A four-field three-phase flow model with both miscible and immiscible components
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 55 (2021), pp. S251-S278

A three-phase flow model with hybrid miscibility constraints is proposed: three immiscible phases are considered (liquid water, liquid metal and gas) but the gaseous phase is composed with two miscible components (steam water and non-condensable gas). The modelling approach is based on the building of an entropy inequality for the system of partial differential equations: once an interfacial velocity is given by the user, the model is uniquely defined, up to some relaxation time scales, and source terms complying with the second principle of thermodynamics can then be provided. The convective part of the system is hyperbolic when fulfilling a non-resonance condition and classical properties are studied (Riemann invariants, symmetrization). A key property is that the system possesses uniquely defined jump conditions. Last, preservation of thermodynamically admissible states and pressure relaxation are investigated.

DOI : 10.1051/m2an/2020037
Classification : 76T30, 35Q35, 35L60
Keywords: Three-phase flow, entropy, jump conditions, miscible components
@article{M2AN_2021__55_S1_S251_0,
     author = {H\'erard, Jean-Marc and Hurisse, Olivier and Quibel, Lucie},
     title = {A four-field three-phase flow model with both miscible and immiscible components},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {S251--S278},
     year = {2021},
     publisher = {EDP-Sciences},
     volume = {55},
     number = {Suppl\'ement},
     doi = {10.1051/m2an/2020037},
     mrnumber = {4221322},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/m2an/2020037/}
}
TY  - JOUR
AU  - Hérard, Jean-Marc
AU  - Hurisse, Olivier
AU  - Quibel, Lucie
TI  - A four-field three-phase flow model with both miscible and immiscible components
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2021
SP  - S251
EP  - S278
VL  - 55
IS  - Supplément
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/m2an/2020037/
DO  - 10.1051/m2an/2020037
LA  - en
ID  - M2AN_2021__55_S1_S251_0
ER  - 
%0 Journal Article
%A Hérard, Jean-Marc
%A Hurisse, Olivier
%A Quibel, Lucie
%T A four-field three-phase flow model with both miscible and immiscible components
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2021
%P S251-S278
%V 55
%N Supplément
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/m2an/2020037/
%R 10.1051/m2an/2020037
%G en
%F M2AN_2021__55_S1_S251_0
Hérard, Jean-Marc; Hurisse, Olivier; Quibel, Lucie. A four-field three-phase flow model with both miscible and immiscible components. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 55 (2021), pp. S251-S278. doi: 10.1051/m2an/2020037

R. Abgrall and R. Saurel, Discrete equations for physical and numerical compressible multiphase mixtures. J. Comput. Phys. 186 (2003) 361–396. | MR | Zbl

R. Akiyoshi, S. Nishio and I. Tanasawa, A study on the effect of non-condensible gas in the vapor film on vapor explosion. Int. J. Heat Mass Trans. 33 (1990) 603–609.

G. Allaire, S. Clerc and S. Kokh, A five-equation model for the numerical simulation of interfaces in two-phase flows. C.R. Acad. Sci. Ser. I – Math. 331 (2000) 1017–1022. | MR | Zbl

M. Bachmann, S. Müller, P. Helluy and H. Mathis, A simple model for cavitation with non-condensable gases. In: Vol. 18 of Hyperbolic Problems: Theory, Numerics and Applications. World Scientific (2012) 289–296. | MR | Zbl

M. Baer and J. Nunziato, A two-phase mixture theory for the deflagration-to-detonation transition (DDT) in reactive granular materials. J. Multiphase Flows 12 (1986) 861–889. | Zbl

T. Barberon and P. Helluy, Finite volume simulation of cavitating flows. Comput. Fluids 34 (2005) 832–858. | Zbl

F. Barre and M. Bernard, The CATHARE code strategy and assessment. Nucl. Eng. Des. 124 (1990) 257–284.

G. Berthoud, Vapor explosions. Ann. Rev. Fluid Mech. 32 (2000) 573–611. | Zbl

H. Boukili and J.-M. Hérard, Relaxation and simulation of a barotropic three-phase flow model. ESAIM: M2AN 53 (2019) 1031–1059. | MR | Zbl | Numdam

H. Boukili and J.-M. Hérard, Simulation and preliminary validation of a three-phase flow model with energy. Working paper or preprint. https://hal.archives-ouvertes.fr/hal-02426425 (2020). | MR

M. Chuberre and N. Seguin, Étude asymptotique pour des écoulements compressibles diphasiques. Tech. Rep., Université Rennes 1, IRMAR (2019).

F. Coquel, T. Gallouët, J.-M. Hérard and N. Seguin, Closure laws for a two-fluid two-pressure model. C.R. Math. 334 (2002) 927–932. | MR | Zbl

F. Coquel, J.-M. Hérard and K. Saleh, A splitting method for the isentropic Baer-Nunziato two-phase flow model. ESAIM: Proc. Surv. 38 (2012) 241–256. | MR

F. Coquel, J.-M. Hérard, K. Saleh and N. Seguin, A class of two-fluid two-phase flow models. In: 42nd AIAA Fluid Dynamics Conference and Exhibit. AIAA, New Orleans, United States (2012).

F. Coquel, J.-M. Hérard, K. Saleh and N. Seguin, A robust entropy-satisfying finite volume scheme for the isentropic Baer-Nunziato model. ESAIM: M2AN 48 (2014) 165–206. | MR | Zbl | Numdam

F. Coquel, J.-M. Hérard, K. Saleh and N. Seguin, Two properties of two-velocity two-pressure models for two-phase flows. Commun. Math. Sci. 12 (2014). | MR | Zbl

F. Coquel, J.-M. Hérard and K. Saleh, A positive and entropy-satisfying finite volume scheme for the Baer-Nunziato model. J. Comput. Phys. 330 (2017) 401–435. | MR

P. Downar-Zapolski, Z. Bilicki, L. Bolle and J. Franco, The non-equilibrium relaxation model for one-dimensional flashing liquid flow. Int. J. Multiphase Flow 22 (1996) 473–483. | Zbl

G. Faccanoni, S. Kokh and G. Allaire, Modelling and simulation of liquid-vapor phase transition in compressible flows based on thermodynamical equilibrium. ESAIM: M2AN 46 (2012) 1029–1054. | MR | Zbl | Numdam

T. Flåtten and H. Lund, Relaxation two-phase flow models and the subcharacteristic condition. Math. Models Methods Appl. Sci. 21 (2011) 2379–2407. | MR | Zbl | DOI

T. Gallouët, J.-M. Hérard and N. Seguin, Numerical modeling of two-phase flows using the two-fluid two-pressure approach. Math. Models Methods Appl. Sci. 14 (2004) 663–700. | MR | Zbl | DOI

S. Gavrilyuk, The structure of pressure relaxation terms: the one-velocity case. Tech. Rep., EDF report, H-I83-2014-0276-EN (2014).

S. Gavrilyuk and R. Saurel, Mathematical and numerical modeling of two-phase compressible flows with micro-inertia. J. Comput. Phys. 175 (2002) 326–360. | MR | Zbl | DOI

S. Gavrilyuk and R. Saurel, Rankine-Hugoniot relations for shocks in heterogeneous mixtures. J. Fluid Mech. 575 (2007) 495–507. | MR | Zbl | DOI

S. Gavrilyuk, N. Makarenko and S. Sukhinin, Waves in Continuous Media. Springer (2017). | MR | DOI

V. Guillemaud, Modelling and numerical simulation of two-phase flows using the two-fluid two-pressure approach, Ph.D. thesis, (in French), Université de Provence – Aix-Marseille I (2007).

E. Han, M. Hantke and S. Müller, Efficient and robust relaxation procedures for multi-component mixtures including phase transition. J. Comput. Phys. 338 (2017) 217–239. | MR | DOI

M. Hantke and S. Müller, Analysis and simulation of a new multi-component two-phase flow model with phase transitions and chemical reactions. Q. Appl. Math. 76 (2018) 253–287. | MR | DOI

M. Hantke and S. Müller, Closure conditions for a one temperature non-equilibrium multi-component model of baer-nunziato type. ESAIM: Proc. Surv. 66 (2019) 42–60. | MR | DOI

P. Helluy and H. Mathis, Pressure laws and fast Legendre transform. Math. Models Methods Appl. Sci. 21 (2010) 745–775. | MR | Zbl | DOI

P. Helluy and N. Seguin, Relaxation models of phase transition flows. ESAIM: M2AN 40 (2006) 331–352. | MR | Zbl | Numdam | DOI

P. Helluy, O. Hurisse and L. Quibel, Assessment of numerical schemes for complex two-phase flows with real equations of state. Comput. Fluids 196 (2020) 104347. | MR | DOI

J.-M. Hérard, A three-phase flow model. Math. Comput. Model. 45 (2007) 732–755. | MR | Zbl | DOI

J.-M. Hérard, An hyperbolic two-fluid model in a porous medium. C.R. Mec. 336 (2008) 650–655. | Zbl

J.-M. Hérard, A class of compressible multiphase flow models. C.R. Math. 354 (2016) 954–959. | MR | DOI

J.-M. Hérard and O. Hurisse, A fractional step method to compute a class of compressible gas–liquid flows. Comput. Fluids 55 (2012) 57–69. | MR | Zbl | DOI

J.-M. Hérard and H. Lochon, A simple turbulent two-fluid model. C.R. Mec. 344 (2016) 776–783. | DOI

J.-M. Hérard and H. Mathis, A three-phase flow model with two miscible phases. ESAIM: M2AN 53 (2019) 1373–1389. | MR | Zbl | Numdam | DOI

M. Hillairet, On Baer-Nunziato multiphase flow models. ESAIM: Proc. Surv. 66 (2019) 61–83. | MR | DOI

J. Huang, J. Zhang and L. Wang, Review of vapor condensation heat and mass transfer in the presence of non-condensable gas. Appl. Thermal Eng. 89 (2015) 469–484. | DOI

O. Hurisse, Numerical simulations of steady and unsteady two-phase flows using a homogeneous model. Comput. Fluids 152 (2017) 88–103. | MR | DOI

O. Hurisse and L. Quibel, A homogeneous model for compressible three-phase flows involving heat and mass transfer. ESAIM: Proc. Surv. 66 (2019) 84–108. | MR | DOI

D. Iampietro, Contribution to the simulation of low-velocity compressible two-phase flows with high pressure jumps using homogeneous and two-fluid approaches. Theses. Aix-Marseille Université (2018).

IRSN, Accidents graves pouvant affecter un réacteur à eau pressurisée. (2011). https://www.irsn.fr/fr/connaissances/installations_nucleaires/les-accidents-nucleaires/.

M. Ishii, Thermo-Fluid Dynamics Theory of Two-Phase Flow. Eyrolles (1975). | Zbl

J. Jung, Numerical simulations of two-fluid flow on multicores accelerator. Ph.D. thesis, Université de Strasbourg (2013).

A. K. Kapila, R. Menikoff, J. B. Bdzil, S. F. Son and D. S. Stewart, Two-phase modeling of deflagration-to-detonation transition in granular materials: reduced equations. Phys. Fluids 13 (2001) 3002–3024. | Zbl | DOI

T. Kato, The Cauchy problem for quasi-linear symmetric hyperbolic systems. Arch. Ration. Mech. Anal. 58 (1975) 181–205. | MR | Zbl | DOI

R. Lewandowski and B. Mohammadi, Existence and positivity results for the ϕ - θ and a modified k - ε two-equation turbulence models. Math. Models Methods Appl. Sci. 3 (1993) 195–215. | MR | Zbl | DOI

H. Lochon, Modélisation et simulation d’écoulements transitoires eau-vapeur en approche bifluide. Ph.D. thesis. Aix Marseille Université, 2016.

H. Mathis, A thermodynamically consistent model of a liquid-vapor fluid with a gas. ESAIM: M2AN 53 (2019) 63–84. | MR | Zbl | Numdam | DOI

R. Meignen, B. Raverdy, S. Picchi and J. Lamome, The challenge of modeling fuel–coolant interaction: Part II–steam explosion. Nucl. Eng. Des. 280 (2014) 528–541. | DOI

S. Müller, M. Hantke and P. Richter, Closure conditions for non-equilibrium multi-component models. Continuum Mech. Thermodyn. 28 (2016) 1157–1189. | MR | Zbl | DOI

K. Saleh, A relaxation scheme for a hyperbolic multiphase flow model. Part I: Barotropic EOS. ESAIM: M2AN 53 (2019) 1763–1795. | MR | Zbl | Numdam | DOI

K. Saleh and N. Seguin, Some mathematical properties of a barotropic multiphase flow model. Working paper or preprint (2018). https://hal.archives-ouvertes.fr/hal-01921027. | MR | Zbl

R. Saurel, S. Gavrilyuk and F. Renaud, A multiphase model with internal degrees of freedom: application to shock–bubble interaction. J. Fluid Mech. 495 (2003) 283–321. | MR | Zbl | DOI

D. W. Schwendeman, C. W. Wahle and A. K. Kapila, The Riemann problem and a high-resolution Godunov method for a model of compressible two-phase flow. J. Comput. Phys. 212 (2006) 490–526. | MR | Zbl | DOI

S. Tokareva and E. F. Toro, HLLC-type Riemann solver for the Baer-Nunziato equations of compressible two-phase flow. J. Comput. Phys. 229 (2010) 3573–3604. | MR | Zbl | DOI

Cité par Sources :