Analysis of a stabilized finite element approximation for a linearized logarithmic reformulation of the viscoelastic flow problem
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 55 (2021), pp. S279-S300

In this paper we present the numerical analysis of a finite element method for a linearized viscoelastic flow problem. In particular, we analyze a linearization of the logarithmic reformulation of the problem, which in particular should be able to produce results for Weissenberg numbers higher than the standard one. In order to be able to use the same interpolation for all the unknowns (velocity, pressure and logarithm of the conformation tensor), we employ a stabilized finite element formulation based on the Variational Multi-Scale concept. The study of the linearized problem already serves to show why the logarithmic reformulation performs better than the standard one for high Weissenberg numbers; this is reflected in the stability and error estimates that we provide in this paper.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1051/m2an/2020038
Classification : 65N12, 76A10, 76M10
Keywords: Stabilized finite element methods, viscoelastic fluids, Oldroyd-B, logarithm reformulation, high Weissenberg number problem
@article{M2AN_2021__55_S1_S279_0,
     author = {Codina, Ramon and Moreno, Laura},
     title = {Analysis of a stabilized finite element approximation for a linearized logarithmic reformulation of the viscoelastic flow problem},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {S279--S300},
     year = {2021},
     publisher = {EDP-Sciences},
     volume = {55},
     number = {Suppl\'ement},
     doi = {10.1051/m2an/2020038},
     mrnumber = {4221325},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/m2an/2020038/}
}
TY  - JOUR
AU  - Codina, Ramon
AU  - Moreno, Laura
TI  - Analysis of a stabilized finite element approximation for a linearized logarithmic reformulation of the viscoelastic flow problem
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2021
SP  - S279
EP  - S300
VL  - 55
IS  - Supplément
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/m2an/2020038/
DO  - 10.1051/m2an/2020038
LA  - en
ID  - M2AN_2021__55_S1_S279_0
ER  - 
%0 Journal Article
%A Codina, Ramon
%A Moreno, Laura
%T Analysis of a stabilized finite element approximation for a linearized logarithmic reformulation of the viscoelastic flow problem
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2021
%P S279-S300
%V 55
%N Supplément
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/m2an/2020038/
%R 10.1051/m2an/2020038
%G en
%F M2AN_2021__55_S1_S279_0
Codina, Ramon; Moreno, Laura. Analysis of a stabilized finite element approximation for a linearized logarithmic reformulation of the viscoelastic flow problem. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 55 (2021), pp. S279-S300. doi: 10.1051/m2an/2020038

J. Baranger and D. Sandri, Finite element approximation of viscoelastic fluid flow: existence of approximate solutions and error bounds. Numer. Math. 63 (1992) 13–27. | MR | Zbl | DOI

G. Barrenechea, E. Castillo and R. Codina, Time-dependent semi-discrete analysis of the viscoelastic fluid flow problem using a variational multiscale stabilized formulation. IMA J. Numer. Anal. 39 (2019) 792–819. | MR | DOI

M. A. Behr, L. P. Franca and T. E. Tezduyar, Stabilized finite element methods for the velocity-pressure-stress formulation of incompressible flows. Comput. Methods Appl. Mech. Eng. 104 (1993) 31–48. | MR | Zbl | DOI

F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods. Springer Science & Business Media (1991). | MR | Zbl | DOI

E. Castillo and R. Codina, Variational multi-scale stabilized formulations for the stationary three-field incompressible viscoelastic flow problem. Comput. Methods Appl. Mech. Eng. 279 (2014) 579–605. | MR | DOI

E. Castillo and R. Codina, Numerical analysis of a stabilized finite element approximation for the three-field linearized viscoelastic fluid problem using arbitrary interpolations. ESAIM: M2AN 51 (2017) 1407–1427. | MR | Numdam | Zbl

E. Castillo and R. Codina, Finite element approximation of the viscoelastic flow problem: a non-residual based stabilized formulation. Comput. Fluids 142 (2017) 72–78. | MR | DOI

R. Codina, Stabilization of incompressibility and convection through orthogonal sub-scales in finite element methods. Comput. Methods Appl. Mech. Eng. 190 (2000) 1579–1599. | MR | Zbl | DOI

R. Codina, Stabilized finite element approximation of transient incompressible flows using orthogonal subscales. Comput. Methods Appl. Mech. Eng. 191 (2002) 4295–4321. | MR | Zbl | DOI

R. Codina, Analysis of a stabilized finite element approximation of the Oseen equations using orthogonal subscales. Appl. Numer. Math. 58 (2008) 264–283. | MR | Zbl | DOI

R. Codina, Finite element approximation of the three-field formulation of the Stokes problem using arbitrary interpolations. SIAM J. Numer. Anal. 47 (2009) 699–718. | MR | Zbl | DOI

R. Codina, S. Badia, J. Baiges and J. Principe, Variational multiscale methods in computational fluid dynamics, edited by E. Stein and, R. Borst, T. J. R. Hughes . In: Encyclopedia of Computational Mechanics, John Wiley & Sons Ltd. (2017), 1–28.

V. J. Ervin and W. W. Miles, Approximation of time-dependent viscoelastic fluid flow: SUPG approximation. SIAM J. Numer. Anal. 41 (2003) 457–486. | MR | Zbl | DOI

R. Fattal and R. Kupferman, Constitutive laws for the matrix-logarithm of the conformation tensor. J. Non-Newtonian Fluid Mech. 123 (2004) 281–285. | Zbl | DOI

R. Fattal and R. Kupferman, Time-dependent simulation of viscoelastic flows at high weissenberg number using the log-conformation representation. J. Non-Newtonian Fluid Mech. 126 (2005) 23–37. | Zbl | DOI

E. Fernández-Cara, F. Guillén and R. R. Ortega, Mathematical modeling and analysis of viscoelastic fluids of the Oldroyd kind (2002). | MR | Zbl

M. Fortin and R. Pierre, On the convergence of the mixed method of crochet and marchal for viscoelastic flows. Comput. Methods Appl. Mech. Eng. 73 (1989) 341–350. | MR | Zbl | DOI

C. Guillopé and J.-C. Saut, Global existence and one-dimensional nonlinear stability of shearing motions of viscoelastic fluids of Oldroyd type. ESAIM: M2AN 24 (1990) 369–401. | MR | Zbl | Numdam | DOI

M. Hieber, Y. Naito and Y. Shibata, Global existence results for Oldroyd-B fluids in exterior domains. J. Differ. Equ. 252 (2012) 2617–2629. | MR | Zbl | DOI

T. J. R. Hughes, G. R. Feijóo, L. Mazzei and J. Quincy, The variational multiscale method. A paradigm for computational mechanics. Comput. Methods Appl. Mech. Eng. 166 (1998) 3–24. | MR | Zbl | DOI

M. A. Hulsen, A. P. G. Van Heel and B. H. A. A. Van Den Brule, Simulation of viscoelastic flows using Brownian configuration fields. J. Non-Newtonian Fluid Mech. 70 (1997) 79–101. | DOI

J. Kwack and A. Masud, A three-field formulation for incompressible viscoelastic fluids. Int. J. Eng. Sci. 48 (2010) 1413–1432. | MR | Zbl | DOI

J. Kwack, A. Masud and K. R. Rajagopal, Stabilized mixed three-field formulation for a generalized incompressible Oldroyd-B model. Int. J. Numer. Methods Fluids 83 (2017) 704–734. | MR | DOI

Y. Kwon, Recent results on the analysis of viscoelastic constitutive equations. Korea-Aust. Rheol. J. 14 (2002) 33–45.

A. I. Leonov, Analysis of simple constitutive equations for viscoelastic liquids. J. Non-Newtonian Fluid Mech. 42 (1992) 323–350. | Zbl | DOI

M. Lukáčová-Medvidová, H. Mizerová, B. She and J. Stebel, Error analysis of finite element and finite volume methods for some viscoelastic fluids. J. Numer. Math. 24 (2016) 105–123. | MR

J. M. Marchal and M. J. Crochet, A new mixed finite element for calculating viscoelastic flow. J. Non-Newtonian Fluid Mech. 26 (1987) 77–114. | Zbl | DOI

L. Moreno, R. Codina, J. Baiges and E. Castillo, Logarithmic conformation reformulation in viscoelastic flow problems approximated by a VMS-type stabilized finite element formulation. Comput. Methods Appl. Mech. Eng. 354 (2019) 706–731. | MR | DOI

R. G. Owens and T. N. Phillips, Computational Rheology. World Scientific 14 (2002). | MR | Zbl | DOI

M. Picasso and J. Rappaz, Existence, a priori and a posteriori error estimates for a nonlinear three-field problem arising from Oldroyd-B viscoelastic flows. ESAIM: M2AN 35 (2001) 879–897. | MR | Zbl | Numdam | DOI

M. Renardy, Mathematical analysis of viscoelastic flows. Annu. Rev. Fluid Mech. 21 (1989) 21–34. | MR | Zbl | DOI

V. Ruas, Une méthode mixte contrainte-déplacement-pression pour la résolution de problemes de viscoélasticité incompressible en déformations planes. C. R. Acad. Sci. Sér. 2: Méc. Phys. Chim. Sci. Univ. Sci. Terre 301 (1985) 1171–1174. | MR | Zbl

P. Saramito, On a modified non-singular log-conformation formulation for Johnson-Segalman viscoelastic fluids. J. Non-Newtonian Fluid Mech. 211 (2014) 16–30. | DOI

Cité par Sources :