 𝑧𝑘+1
𝜏ℎ ) + Φ′Σ(Σ𝑘

𝜏ℎ, 𝑧𝑘
𝜏ℎ)
⃦⃦
𝒮*
⃦⃦
𝐷𝑘

𝜏ℎ

⃦⃦
𝒮 +

𝜏

2
ℓ
⃦⃦⃦𝑧𝑘+1

𝜏ℎ −𝑧𝑘
𝜏ℎ

𝜏

⃦⃦⃦
𝒵1

⃦⃦⃦Σ𝑘+1
𝜏ℎ −Σ𝑘

𝜏ℎ

𝜏

⃦⃦⃦
𝒮

)︂
, (4.8)

where 𝜖, 𝑝, ℓ and 𝑎𝑙+1
𝜏ℎ come from (4.2) and (4.7). Here we also have used that the collection {𝐼ℎ}ℎ>0 is

bounded. Using (4.2b), we estimate ‖Φ′Σ(Σ𝑘
𝜏ℎ, 𝑧𝑘

𝜏ℎ)‖𝒮* ≤ 𝐶(1 + ‖Σ𝑘
𝜏ℎ‖2𝒮 + ‖𝑧𝑘

𝜏ℎ‖2𝒵) and ‖Φ′Σ(Σ𝑘+1
𝜏ℎ , 𝑧𝑘+1

𝜏ℎ )‖𝒮* ≤
𝐶(1+‖Σ𝑘+1

𝜏ℎ ‖2𝒮+‖𝑧𝑘+1
𝜏ℎ ‖2𝒵), and then use the summability of ‖𝐷𝑘

𝜏ℎ

⃦⃦
𝒮 needed for the discrete Gronwall inequality;

here the assumption 𝐺̇ ∈ 𝐿1(0, 𝑇 ;𝒮) is needed. The last term in (4.8) is to be estimated by the Young inequality
as

𝜏

2
ℓ
⃦⃦⃦𝑧𝑘+1

𝜏ℎ −𝑧𝑘
𝜏ℎ

𝜏

⃦⃦⃦
𝒵1

⃦⃦⃦Σ𝑘+1
𝜏ℎ −Σ𝑘

𝜏ℎ

𝜏

⃦⃦⃦
𝒮
≤ 𝜖

2

⃦⃦⃦𝑧𝑘+1
𝜏ℎ −𝑧𝑘

𝜏ℎ

𝜏

⃦⃦⃦2

𝒵1

+
ℓ2

8𝜖

⃦⃦
Σ𝑘+1

𝜏ℎ −Σ𝑘
𝜏ℎ

⃦⃦2

𝒮

≤ 𝜖

2

⃦⃦⃦𝑧𝑘+1
𝜏ℎ −𝑧𝑘

𝜏ℎ

𝜏

⃦⃦⃦𝑝

𝒵1

+ 𝐶𝑝,𝜖,ℓ

(︀
1 + ‖Σ𝑘+1

𝜏ℎ ‖2𝒮 + ‖Σ𝑘
𝜏ℎ‖2𝒮

)︀
with some 𝐶𝑝,𝜖,ℓ depending on 𝑝, 𝜖, and ℓ. Here we needed 𝑝 ≥ 2; note that this is related with the specific
explicit time discretization due to the last term in (3.7) but not with the problem itself. Then we use the
discrete Gronwall inequality to obtain the former estimates in (4.3b), (4.3c) and the estimates (4.3a), (4.3d).
Using the discrete Gronwall inequality is a bit tricky because of the term ‖𝑣𝑙+1/2

𝜏ℎ ‖2ℋ on the left-hand side of
(4.8) while there is 𝑣𝑘

𝜏ℎ instead of 𝑣
𝑘+1/2
𝜏ℎ on the right-hand side of (4.8). To cope with it, we have to rely on

𝐹 being constant (as assumed). We prove the estimate for 𝑙 = 1, then we sum up (4.8) for 𝑙+1 and 𝑙 to get⟨︀
𝐹

𝑘+1/2
𝜏ℎ , 𝑣

𝑘+1/2
𝜏ℎ

⟩︀
also on the right-hand side. Note also that, in view of (3.6) for 𝑘 = 0, we have obtained the

term 𝒯 (𝑣−1/2
𝜏ℎ ) on the right-hand side of (4.8) which, however, can simply be ignored if taking the “fictitious”

velocity at level 𝑘 = −1 as −𝑣0
𝜏ℎ = −𝑣0

ℎ.
The equation Σ̇𝜏ℎ = 𝐼ℎC𝐸ℎ𝑣𝜏ℎ + 𝐺̇𝜏ℎ gives the latter estimate in (4.3b) by estimating∫︁ 𝑇

0

⟨︀
Σ̇𝜏ℎ, 𝑋

⟩︀
𝒳*×𝒳 d𝑡 =

∫︁ 𝑇

0

⟨︀
𝐼ℎC𝐸ℎ𝑣𝜏ℎ + 𝐺̇𝜏ℎ, 𝑋

⟩︀
𝒳*×𝒳 d𝑡

=
∫︁ 𝑇

0

⟨︀
𝑣𝜏ℎ, 𝐸*ℎC*𝐼*ℎ𝑋

⟩︀
ℋ×ℋ* d𝑡 +

∫︁ 𝑇

0

⟨︀
𝐺̇𝜏ℎ, 𝑋

⟩︀
𝒳*×𝒳 d𝑡 (4.9)

for 𝑋 ∈ 𝐿∞(0, 𝑇 ;𝒳 ) and using also the already proved boundedness of 𝑣𝜏ℎ in 𝐿∞(0, 𝑇 ;ℋ) and the assumed
boundedness of 𝐸ℎ uniform in ℎ > 0; here we used also that Σ̇𝜏ℎ(𝑡) ∈ 𝒮 ⊂ 𝒳 *.

Eventually, the already obtained estimates (4.2b) give Φ′Σ(Σ𝜏ℎ, 𝑧𝜏ℎ) bounded in 𝐿∞(0, 𝑇 ;𝒮*). Therefore
𝑆𝜏ℎ = C*𝐼*ℎΦ′Σ(Σ𝜏ℎ, 𝑧𝜏ℎ) is bounded in 𝐿∞(0, 𝑇 ; ℰ*), hence 𝐸*ℎ𝑆𝜏ℎ is bounded in 𝐿∞(0, 𝑇 ;𝒰*), so that 𝒯 ′𝑣̇𝜏ℎ =
𝐹 𝜏ℎ − 𝐸*ℎ𝑆𝜏ℎ gives the latter estimate in (4.3c). �

We will now need the approximation properties for ℎ → 0:

𝑣 ∈ 𝒰 , 𝑣ℎ ∈ 𝑉ℎ, 𝑣ℎ → 𝑣 in ℋ ⇒ 𝐸ℎ𝑣ℎ → 𝐸𝑣 in ℰ with 𝐸 ∈ Lin(𝒰 , ℰ), (4.10a)
Σ ∈ 𝒮, Σℎ ∈ 𝑆ℎ, Σℎ → Σ in 𝒮 ⇒ 𝐼ℎΣℎ → Σ in 𝒮. (4.10b)
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Proposition 4.2 (Convergence). Let (2.7) and (4.10a) hold, all the involved Banach spaces be separable, and
the assumptions of Proposition 4.1 hold. Moreover, let

∀𝑧 ∈ 𝒵 : Φ′Σ(·, 𝑧) continuous linear, and Φ′Σ : 𝒮×𝒵0 → Lin(𝒮,𝒮*) continuous
or Φ′Σ : 𝒮 × 𝒵 → 𝒮* is continuous linear, (4.11a)

∀𝑧 ∈ 𝒵 : [Φ0]′𝑧(·, 𝑧) continuous linear, and [Φ0]′𝑧 : 𝒮×𝒵0 → Lin(𝒵0,𝒵1) continuous
or [Φ0]′𝑧 : 𝒮 × 𝒵 → 𝒵*1 is continuous linear, and (4.11b)

Φ′1 : 𝒵 → 𝒵* is linear continuous, (4.11c)

for some Banach space 𝒵0 into which 𝒵 is embedded compactly, where Φ0 and Φ1 are from (2.7). Then there
is a selected subsequence, again denoted {(𝑢𝜏ℎ, Σ𝜏ℎ, 𝑣𝜏ℎ, 𝑧𝜏ℎ)}𝜏>0 converging weakly* in the topologies indicated
in the estimates (4.3) to some (𝑢, Σ, 𝑣, 𝑧). Moreover, any (𝑢, Σ, 𝑣, 𝑧) obtained as such a limit is a weak solution
according Definition 2.1.

Proof. By the Banach selection principle, we can select the weakly* converging subsequence as claimed; here
the separability of the involved Banach spaces is used.

Referring to the compact embedding 𝒵 ⊂ 𝒵0 used in the former option in (4.11a), (4.11b) and relying on
a generalization the Aubin–Lions compact-embedding theorem with 𝑧̇𝜏ℎ being bounded in the space of the
𝒵1-valued measures on 𝐼, cf. ([39], Cor. 7.9), we have 𝑧𝜏ℎ → 𝑧 strongly in 𝐿𝑟(0, 𝑇 ;𝒵1) for any 1 ≤ 𝑟 < +∞.

Further, we realize that the approximate solution satisfy identities/inequality analogous to what is used in
Definition 2.1. In view of (2.8a), the equations (3.9c) now means∫︁ 𝑇

0

⟨︀
Φ′Σ(Σ𝜏ℎ, 𝑧𝜏ℎ), 𝐼ℎC𝐸ℎ̃︀𝑣

⟩︀
𝒮*×𝒮 −

⟨︀
𝒯 ′𝑣𝜏ℎ, ̃̇︀𝑣

⟩︀
ℋ*×ℋ d𝑡 =

⟨︀
𝒯 ′𝑣0, ̃︀𝑣(0)

⟩︀
ℋ*×ℋ +

∫︁ 𝑇

0

⟨︀
𝐹ℎ, ̃︀𝑣

⟩︀
ℋ*×ℋ d𝑡 (4.12a)

for any ̃︀𝑣 ∈ 𝐶1(0, 𝑇 ;ℋ) valued in 𝑉ℎ and with ̃︀𝑣(𝑇 ) = 0. Like in (2.8b), the inclusion (3.9b) means∫︁ 𝑇

0

Ψ(̃︀𝑧) +
⟨︀
[Φ0]′𝑧(Σ𝜏ℎ, 𝑧𝜏ℎ), ̃︀𝑧−𝑧̇𝜏ℎ

⟩︀
𝒵*1×𝒵1

+
⟨︀
Φ′1𝑧𝜏ℎ, ̃︀𝑧

⟩︀
𝒵*×𝒵 d𝑡 + Φ1(𝑧0)

≥ Φ1(𝑧𝜏ℎ(𝑇 )) +
∫︁ 𝑇

0

Ψ(𝑧̇𝜏ℎ) d𝑡 (4.12b)

for all ̃︀𝑧 ∈ 𝐿1(0, 𝑇 ;𝒵). This is completed by (3.9a).
It is further important that the equations in (3.9a) and the first equation in (3.9c) are linear, so that the weak

convergence is sufficient for the limit passage there. In particular, we use (4.10a) and the Lebesgue dominated-
convergence theorem.

As to the weak convergence of (3.9a) integrated in time towards (3.1a) integrated in time, i.e. towards
Σ = C𝐸𝑢 + 𝐺 as used in Definition 2.1, we need to prove that∫︁ 𝑇

0

⟨︀
Σ𝜏ℎ −𝐺𝜏ℎ, 𝑋

⟩︀
𝒮×𝒮* −

⟨︀
𝑢𝜏ℎ, 𝐸*ℎC*𝑋

⟩︀
ℋ×ℋ*d𝑡 →

∫︁ 𝑇

0

⟨︀
Σ−𝐺, 𝑋

⟩︀
𝒮×𝒮* −

⟨︀
𝑢, 𝐸*C*𝑋

⟩︀
ℋ×ℋ*d𝑡 (4.13)

for any 𝑋 ∈ 𝐿1(0, 𝑇 ;𝒮*). By (4.10a), we have also 𝐸*ℎ𝑆 → 𝐸*𝑆 inℋ for any 𝑆 ∈ ℰ*, in particular for 𝑆 = C*𝑋(𝑡).
Thus certainly 𝐸*ℎC*𝑋 → 𝐸*C*𝑋 in 𝐿1(0, 𝑇 ;ℋ) strongly. Using the weak* convergence 𝑢𝜏ℎ → 𝑢 in 𝐿∞(0, 𝑇 ;ℋ),
we obtain (4.13). Moreover, in the limit 𝐸𝑢 = C−1(Σ−𝐺) ∈ 𝐿∞(0, 𝑇 ; ℰ) so that 𝑢 ∈ 𝐿∞(0, 𝑇 ;𝒰).

For the limit passage in (4.12a), we also use Φ′Σ(Σ𝜏ℎ, 𝑧𝜏ℎ) → Φ′Σ(Σ, 𝑧) weakly* in 𝐿∞(0, 𝑇 ;𝒮*) because Φ′Σ
is continuous in the (weak×strong,weak)-mode, cf. (4.11a), and because of the mentioned strong convergence
of 𝑧𝜏ℎ → 𝑧.

Furthermore, we need to show the convergence [Φ0]′𝑧(Σ𝜏ℎ, 𝑧𝜏ℎ) → [Φ0]′𝑧(Σ, 𝑧). For this, we use again the
mentioned generalized Aubin–Lions theorem to have the strong convergence 𝑧𝜏ℎ → 𝑧 in 𝐿𝑟(0, 𝑇 ;𝒵1) for any
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1 ≤ 𝑟 < +∞ and then the continuity of [Φ0]′𝑧 in the (weak×strong,weak)-mode, cf. the former option in (4.11b).
The limit passage of (4.12b) towards (2.8b) then uses also the weak lower semicontinuity of Φ1 and the weak
convergence 𝑧𝜏ℎ(𝑇 ) → 𝑧(𝑇 ) in 𝒵; here for this pointwise convergence in all time instants 𝑡 and in particular in
𝑡 = 𝑇 , we also used that we have some information about 𝑧̇𝜏ℎ, cf. (4.3d).

So far, we have relied on the former options in (4.11a), (4.11b) and the Aubin–Lions compactness argument
as far as the 𝑧-variable is concerned. If Φ is quadratic (as e.g. in the examples in Sects. 5.1 and 5.2 below),
we can use the latter options in (4.11a), (4.11b) and simplify the above arguments, relying merely on the weak
convergence 𝑧𝜏ℎ → 𝑧 and 𝑧𝜏ℎ → 𝑧. �

Remark 4.3 (Alternative weak formulation). Here, we used the weak formulation of (2.3c) containing the term
⟨Φ′𝑧(Σ, 𝑧), 𝑧̇

⟩︀
which often does not have a good meaning since 𝑧̇ may not be regular enough in some applications.

This term is thus eliminated by substituting it, after integration over the time interval, by Φ(Σ(𝑇 ), 𝑧(𝑇 )) −∫︀ 𝑇

0
⟨Φ′Σ(Σ, 𝑧), Σ̇

⟩︀
d𝑡−Φ(Σ0, 𝑧0) or even rather by Φ(Σ(𝑇 ), 𝑧(𝑇 ))−

∫︀ 𝑇

0
⟨Φ′Σ(Σ, 𝑧), C𝐸𝑣

⟩︀
d𝑡−Φ(Σ0, 𝑧0). This however,

would bring even more difficulties because we would need to prove a strong convergence of Φ′Σ(Σ, 𝑧), or of Σ̇,
or C𝐸𝑣 in our explicit-discretization scheme, which seems not easy.

Remark 4.4 (Nonquadratic Φ(Σ, ·)). Some applications use such Φ(Σ, ·) which is not quadratic. This is still
consistent with the explicit leap-frog-type discretization if, instead of Φ′𝑧(Σ, 𝑧), we consider an abstract difference
quotient Φ∘𝑧(Σ, 𝑧, ̃︀𝑧) with the properties

Φ∘𝑧(Σ, 𝑧, 𝑧) = Φ′𝑧(Σ, 𝑧) and
⟨︀
Φ∘𝑧(Σ, 𝑧, ̃︀𝑧), 𝑧−̃︀𝑧⟩︀ = Φ(Σ, 𝑧)− Φ(Σ, ̃︀𝑧), (4.14)

cf. [41]. Then, instead of Φ′𝑧(Σ𝑘+1
𝜏ℎ ,

𝑧𝑘+1
𝜏ℎ +𝑧𝑘

𝜏ℎ

2 ) in (3.1b), we should write Φ∘𝑧(Σ𝑘+1
𝜏ℎ , 𝑧𝑘+1

𝜏ℎ , 𝑧𝑘
𝜏ℎ).

Remark 4.5 (State-dependent dissipation). The generalization of Ψ dependent also on 𝑧 or even on (Σ, 𝑧) is
easy. Then 𝜕Ψ is to be replaced by the partial subdifferential 𝜕𝑧̇Ψ and (3.1b) should use Ψ(Σ𝑘+1

𝜏ℎ , 𝑧𝑘
𝜏ℎ, ·) instead

of Ψ(·).

Remark 4.6 (Spatial numerical approximation). From the coercivity of the stored energy Φ, we have Σ𝑘
𝜏ℎ ∈ 𝒮

for any 𝑘 = 0, 1, . . . and thus, from (3.1a), 𝐸ℎ𝑣𝑘
𝜏ℎ ∈ ℰ so that 𝑣𝑘

𝜏ℎ ∈ 𝒰 , although the limit 𝑣 cannot be assumed
valued in 𝒰 in general. Similarly, from (3.1c), one can read that 𝐸*ℎ𝑆𝑘

𝜏ℎ ∈ ℋ although this cannot be expected
in the limit in general. Anyhow, on the time-discrete level, one can use the FEM discretization similarly as in
the linear elastodynamics where regularity can be employed, cf. [7, 8, 11, 50] for a mixed finite-element method
and [18] for the more recently developed staggered discontinuous Galerkin method for elastodynamics.

Remark 4.7 (Other explicit-implicit schemes). Combination of explicit and implicit time discretization might
not only be due to parabolic evolution of internal variables but also due to geometrical reasons, e.g. transmission
through a thin layer, that lead to a very restrictive CFL condition, cf. [14].

5. Particular examples

We present three examples from continuum mechanics of deformable bodies at small strains of different char-
acters to illustrate applicability of the ansatz (2.2) and the above discretization scheme. Various combinations
of these examples are possible, too, covering thus a relatively wide variety of models.

We use a standard notation concerning function spaces. Beside the Lebesgue 𝐿𝑝-spaces, we denote by
𝐻𝑘(Ω; R𝑛) the Sobolev space of functions whose distributional derivatives are from 𝐿2(Ω; R𝑛×𝑑𝑘

).
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5.1. Plasticity or creep

The simplest example with quadratic stored energy and local dissipation potential is the model of plasticity
or creep. The internal variable is then the plastic strain 𝜋, valued in the set of symmetric trace-free matrices
R𝑑×𝑑

dev = {𝑃 ∈ R𝑑×𝑑; 𝑃⊤ = 𝑃, tr 𝑃 = 0}. For simplicity, we consider only homogeneous Neumann or Dirichlet
boundary conditions, so that simply 𝐸 = 𝑒(𝑢) and C = C. The stored energy in terms of strain 𝑒(𝑢) is

W (𝑢, 𝜋) =
∫︁

Ω

1
2

C(𝑒(𝑢)−𝜋) : (𝑒(𝑢)−𝜋) d𝑥, (5.1)

which is actually a function of the elastic strain 𝑒el = 𝑒−𝜋. The additive decomposition 𝑒(𝑢) = 𝑒el+𝜋 is referred
to as Green-Naghdi’s [26] decomposition. This energy leads to

Φ(𝜎, 𝜋) =
∫︁

Ω

1
2

C−1𝜎:𝜎 − 𝜎:𝜋 +
1
2

C𝜋:𝜋 d𝑥 with 𝜎 = C𝑒(𝑢). (5.2)

Let us note that Φ′𝜎(𝜎, 𝜋) = C−1𝜎 − 𝜋 = 𝑒−𝜋, i.e. the elastic strain 𝑒el, and that the proto-stress Σ = 𝜎 is
indeed different from the actual stress 𝜎 − C𝜋.

The dissipation potential is standardly chosen as

Ψ(𝜋̇) =
∫︁

Ω

𝜎Y |𝜋̇|+
1
2

D𝜋̇:𝜋̇ d𝑥 (5.3)

with 𝜎Y ≥ 0 a prescribed yield stress and D a positive semidefinite viscosity tensor. The dissipation rate is then
Ξ(𝜋̇) =

∫︀
Ω

𝜎Y |𝜋̇| + D𝜋̇:𝜋̇ d𝑥. For D > 0 and 𝜎Y = 0, we obtain mere creep model or, in other words, the linear
viscoelastic model in the Maxwell rheology. For both D > 0 and 𝜎Y > 0, we obtain viscoplasticity. For D = 0
and 𝜎Y > 0, we would obtain the rate-independent (perfect) plasticity but our Proposition 4.1 does not cover
this case (i.e. 𝑝 = 1 is not admitted).

The functional setting is ℋ = 𝐿2(Ω; R𝑑), ℰ = 𝒮 = 𝒵 = 𝒵1 = 𝐿2(Ω; R𝑑×𝑑
sym) where R𝑑×𝑑

sym denotes symmetric
(𝑑×𝑑)-matrices. Thus 𝒰 := {𝑣 ∈ 𝐿2(Ω; R𝑑); 𝑒(𝑣) ∈ 𝐿2(Ω; R𝑑×𝑑)} = 𝐻1(Ω; R𝑑) by Korn’s inequality.

A modification of the stored energy models an isotropic hardening, enhancing (5.1) as

W (𝑢, 𝜋) =
∫︁

Ω

1
2

C1(𝑒(𝑢)−𝜋):(𝑒(𝑢)−𝜋) +
1
2

C2𝜋:𝜋 d𝑥 (5.4)

so that the energy Φ from (5.2) is modified as

Φ(𝜎, 𝜋) =
∫︁

Ω

1
2

C−1
1 𝜎:𝜎 − 𝜎:𝜋 +

1
2

(C1+C2)𝜋:𝜋 d𝑥. (5.5)

In the pure creep variant 𝜎Y = 0, this is actually the standard linear solid (in a so-called Zener form), considered
together with the leap-frog time discretization in [9]. The isochoric constraint tr 𝜋 = 0 can then be avoided,
assuming that C2 is positive definite.

All these models lead to a flow rule which is localized on each element when an element-wise constant
approximation of 𝜋 is used, and no large system of algebraic equations need to be solved so that the combination
with the explicit discretization of the other equations leads to a very fast computational procedure.

Another modification for gradient plasticity by adding terms 1
2𝜅|∇𝜋|2 into the stored energy is easily possible,

too. This modification uses 𝒵 = 𝐻1(Ω; R𝑑×𝑑
sym) and (2.7) with Φ1(𝑧) =

∫︀
Ω

1
2𝜅|∇𝜋|2 and makes, however, the flow

rule nonlocal but at least one can benefit from that the usual space discretization of the proto-stress 𝜎 uses
the continuous piecewise smooth elements which allows for handling gradients ∇𝜋 if used consistently also for
𝜋. For the quasistatic variant of this model, we refer to the classical monographs [28, 49], while the dynamical
model with D = 0 is e.g. in Section 5.2 of [37].
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Noteworthy, all these models bear time regularity if the loading is smooth and initial conditions regular
enough, which can be advantageously reflected in space FEM approximation, too.

The Maxwell visco-elastodynamics was also studied by J.-P. Groby ([27], Part I, Sect. 2) using a slightly
modified time discretization scheme, namely the order of (3.1a) and (3.1c) was exchanged.

The CFL condition (4.1) here is actually the same as the standard one (1.4). This is because the internal
variable actually does not influence the elasticity response and, likewise, the inertia is independent of the internal
variable, so the wave speed is not influenced either. The CFL is thus of the form 𝜏 ≤ ℎ

√︀
𝜚/|𝜆max(C)| where

𝜆max(C) is the maximal eigenvalue of C.

5.2. Poroelasticity in isotropic materials

Another example with quadratic stored energy but less trivial dissipation potential is a saturated Darcy or
Fick flow of a diffusant in porous media, e.g. water in porous elastic rocks or in concrete, or a solvent in elastic
polymers. The most simple model is the classical Biot model [12], capturing effects as swelling or seepage. In a
one-component flow, the internal variable is then the scalar-valued diffusant content (or concentration) denoted
by 𝜁.

As in the previous Section 5.1 , we consider only Neumann or Dirichlet boundary conditions, so that 𝐸 = 𝑒(𝑢).
Here we use the orthogonal decomposition 𝑒 = sph 𝑒+dev 𝑒 with the spherical (volumetric) part sph 𝑒 := (tr 𝑒)I/𝑑
and the deviatoric part dev 𝑒 and confine ourselves to isotropic materials where the elastic-moduli tensor C𝑖𝑗𝑘𝑙 =
𝐾𝛿𝑖𝑗𝛿𝑘𝑙 + 𝐺(𝛿𝑖𝑘𝛿𝑗𝑙 + 𝛿𝑖𝑙𝛿𝑗𝑘 − 2𝛿𝑖𝑗𝛿𝑘𝑙/𝑑) with 𝐾 the bulk modulus and 𝐺 the shear modulus (= the second Lamé
constant), which is the standard notation hopefully without any confusion with the notation used in (1.6). Then
the proto-stress Σ = 𝜎 = C𝑒 = 𝐾sph 𝑒 + 2𝐺dev 𝑒. In particular, sph 𝜎 = 𝐾sph 𝑒 so that tr 𝑒 = 𝐾−1tr 𝜎.

Adopting the gradient theory for this internal variable 𝜁, the stored energy in terms of strain is considered

W (𝑢, 𝜁) =
∫︁

Ω

1
2

C𝑒(𝑢):𝑒(𝑢) +
1
2
𝑀(𝛽tr 𝑒(𝑢)−𝜁)2 +

1
2
𝐿(𝜁−𝜁eq)2 +

𝜅

2
|∇𝜁|2 d𝑥

=
∫︁

Ω

1
2

(︁
𝐾 +

𝛽2

𝑑
𝑀
)︁
|sph 𝑒(𝑢)|2 + 𝐺|dev 𝑒(𝑢)|2

− 𝛽𝑀𝜁tr 𝑒(𝑢) +
1
2
𝑀𝜁2 +

1
2
𝐿(𝜁−𝜁eq)2 +

𝜅

2
|∇𝜁|2 d𝑥

which, in terms of the (here partial) stress 𝜎 = C𝑒, reads as
∫︀
Ω

1
2 ( 1

𝐾 + 𝛽2

𝑑𝐾2 𝑀)|sph 𝜎|2 + 1
𝐺 |dev 𝜎|2 − 𝛽𝜁 𝑀

𝐾 tr 𝜎 +
1
2𝑀𝜁2 + 1

2𝐿(𝜁−𝜁eq)2 d𝑥. Here 𝑀 > 0 and 𝛽 > 0 are so-called Biot modulus and coefficient, respectively, 𝜅 > 0
is a capillarity coefficient, and 𝜁eq is a given equilibrium content. From (5.6), we arrive at the overall stored
energy as:

Φ(𝜎, 𝜁) =
∫︁

Ω

1
2

(︂
1
𝐾

+
𝛽2

𝑑𝐾2
𝑀

)︂
|sph 𝜎|2 +

1
𝐺
|dev 𝜎|2 − 𝛽𝜁

𝑀

𝐾
tr 𝜎 d𝑥

+
∫︁

Ω

1
2
𝑀𝜁2 +

1
2
𝐿(𝜁−𝜁eq)2 +

𝜅

2
|∇𝜁|2 d𝑥⏟  ⏞  

=: Φ1(𝜁)

. (5.6)

Let us note that Φ′𝜎(𝜎, 𝜁) = C−1𝜎 + 𝛽𝑀
𝑑𝐾2 (𝛽sph 𝜎−𝜁𝐾I), i.e. the elastic strain, and that the proto-stress Σ = 𝜎

indeed differs from an actual stress by the spherical pressure part 𝛽𝑀
𝑑𝐾 (𝛽sph 𝜎−𝜁𝐾I).

The driving force for the diffusion is the chemical potential 𝜇 = Φ′𝜁(𝜎, 𝜁), i.e. here

𝜇 = (𝑀 + 𝐿)𝜁 − 𝛽
𝑀

𝐾
tr 𝜎 − 𝐿𝜁eq − 𝜅∆𝜁. (5.7a)

The diffusion equation is
𝜁 − div(M∇𝜇) = 0 (5.7b)
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with M denoting the diffusivity tensor. The system (5.7) is called the Cahn-Hilliard equation, here combined
with elasticity so that the flow of the diffusant is driven both by the gradient of concentration (Fick’s law) and
the gradient of the mechanical pressure (Darcy’s law). The dissipation potential in terms of ∇𝜇, let us denote
it by 𝑅 behind this system, is

𝑅(𝜇) =
∫︁

Ω

1
2

M∇𝜇·∇𝜇 d𝑥. (5.8)

For the analysis cf. e.g. ([35], Sect. 7.6).
One would expect the dissipation potential as a function of the rate of internal variables, as in (2.3c). In fact,

the system (5.7) turns into the form (2.3c) if one takes the dissipation potential Ψ = Ψ(𝜁) as

Ψ(𝜁) = 𝑅*(𝜁) (5.9)

with 𝑅* denoting the convex conjugate of 𝑅. Now, Ψ is nonlocal. The functional setting is as in the previous
example but now 𝒵 = 𝐻1(Ω) and 𝒵1 = 𝐻1(Ω)*. For a discretization of the type (3.1b), see [40].

Often, the diffusivity is considered dependent on 𝜁. Or even one can think about M = M(𝜎, 𝜁). Then the
modification in Remark 4.5 is to be applied. In particular, 𝑅(𝜎, 𝜁, 𝜇) =

∫︀
Ω

1
2M(𝜎, 𝜁)∇𝜇·∇𝜇 d𝑥 and Ψ(𝜎, 𝜁, 𝜁) =

[𝑅(𝜎, 𝜁, ·)]*(𝜁).
For this Biot model in the dynamical variant, the reader is also referred to the books [1, 16, 17, 48] or also

[35, 37]. In any case, the diffusion involves gradients and in the implicit discretization it leads to large systems
of algebraic equations, which inevitably slows down the fast explicit discretization of the mechanical part itself.

For this case also the CFL condition (4.1) is the same as the standard one and leads to a restriction of the
form 𝜏 ≤ 𝐶ℎ/𝑉max where 𝑉max denotes the maximal speed with which waves propagate in the medium. We note
that the pressure velocity which is the maximal speed of propagation in isotropic solids is enhanced in the Biot
model. The stability analysis of the discrete scheme is quite technical and does not always lead to a practical
CFL condition. A. Ezziani in his Ph.D. thesis [22] studied a discretization of Biot’s model similar to (5.6) but
the stability analysis of the discrete scheme is very nontrivial, cf. formula (7.4.11) of [22] and, as he points out,
cannot be translated into a practical condition. Therefore, in practice he proposes to use 𝜏 ≤ 𝑎𝑟ℎ/𝑉pf where 𝑉pf

is the speed of the fast wave and 𝑎𝑟 is a constant depending on the order of the particular space discretization
used. The attenuation caused by diffusion causes also some dispersion of wave velocities which stay however
bounded from above by a high-frequency limit, cf. also Figure 5.2.1 of [22], so the CFL condition expectedly
holds uniformly like for the pure elastodynamics.

5.3. Damage

The simplest examples of nonconvex stored energy are models of damage. The most typical models use as
an internal variable the scalar-valued bulk damage 𝛼 having the interpretation as a phenomenological volume
fraction of microcracks or microvoids manifested macroscopically as a certain weakening of the elastic response.
This concept was invented by L.M. Kachanov [32] and Y.N. Rabotnov [38].

Considering gradient theories, the stored energy in terms of the strain and damage is here considered as

W (𝑒, 𝛼) =
∫︁

Ω

1
2
𝛾(𝛼)C𝑒:𝑒 + 𝜑(𝛼) +

𝜅

2
|∇𝛼|2 +

𝜀

2
∇(C𝑒):∇𝑒 d𝑥, (5.10)

where 𝜑(·) is an energy of damage which gives rise to an activation threshold for damage evolution and may
also lead to healing (if allowed). The last term is mainly to facilitate the mathematics towards convergence and
existence of a weak solution in such purely elastic materials without involving any viscosity, cf. ([35], Sect. 7.5.3).
This regularization can also control dispersion of elastic waves. More specifically, the 4th-order term resulted in
the momentum-equilibrium equation from the 𝜀-term in (5.10) causes an anomalous dispersion, i.e. waves with
shorter wavelength propagate faster than longer wavelength ones, cf. e.g. ([35], Rem. 6.3.6). The ∇𝛼-term also
facilitates the analysis and controls the internal length-scale of damage profiles.
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Let us consider the “generalized” elasticity tensor C = C independent of 𝑥. As in the previous examples,
𝐸𝑢 = 𝑒(𝑢) and 𝐺 = 0. According (2.3a), the proto-stress Σ = C𝐸𝑢 + 𝐺, denoted by 𝜎, now looks as C𝑒 =: 𝜎; in
damage mechanics, the proto-stress is also called an effective stress with a specific mechanical interpretation,
cf. [38]. In terms of 𝜎, the stored energy is then

Φ(𝜎, 𝛼) =
∫︁

Ω

1
2
𝛾(𝛼)C−1𝜎:𝜎 +

𝜀

2
∇C−1𝜎:∇𝜎 d𝑥 +

∫︁
Ω

𝜑(𝛼) +
𝜅

2
|∇𝛼|2 d𝑥.⏟  ⏞  

=: Φ1(𝛼)

(5.11)

Then Φ′𝜎 = 𝛾(𝛼)C−1𝜎 − div(𝜀∇(C−1𝜎)) and the true stress 𝑆 = C*Φ′𝜎 is then 𝛾(𝛼)𝜎 − div(𝜀∇𝜎) provided C is
constant and symmetric. The damage driving force (energy) is Φ′𝛼(𝜎, 𝛼) = 1

2𝛾′(𝛼)C−1𝜎:𝜎 + 𝜑′(𝛼)− div(𝜅∇𝛼).
When 𝛾′(0) = 0 and 𝜑′(0) ≤ 0, then always 𝛼 ≥ 0 also in the discrete scheme if 𝛼0 ≥ 0.

The other ingredient is the dissipation potential. To comply with the coercivity on 𝒵1 = 𝐿2(Ω) with 𝑝 ≥ 2
as needed in Proposition 4.1, one can consider either

Ψ(𝛼̇) =

{︃∫︀
Ω

𝜀1𝛼̇
2 d𝑥

+∞
or

{︃∫︀
Ω

𝜀1𝛼̇
2 d𝑥 if 𝛼̇ ≤ 0 a.e. on Ω,∫︀

Ω
𝛼̇2/𝜀1 d𝑥 otherwise

(5.12)

with some (presumably small) coefficient 𝜀1 > 0. The former option corresponds to a unidirectional (i.e. irre-
versible) damage not allowing any healing (as used in engineering) while the latter option allows for (presumably
slow) healing as used in geophysical models on large time scales.

Since 𝜎 appears nonlinearly in Φ′𝛼(𝜎, 𝛼), the strong convergence 𝜎𝜏ℎ → 𝜎 in 𝐿2(𝑄; R𝑑×𝑑) is needed. For this,
the strain-gradient term with 𝜀 > 0 is needed and the Aubin–Lions compact embedding theorem is used. This
gives the strong convergence even in the norm of 𝐿1/𝜖(0, 𝑇 ;𝐿2𝑑/(𝑑−2)−𝜖(Ω; R𝑑×𝑑)) for arbitrarily small 𝜖 > 0
provided also 𝜎̇𝜏ℎ is bounded in some norm, which can be shown by using 𝜎̇𝜏ℎ = C𝑒(𝑣𝜏ℎ) and the Green formula

⃦⃦
𝜎̇𝜏ℎ‖𝐿∞(0,𝑇 ;𝐻−1(Ω;R𝑑×𝑑)) = sup

‖̃︀𝑒‖
𝐿1(0,𝑇 ;𝐻1

0(Ω;R𝑑×𝑑))≤1

∫︁ 𝑇

0

∫︁
Ω

𝜎̇𝜏ℎ:̃︀𝑒 d𝑥 d𝑡

= sup
‖̃︀𝑒‖

𝐿1(0,𝑇 ;𝐻1
0(Ω;R𝑑×𝑑))≤1

∫︁ 𝑇

0

∫︁
Ω

C𝑒(𝑣𝜏ℎ):̃︀𝑒 d𝑥 d𝑡

= sup
‖̃︀𝑒‖

𝐿1(0,𝑇 ;𝐻1
0(Ω;R𝑑×𝑑))≤1

−
∫︁ 𝑇

0

∫︁
Ω

𝑣𝜏ℎ·div(C̃︀𝑒) d𝑥 d𝑡 ≤ 𝐶‖𝑣𝜏ℎ‖𝐿∞(0,𝑇 ;𝐿2(Ω;R𝑑))

with 𝐶 depending on |C|. Cf. also the abstract estimation (4.9).
When 𝛾 or 𝜑 are not quadratic but continuously differentiable, one can use the abstract difference quotient

(4.14) defined, in the classical form, as

Φ∘𝑧(Σ, 𝛼, ̃︀𝛼) =

⎧⎨⎩
1
2

𝛾(𝛼)−𝛾(̃︀𝛼)
𝛼−̃︀𝛼 C−1𝜎:𝜎 +

𝜑(𝛼)−𝜑(̃︀𝛼)
𝛼−̃︀𝛼 − 𝜅∆

𝛼+̃︀𝛼
2

where 𝛼 ̸= ̃︀𝛼,

1
2𝛾′(𝛼)C−1𝜎:𝜎 + 𝜑′(𝛼)− 𝜅∆𝛼 where 𝛼 = ̃︀𝛼.

(5.13)

Of course, rigorously, the ∆-operator in (5.13) is to be understood in the weak form when using it in (3.1b).
Due to the gradient 𝜅-term in (5.11), the implicit incremental problem (3.1b) leads to an algebraic problem

with a full matrix, which may substantially slow down the otherwise fast explicit scheme. Like in the previous
model the capillarity, now this gradient theory controls the length-scale of the damage profile and also serves as
a regularization to facilitate mathematical analysis. Sometimes, a nonlocal “fractional” gradient can facilitate
the analysis, too. Then, some wavelet equivalent norm can be considered to accelerate the calculations, cf. also
[3]. As far as the stress-gradient term, it is important that the discretization of the proto-stress in the usual
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implementation of the leap-frog method is continuous piecewise smooth, so that ∇𝜎 has a good sense in the
discretization without need to use higher-order elements. Here we use that the latter relation in (3.1c) is to
be understood in the weak form, namely

∫︀
Ω

𝑆𝑘+1
𝜏ℎ :𝐸̃ℎ d𝑥 = ⟨Φ′Σ(Σ𝑘+1

𝜏ℎ , 𝑧𝑘+1
𝜏ℎ ), C𝐸̃ℎ⟩ for 𝐸̃ℎ = 𝑒ℎ = 𝑒(𝑢̃ℎ), which

means ∫︁
Ω

𝑆𝑘+1
𝜏ℎ :𝐸̃ℎ d𝑥 =

∫︁
Ω

𝛾(𝛼𝑘+1
𝜏ℎ )C−1𝜎𝑘+1:C𝑒ℎ + 𝜖∇C−1𝜎𝑘+1:∇C𝑒ℎ d𝑥

for any 𝑒ℎ from the corresponding finite-dimensional subspace of 𝐻1(Ω; R𝑑×𝑑
sym). Thus we indeed do not need

higher-order elements, and also we do not need to specify explicitly homogeneous boundary conditions in this
boundary-value problem.

The functional setting is ℋ = 𝐿2(Ω; R𝑑), ℰ = 𝒮 = 𝐻1(Ω; R𝑑×𝑑
sym), 𝒵 = 𝐻1(Ω), and 𝒵0 = 𝒵1 = 𝐿2(Ω). Then

𝒰 = 𝐻2(Ω; R𝑑), and 𝐸 = 𝑒(·) is understood as an operator 𝐻2(Ω; R𝑑) → 𝐻1(Ω; R𝑑×𝑑
sym), and C* ∼= C⊤ = C is

understood as an a operator from 𝐻1(Ω; R𝑑×𝑑
sym) to itself.

A particular case of this model is a so-called phase-field fracture, taking as a basic choice

𝛾(𝛼) := 𝜀2/𝜀2
0+𝛼2, 𝜑(𝛼) := gc(1−𝛼)2/𝜀, and 𝜅 := 𝜀gc (5.14)

with gc denoting the energy of fracture and with 𝜀 controlling a “characteristic” width of the phase-field fracture.
The physical dimension of 𝜀0 as well as of 𝜀 is m (meters) while the physical dimension of gc is J/m2. This
is known as the so-called Ambrosio–Tortorelli functional [2]. In the dynamical context, only various implicit
discretization schemes seems to be used so far, cf. [15, 29, 42, 46]. There are a lot of improvements of this basic
model, approximating a mode-sensitive fracture, or 𝜀-insensitive models (with 𝜀 referring to (5.14)), or ductile
fracture, cf. [40]. This last variant combines this model with the plasticity as in Section 5.1.

As mentioned above in this case we have anomalous dispersion, i.e. the high frequencies propagate faster, cf.
e.g. ([35], Rem. 6.3.6). The resulting CFL condition is a combination of the usual CFL (1.4) for the 2nd-order
elastodynamic model with the CFL condition for 4th-order plate as in [10]. More specifically, the speed of
elastic waves in such combined model is like 𝑣 ∼ 𝑣0

√︀
1+𝜀/𝜆2 with 𝑣0 the speed in the elastodynamic case (i.e.

𝜀 = 0) and with 𝜆 the wavelength, cf. ([35], Rem. 6.3.6) for a one-dimensional analysis. For particular space
discretisations, implementable wavelengths 𝜆 are bounded from below just by ℎ. This yields to a CFL condition
of the type

𝜏 ≤ 𝐶
ℎ√︀

1+𝜀/ℎ2
· (5.15)

Asymptotically, for ℎ → 0 we can see that 𝜏 is to be small as O(𝜀−1/2ℎ2). For fixed 𝜀 > 0, this is actually
very restrictive like in the explicit discretization of the heat equation where it practically prevents from efficient
usage of explicit discretizations. However, here the role of 𝜀 is primarily to facilitate rigorous existence of weak
solutions of this model and can be assumed to be small. Then the influence of this 4th-order term and this
restrictive asymptotics is presumably small, and the usual CFL condition resulting from (5.15) with 𝜀 = 0 will
dominate except on very fine space discretizations.

Let us eventually remark that better asymptotics of the type 𝜏 ∼ O(𝜀−1/2ℎ1+𝛿) for ℎ → 0 can be obtained
by replacing the 4th-order term by a nonlocal term of the order 2(1+𝛿) for some 𝛿 > 0 small, which would even
allow for more general dispersion [30] and simultaneously make the analytically desired regularization of the
damage model, cf. ([35], Rems. 6.3.7 and 7.5.29).
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Composites. Imperial College Press (2017).
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milieux fissurés. Ph.D. thesis, Univ. Paris IX Dauphine (1999).

[51] J. Virieux, SH-wave propagation in heterogeneous media: Velocity-stress finite-difference method. Geophysics 49 (1984)
1933–1957.

https://arxiv.org/abs/1903.11654

	Introduction
	Internal variables and their dissipative evolution.
	A three-step staggered time discretization
	Numerical stability and convergence
	Particular examples
	Plasticity or creep
	Poroelasticity in isotropic materials
	Damage

	References

