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ANALYSIS OF A STABILIZED FINITE ELEMENT APPROXIMATION FOR A
LINEARIZED LOGARITHMIC REFORMULATION OF THE VISCOELASTIC

FLOW PROBLEM

Ramon Codina1,2,* and Laura Moreno1

Abstract. In this paper we present the numerical analysis of a finite element method for a linearized
viscoelastic flow problem. In particular, we analyze a linearization of the logarithmic reformulation of
the problem, which in particular should be able to produce results for Weissenberg numbers higher
than the standard one. In order to be able to use the same interpolation for all the unknowns (velocity,
pressure and logarithm of the conformation tensor), we employ a stabilized finite element formulation
based on the Variational Multi-Scale concept. The study of the linearized problem already serves to
show why the logarithmic reformulation performs better than the standard one for high Weissenberg
numbers; this is reflected in the stability and error estimates that we provide in this paper.
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1. Introduction

Computing viscoelastic fluid flows when the fluid presents a dominant elastic behavior is one of the biggest
challenges of the computational rheology field nowadays. The equations that model the viscoelastic fluid flow
problem present several instabilities that have been studied for example in [16, 31]. These instabilities become
important when elasticity becomes dominant, in other words, when the Weissenberg number is high. This dimen-
sionless number is defined by We = 𝜆𝑢/𝐿, where 𝜆 is the characteristic relaxation time, 𝑢 is the characteristic
velocity of the flow and 𝐿 the characteristic length of the domain. Solving the viscoelastic fluid flow problem for
high Weissenberg numbers is known as the High Weissenberg Number Problem (HWNP) [29], and it is usually
described as a numerical phenomenon in which the iterative schemes breakdown even for moderate Weissenberg
numbers. The numerical instability was studied by Fattal and Kupferman [14], who explained that it is present
in the constitutive models and the standard numerical methods. Constitutive equations could present also other
type of instabilities from a mathematical point of view, referred to as constitutive instabilities [24, 25]. These
can be classified in two: the Hadamard instability, which is a consequence of the non-linear fast response of the
constitutive equation, and the dissipative instability, related to the dissipative behavior of viscoelastic models.
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Weissenberg number problem.

1 Universitat Politècnica de Catalunya, Jordi Girona 1-3, Edifici C1, Barcelona 08034, Spain.
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However, the reasons for the HWNP are different: one is the loss of positive-definiteness of the conformation
tensor, which is an internal variable that must be positive-definite to be physically admissible [14, 21], and the
second is the appearance of regions with large strain gradients.

From the numerical point of view, Fattal and Kupferman [14, 15] focussed the origin of the problem in
the inappropriate approximations to represent the stress tensor, standing out the necessity of preserving the
positivity of the conformation tensor. By following these ideas the logarithmic conformation reformulation was
proposed in [14] as a formulation of the equations which overcomes the instability and linearizes the exponential
stress profiles near the stress singularities. The formulation treats the exponential growth of the elastic stresses,
allowing to extend the usual range of Weissenberg numbers which can be considered to simulate viscoelastic
fluid flows. In this paper we will use a slightly different scaling of the logarithmic reformulation. In contrast
with the original one, our change of variables will be non-singular when the Weissenberg number is close to zero
and the flow is Newtonian [28]; a similar idea was presented in [33].

In addition to the instabilities mentioned, viscoelastic fluid flows present some compatibility restrictions
when the Galerkin finite element (FE) approximation is undertaken. First, velocity and pressure FE spaces
must satisfy the well known inf-sup condition for incompressible flows [4] and, secondly, there is another inf-sup
condition that needs to be satisfied between stresses and velocities [32]. This is studied for example for the
Navier–Stokes problem in [3, 11]; the same requirements are met in the viscoelastic case. Stable interpolations
are proposed in [27], whose analysis can be found in [17]. At the continuous level, these inf-sup conditions are
satisfied and the problem can be shown to have a unique solution in the slow viscoelastic case [16, 31]; see also
[18,19] for some results concerning strong solutions.

Referring to the FE approximation, there are several works that analyze the stationary Oldroyd-B problem
and present optimal error estimates. For instance, Baranger and Sandri [1] is one of the first papers that shows
the existence of FE approximations assuming that the continuous problem admits sufficiently smooth and
sufficiently small solutions; bounds for the error are also provided. In [30], the authors establish the existence
and a priori error estimates using the EVSS (Elastic Viscous Split Stress) method, aimed to circumvent the
inf-sup condition between velocities and stresses. More recently, in [26] the authors present an error analysis
of a particular Oldroyd-B model with the limiting Weissenberg number going to infinity, assuming a suitable
regularity of the exact solution, for FE and finite volume methods. The time-dependent Oldroyd-B problem has
also been studied, for example in [13], using the SUPG method, aimed to circumvent convection instabilities.

In this work, the log-conformation reformulation is applied together with a stabilized FE formulation based
on the Variational Multi-Scale (VMS) method which aims at circumventing the inf-sup conditions and dealing
with convection dominated flows at the same time. The VMS concept was presented first by Hughes et al. [20]
for the convection-diffusion-reaction problem. These ideas were applied and extended in [8–11] for the Navier–
Stokes problem and the three-field Stokes problem considering the space of the sub-grid scales orthogonal to
the FE space. The viscoelastic fluid flow problem was stabilized following a VMS framework in [6,7] and in the
logarithmic formulation the method was tested in [28] for some numerical examples in which the Weissenberg
number is relevant. This type of stabilization is also applied in [22,23].

The present paper can be considered a continuation of the work presented in [6,11]. In [11], a VMS formulation
for the three-field Stokes problem was presented and analyzed. The same approach was followed in [6], in this
case applied to a linearized version of the stationary standard formulation of the viscoelastic flow problem, using
the Oldroyd-B model. The linearization is based on considering given the advection velocity and the velocity
gradient in the rotational terms of the constitutive equation. The purpose of this paper is to extend this analysis
to the logarithmic reformulation of the viscoelastic problem. This analysis will serve to explain its improved
performance with respect to the standard formulation when the Weissenberg number is high. This would be
difficult to observe in the full nonlinear problem, since conditions to ensure existence of solutions and their finite
element approximation pose stringent requirements on the Reynolds and Weissenberg numbers of the problem,
even in the time dependent case; for the standard formulation and using a similar approach as the one we follow
here, this analysis can be found in [2].
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This paper is organized as follows. In Section 2, the logarithmic formulation is described, starting from the
standard viscoelastic Oldoryd-B fluid flow equations; Section 3 presents the FE method employed, based on
the VMS approach. In Section 4, the numerical analysis is developed; in particular, in Section 4.2 stability and
convergence are proved for a mesh dependent norm, while in Section 4.3 results are obtained for natural norms.
Finally, conclusions are drawn in Section 5.

2. The modified log-conformation formulation problem

2.1. Standard formulation for the viscoelastic flow problem

Let us start presenting the standard equations associated to the viscoelastic flow problem. Let us consider a
viscoelastic fluid moving in a domain Ω of R𝑑 (𝑑 = 2 or 3) and let 𝜕Ω be the boundary. Assuming the flow to
be incompressible and isothermal, the equations of the linearized problem we consider are:

𝜌𝑎 · ∇𝑢−∇ ·T +∇𝑝 = 𝑓 in Ω, (2.1)
∇ · 𝑢 = 0 in Ω, (2.2)

where 𝑎 is the advection velocity, 𝜌 denotes the constant density, 𝑝 : Ω → R is the pressure field, 𝑢 : Ω → R𝑑
is the velocity field and ∇𝑢 its gradient, with Cartesian components ∇𝑢|𝑖𝑗 = 𝜕𝑖𝑢𝑗 , 𝑖, 𝑗 = 1, . . . , 𝑑, 𝜕𝑖 being the
derivative with respect to the 𝑖th Cartesian coordinate, 𝑓 : Ω → R𝑑 is the force field and T : Ω → R𝑑 ⊗ R𝑑 is
the deviatoric extra stress tensor. In general, T is defined in terms of a viscous and a viscoelastic contribution
as

T = 2𝜂𝑒∇s𝑢+ 𝜎,

where 𝜂𝑒 represents the effective viscosity (or solvent viscosity), ∇s𝑢 is the symmetrical part of the velocity
gradient and 𝜎 is the viscoelastic or simply elastic stress tensor.

Finally, the constitutive equation for the viscoelastic stress tensor must be defined to close the problem. Even
if there is a wide range of different models, we consider the Oldroyd-B model in this work, which is the model
of a Newtonian stress supplemented with an extra-stress that satisfies the upper-convected Maxwell equation.
In the linearized version we consider it reads as

1
2𝜂𝑝

𝜎 −∇s𝑢+
𝜆

2𝜂𝑝

(︀
𝑎 · ∇𝜎 − 𝜎 · ∇𝑎− (∇𝑎)𝑇 · 𝜎

)︀
= 0 in Ω, (2.3)

where 𝜆 is the relaxation time and 𝜂𝑝 represents the polymeric viscosity. Each term of the equation has a particu-
lar meaning:∇s𝑢 is the source, 𝜆

2𝜂𝑝
𝑎·∇𝜎 represents the linearized convective term and 𝜆

2𝜂𝑝

(︀
𝜎 · ∇𝑎+ (∇𝑎𝑇 ) · 𝜎

)︀
are the linearized rotational terms. We write the polymeric and the effective viscosity in function of the total
viscosity 𝜂0; for that, an additional parameter 𝛽 ∈ [0, 1] is introduced, so that 𝜂𝑒 = 𝛽𝜂0 and 𝜂𝑝 = (1− 𝛽)𝜂0.

Calling 𝑈 = [𝑢, 𝑝,𝜎], 𝐹 = [𝑓 , 0,0] and defining

ℒst(𝑈) :=

⎛⎜⎜⎝
−∇ · 𝜎 − 2𝜂𝑒∇ · (∇s𝑢) + 𝜌𝑎 · ∇𝑢+∇𝑝

∇ · 𝑢
1

2𝜂𝑝
𝜎 −∇s𝑢+

𝜆

2𝜂𝑝

(︀
𝑎 · ∇𝜎 − 𝜎 · ∇𝑎− (∇𝑎)𝑇 · 𝜎

)︀
⎞⎟⎟⎠ , (2.4)

we may write (2.1)–(2.3) as
ℒst(𝑈) = 𝐹 . (2.5)

The simplest boundary condition 𝑢 = 0 on 𝜕Ω will be considered throughout.
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2.2. The log-conformation reformulation

The log-conformation reformulation basically consists of a change of variables in terms of the matrix-logarithm
of the conformation tensor 𝜏 , defined from the expression

𝜎 =
𝜂𝑝
𝜆

(𝜏 − 𝐼).

The conformation tensor is replaced by a new variable 𝜓 = log(𝜏 ), which can be calculated through an eigenvalue
computation that rotates the 𝜏 tensor into its main principle axes and can be expressed as 𝜓 = 𝑅𝜏 log(Λ)𝑅𝑇

𝜏

because 𝜏 is a symmetric positive definite tensor and therefore it can always be diagonalized. In the expression
introduced, Λ is a diagonal matrix with the eigenvalues of 𝜏 , and𝑅𝜏 is the orthogonal matrix of the eigenvectors
of 𝜏 . However, we have considered a modification when the conformation tensor is defined, with the aim of
allowing 𝜆 = 0, i.e., the Newtonian behavior. To this end, we introduce a modified relaxation-time parameter
𝜆0(𝜆), which can be defined as 𝜆0 = max{𝑘𝜆, 𝜆0,min}, 𝑘 > 0 being a constant and 𝜆0,min a given threshold. So,
if 𝑘 = 1 and 𝜆0,min = 0, the original change of variables proposed in [14] is recovered. It is worth to remark
that in the numerical experiments we have found useful to take 𝑘 small, so that 𝜆0 < 𝜆; this has allowed us to
obtain converged solutions that we have not been able to get for 𝑘 = 1; see [28].

Thus, we compute the modified conformation tensor, still denoted by 𝜏 , from the expression

𝜎 =
𝜂𝑝
𝜆0

(𝜏 − 𝐼).

Again, the conformation tensor 𝜏 must be written as 𝜏 = exp(𝜓) in the standard viscoelastic formulation
detailed above (2.1)–(2.3).

To motivate the linearized problem to be analyzed, let us consider a Newton–Raphson linearization. Assume
𝜓 is the result obtained from a certain iteration and we need to compute the correction 𝛿𝜓 = 𝜓 − 𝜓. If this
correction is small, we may approximate

exp(𝜓) = exp(𝜓) · exp(𝛿𝜓) ≈ exp(𝜓) · (𝐼 + 𝛿𝜓) = exp(𝜓) ·𝜓 + exp(𝜓) · (𝐼 −𝜓). (2.6)

Since we consider exp(𝜓̂) and 𝜓̂ known, we can denote these tensors as 𝐸 = exp(𝜓̂) and 𝑆 = 𝜓, respectively,
and introduce 𝑅 = 𝐸 ·𝑆 −𝐸. The linearized equations of the log-conformation formulation are now expressed
as follows:

−𝜂0(1− 𝛽)
𝜆0

∇ · (𝐸 ·𝜓 −𝑅)− 2𝛽𝜂0∇ · (∇s𝑢) + 𝜌𝑎 · ∇𝑢+∇𝑝 = 𝑓 , (2.7)

∇ · 𝑢 = 0, (2.8)
1

2𝜆0
(𝐸 ·𝜓 −𝑅− 𝐼)−∇s𝑢

+
𝜆

2𝜆0

(︀
𝑎 · ∇ (𝐸 ·𝜓 −𝑅)− (𝐸 ·𝜓 −𝑅) · ∇𝑎− (∇𝑎)𝑇 · (𝐸 ·𝜓 −𝑅) + 2∇s𝑢

)︀
= 0, (2.9)

where the unknowns are the velocity, the pressure, and tensor 𝜓. Note the presence of the last term 2∇s𝑢, which
will have a crucial role in the dependence of the error estimate to be obtained with the Weissenberg number.

Let us introduce some notation, useful in the next subsections. Calling now 𝑈 = [𝑢, 𝑝,𝜓] and defining

ℒ(𝑈) :=

⎛⎜⎜⎜⎝
− 𝜂𝑝

𝜆0
∇ · (𝐸 ·𝜓)− 2𝛽𝜂0∇ · (∇s𝑢) + 𝜌𝑎 · ∇𝑢+∇𝑝

∇ · 𝑢
1

2𝜆0
𝐸 ·𝜓 −∇s𝑢+

𝜆

2𝜆0
(𝑎 · ∇ (𝐸 ·𝜓) − (𝐸 ·𝜓) · ∇𝑎− (∇𝑎)𝑇 · (𝐸 ·𝜓) + 2∇s𝑢

)︀
⎞⎟⎟⎟⎠ , (2.10)



ANALYSIS OF A STABILIZED FINITE ELEMENT APPROXIMATION S283

𝐹 :=

⎛⎜⎜⎜⎜⎝
𝑓 − 𝜂𝑝

𝜆0
∇ ·𝑅

0
1

2𝜆0
(𝐼 +𝑅) +

𝜆

2𝜆0
(𝑎 · ∇𝑅 −𝑅 · ∇𝑎− (∇𝑎)𝑇 ·𝑅

)︀
⎞⎟⎟⎟⎟⎠ =:

⎛⎝ 𝑓𝑢0
𝑓𝜓

⎞⎠ , (2.11)

we may write (2.7)–(2.9) as
ℒ(𝑈) = 𝐹 , (2.12)

which again needs to be supplied with the boundary condition 𝑢 = 0 on 𝜕Ω.

2.3. Variational formulation

In order to write the weak form of the problem, let us introduce some notation. The space of square integrable
functions in a domain 𝜔 is denoted by 𝐿2(𝜔), and the space of functions whose distributional derivatives of order
up to 𝑚 ≥ 0 (integer) belong to 𝐿2(𝜔) is denoted by 𝐻𝑚(𝜔). Essentially bounded functions in 𝜔 are denoted
by 𝐿∞(𝜔).

The space 𝐻1
0 (𝜔) is made up of functions in 𝐻1(𝜔) vanishing on 𝜕𝜔. The topological dual of 𝐻1

0 (𝜔) is denoted
by 𝐻−1(Ω), the duality pairing being ⟨·, ·⟩. The 𝐿2 inner product in 𝜔 (for scalars, vectors and tensors) is denoted
by (·, ·)𝜔 and the integral over 𝜔 of the product of two general functions is written as ⟨·, ·⟩𝜔, the subscript being
omitted when 𝜔 = Ω. The norm in a space 𝑋 is denoted by ‖ · ‖𝑋 , except when 𝑋 = 𝐿2(Ω), case in which the
subscript is omitted.

Using this notation, the velocity and pressure spaces for the continuous problem are 𝒱 = 𝐻1
0 (Ω)𝑑 and

𝒬 = 𝐿2(Ω)/R, and the space for the tensor 𝜓 is denoted by ϒ ⊂ 𝐿2(Ω)𝑑×𝑑, with appropriate regularity to make
the following weak form well defined. This weak form consists in finding 𝑈 = [𝑢, 𝑝,𝜓] ∈ 𝒳 := 𝒱 ×𝒬×ϒ such
that

𝜂𝑝
𝜆0

(𝐸 ·𝜓,∇s𝑣) + 2(𝛽𝜂0∇s𝑢,∇s𝑣) + ⟨𝜌𝑎 · ∇𝑢,𝑣⟩ − (𝑝,∇ · 𝑣) = ⟨𝑓 ,𝑣⟩+
𝜂𝑝
𝜆0

(𝑅,∇s𝑣), (2.13)

(𝑞,∇ · 𝑢) = 0, (2.14)
1

2𝜆0
(𝐸 ·𝜓,𝜒)− (∇s𝑢,𝜒) +

𝜆

2𝜆0
(𝑎 · ∇ (𝐸 ·𝜓) ,𝜒)

+
𝜆

2𝜆0

(︀
−𝐸 ·𝜓 · ∇𝑎− (∇𝑎)𝑇 ·𝐸 ·𝜓 + 2∇s𝑢,𝜒

)︀
=

1
2𝜆0

(𝐼 +𝑅,𝜒) +
𝜆

2𝜆0
(𝑎 · ∇𝑅,𝜒) (2.15)

+
𝜆

2𝜆0

(︀
−𝑅 · ∇𝑎− (∇𝑎)𝑇 ·𝑅,𝜒

)︀
, (2.16)

for all 𝑉 = [𝑣, 𝑞,𝜒] ∈ 𝒳 , where it is assumed that 𝑓 , 𝑅 and 𝐸 are such that the known terms are well defined.
In compact form, the problem can be written as:

𝐵(𝑈 ,𝑉 ) = 𝐿(𝑉 ), (2.17)

where

𝐵(𝑈 ,𝑉 ) =
𝜂𝑝
𝜆0

(𝐸 ·𝜓,∇s𝑣) + 2(𝛽𝜂0∇s𝑢,∇s𝑣) + ⟨𝜌𝑎 · ∇𝑢,𝑣⟩ − (𝑝,∇ · 𝑣)

+ (∇ · 𝑢, 𝑞) +
1

2𝜆0
(𝐸 ·𝜓,𝜒)− (∇s𝑢,𝜒)

+
𝜆

2𝜆0

(︀
𝑎 · ∇ (𝐸 ·𝜓)−𝐸 ·𝜓 · ∇𝑎− (∇𝑎)𝑇 ·𝐸 ·𝜓 + 2∇s𝑢,𝜒

)︀
, (2.18)

𝐿(𝑉 ) = ⟨𝑓 ,𝑣⟩+
𝜂𝑝
𝜆0

(𝑅,∇s𝑣) +
1

2𝜆0
(𝐼 +𝑅,𝜒) +

𝜆

2𝜆0
(𝑎 · ∇𝑅,𝜒)

+
𝜆

2𝜆0

(︀
−𝑅 · ∇𝑎− (∇𝑎)𝑇 ·𝑅,𝜒

)︀
. (2.19)
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Note that from the physical point of view the test function 𝜒 is a stress, whereas the dimensionless unknown
𝜓 is the logarithm of the conformation tensor. We could also have used a test function for the constitutive
equation of the form 𝜂𝑝

𝜆0
exp(𝜒), where now 𝜒 would be dimensionless. This would simplify the analysis (some

stability would follow taking 𝜒 = 𝜓), but complicate significantly the FE approximations described below. Note
that, strictly speaking, the space of stress test functions could be taken as the 𝐿2 projection onto 𝐿2(Ω)𝑑×𝑑 of
functions of the form 𝐸 · 𝜙 properly scaled, for example by a factor 𝜂𝑝

𝜆0
, with 𝜙 belonging to the space of trial

solutions.
We will not analyze the continuous problem (2.17), but simply assume that there exists a solution that is

smooth enough. As for the standard formulation, this requires 𝜆 to be small enough and, in the case of the
linearization we consider, the following condition on the velocity 𝑎 which will also be needed in the discrete
problem:

Assumption H1 𝑎 ∈ 𝒞0(Ω̄)𝑑, ∇ · 𝑎 = 0, 𝑎 and ∇𝑎 have components in 𝐿∞(Ω).
𝐸 and 𝑅 have components in 𝐿∞(Ω).
𝐸 is invertible with a bounded inverse.

2.4. Stability of the Galerkin finite element discretization

The standard Galerkin approximation for the variational problem, which has been established in (2.17), is
described next. Let 𝒯ℎ = {𝐾} be a FE partition of the domain Ω. The diameter of an element 𝐾 ∈ 𝒯ℎ is denoted
by ℎ𝐾 and the diameter of the partition is defined as ℎ = max{ℎ𝐾 |𝐾 ∈ 𝒯ℎ}. For simplicity, we will consider
quasi-uniform partitions in the following. The 𝐿2 norm in an element 𝐾 will be denoted by ‖ · ‖𝐾 .

From 𝒯ℎ we may construct conforming FE spaces for the velocity, the pressure and the elastic stress, 𝒱ℎ ⊂ 𝒱 ,
𝒬ℎ ⊂ 𝒬, ϒℎ ⊂ ϒ, respectively. Although any conforming approximation could be considered using the approach
to be described, and this means that pressures and stresses could be discontinuous (see [6]), for conciseness we
will restrict to continuous interpolations for these fields.

The condition that the convective derivative of the stress be square integrable will follow from H1 and
choosing the stresses continuous, for example. Calling 𝒳 ℎ := 𝒱ℎ × 𝒬ℎ ×ϒℎ, the Galerkin FE approximation
of the problem consists in finding 𝑈ℎ ∈ 𝒳 ℎ, such that:

𝐵𝜓(𝑈ℎ,𝑉 ℎ) = 𝐿(𝑉 ℎ), (2.20)

for all 𝑉 ℎ = [𝑣ℎ, 𝑞ℎ,𝜒ℎ] ∈ 𝒳 ℎ, where 𝐵𝜓 is obtained from 𝐵 given in (2.18) replacing 𝐸 · 𝜓ℎ by 𝑃𝜓(𝐸 · 𝜓ℎ),
where 𝑃𝜓 is the 𝐿2 projection onto ϒℎ.

As in the standard formulation, problem (2.20) lacks stability unless appropriate inf-sup conditions hold.
Likewise, convective terms are not bounded, and these may dominate those that can be controlled.

3. Stabilized finite element method

VMS methods consist in the splitting of the unknown 𝑈 in a component 𝑈ℎ, which can be resolved by the FE
space, and the remainder 𝑈̃ , that will be called sub-grid scale. The framework is based on the work by Hughes
et al. [20]. In the context of a three field formulation for flow problems, see [5, 11]. The sub-grid scale needs to
be approximated in a simple manner, with the goal of capturing its effect and yielding a stable formulation.
The particular approach we follow and the resulting stabilized finite element method are described next.

3.1. Residual based stabilization

The problem we wish to approximate is (2.12) in differential form and (2.17) in variational form. After
introducing the subscale decomposition and integrating by parts, it can be readily checked (see [12]) that the
VMS method leads to the problem of finding 𝑈ℎ ∈ 𝒳 ℎ such that

𝐵𝜓(𝑈ℎ,𝑉 ℎ) +
∑︁
𝐾

⟨𝑈̃ ,ℒ*st(𝑉 ℎ)⟩𝐾 = 𝐿(𝑉 ℎ), (3.1)
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for all 𝑉 ℎ ∈ 𝒳 ℎ, where ℒ*st is the formal adjoint operator of ℒst and 𝑈̃ is the sub-grid scale that needs to be
approximated. ℒ*st is given by

ℒ*st(𝑉 ) :=

⎛⎜⎜⎝
∇ · 𝜒− 2𝜂𝑒∇ · (∇s𝑣)− 𝜌𝑎 · ∇𝑣 −∇𝑞

−∇ · 𝑣
1

2𝜂𝑝
𝜒+∇s𝑣 − 𝜆

2𝜂𝑝

(︀
𝑎 · ∇𝜒+ 𝜒 · (∇𝑎)𝑇 +∇𝑎 · 𝜒

)︀
⎞⎟⎟⎠ . (3.2)

The fact that the operator that appears after integration by parts is the adjoint of ℒst and not of ℒ is simply
due to the way in which we have written the equations, changing variables in the stress but not in the stress
test function.

Taking 𝑃 as the 𝐿2 projection onto the space of sub-grid scales, the approximation we consider for the
sub-grid scales within each element is

𝑈̃ = 𝛼𝑃 [𝐹 − ℒ(𝑈ℎ)], (3.3)

where 𝛼 is a diagonal matrix of the form 𝛼 = diag(𝛼𝑢𝐼𝑑, 𝛼𝑝, 𝛼𝜓𝐼𝑑×𝑑) with 𝐼𝑑 the identity on vectors of R𝑑,
𝐼𝑑×𝑑 the identity on second order tensor and the parameters 𝛼𝑢, 𝛼𝑝 and 𝛼𝜓 computed as

𝛼𝑢 =
[︂
𝑐1

𝜂0

ℎ2
+ 𝑐2

𝜌|𝑎|
ℎ

]︂−1

, (3.4)

𝛼𝑝 =
ℎ2

𝑐1𝛼1
, (3.5)

𝛼𝜓 =
[︂
𝑐3

1
2𝜂𝑝

+ 𝑐4

(︂
𝜆

2𝜂𝑝

|𝑎|
ℎ

+
𝜆

𝜂𝑝
|∇𝑎|

)︂]︂−1

, (3.6)

where |𝑎| is the Euclidean norm while |∇𝑎| is the Frobenius norm. The dimensionless constants 𝑐𝑖, 𝑖 = 1, . . . , 4
are algorithmic parameters in the formulation, which have to be of order one [11].

3.2. Split-OSS

The Orthogonal Sub-grid Scale (OSS) stabilization [8, 9] consists in taking 𝑃 = 𝑃⊥ℎ , where 𝑃ℎ is the 𝐿2

projection onto 𝒳 ℎ. In this case, we can design a simplified method, which consists in keeping only the terms of
the form one operator term applied to the unknown by the same operator term applied to the test function, thus
neglecting the products of different operators [10]. We call Split-OSS method the resulting stabilized formulation.

Following the considerations made in [7] for the construction of the Split-OSS method for the traditional
viscoelastic formulation, the modified method we propose for the log-conformation reformulation is: find 𝑈ℎ ∈
𝒳 ℎ such that

𝐵stab(𝑈ℎ,𝑉 ℎ) = 𝐵𝜓(𝑈ℎ,𝑉 ℎ) + 𝐵*(𝑈ℎ,𝑉 ℎ) = 𝐿(𝑉 ℎ) (3.7)

for all 𝑉 ℎ ∈ 𝒳 ℎ, where 𝐵*(𝑈ℎ,𝑉 ℎ) represents the stabilizing part of the model, defined as

𝐵*(𝑈ℎ,𝑉 ℎ) = 𝑆⊥1 (𝑈ℎ,𝑉 ℎ) + 𝑆⊥2 (𝑈ℎ,𝑉 ℎ) + 𝑆⊥3 (𝑢ℎ;𝑈ℎ,𝑉 ℎ), (3.8)

where

𝑆⊥1 (𝑈ℎ,𝑉 ℎ) =
∑︁
𝐾

𝛼𝑢

⟨
𝑃⊥𝑢

[︁
− 𝜂𝑝

𝜆0
∇ · 𝑃𝜓[𝐸 ·𝜓ℎ]

]︁
,−∇ · 𝜒ℎ

⟩
𝐾

+
∑︁
𝐾

𝛼𝑢

⟨
𝑃⊥𝑢 [∇𝑝ℎ],∇𝑞ℎ

⟩
𝐾

+
∑︁
𝐾

𝛼𝑢

⟨
𝑃⊥𝑢 [𝜌𝑎 · ∇𝑢ℎ], 𝜌𝑎 · ∇𝑣ℎ

⟩
𝐾

, (3.9)

𝑆⊥2 (𝑈ℎ,𝑉 ℎ) =
∑︁
𝐾

𝛼𝑝

⟨
𝑃⊥𝑝 [∇ · 𝑢ℎ],∇ · 𝑣ℎ

⟩
𝐾

, (3.10)

𝑆⊥3 (𝑈ℎ,𝑉 ℎ) =
∑︁
𝐾

𝛼𝜓

⟨
𝑃⊥𝜓 [𝑅𝜓],−∇s𝑣ℎ +

𝜆

2𝜂𝑝

(︀
𝑎 · ∇𝜒ℎ + 𝜒ℎ · (∇𝑎)𝑇 +∇𝑎 · 𝜒ℎ

)︀ ⟩
𝐾

, (3.11)
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and where 𝑅𝜓 is the residual of the constitutive equation

𝑅𝜓 = −∇s𝑢ℎ +
𝜆

2𝜆0

(︀
𝑎 · ∇𝑃𝜓[𝐸 ·𝜓ℎ]− 𝑃𝜓[𝐸 ·𝜓ℎ] · ∇𝑎− (∇𝑎)𝑇 · 𝑃𝜓[𝐸 ·𝜓ℎ] + 2∇s𝑢ℎ

)︀
.

The 𝐿2 projections onto the FE spaces for velocity (without boundary conditions), pressure and stress have
respectively been denoted by 𝑃𝑢, 𝑃𝑝 and, as already mentioned, 𝑃𝜓. The projection onto the velocity space with
boundary conditions will be denoted 𝑃𝑢,0.

The method is a mix of an orthogonal term-by-term formulation for the momentum equation and continuity
equation and a residual-based formulation for the constitutive equation. For smooth solutions, both have an
optimal convergence rate in ℎ. However, in problems where the solution has strong gradients, we have found (3.7)
more robust, similarly to what it is explained in [7]. For a detailed motivation and numerical experimentation
using this method, see [28].

In the numerical analysis below we will also use the notation

𝑃𝜓[𝐸 ·𝜓ℎ] · ∇𝑎+ (∇𝑎)𝑇 · 𝑃𝜓[𝐸 ·𝜓ℎ] = 𝜓̇
*
ℎ + 𝜓̇

**
ℎ ,

and
𝑃𝜓[𝐸 ·𝜓ℎ] · (∇𝑎)𝑇 +∇𝑎 · 𝑃𝜓[𝐸 ·𝜓ℎ] = 𝜓̇

*
ℎ − 𝜓̇

*
ℎ,

where 𝜓̇
*
ℎ = 𝑃𝜓[𝐸 · 𝜓ℎ] · ∇s𝑎 + ∇s𝑎 · 𝑃𝜓[𝐸 · 𝜓ℎ] and 𝜓̇

**
ℎ = 𝑃𝜓[𝐸 · 𝜓ℎ] · ∇as𝑎 − ∇as𝑎 · 𝑃𝜓[𝐸 · 𝜓ℎ]. In these

expressions, ∇as𝑎 represents the skew-symmetric part of the velocity gradient, given by

∇as𝑎 =
1
2

[︁
∇𝑎− (∇𝑎)𝑇

]︁
.

4. Numerical analysis

4.1. Preliminaries

We assume that there is a constant 𝑐inv, independent of the mesh size ℎ, such that

‖∇𝑣ℎ‖𝐾 ≤ 𝑐invℎ
−1 ‖𝑣ℎ‖𝐾 , (4.1)

for all FE functions 𝑣ℎ defined on 𝐾 ∈ 𝒯ℎ, which can be either scalars, vectors or tensors. We will also make
use of Korn’s inequality, which holds for the conforming approximation that we consider:

‖𝑣ℎ‖2𝐻1(Ω) ≤ 𝑐𝐿 ‖∇s𝑣ℎ‖2 with 𝑣ℎ = 0 on 𝜕Ω,

𝑐𝐿 > 0 being a constant. As usual, 𝐶 will denote a generic positive constant, possibly different at different
occurrences. A fixed constant will be identified with a subscript.

We will need a condition on the interpolating spaces that holds in the case of equal order interpolations, and
that can be written as [6, 11]:

Assumption H2 Given 𝑎,𝑣ℎ ∈ 𝒱ℎ, 𝑞ℎ ∈ 𝒬ℎ,𝜓ℎ ∈ ϒℎ and 𝑧ℎ := 𝜌𝑎 · ∇𝑣ℎ +∇𝑞ℎ −
𝜂𝑝
𝜆0
∇ · 𝑃𝜓[𝐸 ·𝜓ℎ],

there holds ‖𝑧ℎ‖ ≤ 𝑐m

(︀
‖𝑃𝑢,0 [𝑧ℎ]‖+

⃦⃦
𝑃⊥𝑢 [𝑧ℎ]

⃦⃦)︀
, for a constant 𝑐m > 0.

For a piecewise linear velocity 𝑎 this assumption is known to hold; here we assume that 𝑎 is such that it is
satisfied. Note that 𝑐m may depend on the different components of 𝑧ℎ, but not on its Euclidean norm.
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4.2. Stability and convergence in a mesh-dependent norm

The norm in which the results will be first presented is

‖𝑉 ℎ‖2𝑊 = 2𝜂𝑒 ‖∇𝑠𝑣ℎ‖2 +
𝜂𝑝
𝜆2

0

‖𝑃𝜓[𝐸 ·𝜙ℎ]‖2 +
∑︁
𝐾

𝛼𝑢

⃦⃦⃦⃦
𝜌𝑎 · ∇𝑣ℎ +∇𝑞ℎ −

𝜂𝑝
𝜆0
∇ · 𝑃𝜓[𝐸 ·𝜙ℎ]

⃦⃦⃦⃦2

𝐾

+
∑︁
𝐾

𝛼𝑢
⃦⃦
𝑃⊥𝑢 [𝜌𝑎 · ∇𝑣ℎ]

⃦⃦2

𝐾
+
∑︁
𝐾

𝛼𝑢
⃦⃦
𝑃⊥𝑢 [∇𝑞ℎ]

⃦⃦2

𝐾
+
∑︁
𝐾

𝛼𝑢

⃦⃦⃦⃦
𝑃⊥𝑢

[︂
𝜂𝑝
𝜆0
∇ · 𝑃𝜓[𝐸 ·𝜙ℎ]

]︂⃦⃦⃦⃦2

𝐾

+
∑︁
𝐾

𝛼𝑝 ‖∇ · 𝑣ℎ‖2𝐾 +
∑︁
𝐾

𝛼𝜓

⃦⃦⃦⃦
𝜆

2𝜆0
(𝑎 · ∇𝑃𝜓[𝐸 ·𝜙ℎ]− 𝜙̇**ℎ )

⃦⃦⃦⃦2

𝐾

, (4.2)

considering 𝑉 ℎ = [𝑣ℎ, 𝑞ℎ,𝜙ℎ] ∈ 𝒳 ℎ (note again that 𝜙ℎ is dimensionless). This is clearly a norm for the
homogeneous velocity boundary conditions considered, since if ‖𝑉 ℎ‖𝑊 = 0, 𝑣ℎ = 0 because of the first term
(using Körn’s inequality), 𝑃𝜓[𝐸 · 𝜙ℎ] = 0 for 𝜂𝑝 > 0 because of the second term (and, in fact, 𝜙ℎ = 0 because
of Assumption H3 stated later), and, finally, 𝑞ℎ = 0 because of the third term and the definition of 𝒬.

To simplify the analysis, we shall consider that the stabilization parameters are constant, computed with
the 𝐿∞(Ω) norm of the advection velocity and its gradient. The analysis of variable stabilization parameters,
including non-uniform meshes, can be done using the techniques in [10].

The main stability result, which implies existence and uniqueness of discrete solutions, is the following:

Theorem 4.1 (Stability). Suppose that H1 and H2 hold. For 𝜆 small enough compared to the rest of physical
parameters, there is a constant 𝐶 > 0 such that

inf
𝑈ℎ∈𝒳 ℎ

sup
𝑉 ℎ∈𝒳 ℎ

𝐵stab(𝑈ℎ,𝑉 ℎ)
‖𝑈ℎ‖𝑊 ‖𝑉 ℎ‖𝑊

≥ 𝐶,

provided the constants 𝑐𝑖, 𝑖 = 1, . . . , 4 defined in (3.4)–(3.6) are large enough.

Proof. Given 𝑈ℎ ∈ 𝒳 ℎ, consider 𝑈ℎ1 =
[︁
𝜆*𝑢ℎ, 𝜆

*𝑝ℎ,
𝜂𝑝

𝜆0
𝑃𝜓[𝐸 ·𝜓ℎ]

]︁
, where 𝜆* = 𝜆−𝜆0

𝜆0
> 0. We assume that

𝜆 > 𝜆0,min, since the case of very small elasticity is easier to prove and it is not our focus. Now, using the skew
symmetry of the convective terms (from Assumption H1), we obtain:

𝐵stab(𝑈ℎ,𝑈ℎ1) = 𝐵𝜓(𝑈ℎ,𝑈ℎ1) + 𝐵*(𝑈ℎ,𝑈ℎ1)

=
𝜂𝑝
𝜆0

𝜆* (𝑃𝜓[𝐸 ·𝜓ℎ],∇s𝑢ℎ)⏟  ⏞  
(1)

+2𝜂𝑒𝜆
*(∇s𝑢ℎ,∇s𝑢ℎ)

+
1

2𝜆0

𝜂𝑝
𝜆0

(𝑃𝜓[𝐸 ·𝜓ℎ], 𝑃𝜓[𝐸 ·𝜓ℎ])− 𝜂𝑝
𝜆0

(∇s𝑢ℎ, 𝑃𝜓[𝐸 ·𝜓ℎ])⏟  ⏞  
(1)

+
𝜆

2𝜆0

𝜂𝑝
𝜆0

⎛⎜⎝−𝑃𝜓[𝐸 ·𝜓ℎ] · ∇𝑎− (∇𝑎)𝑇 · 𝑃𝜓[𝐸 ·𝜓ℎ]⏟  ⏞  
(2)

+ 2∇s𝑢ℎ⏟  ⏞  
(1)

, 𝑃𝜓[𝐸 ·𝜓ℎ]

⎞⎟⎠
+
∑︁
𝐾

𝛼𝑢

⟨
𝑃⊥𝑢

[︂
𝜂𝑝
𝜆0
∇ · 𝑃𝜓[𝐸 ·𝜓ℎ]

]︂
,
𝜂𝑝
𝜆0
∇ · 𝑃𝜓[𝐸 ·𝜓ℎ]

⟩
+
∑︁
𝐾

𝛼𝑢𝜆
* ⟨︀𝑃⊥𝑢 [∇𝑝ℎ],∇𝑝ℎ

⟩︀
+
∑︁
𝐾

𝛼𝑢𝜆
* ⟨︀𝑃⊥𝑢 [𝜌𝑎 · ∇𝑢ℎ], 𝜌𝑎 · ∇𝑢ℎ

⟩︀
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+
∑︁
𝐾

𝛼𝑝𝜆
* ⟨︀𝑃⊥𝑝 [∇ · 𝑢ℎ],∇ · 𝑢ℎ

⟩︀
+
∑︁
𝐾

𝛼𝜓

⟨
𝑃⊥𝜓

[︂
𝜆*∇s𝑢ℎ +

𝜆

2𝜆0

(︁
𝑎 · ∇𝑃𝜓[𝐸 ·𝜓ℎ]− 𝜓̇

*
ℎ − 𝜓̇

**
ℎ

)︁]︂
,

−𝜆*∇s𝑢ℎ +
𝜆

2𝜆0

(︁
𝑎 · ∇𝑃𝜓[𝐸 ·𝜓ℎ] + 𝜓̇

*
ℎ − 𝜓̇

**
ℎ

)︁⟩
⏟  ⏞  

(3)

.

Let us bound the terms in this expression. From now on, 𝜀 with a subscript will denote a constant resulting from
Young’s inequality, which will be repeatedly used together with Schwarz’s inequality. One can easily obtain:

(1) ≥ −2𝜂𝑝𝜆
*
[︂

1
2𝜀0𝜆2

0

‖𝑃𝜓[𝐸 ·𝜓ℎ]‖2 +
𝜀0

2
‖∇s𝑢ℎ‖2

]︂
,

(2) ≥ −𝜆𝜂𝑝
𝜆2

0

‖∇𝑎‖𝐿∞(Ω) ‖𝑃𝜓[𝐸 ·𝜓ℎ]‖2 ,

(3) ≥ −(𝜆*)2
∑︁
𝐾

𝛼𝜓 ‖∇s𝑢ℎ‖2𝐾 +
∑︁
𝐾

𝛼𝜓

(︂
𝜆

2𝜆0

)︂2 ⃦⃦⃦
𝑃⊥𝜓

[︁
𝑎 · ∇𝑃𝜓[𝐸 ·𝜓ℎ]− 𝜓̇

**
ℎ

]︁⃦⃦⃦2

𝐾

−
∑︁
𝐾

𝛼𝜓

(︂
𝜆

2𝜆0

)︂2

4 ‖∇s𝑎‖2𝐿∞(𝐾) ‖𝑃𝜓[𝐸 ·𝜓ℎ]‖2𝐾 ,

from where

𝐵stab(𝑈ℎ,𝑈ℎ1) ≥
∑︁
𝐾

(︀
2𝜂𝑒𝜆

* − 𝜂𝑝𝜆
*𝜀0 − (𝜆*)2𝛼𝜓

)︀
‖∇s𝑢ℎ‖2𝐾

+
∑︁
𝐾

[︃
𝜂𝑝
𝜆2

0

(︂
1− 𝜆*

𝜀0
− 𝜆 ‖∇𝑎‖𝐿∞(𝐾)

)︂
− 𝛼𝜓

(︂
𝜆

2𝜆0

)︂2

4 ‖∇s𝑎‖2𝐿∞(𝐾)

]︃
‖𝑃𝜓[𝐸 ·𝜓ℎ]‖2𝐾

+
∑︁
𝐾

𝛼𝑢

⃦⃦⃦⃦
𝑃⊥𝑢

[︂
𝜂𝑝
𝜆0
∇ · 𝑃𝜓[𝐸 ·𝜓ℎ]

]︂⃦⃦⃦⃦2

𝐾

+
∑︁
𝐾

𝛼𝑢
⃦⃦
𝑃⊥𝑢 [𝜆*∇𝑝ℎ]

⃦⃦2

𝐾

+
∑︁
𝐾

𝛼𝑢
⃦⃦
𝑃⊥𝑢 [𝜆*𝜌𝑎 · ∇𝑢ℎ]

⃦⃦2

𝐾
+
∑︁
𝐾

𝛼𝑝
⃦⃦
𝑃⊥𝑝 [𝜆*∇ · 𝑢ℎ]

⃦⃦2

𝐾

+
∑︁
𝐾

𝛼𝜓

(︂
𝜆

2𝜆0

)︂2 ⃦⃦⃦⃦
𝑃⊥𝜓

[︂
𝜆

2𝜆0

(︁
𝑎 · ∇𝑃𝜓[𝐸 ·𝜓ℎ]− 𝜓̇

**
ℎ

)︁]︂⃦⃦⃦⃦2

𝐾

. (4.3)

Even if 𝛼𝑢 = 𝛼𝑝 = 𝛼𝜓 = 0, this estimate yields some stability provided 𝜆 is small enough. In fact, this would be
the estimate for the Galerkin method, which is the same as for the continuous problem. For the latter it would
be possible to obtain pressure stability and stability for the velocity gradient through the use of appropriate
inf-sup conditions. In the discrete case, we will not use these, but we will see how the stabilization terms allow
us to prove the theorem.

Let us introduce 𝑣1 ≡ 𝑃𝑢,0

(︁
𝜌𝑎 · ∇𝑢ℎ +∇𝑝ℎ − 𝜂𝑝

𝜆0
∇ · 𝑃𝜓[𝐸 ·𝜓ℎ]

)︁
and consider 𝑉 ℎ1 = 𝛼𝑢𝜆

* [𝑣1, 0,0]. Taking
this test function, using Schwarz’s and Young’s inequalities and the inverse estimate (4.1) we get

𝐵stab(𝑈ℎ,𝑉 ℎ1) = 𝐵𝜓(𝑈ℎ,𝑉 ℎ1) + 𝐵*(𝑈ℎ,𝑉 ℎ1)

= 𝐵*(𝑈ℎ,𝑉 ℎ1) +
∑︁
𝐾

𝛼𝑢𝜆
*
⟨

𝜂𝑝
𝜆0

𝑃𝜓[𝐸 ·𝜓ℎ],∇s𝑣1

⟩
𝐾

+
∑︁
𝐾

𝛼𝑢𝜆
* ⟨𝜌𝑎 · ∇𝑢ℎ,𝑣1⟩𝐾
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−
∑︁
𝐾

𝛼𝑢𝜆
* ⟨𝑝ℎ,∇ · 𝑣1⟩𝐾 −

∑︁
𝐾

𝛼𝑢𝜆
*
[︂
𝜀1

2
‖𝑣1‖2𝐾 +

1
2𝜀1

(2𝜂𝑒)
2 𝑐2

inv

ℎ2
‖∇s𝑢ℎ‖2𝐾

]︂
.

Integrating by parts the second and fourth terms and using the continuity assumed for the interpolation and
the advection velocity, we get

𝐵stab(𝑈ℎ,𝑉 ℎ1) ≥ 𝐵*(𝑈ℎ,𝑉 ℎ1) +
(︁

1− 𝜀1

2

)︁∑︁
𝐾

𝛼𝑢𝜆
* ‖𝑣1‖2𝐾 −

1
2𝜀1

(2𝜂𝑒)
2 𝑐2

inv

ℎ2

∑︁
𝐾

𝛼𝑢𝜆
*‖∇s𝑢ℎ‖2𝐾 . (4.4)

Repeated application of Schwarz’s, Young’s and the inequality ‖𝑎 + 𝑏 + 𝑐‖2 ≤ 4 ‖𝑎‖2 + 4 ‖𝑏‖2 + 2 ‖𝑐‖2 and the
inverse estimate (4.1) allow us to bound the stabilizing terms, and obtain:

𝐵stab(𝑈ℎ,𝑉 ℎ1) ≥ 𝜆*
∑︁
𝐾

𝛼𝑢𝐶𝑢‖𝑣1‖2𝐾 − 𝜆*
∑︁
𝐾

𝛼𝑢

(︂
1
𝜀1

2𝜂2
𝑒𝛼𝑢

𝑐2
inv

ℎ2
+

1
𝜀4

𝛼𝜓 (𝜆*)2
)︂
‖∇s𝑢ℎ‖2𝐾

− 1
2𝜀2

𝜆*
∑︁
𝐾

𝛼2
𝑢 ‖𝑎‖𝐿∞(𝐾)

𝜌

ℎ

⃦⃦
𝑃⊥𝑢 [𝜌𝑎 · ∇𝑢ℎ]

⃦⃦2

𝐾
− 1

2𝜀3
𝜆*
∑︁
𝐾

𝛼𝑝
⃦⃦
𝑃⊥𝑝 [∇ · 𝑢ℎ]

⃦⃦2

𝐾

− 4
1

2𝜀4
𝜆*
∑︁
𝐾

𝛼𝜓

⃦⃦⃦⃦
𝑃⊥𝜓

[︂
𝜆

2𝜆0
(𝑎 · ∇𝑃𝜓[𝐸 ·𝜓ℎ]−𝜓**ℎ )

]︂⃦⃦⃦⃦2

𝐾

− 4
1

2𝜀4
𝜆*
∑︁
𝐾

𝛼𝜓

(︂
𝜆

2𝜆0

)︂2

4 ‖∇s𝑎‖2𝐿∞(𝐾) ‖𝑃𝜓[𝐸 ·𝜓ℎ]‖2𝐾 , (4.5)

where

𝐶𝑢 := 1− 𝜀1

2
− 𝑐2

inv𝛼𝑢

[︁𝜀2

2
‖𝑎‖𝐿∞(𝐾)

𝜌

ℎ
+

𝜀3

2
𝛼𝑝
ℎ2

+
𝜀4

2
𝛼𝜓𝛼𝑢

ℎ2

]︁
, (4.6)

and 𝜀𝑖, 𝑖 = 2, 3, 4 come again from different instances of the application of Young’s inequality.
Let us consider now the test function 𝑉 ℎ2 = 𝛼𝑝𝜆

* [0, 𝑞2,0], with 𝑞2 ≡ 𝑃𝑝[∇ · 𝑢ℎ]. Using the same tools as
above we get

𝐵stab (𝑈ℎ,𝑉 ℎ2) ≥ 𝜆*
∑︁
𝐾

𝛼𝑝𝐶𝑝 ‖𝑃𝑝[∇ · 𝑢ℎ]‖2𝐾 − 𝜆*
∑︁
𝐾

𝛼𝑢
𝜀5

2

⃦⃦
𝑃⊥𝑢 [∇𝑝ℎ]

⃦⃦2

𝐾
, (4.7)

where

𝐶𝑝 := 1− 1
2𝜀5

𝛼𝑝𝛼𝑢
𝑐2
inv

ℎ2
· (4.8)

The next step is to consider the test function 𝑉 ℎ3 = 𝛼𝜓 [0, 0,𝜓3], with

𝜓3 ≡ 𝑃𝜓

(︂
𝜆*∇s𝑢ℎ +

𝜆

2𝜆0

(︁
𝑎 · ∇𝑃𝜓[𝐸 ·𝜓ℎ]− 𝜓̇

*
ℎ − 𝜓̇

**
ℎ

)︁)︂
.

The process of bounding 𝐵stab(𝑈ℎ,𝑉 ℎ3) is similar to that of bounding 𝐵stab(𝑈ℎ,𝑉 ℎ1). Again, one has to apply
repeatedly the same inequalities as before. Most details will be omitted.

Bounding first the Galerkin terms one gets:

𝐵stab(𝑈ℎ,𝑉 ℎ3) ≥ 𝐵*(𝑈ℎ,𝑉 ℎ3)− 1
2𝜆2

0

∑︁
𝐾

1
2𝜀6

‖𝑃𝜓[𝐸 ·𝜓ℎ]‖2𝐾 −
1

2𝜆2
0

∑︁ 𝜀6

2
𝛼𝜓‖𝜓3‖

2
𝐾

+
∑︁
𝐾

𝛼𝜓

(︂
1− 1

𝜀7
− 1

𝜀8

)︂
‖𝑃𝜓[𝜆*∇s𝑢ℎ]‖2𝐾
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+
∑︁
𝐾

𝛼𝜓 (1− 𝜀8 − 𝜀9)
⃦⃦⃦⃦
𝑃𝜓

[︂
𝜆

2𝜆0
𝜓̇
*
ℎ

]︂⃦⃦⃦⃦2

𝐾

+
∑︁
𝐾

𝛼𝜓

(︂
1− 𝜀7 −

1
𝜀9

)︂ ⃦⃦⃦⃦
𝑃𝜓

[︂
𝜆

2𝜆0

(︁
𝑎 · ∇𝑃𝜓[𝐸 ·𝜓ℎ]− 𝜓̇

**
ℎ

)︁]︂⃦⃦⃦⃦2

𝐾

, (4.9)

whereas for the stabilization terms one can get

𝐵*(𝑈ℎ,𝑉 ℎ3) ≥ −
∑︁
𝐾

𝛼𝑢

(︂
𝜂𝑝
𝜆0

)︂2 [︂ 1
2𝜀10

⃦⃦
𝑃⊥𝑢 [∇ · 𝑃𝜓[𝐸 ·𝜓ℎ]]

⃦⃦2

𝐾

]︂
− 2

1
2𝜀11

∑︁
𝐾

𝛼𝜓
⃦⃦
𝑃⊥𝜓 [𝜆*∇s𝑢ℎ]

⃦⃦2

𝐾

− 4
1

2𝜀11

∑︁
𝐾

𝛼𝜓

⃦⃦⃦⃦
𝑃⊥𝜓

[︂
𝜆

2𝜆0

(︁
𝑎 · ∇𝑃𝜓[𝐸 ·𝜓ℎ]− 𝜓̇

**
ℎ

)︁]︂⃦⃦⃦⃦2

𝐾

− 4
1

2𝜀11

∑︁
𝐾

𝛼𝜓

⃦⃦⃦⃦
𝑃⊥𝜓

[︂
𝜆

2𝜆0
𝜓̇
*
ℎ

]︂⃦⃦⃦⃦2

𝐾

−
∑︁
𝐾

𝛼𝜓

⎡⎣𝜀10

2
𝑐2
inv

ℎ2
𝛼𝜓𝛼𝑢 +

𝜀11

2

{︃
4𝛼2

𝜓

(︃
𝜆

2𝜂𝑝

‖𝑎‖𝐿∞(𝐾)

ℎ

)︃2

+ 4𝛼2
𝜓

(︂
𝜆

2𝜂𝑝
‖∇s𝑎‖𝐿∞(𝐾)

)︂2

+ 2𝛼2
𝜓

(︂
𝜆

2𝜂𝑝
‖∇as𝑎‖𝐿∞(𝐾)

)︂2
}︃]︃
‖𝜓3‖

2
𝐾 . (4.10)

Let us introduce the constant

𝐶𝜓 :=
1

2𝜂𝑝

𝜀6

2
𝛼𝜓 +

𝜀10

2
𝑐2
inv

ℎ2
𝛼𝜓𝛼𝑢

+
𝜀11

2

{︃
4𝛼2

𝜓

(︃
𝜆

2𝜂𝑝

‖𝑎‖𝐿∞(𝐾)

ℎ

)︃2

+ 4𝛼2
𝜓

(︂
𝜆

2𝜂𝑝
‖∇s𝑎‖𝐿∞(𝐾)

)︂2

+ 2𝛼2
𝜓

(︂
𝜆

2𝜂𝑝
‖∇as𝑎‖𝐿∞(𝐾)

)︂2
}︃

(4.11)

and consider the inequality

‖𝜓3‖
2
𝐾 ≥ −2 ‖𝑃𝜓[𝜆*∇s𝑢ℎ]‖2 − 4

⃦⃦⃦⃦
𝑃𝜓

[︂
𝜆

2𝜆0

(︁
𝑎 · ∇𝑃𝜓[𝐸 ·𝜓ℎ]− 𝜓̇

**
ℎ

)︁]︂⃦⃦⃦⃦2

− 4
⃦⃦⃦⃦
𝑃𝜓

[︂
𝜆

2𝜆0
𝜓̇
*
ℎ

]︂⃦⃦⃦⃦2

.

Now using (4.10) in (4.9) we obtain:

𝐵stab(𝑈ℎ,𝑉 ℎ3) ≥ − 1
2𝜆0

∑︁
𝐾

𝛼𝜓
1

2𝜀6
‖𝑃𝜓[𝐸 ·𝜓ℎ]‖2𝐾 +

∑︁
𝐾

𝛼𝜓

(︂
1− 1

𝜀7
− 1

𝜀8
− 2𝐶𝜓

)︂
‖𝑃𝜓[𝜆*∇s𝑢ℎ]‖2𝐾

+
∑︁
𝐾

𝛼𝜓 (1− 𝜀8 − 𝜀9 − 4𝐶𝜓)
⃦⃦⃦⃦
𝑃𝜓

[︂
𝜆

2𝜆0
𝜓̇
*
ℎ

]︂⃦⃦⃦⃦2

𝐾

+
∑︁
𝐾

𝛼𝜓

(︂
1− 𝜀7 −

1
𝜀9
− 4𝐶𝜓

)︂ ⃦⃦⃦⃦
𝑃𝜓

[︂
𝜆

2𝜆0

(︁
𝑎 · ∇𝑃𝜓[𝐸 ·𝜓ℎ]− 𝜓̇

**
ℎ

)︁]︂⃦⃦⃦⃦2

𝐾

− 1
2𝜀10

∑︁
𝐾

𝛼𝑢

(︂
𝜂𝑝
𝜆0

)︂2 ⃦⃦
𝑃⊥𝑢 [∇ · 𝑃𝜓[𝐸 ·𝜓ℎ]]

⃦⃦2

𝐾
− 2

1
2𝜀11

∑︁
𝐾

𝛼𝜓
⃦⃦
𝑃⊥𝜓 [𝜆*∇s𝑢ℎ]

⃦⃦2

𝐾

− 4
1

2𝜀11

∑︁
𝐾

𝛼𝜓

⃦⃦⃦⃦
𝑃⊥𝜓

[︂
𝜆

2𝜆0

(︁
𝑎 · ∇𝑃𝜓[𝐸 ·𝜓ℎ]− 𝜓̇

**
ℎ

)︁]︂⃦⃦⃦⃦2

𝐾

− 4
1

2𝜀11

(︂
𝜆

2𝜆0

)︂2∑︁
𝐾

𝛼𝜓4 ‖∇s𝑎‖2𝐿∞(𝐾) ‖𝑃𝜓[𝐸 ·𝜓ℎ]‖2𝐾 . (4.12)
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It can be checked that the constants 𝜀𝑖, 𝑖 = 1, . . . , 11 arising from Young’s inequality can be taken such that

𝐶𝑢 > 0, 𝐶𝑝 > 0, 𝐶𝜓 > 0,

where 𝐶𝑢, 𝐶𝑝 and 𝐶𝜓 are given in (4.6), (4.8) and (4.11), respectively.
Lastly, let us consider 𝑉 ℎ = 𝑈ℎ1 +𝜃1 𝑉 ℎ1 +𝜃2 𝑉 ℎ2 +𝜃3 𝑉 ℎ3. The parameters 𝜃𝑖 can be chosen small enough

so as to obtain, from (4.5), (4.7) and (4.12):

𝐵stab(𝑈ℎ,𝑉 ℎ) ≥ 2𝜂𝑒
∑︁
𝐾

𝐶1 ‖∇s𝑢ℎ‖2𝐾 +
𝜂𝑝
𝜆2

0

∑︁
𝐾

𝐶2 ‖𝑃𝜓[𝐸 ·𝜓ℎ]‖2𝐾

+
∑︁
𝐾

𝛼𝑢𝐶3

⃦⃦⃦⃦
𝑃𝑢,0

[︂
𝜌𝑎 · ∇𝑢ℎ + 𝑃𝜓 −

𝜂𝑝
𝜆0
∇ · 𝑃𝜓[𝐸 ·𝜓ℎ]

]︂⃦⃦⃦⃦2

𝐾

+
∑︁
𝐾

𝛼𝑢𝐶4

⃦⃦⃦⃦
𝑃⊥𝑢

[︂
𝜂𝑝
𝜆0
∇ · 𝑃𝜓[𝐸 ·𝜓ℎ]

]︂⃦⃦⃦⃦2

𝐾

+
∑︁
𝐾

𝛼𝑢𝐶5

⃦⃦
𝑃⊥𝑢 [∇𝑝ℎ]

⃦⃦2

𝐾

+
∑︁
𝐾

𝛼𝑢𝐶6

⃦⃦
𝑃⊥𝑢 [𝜌𝑎 · ∇𝑢ℎ]

⃦⃦
+
∑︁
𝐾

𝛼𝑝𝐶7

⃦⃦
𝑃⊥𝑝 [∇ · 𝑢ℎ]

⃦⃦2

𝐾
+
∑︁
𝐾

𝛼𝑝𝐶8 ‖𝑃𝑝[∇ · 𝑢ℎ]‖2

+
∑︁
𝐾

𝛼𝜓𝐶9

⃦⃦⃦⃦
𝑃⊥𝜓

[︂
𝜆

2𝜆0

(︁
𝑎 · ∇𝑃𝜓[𝐸 ·𝜓ℎ]− 𝜓̇

**
ℎ

)︁]︂⃦⃦⃦⃦2

𝐾

+
∑︁
𝐾

𝛼𝜓𝐶10

⃦⃦⃦⃦
𝑃𝜓

[︂
𝜆

2𝜆0

(︁
𝑎 · ∇𝑃𝜓[𝐸 ·𝜓ℎ]− 𝜓̇

**
ℎ

)︁]︂⃦⃦⃦⃦2

𝐾

+
∑︁
𝐾

𝛼𝜓𝐶11 ‖𝑃𝜓[∇s𝑢ℎ]‖2𝐾 +
∑︁
𝐾

𝛼𝜓𝐶12

⃦⃦⃦⃦
𝑃𝜓

[︂
𝜆

2𝜆0
𝜓̇
*
ℎ

]︂⃦⃦⃦⃦2

𝐾

, (4.13)

with the various constants appearing in this expression given by

𝐶1 = 𝜆* − 𝜂𝑝𝜀0𝜆
*

2𝜂𝑒
− (𝜆*)2𝛼𝜓

2𝜂𝑒
− 𝜃1𝜆

*𝛼𝑢
2𝜂𝑒

(︂
1

2𝜀1
(2𝜂𝑒)

2
𝛼𝑢

𝑐2
inv

ℎ2
+ 2

1
2𝜀4

(𝜆*)2 𝛼𝜓

)︂
− 𝜃3𝛼𝜓

2𝜂𝑒
2
𝜂𝑝
𝜆0

1
2𝜀11

(𝜆*)2 ,

𝐶2 =
(︂

1− 𝜆*

𝜀0
− 𝜆

𝜆0
‖∇𝑎‖𝐿∞(𝐾)

)︂
− 𝜆2

0

𝜂𝑝
𝛼𝜓

(︂
𝜆

2𝜆0

)︂2

4 ‖∇s𝑎‖2𝐿∞(𝐾)

(︂
1− 𝜃14

1
2𝜀4

𝜆*
)︂

− 𝜃3
𝜆2

0

𝜂𝑝

(︃
1

2𝜆0

1
2𝜀6

+ 4
1

2𝜀11

(︂
𝜆

2𝜆0

)︂2

𝛼𝜓4 ‖∇s𝑎‖2𝐿∞(𝐾)

)︃
,

𝐶3 = 𝜆*𝜃1𝐶𝑢 = 𝜆*𝜃1

(︁
1− 𝜀1

2
− 𝑐2

inv𝛼𝑢

[︁𝜀2

2
‖𝑎‖𝐿∞(𝐾)

𝜌

ℎ
+

𝜀3

2
𝛼𝑝
ℎ2

+
𝜀4

2
𝛼𝜓
ℎ2

𝛼𝑢

]︁)︁
,

𝐶4 = 1− 𝜃3
1

2𝜀10
,

𝐶5 = 𝜆*
(︁

1− 𝜀5

2
𝜃2

)︁
,

𝐶6 = (𝜆*)2
(︂

1− 𝜆*𝜃1
1

2𝜀2
𝛼𝑢 ‖𝑎‖𝐿∞(𝐾)

𝜌

ℎ

)︂
,

𝐶7 = 𝜆*
(︂

𝜆* − 𝜃1
1

2𝜀3

)︂
,
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𝐶8 = 𝜆*𝜃2𝐶𝑝 = 𝜆*𝜃2

(︂
1− 1

2𝜀5
𝛼𝑝𝛼𝑢

𝑐2
inv

ℎ2

)︂
,

𝐶9 = 1− 4
1

2𝜀4
𝜆* − 𝜃34

1
2𝜀11

,

𝐶10 = 𝜃3

(︂
1− 𝜀7 −

1
𝜀9
− 4𝐶𝜓

)︂
,

𝐶11 = 𝜃3

(︂
1− 1

𝜀7
− 1

𝜀8
− 2𝐶𝜓

)︂
,

𝐶12 = 𝜃3 (1− 𝜀8 − 𝜀9 − 4𝐶𝜓) ,

all positive for 𝜆 small enough and the constants 𝑐𝑖 of the stability parameters large enough, and bounded by
virtue of Assumption H2. Note that these constants will be larger for smaller values of 𝜆, and the constant 𝐶
in the inf-sup condition stated by the theorem will also be larger. There is a tradeoff between the smallness of
𝜆 and that of 𝐶 when the velocity or its gradients are large (or viscosities are small).

Comparing the terms in the right-hand-side of (4.13) and the definition (4.2), it is seen that the former bounds⃦⃦⃦
𝑃𝑢,0

[︁
𝜌𝑎 · ∇𝑢ℎ +∇𝑝ℎ − 𝜂𝑝

𝜆0
∇ · 𝑃𝜓[𝐸 ·𝜓ℎ]

]︁⃦⃦⃦
and

⃦⃦⃦
𝑃⊥𝑢

[︁
𝜌𝑎 · ∇𝑢ℎ +∇𝑝ℎ − 𝜂𝑝

𝜆0
∇ · 𝑃𝜓[𝐸 ·𝜓ℎ]

]︁⃦⃦⃦
. Assumption H2

allows us to guarantee that it also bounds
⃦⃦⃦
𝜌𝑎 · ∇𝑢ℎ +∇𝑝ℎ − 𝜂𝑝

𝜆0
∇ · 𝑃𝜓[𝐸 ·𝜓ℎ]

⃦⃦⃦
. Therefore, for each 𝑈ℎ we

have found 𝑉 ℎ such that
𝐵stab(𝑈ℎ,𝑉 ℎ) ≥ 𝐶 ‖𝑈ℎ‖2𝑊 .

In fact, it is seen from (4.13) that we could have included term 𝛼𝜓𝐶12

⃦⃦⃦
𝑃𝜓

[︁
𝜆

2𝜆0
𝜓̇
*
ℎ

]︁⃦⃦⃦2

in the working norm,
which gives control on the FE part of 𝑃𝜓[𝐸 · 𝜓ℎ] · ∇s𝑎 + ∇s𝑎 · 𝑃𝜓[𝐸 · 𝜓ℎ]. On the other hand, it is easily
checked that ‖𝑉 ℎ‖𝑊 ≤ 𝐶 ‖𝑈ℎ‖𝑊 ; we will omit the immediate proof. Using this fact we have shown that for
each 𝑈ℎ ∈ 𝒳 ℎ there exist 𝑉 ℎ ∈ 𝒳 ℎ such that

𝐵stab(𝑈ℎ,𝑉 ℎ) ≥ 𝐶 ‖𝑈ℎ‖𝑊 ‖𝑉 ℎ‖𝑊 ,

from where theorem follows. �

Now, we will define the error function of the method. Let us consider a FE space 𝒲ℎ, made of piecewise
continuous polynomial functions of degree 𝑘𝑣. Given a function 𝑣 ∈ 𝐻𝑘′𝑣+1(Ω), for 𝑖 = 0, 1 the interpolation
errors 𝜀𝑖(𝑣) are defined as

inf
𝑣ℎ∈𝒲ℎ

∑︁
𝐾

‖𝑣 − 𝑣ℎ‖𝐻𝑖(𝐾) ≤ 𝐶ℎ𝑘
′′
𝑣 +1−𝑖

∑︁
𝐾

‖𝑣‖
𝐻𝑘

′′
𝑣 +1(𝐾)

=:
∑︁
𝐾

𝜀𝑖,𝐾(𝑣) =: 𝜀𝑖(𝑣),

where 𝑘′′𝑣 = min(𝑘𝑣, 𝑘′𝑣). We will denote from this point by 𝑣ℎ the best approximation of 𝑣 in 𝒲ℎ. Note that
𝜀0(𝑣) = ℎ𝜀1(𝑣). In the case of 𝑣 = 𝜓, it is understood that 𝜀𝑖(𝜓) := inf𝜓ℎ∈ϒℎ

∑︀
𝐾 ‖𝐸 ·𝜓 −𝐸 ·𝜓ℎ‖𝐻𝑖(𝐾).

The objective of what follows is to show that the error function of the method we propose is:

ℰ(ℎ) :=
√

𝜂0𝜀1(𝑢) +
√

𝜂0

∑︁
𝐾

√︀
Re𝐾𝜀1,𝐾(𝑢) +

√
𝜂0

𝜆0
𝜀0(𝜓) +

√
𝜂0

𝜆0

∑︁
𝐾

√︀
We𝐾𝜀0,𝐾(𝜓) +

1
√

𝜂0
𝜀0(𝑝), (4.14)

where

Re𝐾 :=
𝜌 ‖𝑎‖𝐿∞(𝐾) ℎ

𝜂0
, We𝐾 :=

𝜆 ‖𝑎‖𝐿∞(𝐾)

ℎ

are the element (or cell) Reynolds and Weissenberg numbers, respectively.
At this point, a very important remark is needed. In [6] it is proved that the FE method proposed for the

standard formulation of the viscoelastic flow problem is stable and has an error function similar to (4.14) but
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with a major difference: now the term that accounts for the error of the logarithm of the conformation tensor
has a factor 𝜆−1

0 in front. This is a very important improvement, as the growth of the error with the elasticity
of the flow will be significantly reduced in the log-conformation formulation with respect to the standard one.
Nevertheless, there is a remark to be made, both for the standard and the log-conformation approaches: we will
show that (4.14) is the error function of the method up to a certain We𝐾 that needs to be sufficiently small
and that is unknown in both cases. Obviously, the growth of the error with the element Reynolds number is the
same.

Lemma 4.2 (Consistency). Let 𝑈 ∈ 𝒳 be the solution of the continuous problem and 𝑈ℎ ∈ 𝒳 ℎ the FE
solution. If 𝑓 ∈ 𝒱ℎ and 𝑈 is regular enough, so that 𝐵stab(𝑈 ,𝑉 ℎ) is well defined, then

𝐵stab(𝑈 −𝑈ℎ,𝑉 ℎ) ≤ 𝐶ℰ(ℎ) ‖𝑉 ℎ‖𝑊 , (4.15)

for all 𝑉 ℎ ∈ 𝒳 ℎ, where ℰ(ℎ) is defined by (4.14) and the constant 𝐶 is independent of the physical properties.

Proof. Galerkin terms do not contribute to the consistency error. In addition, the contribution of the constitutive
and the continuity equations in the stabilization terms are residual based, therefore the consistency is satisfied by
construction. Therefore we only have to show as 𝑆⊥1 has consistency error bounded as the lemma indicates. This is
proved from the fact that the orthogonal projection 𝑃⊥ onto an appropriate FE space satisfies

⃦⃦
𝑃⊥(𝑣)

⃦⃦
≤ 𝐶𝜀0(𝑣)

for any function 𝑣. Details are omitted. �

To show that the interpolation error is also ℰ(ℎ) we require a technical assumption that states that for any
element 𝜒ℎ ∈ ϒℎ, 𝐸 · 𝜒ℎ is close to a finite element function and its derivatives are close to the derivatives
of a finite element function. Note that if 𝜒ℎ is a stress, we may scale it by 𝜆0

𝜂𝑝
to make it dimensionless. The

condition we need may be expressed as follows:

Assumption H3 For all 𝜒ℎ ∈ ϒℎ if ℳ is a bounded linear operator of 𝜒ℎ and ∇𝜒ℎ, there holds
‖ℳ(𝜒ℎ,∇𝜒ℎ)‖𝐾 ≤ 𝐶 ‖ℳ(𝑃𝜓[𝐸 · 𝜒ℎ],∇𝑃𝜓[𝐸 · 𝜒ℎ])‖𝐾 , 𝐾 ∈ 𝒯ℎ.

Lemma 4.3 (Interpolation error). Let 𝑈 ∈ 𝒳 be the solution of the continuous problem, assumed to be regular
enough, and 𝑈̃ℎ ∈ 𝒳 ℎ its best FE approximation. Then, under Assumption H3, the following estimates hold:

𝐵stab(𝑈 − 𝑈̃ℎ,𝑉 ℎ) ≤ 𝐶ℰ(ℎ)‖𝑉 ℎ‖𝑊 , (4.16)

‖𝑈 − 𝑈̃ℎ‖𝑊 ≤ 𝐶ℰ(ℎ). (4.17)

Proof. Set 𝑒𝑢 = 𝑢− 𝑢̃ℎ; 𝑒𝑝 = 𝑝− 𝑝ℎ and 𝑒𝜓 = 𝜓 − 𝜓̃ℎ. Firstly we will prove inequality (4.17):

⃦⃦⃦
𝑈 − 𝑈̃ℎ

⃦⃦⃦2

𝑊
= 2𝜂𝑒 ‖∇s𝑒𝑢‖2 +

𝜂𝑝
𝜆2

0

‖𝑃𝜓[𝐸 · 𝑒𝜓]‖2 +

(1)⏞  ⏟  ∑︁
𝐾

𝛼𝑢

⃦⃦⃦⃦
𝜌𝑎 · ∇𝑒𝑢 +∇𝑒𝑝 −

𝜂𝑝
𝜆0
∇ · 𝑃𝜓[𝐸 · 𝑒𝜓]

⃦⃦⃦⃦2

𝐾

+
∑︁
𝐾

𝛼𝑢
⃦⃦
𝑃⊥𝑢 [𝜌𝑎 · ∇𝑒𝑢]

⃦⃦2

𝐾⏟  ⏞  
(2)

+
∑︁
𝐾

𝛼𝑢
⃦⃦
𝑃⊥𝑢 [∇𝑒𝑝]

⃦⃦2

𝐾⏟  ⏞  
(3)

+
∑︁
𝐾

𝛼𝑢

⃦⃦⃦⃦
𝑃⊥𝑢

[︂
𝜂𝑝
𝜆0
∇ · 𝑃𝜓[𝐸 · 𝑒𝜓]

]︂⃦⃦⃦⃦2

𝐾⏟  ⏞  
(4)

+
∑︁
𝐾

𝛼𝑝 ‖∇ · 𝑒𝑢‖2𝐾⏟  ⏞  
(5)

+
∑︁
𝐾

𝛼𝜓

⃦⃦⃦⃦
𝜆

2𝜆0

(︀
𝑎 · ∇𝑃𝜓[𝐸 · 𝑒𝜓]− 𝑒̇**𝜓

)︀⃦⃦⃦⃦2

𝐾⏟  ⏞  
(6)

,
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where

(1) ≤
∑︁
𝐾

𝛼𝑢

(︃
2 ‖𝜌𝑎 · ∇𝑒𝑢‖2𝐾 + 2 ‖∇𝑒𝑝‖2𝐾 +

⃦⃦⃦⃦
𝜂𝑝
𝜆0
∇ · 𝑃𝜓[𝐸 · 𝑒𝜓]

⃦⃦⃦⃦2

𝐾

)︃

≤
∑︁
𝐾

𝛼𝑢

(︃
2𝜌2 ‖𝑎‖2𝐿∞(𝐾) 𝜀2

1(𝑢) +
2
ℎ2

𝜀2
0 (𝑝) +

1
ℎ2

𝜂2
𝑝

𝜆2
0

𝜀2
0(𝜓)

)︃
,

(2) ≤
∑︁
𝐾

𝛼𝑢𝜌
2 ‖𝑎‖2𝐿∞(𝐾) 𝜀2

1(𝑢),

(3) ≤
∑︁
𝐾

𝛼𝑢
1
ℎ2

𝜀2
0 (𝑝) ,

(4) ≤
∑︁
𝐾

𝛼𝑢
1
ℎ2

𝜂2
𝑝

𝜆2
0

𝜀2
0(𝜓),

(5) ≤
∑︁
𝐾

𝛼𝑝𝜀
2
1(𝑢),

(6) ≤
∑︁
𝐾

𝛼𝜓

(︃(︂
𝜆

2𝜆0

)︂2

‖𝑎‖2𝐿∞(𝐾)

1
ℎ2

𝜀2
0(𝜓) +

(︂
𝜆

2𝜆0

)︂2

2 ‖∇as𝑎‖2𝐿∞(𝐾) 𝜀2
0(𝜓)

)︃
.

Estimate (4.17) follows form the definitions of the error function and the expression of the stabilization param-
eters.

Now we will prove (4.16). Taking 𝑉 ℎ = [𝑣ℎ, 𝑞ℎ,𝜒ℎ], we get:

𝐵stab

(︁
𝑈 − 𝑈̃ℎ,𝑉 ℎ

)︁
=

𝜂𝑝
𝜆0

(𝑃𝜓[𝐸 · 𝑒𝜓],∇s𝑣ℎ) + 2𝜂𝑒 (∇s𝑒𝑢,∇s𝑣ℎ) + ⟨𝜌𝑎 · ∇𝑒𝑢,𝑣ℎ⟩ − (𝑒𝑝,∇ · 𝑣ℎ)

+ (∇ · 𝑒𝑢, 𝑞ℎ) +
1

2𝜆0
(𝑃𝜓[𝐸 · 𝑒𝜓],𝜒ℎ)− (∇s𝑒𝑢,𝜒ℎ)

+
𝜆

2𝜆0

(︁
𝑎 · ∇𝑃𝜓[𝐸 · 𝑒𝜓] + 2∇s𝑒𝑢 − 𝑃𝜓[𝐸 · 𝑒𝜓] · ∇𝑎− (∇𝑎)𝑇 · 𝑃𝜓[𝐸 · 𝑒𝜓],𝜒ℎ

)︁
+
∑︁
𝐾

𝛼𝑢

⟨
𝑃⊥𝑢

[︂
− 𝜂𝑝

𝜆0
∇ · 𝑃𝜓[𝐸 · 𝑒𝜓]

]︂
,−∇ · 𝜒ℎ

⟩
𝐾

+
∑︁
𝐾

𝛼𝑢
⟨︀
𝑃⊥𝑢 [∇𝑒𝑝] ,∇𝑞ℎ

⟩︀
𝐾

+
∑︁
𝐾

𝛼𝑢
⟨︀
𝑃⊥𝑢 [𝜌𝑎 · ∇𝑒𝑢] , 𝜌𝑎 · ∇𝑣ℎ

⟩︀
𝐾

+
∑︁
𝐾

𝛼𝑝
⟨︀
𝑃⊥𝑝 [∇ · 𝑒𝑢],∇ · 𝑣ℎ

⟩︀
𝐾

+
∑︁
𝐾

𝛼𝜓

⟨
𝑃⊥𝜓

[︂
∇s𝑒𝑢 +

𝜆

2𝜆0

(︁
𝑎 · ∇𝑃𝜓[𝐸 · 𝑒𝜓]− 𝑃𝜓[𝐸 · 𝑒𝜓] · ∇𝑎− (∇𝑎)𝑇 ·𝑃𝜓[𝐸 · 𝑒𝜓]

)︁]︂
,

−∇s𝑣ℎ +
𝜆

2𝜂𝑝

(︁
𝑎 · ∇𝜒ℎ + 𝜒ℎ · (∇𝑎)𝑇 +∇𝑎 · 𝜒ℎ

)︁⟩
𝐾

.

Using Schwarz’s inequality, integrating by parts the convective term and the continuity equation and using the
inverse estimate (4.1) and Assumption H3, we get:

𝐵stab(𝑈 − 𝑈̃ℎ,𝑉 ℎ) ≤ 𝜂𝑝
𝜆0

𝜀0(𝜓) ‖∇s𝑣ℎ‖+ 2𝜂𝑒𝜀1 (𝑢) ‖∇s𝑣ℎ‖+ 𝜀0(𝑝) ‖∇ · 𝑣ℎ‖

+ ℎ𝜀1 (𝑢) ‖𝜌𝑎 · ∇𝑣ℎ +∇𝑞ℎ −∇ · 𝑃𝜓 [𝐸 · 𝜒ℎ]‖

+
(︂

1
2𝜆0

𝜀0(𝜓) + (2 + 𝑘−1)𝜀1(𝑢)
)︂
‖𝑃𝜓 [𝐸 · 𝜒ℎ]‖

+
𝜂𝑝
𝜆0

𝜀0(𝜓)
∑︁
𝐾

⃦⃦⃦⃦
𝜆

2𝜂𝑝

(︁
𝑎 · ∇𝑃𝜓 [𝐸 · 𝜒ℎ] + 𝑃𝜓 [𝐸 · 𝜒ℎ] · (∇𝑎)𝑇 +∇𝑎 · 𝑃𝜓 [𝐸 · 𝜒ℎ]

)︁⃦⃦⃦⃦
𝐾
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+
∑︁
𝐾

𝛼𝑢
𝜂𝑝
𝜆0

1
ℎ

𝜀0 (𝜓)
⃦⃦
𝑃⊥𝑢 [∇ · 𝑃𝜓 [𝐸 · 𝜒ℎ]]

⃦⃦
𝐾

+
∑︁
𝐾

𝛼𝑢
1
ℎ

𝜀0 (𝑝)
⃦⃦
𝑃⊥𝑢 [∇𝑞ℎ]

⃦⃦
𝐾

+
∑︁
𝐾

𝛼𝑢𝜌 ‖𝑎‖𝐿∞(𝐾) 𝜀1 (𝑢)
⃦⃦
𝑃⊥𝑢 [𝜌𝑎 · ∇𝑣ℎ]

⃦⃦
𝐾

+
∑︁
𝐾

𝛼𝑝𝜀1 (𝑢) ‖∇ · 𝑣ℎ‖𝐾

+
∑︁
𝐾

𝛼𝜓𝜀1(𝑢) ‖∇s𝑣ℎ‖𝐾

+
∑︁
𝐾

𝛼𝜓𝜀1(𝑢)
⃦⃦⃦⃦

𝜆

2𝜂𝑝

(︁
𝑎 · ∇𝑃𝜓 [𝐸 · 𝜒ℎ] + 𝑃𝜓 [𝐸 · 𝜒ℎ] · (∇𝑎)𝑇 +∇𝑎 · 𝑃𝜓 [𝐸 · 𝜒ℎ]

)︁⃦⃦⃦⃦
𝐾

+
∑︁
𝐾

𝛼𝜓𝜀0(𝜓)
𝜆

2𝜆0

(︃
‖𝑎‖𝐿∞(𝐾)

ℎ
+ 2 ‖∇𝑎‖𝐿∞(𝐾)

)︃

×
(︂
‖∇s𝑣ℎ‖𝐾 +

⃦⃦⃦⃦
𝜆

2𝜂𝑝

(︁
𝑎 · ∇𝑃𝜓 [𝐸 · 𝜒ℎ] + 𝑃𝜓 [𝐸 · 𝜒ℎ] · (∇𝑎)𝑇 +∇𝑎 · 𝑃𝜓 [𝐸 · 𝜒ℎ]

)︁⃦⃦⃦⃦
𝐾

)︂
,

where we have used that 𝜆0 = 𝑘𝜆 (again, the case 𝜆 small is easier). The results follows reorganizing terms,
using the expressions of the stabilization parameters and of 𝜂𝑒 and 𝜂𝑝 in terms of 𝜂0. �

Theorem 4.4 (Convergence). Let 𝑈 = [𝑢, 𝑝,𝜓] ∈ 𝒳 be the solution of the continuous problem, and suppose
that the assumptions of Theorem 4.1 and Lemma 4.3 hold. Then there exist a constant 𝐶 > 0 such that

‖𝑈 −𝑈ℎ‖𝑊 ≤ 𝐶ℰ(ℎ).

Proof. The proof is standard, the only particular point being the weak consistency of the method
(see, e.g., [6]). �

4.3. Stability and convergence in natural norms

The next results search prove stability and convergence in a natural norm, in other words, in the norm of the
space of the continuous problem, which is not a mesh dependent norm. Since this natural norm does not include
any control on the convective terms, stability and convergence in this norm is only meaningful in the case of
small cell Reynolds numbers and Weissenberg numbers. In the following, and contrary to what we have been
considering up to this point, generic constants 𝐶 may depend on these numbers and explode as they increase.

Theorem 4.5 (Stability and convergence in natural norms). Suppose that the assumptions of Theorem 4.1
hold and the cell Reynolds numbers and cell Weissenberg numbers are small. Then, the solution of the discrete
problem 𝑈ℎ = [𝑢ℎ, 𝑝ℎ,𝜓ℎ] ∈ 𝒳 ℎ can be bounded as

√
𝜂0 ‖𝑢ℎ‖𝐻1(Ω) +

√
𝜂0

𝜆0
‖𝑃𝜓[𝐸 ·𝜓ℎ]‖+

1
√

𝜂0
‖𝑝ℎ‖ ≤ 𝐶

(︂
1
√

𝜂0
‖𝑓𝑢‖𝐻−1(Ω) +

𝜆0√
𝜂0

⃦⃦
𝑓𝜓
⃦⃦)︂

. (4.18)

Moreover, under the assumptions of Theorem 4.4, if the solution of the continuous problem 𝑈 = [𝑢, 𝑝,𝜓] ∈ 𝒳
is regular enough, the following error estimate holds:

√
𝜂0 ‖𝑢− 𝑢ℎ‖𝐻1(Ω) +

√
𝜂0

𝜆0
‖𝐸 ·𝜓 − 𝑃𝜓[𝐸 ·𝜓ℎ]‖+

1
√

𝜂0
‖𝑝− 𝑝ℎ‖ ≤ 𝐶ℰ(ℎ). (4.19)

Proof. Firstly we will prove (4.18). We have that

𝐵stab (𝑈ℎ,𝑉 ℎ) = ⟨𝑓𝑢,𝑣ℎ⟩+
⟨︀
𝑓𝜓,𝜒ℎ

⟩︀
≤ 𝐶

(︂
1
√

𝜂0
‖𝑓𝑢‖𝐻−1(Ω)

√
𝜂0 ‖𝑣ℎ‖𝐻1(Ω) +

√
𝜂0

⃦⃦
𝑓𝜓
⃦⃦ √𝜂0

𝜆0

⃦⃦⃦⃦
𝑃𝜓

[︂
𝜆0

𝜂0
𝐸 · 𝜒ℎ

]︂⃦⃦⃦⃦)︂
≤ 𝐶

(︂
1
√

𝜂0
‖𝑓𝑢‖𝐻−1(Ω) +

√
𝜂0

⃦⃦
𝑓𝜓
⃦⃦)︂

‖𝑉 ℎ‖𝑊 ,
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where 𝑉 ℎ = [𝑣ℎ, 𝑞ℎ,𝜒ℎ] is arbitrary. Therefore, from the inf-sup condition proved in Theorem 4.1 we have

𝐶 ‖𝑈ℎ‖𝑊 ‖𝑉 ℎ‖𝑊 ≤ 𝐵stab (𝑈ℎ,𝑉 ℎ) ≤ 𝐶

(︂
1
√

𝜂0
‖𝑓𝑢‖𝐻−1(Ω) +

√
𝜂0

⃦⃦
𝑓𝜓
⃦⃦)︂

‖𝑉 ℎ‖𝑊 ,

and this implies that

‖𝑈ℎ‖𝑊 ≤ 𝐶

(︂
1
√

𝜂0
‖𝑓𝑢‖𝐻−1(Ω) +

√
𝜂0

⃦⃦
𝑓𝜓
⃦⃦)︂

.

Therefore:

‖𝑈ℎ‖2𝑊 = 2𝛽𝜂0 ‖∇s𝑢ℎ‖2𝐾 +
𝜂0 (1− 𝛽)

𝜆2
0

‖𝑃𝜓[𝐸 ·𝜓ℎ]‖2𝐾 +
∑︁
𝐾

𝛼𝑢

⃦⃦⃦⃦
𝜌𝑎 · ∇𝑢ℎ +∇𝑝ℎ −

𝜂𝑝
𝜆0
∇ · 𝑃𝜓[𝐸 ·𝜓ℎ]

⃦⃦⃦⃦2

𝐾

+
∑︁
𝐾

𝛼𝑢
⃦⃦
𝑃⊥𝑢 [𝜌𝑎 · ∇𝑢ℎ]

⃦⃦2

𝐾
+
∑︁
𝐾

𝛼𝑢
⃦⃦
𝑃⊥𝑢 [∇𝑝ℎ]

⃦⃦2

𝐾
+
∑︁
𝐾

𝛼𝑢

⃦⃦⃦⃦
𝑃⊥𝑢

[︂
𝜂𝑝
𝜆0
∇ · 𝑃𝜓[𝐸 ·𝜓ℎ]

]︂⃦⃦⃦⃦2

𝐾

+
∑︁
𝐾

𝛼𝑝 ‖∇ · 𝑢ℎ‖2𝐾 +
∑︁
𝐾

𝛼𝜓

⃦⃦⃦⃦
𝜆

2𝜆0

(︁
𝑎 · ∇𝑃𝜓[𝐸 ·𝜓ℎ]− 𝜓̇

**
ℎ

)︁⃦⃦⃦⃦2

𝐾

≤ 𝐶

(︂
1
√

𝜂0
‖𝑓𝑢‖𝐻−1(Ω) +

√
𝜂0

⃦⃦
𝑓𝜓
⃦⃦)︂

. (4.20)

Now, using the inverse inequality, we can write:

∑︁
𝐾

𝛼𝑢 ‖𝜌𝑎 · ∇𝑢ℎ +∇𝑝ℎ‖2𝐾 ≤
∑︁
𝐾

𝛼𝑢

⃦⃦⃦⃦
𝜌𝑎 · ∇𝑢ℎ +∇𝑝ℎ −

𝜂𝑝
𝜆0
∇ · 𝑃𝜓[𝐸 ·𝜓ℎ]

⃦⃦⃦⃦2

𝐾

+
∑︁
𝐾

𝛼𝑢
𝑐inv𝜂0

𝜆0

(︂
(1− 𝛽)

ℎ

)︂2
𝜂0

𝜆0
‖𝑃𝜓[𝐸 ·𝜓ℎ]‖2𝐾 .

In this expression we only have control on 𝜌𝑎 · ∇𝑢ℎ + ∇𝑝ℎ. There is the possibility of bounding the pressure
gradient making use of the control over the viscous term, since

∑︁
𝐾

𝛼𝑢 ‖∇𝑝ℎ‖2𝐾 ≤
∑︁
𝐾

𝛼𝑢 ‖𝜌𝑎 · ∇𝑢ℎ +∇𝑝ℎ‖2𝐾 +
∑︁
𝐾

𝛼𝑢
𝜂0

ℎ2

(︃
𝜌 ‖𝑎‖𝐿∞(𝐾) ℎ

𝜂0

)︃2

‖∇𝑢ℎ‖2𝐾 .

Note that this expression explodes with the cell Reynolds number Re𝐾 . Then, from inequality (4.20), and using
Korn’s inequality, the expression of 𝛼𝑢 and taking into account that 0 < 𝛽 < 1, we obtain:

𝜂0 ‖𝑢ℎ‖2𝐻1(Ω) +
𝜂0

𝜆2
0

‖𝑃𝜓[𝐸 ·𝜓ℎ]‖2 +
ℎ2

𝜂0

∑︁
𝐾

‖∇𝑝ℎ‖2𝐾 ≤ 𝐶

(︂
1
√

𝜂0
‖𝑓𝑢‖𝐻−1(Ω) +

√
𝜂0

⃦⃦
𝑓𝜓
⃦⃦)︂2

.

For the 𝐿2 stability for the pressure we rely on the inf-sup condition between the velocity and pressure spaces
that holds for the continuous problem. See the details in [11].

Now we will prove (4.19). Theorem 4.4 implies that ‖𝑈 −𝑈ℎ‖𝑊 ≤ 𝐶ℰ(ℎ), and consequently we have that

𝜂0 ‖𝑢− 𝑢ℎ‖2𝐻1(Ω) +
𝜂0

𝜆2
0

‖𝐸 ·𝜓 − 𝑃𝜓[𝐸 ·𝜓ℎ]‖2

+
∑︁
𝐾

𝛼𝑢

⃦⃦⃦⃦
𝜌𝑎 · ∇ (𝑢− 𝑢ℎ) +∇ (𝑝− 𝑝ℎ)− 𝜂0 (1− 𝛽)

𝜆0
∇ · (𝐸 ·𝜓 − 𝑃𝜓[𝐸 ·𝜓ℎ])

⃦⃦⃦⃦2

𝐾

≤ ℰ2(ℎ).
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Now we will follow the same procedure as the used to prove stability; assuming the cell Reynolds number to be
small, we get∑︁

𝐾

𝛼𝑢 ‖𝜌𝑎 · ∇ (𝑢− 𝑢ℎ) +∇ (𝑝− 𝑝ℎ)‖2𝐾

≤
∑︁
𝐾

𝛼𝑢

⃦⃦⃦⃦
𝜌𝑎 · ∇ (𝑢− 𝑢ℎ) +∇ (𝑝− 𝑝ℎ)− 𝜂0 (1− 𝛽)

𝜆0
∇ · (𝐸 ·𝜓 − 𝑃𝜓[𝐸 ·𝜓ℎ])

⃦⃦⃦⃦2

𝐾

+
∑︁
𝐾

𝛼𝑢
𝜂0

𝜆2
0

(︂
(1− 𝛽)

ℎ

)︂2

𝜂0𝜀
2
0,𝐾(𝜓),

and following the same reasoning

∑︁
𝐾

𝛼𝑢 ‖∇ (𝑝− 𝑝ℎ)‖2𝐾 ≤
∑︁
𝐾

𝛼𝑢 ‖𝜌𝑎 · ∇ (𝑢− 𝑢ℎ) +∇ (𝑝− 𝑝ℎ)‖2𝐾 +
∑︁
𝐾

𝛼𝑢
𝜂0

ℎ2

(︃
𝜌 ‖𝑎‖𝐿∞(𝐾) ℎ

𝜂0

)︃2

𝜀2
1,𝐾(𝑢).

So, we obtain

𝜂0 ‖𝑢− 𝑢ℎ‖2𝐻1(Ω) +
𝜂0

𝜆2
0

‖𝐸 ·𝜓 − 𝑃𝜓[𝐸 ·𝜓ℎ]‖2 +
ℎ2

𝜂0

∑︁
𝐾

‖∇ (𝑝− 𝑝ℎ)‖2𝐾 ≤ 𝐶ℰ2(ℎ).

The error estimate to include the 𝐿2 norm of the pressure error can be obtained following the reasoning indicated
in [11]. �

Theorem 4.6 (𝐿2 error estimate for the velocity). Suppose that the assumptions of Theorem 4.5 hold and the
continuous problem satisfies the elliptic regularity condition

√
𝜂0 ‖𝑢‖𝐻2(Ω) +

√
𝜂0

𝜆0
‖𝐸 ·𝜓‖𝐻1(Ω) +

1
√

𝜂0
‖𝑝‖𝐻1(Ω) ≤ 𝐶

1
√

𝜂0
‖𝑓𝑢‖ . (4.21)

Then

√
𝜂0 ‖𝑢− 𝑢ℎ‖ ≤ 𝐶ℎ

(︂
√

𝜂0 ‖𝑢− 𝑢ℎ‖𝐻1(Ω) +
√

𝜂0

𝜆0
‖𝐸 ·𝜓 − 𝑃𝜓[𝐸 ·𝜓ℎ]‖+

1
√

𝜂0
‖𝑝− 𝑝ℎ‖

)︂
.

Proof. Let [𝜔, 𝜋,𝑆] ∈ 𝒳 be the solution of the following adjoint problem:

∇ · 𝑆 − 2𝛽𝜂0𝛥𝜔 − 𝜌𝑎 · ∇𝜔 −∇𝜋 =
𝜂0

ℓ2
(𝑢− 𝑢ℎ) , (4.22)

−∇ · 𝜔 = 0, (4.23)
1

2𝜂0(1− 𝛽)
𝑆 +∇s𝜔 − 𝜆

2𝜂0(1− 𝛽)

(︁
𝑎 · ∇𝑆 + 𝑆 · (∇𝑎)𝑇 +∇𝑎 · 𝑆

)︁
= 0, (4.24)

with 𝜔 = 0 on 𝜕Ω and where ℓ is a characteristic length scale of the problem that has only been introduced to
keep the dimensionality. Let also [𝜔̃ℎ, 𝜋̃ℎ, 𝑆̃ℎ] be the best approximation to [𝜔, 𝜋,𝑆] in 𝒳 ℎ. Testing (4.22) with
𝑢− 𝑢ℎ, (4.23) with 𝑝− 𝑝ℎ and (4.24) with 𝜓 −𝜓ℎ, we can obtain the next expression:

𝜂0

ℓ2
‖𝑢− 𝑢ℎ‖2 = 𝐵𝜓 ([𝑢− 𝑢ℎ, 𝑝− 𝑝ℎ,𝜓 −𝜓ℎ], [𝜔, 𝜋,𝑆])

= 𝐵stab ([𝑢− 𝑢ℎ, 𝑝− 𝑝ℎ,𝜓 −𝜓ℎ], [𝜔, 𝜋,𝑆])

−
∑︁
𝐾

𝛼𝑢

⟨
𝑃⊥𝑢

[︂
− 𝜂𝑝

𝜆0
∇ · 𝑃𝜓 [𝐸 ·𝜓 −𝐸 ·𝜓ℎ]

]︂
, 𝑃⊥𝑢 [−∇ · 𝑆]

⟩
𝐾
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−
∑︁
𝐾

𝛼𝑢
⟨︀
𝑃⊥𝑢 [∇ (𝑝− 𝑝ℎ)] , 𝑃⊥𝑢 [∇𝜋]

⟩︀
𝐾
−
∑︁
𝐾

⟨︀
𝑃⊥𝑢 [𝜌𝑎 · ∇ (𝑢− 𝑢ℎ)] , 𝑃⊥𝑢 [𝜌𝑎 · ∇𝜔]

⟩︀
𝐾

−
∑︁
𝐾

𝛼𝑝
⟨︀
𝑃⊥𝑝 [∇ · (𝑢− 𝑢ℎ)] , 𝑃⊥𝑝 [∇ · 𝜔]

⟩︀
𝐾

−
∑︁
𝐾

𝛼𝜓

⟨
−∇s (𝑢− 𝑢ℎ) +

𝜆

2𝜆0
(𝑎 · ∇𝑃𝜓 [𝐸 ·𝜓 −𝐸 ·𝜓ℎ]− 𝑃𝜓 [𝐸 ·𝜓 −𝐸 ·𝜓ℎ] · ∇𝑎

− (∇𝑎)𝑇 · 𝑃𝜓 [𝐸 ·𝜓 −𝐸 ·𝜓ℎ]
)︁

,−∇s𝜔 +
𝜆

2𝜂𝑝

(︁
𝑎 · ∇𝑆 + 𝑆 · (∇𝑎)𝑇 +∇𝑎 · 𝑆

)︁⟩
𝐾

, (4.25)

where we have used the definition of 𝐵stab in (3.7). The fifth and sixth terms of (4.25) are zero because of (4.23)
and (4.24), respectively. Therefore only four terms need to be bounded. Considering (3.9), these can be written
as follows

𝜂0

ℓ2
‖𝑢− 𝑢ℎ‖2 = 𝐵stab ([𝑢− 𝑢ℎ, 𝑝− 𝑝ℎ,𝜓 −𝜓ℎ], [𝜔, 𝜋,𝑆])

−
∑︁
𝐾

𝛼𝑢

⟨
𝑃⊥𝑢

[︂
− 𝜂𝑝

𝜆0
∇ · 𝑃𝜓 [𝐸 ·𝜓 −𝐸 ·𝜓ℎ]

]︂
, 𝑃⊥𝑢 [−∇ · 𝑆]

⟩
𝐾

−
∑︁
𝐾

𝛼𝑢
⟨︀
𝑃⊥𝑢 [∇ (𝑝− 𝑝ℎ)] , 𝑃⊥𝑢 [∇𝜋]

⟩︀
𝐾
−
∑︁
𝐾

⟨︀
𝑃⊥𝑢 [𝜌𝑎 · ∇ (𝑢− 𝑢ℎ)] , 𝑃⊥𝑢 [𝜌𝑎 · ∇𝜔]

⟩︀
𝐾

. (4.26)

Using the interpolation properties and the shift assumption (4.21) it follows that

‖𝜔 − 𝜔̃ℎ‖𝐻1(Ω) ≤ 𝐶ℎ ‖𝜔‖𝐻2(Ω) ≤ 𝐶ℎ
1
ℓ2
‖𝑢− 𝑢ℎ‖ ,⃦⃦⃦

𝑆 − 𝑆̃ℎ
⃦⃦⃦
≤ 𝐶ℎ ‖𝑆‖𝐻1(Ω) ≤ 𝐶ℎ

𝜂0

ℓ2
‖𝑢− 𝑢ℎ‖ ,

‖𝜋 − 𝜋̃ℎ‖ ≤ 𝐶ℎ ‖𝜋‖𝐻1(Ω) ≤ 𝐶ℎ
𝜂0

ℓ2
‖𝑢− 𝑢ℎ‖ .

From these expressions we obtain

𝐵stab ([𝑢− 𝑢ℎ, 𝑝− 𝑝ℎ,𝜓 −𝜓ℎ], [𝜔, 𝜋,𝑆])

= 𝐵stab

(︁
[𝑢− 𝑢ℎ, 𝑝− 𝑝ℎ,𝜓 −𝜓ℎ], [𝜔 − 𝜔̃ℎ, 𝜋 − 𝜋̃ℎ,𝑆 − 𝑆̃ℎ]

)︁
−
∑︁
𝐾

𝛼𝑢

⟨
𝑃⊥𝑢

[︂
− 𝜂𝑝

𝜆0
∇ · 𝑃𝜓 [𝐸 ·𝜓 −𝐸 ·𝜓ℎ]

]︂
, 𝑃⊥𝑢

[︁
−∇ ·

(︁
𝑆 − 𝑆̃ℎ

)︁]︁⟩
𝐾⏟  ⏞  

(2)

−
∑︁
𝐾

𝛼𝑢
⟨︀
𝑃⊥𝑢 [∇ (𝑝− 𝑝ℎ)] , 𝑃⊥𝑢 [∇ (𝜋 − 𝜋̃ℎ)]

⟩︀
𝐾⏟  ⏞  

(3)

−
∑︁
𝐾

⟨︀
𝑃⊥𝑢 [𝑎 · ∇ (𝑢− 𝑢ℎ)] , 𝑃⊥𝑢 [𝑎 · ∇ (𝜔 − 𝜔̃ℎ)]

⟩︀
𝐾⏟  ⏞  

(4)

.

Considering these inequalities we can bound terms (2)–(4) easily:

(2) ≤
∑︁
𝐾

𝛼𝑢
𝜂𝑝
𝜆0

1
ℎ
‖𝑃𝜓 [𝐸 ·𝜓 −𝐸 ·𝜓ℎ]‖𝐾

𝜂0

ℓ2
‖𝑢− 𝑢ℎ‖𝐾

≤
∑︁
𝐾

𝛼𝑢
𝜂𝑝
𝜆0

1
ℎ
‖𝐸 ·𝜓 − 𝑃𝜓[𝐸 ·𝜓ℎ]‖𝐾

𝜂0

ℓ2
‖𝑢− 𝑢ℎ‖𝐾 ,

(3) ≤
∑︁
𝐾

𝛼𝑢
1
ℎ
‖𝑝− 𝑝ℎ‖𝐾

𝜂0

ℓ2
‖𝑢− 𝑢ℎ‖𝐾 ,
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(4) ≤
∑︁
𝐾

𝛼𝑢

(︁
𝜌 ‖𝑎‖𝐿∞(𝐾)

)︁2 ℎ

ℓ2
‖𝑢− 𝑢ℎ‖𝐾 ‖𝑢− 𝑢ℎ‖𝐻1(Ω) .

We have to bound the terms of

𝐵stab

(︁
[𝑢− 𝑢ℎ, 𝑝− 𝑝ℎ,𝜓 −𝜓ℎ], [𝜔 − 𝜔̃ℎ, 𝜋 − 𝜋̃ℎ,𝑆 − 𝑆̃ℎ]

)︁
,

for which similar techniques to those used before. Finally, combining the bounds obtained in (4.26) yields:

𝜂0

𝑙2
‖𝑢− 𝑢ℎ‖2 ≤ ℎ

√
𝜂0

ℓ2
‖𝑢− 𝑢ℎ‖

(︃
√

𝜂0 ‖𝑢− 𝑢ℎ‖𝐻1(Ω) +
∑︁
𝐾

(︃
𝜌 ‖𝑎‖𝐿∞(𝐾)

𝜂0

)︃
√

𝜂0 ‖𝑢− 𝑢ℎ‖𝐻1(𝐾)

+
√

𝜂0

𝜆0
‖𝐸 ·𝜓 − 𝑃𝜓[𝐸 ·𝜓ℎ]‖𝐾 +

√
𝜂0

𝜆0

∑︁
𝐾

(︃
𝜆 ‖𝑎‖𝐿∞(𝐾)

ℎ

)︃
‖𝐸 ·𝜓 − 𝑃𝜓[𝐸 ·𝜓ℎ]‖𝐾

+
1
√

𝜂0
‖𝑝− 𝑝ℎ‖𝐾

)︂
,

and theorem follows. Note again that the bound obtained explodes with the cell Reynolds and the cell Weis-
senberg numbers. �

5. Conclusions

In this paper we have analyzed the finite element formulation proposed in [28] applied to a linearized form of
the logarithmic reformulation of the viscoelastic flow problem. A similar analysis was done in [6] for the standard
formulation, and thus the present paper can be considered a follow-up of the latter. Despite the linearization
and the various assumptions that have been needed in our analysis, it serves to draw two main conclusions.
The first is that the finite element formulation proposed is effective as stabilization technique, as it allows one
to use arbitrary interpolations for all variables in play (we have considered for simplicity the case of continuous
interpolations) and yields optimal error estimates, both in the stabilized norm and in the natural norm of the
problem, in the spaces in which the continuous problem is posed. The second conclusion is that the logarithmic
reformulation has a significantly better behavior in terms of the Weissenberg number than the standard one,
with an error estimate that deteriorates much more slowly when this number increases; this provides some
theoretical foundation to justify the use of the logarithmic reformulation to attempt the HWNP, at least using
the FE formulation we have introduced.
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