In this paper we present the numerical analysis of a finite element method for a linearized viscoelastic flow problem. In particular, we analyze a linearization of the logarithmic reformulation of the problem, which in particular should be able to produce results for Weissenberg numbers higher than the standard one. In order to be able to use the same interpolation for all the unknowns (velocity, pressure and logarithm of the conformation tensor), we employ a stabilized finite element formulation based on the Variational Multi-Scale concept. The study of the linearized problem already serves to show why the logarithmic reformulation performs better than the standard one for high Weissenberg numbers; this is reflected in the stability and error estimates that we provide in this paper.
Accepté le :
Publié le :
DOI : 10.1051/m2an/2020038
Keywords: Stabilized finite element methods, viscoelastic fluids, Oldroyd-B, logarithm reformulation, high Weissenberg number problem
@article{M2AN_2021__55_S1_S279_0,
author = {Codina, Ramon and Moreno, Laura},
title = {Analysis of a stabilized finite element approximation for a linearized logarithmic reformulation of the viscoelastic flow problem},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
pages = {S279--S300},
year = {2021},
publisher = {EDP-Sciences},
volume = {55},
number = {Suppl\'ement},
doi = {10.1051/m2an/2020038},
mrnumber = {4221325},
language = {en},
url = {https://www.numdam.org/articles/10.1051/m2an/2020038/}
}
TY - JOUR AU - Codina, Ramon AU - Moreno, Laura TI - Analysis of a stabilized finite element approximation for a linearized logarithmic reformulation of the viscoelastic flow problem JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2021 SP - S279 EP - S300 VL - 55 IS - Supplément PB - EDP-Sciences UR - https://www.numdam.org/articles/10.1051/m2an/2020038/ DO - 10.1051/m2an/2020038 LA - en ID - M2AN_2021__55_S1_S279_0 ER -
%0 Journal Article %A Codina, Ramon %A Moreno, Laura %T Analysis of a stabilized finite element approximation for a linearized logarithmic reformulation of the viscoelastic flow problem %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2021 %P S279-S300 %V 55 %N Supplément %I EDP-Sciences %U https://www.numdam.org/articles/10.1051/m2an/2020038/ %R 10.1051/m2an/2020038 %G en %F M2AN_2021__55_S1_S279_0
Codina, Ramon; Moreno, Laura. Analysis of a stabilized finite element approximation for a linearized logarithmic reformulation of the viscoelastic flow problem. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 55 (2021), pp. S279-S300. doi: 10.1051/m2an/2020038
and , Finite element approximation of viscoelastic fluid flow: existence of approximate solutions and error bounds. Numer. Math. 63 (1992) 13–27. | MR | Zbl | DOI
, and , Time-dependent semi-discrete analysis of the viscoelastic fluid flow problem using a variational multiscale stabilized formulation. IMA J. Numer. Anal. 39 (2019) 792–819. | MR | DOI
, and , Stabilized finite element methods for the velocity-pressure-stress formulation of incompressible flows. Comput. Methods Appl. Mech. Eng. 104 (1993) 31–48. | MR | Zbl | DOI
and , Mixed and Hybrid Finite Element Methods. Springer Science & Business Media (1991). | MR | Zbl | DOI
and , Variational multi-scale stabilized formulations for the stationary three-field incompressible viscoelastic flow problem. Comput. Methods Appl. Mech. Eng. 279 (2014) 579–605. | MR | DOI
and , Numerical analysis of a stabilized finite element approximation for the three-field linearized viscoelastic fluid problem using arbitrary interpolations. ESAIM: M2AN 51 (2017) 1407–1427. | MR | Numdam | Zbl
and , Finite element approximation of the viscoelastic flow problem: a non-residual based stabilized formulation. Comput. Fluids 142 (2017) 72–78. | MR | DOI
, Stabilization of incompressibility and convection through orthogonal sub-scales in finite element methods. Comput. Methods Appl. Mech. Eng. 190 (2000) 1579–1599. | MR | Zbl | DOI
, Stabilized finite element approximation of transient incompressible flows using orthogonal subscales. Comput. Methods Appl. Mech. Eng. 191 (2002) 4295–4321. | MR | Zbl | DOI
, Analysis of a stabilized finite element approximation of the Oseen equations using orthogonal subscales. Appl. Numer. Math. 58 (2008) 264–283. | MR | Zbl | DOI
, Finite element approximation of the three-field formulation of the Stokes problem using arbitrary interpolations. SIAM J. Numer. Anal. 47 (2009) 699–718. | MR | Zbl | DOI
, , and , Variational multiscale methods in computational fluid dynamics, edited by and, , . In: Encyclopedia of Computational Mechanics, John Wiley & Sons Ltd. (2017), 1–28.
and , Approximation of time-dependent viscoelastic fluid flow: SUPG approximation. SIAM J. Numer. Anal. 41 (2003) 457–486. | MR | Zbl | DOI
and , Constitutive laws for the matrix-logarithm of the conformation tensor. J. Non-Newtonian Fluid Mech. 123 (2004) 281–285. | Zbl | DOI
and , Time-dependent simulation of viscoelastic flows at high weissenberg number using the log-conformation representation. J. Non-Newtonian Fluid Mech. 126 (2005) 23–37. | Zbl | DOI
, and , Mathematical modeling and analysis of viscoelastic fluids of the Oldroyd kind (2002). | MR | Zbl
and , On the convergence of the mixed method of crochet and marchal for viscoelastic flows. Comput. Methods Appl. Mech. Eng. 73 (1989) 341–350. | MR | Zbl | DOI
and , Global existence and one-dimensional nonlinear stability of shearing motions of viscoelastic fluids of Oldroyd type. ESAIM: M2AN 24 (1990) 369–401. | MR | Zbl | Numdam | DOI
, and , Global existence results for Oldroyd-B fluids in exterior domains. J. Differ. Equ. 252 (2012) 2617–2629. | MR | Zbl | DOI
, , and , The variational multiscale method. A paradigm for computational mechanics. Comput. Methods Appl. Mech. Eng. 166 (1998) 3–24. | MR | Zbl | DOI
, and , Simulation of viscoelastic flows using Brownian configuration fields. J. Non-Newtonian Fluid Mech. 70 (1997) 79–101. | DOI
and , A three-field formulation for incompressible viscoelastic fluids. Int. J. Eng. Sci. 48 (2010) 1413–1432. | MR | Zbl | DOI
, and , Stabilized mixed three-field formulation for a generalized incompressible Oldroyd-B model. Int. J. Numer. Methods Fluids 83 (2017) 704–734. | MR | DOI
, Recent results on the analysis of viscoelastic constitutive equations. Korea-Aust. Rheol. J. 14 (2002) 33–45.
, Analysis of simple constitutive equations for viscoelastic liquids. J. Non-Newtonian Fluid Mech. 42 (1992) 323–350. | Zbl | DOI
, , and , Error analysis of finite element and finite volume methods for some viscoelastic fluids. J. Numer. Math. 24 (2016) 105–123. | MR
and , A new mixed finite element for calculating viscoelastic flow. J. Non-Newtonian Fluid Mech. 26 (1987) 77–114. | Zbl | DOI
, , and , Logarithmic conformation reformulation in viscoelastic flow problems approximated by a VMS-type stabilized finite element formulation. Comput. Methods Appl. Mech. Eng. 354 (2019) 706–731. | MR | DOI
and , Computational Rheology. World Scientific 14 (2002). | MR | Zbl | DOI
and , Existence, a priori and a posteriori error estimates for a nonlinear three-field problem arising from Oldroyd-B viscoelastic flows. ESAIM: M2AN 35 (2001) 879–897. | MR | Zbl | Numdam | DOI
, Mathematical analysis of viscoelastic flows. Annu. Rev. Fluid Mech. 21 (1989) 21–34. | MR | Zbl | DOI
, Une méthode mixte contrainte-déplacement-pression pour la résolution de problemes de viscoélasticité incompressible en déformations planes. C. R. Acad. Sci. Sér. 2: Méc. Phys. Chim. Sci. Univ. Sci. Terre 301 (1985) 1171–1174. | MR | Zbl
, On a modified non-singular log-conformation formulation for Johnson-Segalman viscoelastic fluids. J. Non-Newtonian Fluid Mech. 211 (2014) 16–30. | DOI
Cité par Sources :





