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A FOUR-FIELD THREE-PHASE FLOW MODEL WITH BOTH MISCIBLE AND
IMMISCIBLE COMPONENTS

JEAN-MARC HERARD!3, OLIVIER HURISSE! AND LUCIE QUIBEL!?*

Abstract. A three-phase flow model with hybrid miscibility constraints is proposed: three immiscible
phases are considered (liquid water, liquid metal and gas) but the gaseous phase is composed with two
miscible components (steam water and non-condensable gas). The modelling approach is based on the
building of an entropy inequality for the system of partial differential equations: once an interfacial ve-
locity is given by the user, the model is uniquely defined, up to some relaxation time scales, and source
terms complying with the second principle of thermodynamics can then be provided. The convective
part of the system is hyperbolic when fulfilling a non-resonance condition and classical properties are
studied (Riemann invariants, symmetrization). A key property is that the system possesses uniquely
defined jump conditions. Last, preservation of thermodynamically admissible states and pressure re-
laxation are investigated.
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1. INTRODUCTION

In the framework of nuclear safety demonstration for pressurized water reactors, some accidental scenarii
are studied (see IRSN website [44]). They involve compressible flows undergoing fast transient situations with
mass transfer. Steam explosion (see [8]) falls into this category and its accurate simulation is still a challenging
problem [9]. It might occur when very hot liquid metal particles interact with quiet liquid water. Liquid water
heated by metal suddendly changes into steam and a steam layer appears around metal particles. Heat transfer
is thus inhibited until this layer becomes unstable. A steam explosion may then arise, leading to pressure waves
likely to damage the surronding structures.

In addition to metal, liquid and steam water, other gases may be present: indeed, ambiant air may be
mixed with vapor when metal comes into the free surface of water, or hydrogen might appear under accidental
conditions because of fuel oxydation. Then, the proportion of non-condensable gas compared with water vapor in
the gaseous layer around metal particles has a strong influence on the probability of observing a steam explosion
or not [2], since non-condensable gas limits steam condensation [40]. Numerical studies also bear out the effect
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of the inert gas quantity on condensation, like in [4]. Non-condensable gas is besides taken into account in the
reference industrial codes classically used to simulate a vapor explosion [7,52].

Our aim in this work is to propose a meaningful model with suitable mathematical properties for the previous
applications, describing a flow with four components: liquid and steam water, liquid metal particles and non-
condensable gas. Moreover, our model needs to cope with mass transfer between liquid and steam water, and
to correctly manage shock waves. We insist on the fact that only a modelling work will be presented here:
perspectives and references concerning the numerical simulation will be discussed in conclusion.

A wide range of two-phase flow models has been proposed since decades. Fewer references are available
about three-phase flow models, see [9,29,33,35,38,42,51,53,55]. Among all these models, two classes can be
distinguished: models based on the multifluid approach [5,9,12,23,29,33,35,38,47,53,55], where each component
has its own velocity field, and models based on the homogeneous approach [3,6,19,30-32,41,42,46,51], where
the kinematic equilibrium is assumed between all constituents.

The choice between one approach or the other is a matter of interest and can be discussed regarding charac-
teristic time scales for the considered system. Indeed, the targeted applications are rapid transients where the
phases are almost always out of equilibrium, so that the system dynamics is driven by return towards equilib-
rium and convective effects. The mechanical, kinematic or thermal transfers between phases occur at different
characteristic time scales, so that lots of classical modelling approaches may suppose some instantaneous partial
equilibria, in terms of pressure, velocity or temperature: such partial relaxations enable to build a hierarchy of
models as depicted in [20]. By noting 7, the pressure relaxation time scale, 7, the velocity relaxation time scale
and 7p the temperature relaxation time scale, the following ordering® is often assumed, based on estimations
obtained for instance in [47]:

0 <7y, T K 77

7, and 7, can be differently ordered depending on the considered model, as recalled in the introduction of [50].
Note that evaluating each phasic velocity is sometimes unavoidable, like for the vapor explosion (see [8,52])
where the velocity gaps are required to estimate interfacial transfers through the interfacial area. To numerically
take into account the kinematic disequibrium, a time step At smaller than 7, is required. A homogeneous model
does not impose this constraint on At and is thus far cheaper on industrial meshes; but thanks to the computing
cost drop, the multifluid approach is today more and more affordable and thus requires a relevant modelling.

Both approaches have their own strengths and their own difficulties. The homogeneous models have a simpler
convective structure than the multifluid models (for instance, compare [42] with [33], two models describing the
same mixture with three immiscible phases). Nevertheless, a mixture equation of state should be carefully built
in the homogeneous models (see [42,51]), whereas the thermodynamical behavior is decoupled phase by phase
in the multifluid models. Numerically, building the mixture equation of state in a homogeneous model can be
somehow tricky when considering realistic equations of state, so that very robust numerical schemes are required
as highlighted in [32].

Moreover, for some applications like for the vapor explosion (see [8,52]), evaluating each phasic velocity is
sometimes unavoidable, because the velocity gaps are required to estimate interfacial transfers through the
interfacial area. The velocity gaps are indeed the key ingredient enabling to model the dislocation effects of the
liquid metal droplets, that induce a high heat transfer between metal and water which may lead to an explosion.

The present model is derived from the multifluid approach. It belongs to a family of models developped since
2000 [12,21,33-35,37,38], built among a similar strategy, by imposing the following minimal requirements:

— to be hyperbolic;
— to possess a physically relevant entropy inequality;
— to possess uniquely defined jump conditions.

Moreover, the preservation of the thermodynamical admissible domain should be ensured and the symmetriz-
ability is also expected (see [16,38,55]). Thanks to the previous properties, problems with an analytical solution,

I This hierarchy is not absolute and may depend on the considered physical situation as explained in [24].
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which may involve shock waves, can be built, and one may thus request that two different numerical schemes
should converge towards a unique solution when refining the mesh. This is also a key feature to verify numerical
codes intented for safety study purposes. The initial model [12,21] is a two-phase flow model with two immis-
cible phases, similar to the original Baer—Nunziato model [5]. Both barotropic model and model with energy
have been studied. The counterpart of this model has been proposed in [33], with three immiscible phases; its
barotropic version [35] has been implemented in [9], and the full model with energy equation in [10]. A hybrid
two-phase flow model with three components has been last developed in [38]: steam water and non-condensable
gas are miscible whereas liquid and gaseous phase are immiscible.

The present model aims to simultaneously tackle all the features of these previous models: three immiscible
phases are present (liquid water, liquid metal and gas) like in [33] and the gaseous phase is composed with two
miscible components (steam water and non-condensable gas) like in [38].

The model is based on a system of conservation laws with additional non-conservative terms involving an
interfacial velocity v;. Our modelling effort focuses on the correct definition of the non-conservative terms:
we only focus on models admitting a relevant entropy inequality and uniquely defined jump conditions that
degenerate towards the classical Euler framework when considering single-phase flows.

Section 2 is devoted to the building of an entropy inequality. From the partial differential equations, a natural
mixture entropy is derived: once v is given by the user, the model is uniquely defined, up to some relaxation
time scales. Several submodels can be studied by chosing a particular form for v;. Following a classical approach,
admissible source terms complying with entropy growth within time can be found.

Section 3 focuses on the properties of the convective part of such models. For any v, hyperbolicity is ensured,
unless resonance occurs. Then, two submodels are considered for which unique jump conditions can be easily
exhibited: when v is equal to u,, one of the phasic velocities, or when v; is defined as u,,, the average of
the phasic velocities. Hence, we retrieve the “classical” two-phase flow results (see [12]). For both cases, the
convective structure is precisely described in terms of waves and Riemann invariants. It is also shown that the
quasi-linear system admits a symmetric form, ensuring that the Cauchy problem based on this model has a
unique local-in-time smooth solution [48] (while excluding the resonance).

Last, in Section 4, the case v; = u, is more deeply studied, by giving some useful properties that might help
to prepare a future numerical implementation of the model. We shall see that the thermodynamically admissible
domain is preserved for simple equations of state. The natural pressure equilibria, satisfying the Dalton’s law,
are not violated, and the relaxation system ensures that initial pressure gaps will relax towards zero, so that
pressure equilibria will be recovered, provided that some meaningful restrictions on initial pressure differences
hold.

2. A FOUR-FIELD THREE-PHASE FLOW MODEL

The considered flows are composed of four fields, representing the following components: liquid metal, liquid
water, vapor and gas. For sake of readibility, we define: K = {s,l,v, ¢}, and each field will be identified in the
following by a subscript k& € KC: subscript s refers to liquid metal; subscript ! refers to liquid; subscript v refers
to vapor and subscript g refers to gas.

First, a system of conservation laws describing the four fields is written, based on Euler equations with
additionnal terms modelling the interfacial exchanges. A natural entropy equality is associated to this system.

Several submodels can then be studied, depending on the miscibility constraints. In our application, vapor
and gas are miscible whereas liquid metal, liquid water and gaseous mixture are immiscible.

Closure laws for non conservative terms satisfying minimal entropy dissipation are proposed. Last, particular
forms are proposed for the source terms: as the model should comply with entropy growth for weak solutions,
some constraints can be exhibited.
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2.1. General framework

2.1.1. Set of variables and notations

Let us consider a field k, k € KC. The following set of variables Y}, is considered:
Yy = (ag, mi, myug, apEy)", (2.1)

where «y, is the statistical fraction, my is the partial mass (in kgm=3), u € R? is the velocity (in ms™!) and
E} is the total energy (in Jm™3), i.e. the sum of kinetic energy and internal energy.

Let us then precise some notations: Py stands for pressure (in Pa); T} for temperature (in K); we note also
ar = T,;l; e, for internal energy (in Jkg='m=3); s, for entropy (in JK~'kg=! m~2) and ¢ for sound velocity
(in ms™1). Density py (in kgm™3) is defined by mi = agpy.

Remark 2.1. Note that for all k¥ € K, ay, €]0, 1[: monophasic cases or cases with one or more missing phases
are excluded.
2.1.2. Equation of state

Thermodynamically, a field k is described with the following equation of state for internal energy: ex( Py, pk)-
This choice is relevant regarding our previous choice for Yy, (2.1): with another thermodynamical entry-plane,
other more natural definitions of Y} would have been preferred. Ej can now be explicitely written:

1
Ey = prer(Pr, pr) + §Pkui- (2.2)
The equation of state defines a physically admissible domain, i.e. aset B, = {(Pg, pr) € RXR* /ey (Py, pi) >

0}.

For all (Py, pr) € Eg, ck, sk and T) are then defined thanks to ¢, with the following positivity constraints:

-1
Oeg, P Oey,
= — — g >0, 2.3
i (0] ) (2onie] ) e

88k 68;9
Sk (P, so that ¢7 —= — =0, 2.4
(P n) F R~ (2.4
and 1
aek ( ask )
Ty = —| X | =— > 0. (2.5)
8Pk Pk aPk Pk

A requirement for the model is to preserve within time the admissible domain E; and the positivity constraints
(2.3) and (2.5): this property will be studied in Section 4.1.
2.1.8. Set of partial differential equations

In order to build the complete set of partial differential equations for the whole closed system, balance
equations for each variable of Yy, k € K, are written. It leads to the following system of equations for the state
variable Y = J,cic Y

O +vi(Y)  Vag = &4(Y)
Oymy, + V- (mpug) = T (Y)
O(mpug) + V- (mgug @ ug) + V(g Py) + Z Wkk/(?)vak’ = SQk(?). (2.6)

k' £k

at(akEk) +V- (ak.uk.(Ek + Pk)) — Z ﬂ'kk/(?)atak/ = SEk(?)
K2k
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Exchanges between the four fields inside the closed system are accounted for by non conservative terms as well
as source terms @5 (Y), Tx(Y), Sq (YY) and Sg,(Y). Non conservative terms involve an interfacial velocity

vy (?) and interfacial pressures (Wkk/(Y) .
(ko k') EKC2 kK

Remark 2.2. For sake of simplicity, we consider that source terms as well as interfacial closures depend only on
Y. More complex models could assume for instance a dependance on both Y and gradients of the components
of Y (see [1,34,56] and Rems. 2.5 in Sect. 2.3.1 and 3.7 in Sect. 3.1.2).

As we consider a closed system, without external contributions, we assume that mass, momentum and energy
exchanges between fields should balance when the mean flow is considered. It implies the following constraints

on the closure terms:
YoTe(¥)=0; D Sq(Y)=0; > Se(¥Y)=0 (2.7)
kek kek kek

and

Z Z 7Tk:k’ afak’ - 07 5 € {t,.’If, Y, Z} (28)

kEK k' #k
At this step, nothing more can be said about ®. In the next Section 2.2, vacuum occurrence will be excluded
and additional assumptions about miscibility will be made.
2.1.4. Mixture entropy

The mixture entropy 7 is defined as:

ke

This choice is very classical. It can be proven (see Appendix A) that smooth solutions of (2.6) verify the following
entropy equality:

On(Y) + V- £,(Y) + A, (Y, (Var)ker) = RHS,(Y), (2.10)
where the entropy flux reads:
Y) = Z MgSkpUk, (2.11)
kek

and

A (? (VOék kEIC Z T Vi — llk Z Hkk’ VOék/ + kaak s (212)
kek k'#£k
and

RHS,(Y) = Y 7;! {SEk+ S i ()@ (Y) = T (Y)es,
kex k' £k

— w(Sqy — 2wy + py gp <Pk‘I’k(Y) - Fk(?))} (213)

+ > {Skrk( )+pkgp (Fk(Y)—pk@k(Y))},

kel
A model with minimal entropy dissipation is defined as a model based on system (2.6) fulfilling:

Ay(Y, (Vag)kex) = 0. (2.14)

Only such models will be considered in the following.
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FIGURE 1. Scheme of the miscibility constraints for the considered three-phase flow system.

2.2. Miscibility constraints

In [33], a model with three immiscible phases has been studied. Here, we consider hybrid miscibility conditions,
as represented in the Figure 1:

— vapor and gas are miscible and form a gaseous phase;
— gaseous phase, liquid water and liquid metal are immiscible.

It implies the following constraints:
ay, =ag; as+oat+a, =1 (2.15)

Only two void fractions are independent; we keep s and «;. The state variable can be reduced:

Y = <(as,al) U (U (mk,mku;ﬁakEk))) S R22. (216)

kel

We need to impose (otherwise constraints (2.15) would be violated):
D, (Y) = ,(Y); D(Y)+®(Y)+d,(Y) =0. (2.17)
Thus, taking into account constraints (2.15) in (2.6), the system of partial differential equations for Y reads:

s +v1(Y) - Vay = &,(Y)
atOll + V[(Y) . Val = @l(Y)
ormy + V- (mkuk) = Fk(Y) (2.18)
Bt(mkuk) +V- (mkuk ® uk) + V(akPk) + KkS(Y)VCVS + Kkl(Y)Val = SQk(Y)
Oi(aEy) + V- (apug(Ey + Pr)) — Kis(Y)0ros — K (Y)0ray = Spi(Y)

where
K, =1;, — 11;, — ng; Ky = -1, — ng§
K,s = _va + ILs; Ky =11, — va; (2'19)
Kgs = _Hgv + Hgg} Kgl = Hgl - Hgv§
Kss:_Hsv_Hsg; Ksl:Hsl_Hsv_Hsg-

2.3. Entropy inequality constraints
Using entropy equality (2.10), closures are proposed in this section:

— given v7(Y), a unique set (Kir (Y))yexc ieqs,y complying with (2.8) is determined by looking for solutions
with minimal entropy dissipation (2.14).

— source terms fulfilling the constraints (2.7) and (2.17) need to comply with entropy growth for smooth
solutions.
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2.8.1. Closures for interfacial terms fulfilling the minimal entropy dissipation

Interfacial velocity is assumed to have the following form:

= Brw, (2.20)

ke

where, because of Galilean invariance principle:

> Br=1 (2.21)

kel

Since, intuitively, we expect that vy is some kind of average of the velocity fields, an additionnal (but not
mandatory) constraint is imposed:

Vk e K, B > 0. (2.22)

Remark 2.3. The exact form for (8 )rex is a key point in the modelling procedure and will be detailed later
on, in Section 3.1.2.

Proposition 2.4 (Solution with minimal entropy dissipation). For the interfacial velocity defined by (2.20),
there exists a unique set of (K (Y))keic,k/e{s 1} fulfilling (2.8) and complying with minimal entropy dissipation
(2.14). The solution reads:

Kis = S3Ti(Ps — (P, + P,)); Ky =—P +30/Ti(P — (P, + Py));
KUS_P + %3, To(Ps — (P, + P,)); Ky =Py + T0,To(P — (Py + Fy));
Kgs = P, + %8,T,(Ps — (P, + P,)); Kgi = Py +30,T4(Fr — (P, + Fy));
Koo = —Po + TB.Te(Ps — (P, + P,)); Kg =3BTs(P — (Py + Py))

where .
T = (Z ﬁka> . (2.23)
kek

The proof as well as the final system satisfied by (K (Y))kelc,k’e{s,l} are given in Appendix B.

Remark 2.5. We could consider more complex closures for Ky . For instance, we could replace formely the
current 119, (Y) given by (2.19) and (2.23) by:

My (Y, Vay, Vo) = T, (Y) + e V1Y) x Vag 4 e (YY) x Vag,

as proposed for instance in [34,56]. In that case, we would have an additional dissipative contribution in
the entropy inequality, as soon as the additional quadratic form has the appropriate sign. However, it would
introduce additional terms for which we do not have (a priori) relevant closures to propose, see [34].

2.8.2. Admissible source terms

Particular forms are assumed for the source terms.
The mass transfer term T'x(Y) is defined as a sum of dyadic contributions:

T} = Z I (2.24)

k'#k
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Note that the gas g is non-condensable, so that:
I'y=0 and Vkek, Iy, =1y, =0.
The momentum contribution is decomposed into a drag term and a mass transfer term:
S k= Z Dkk/ + Z Fkk/vkk’~ (225)
k' #k k'#k
Last, pure thermal transfer, drag effets and mass transfer are taken into account in the total energy source term:
Sgy = Z Wik + Z Vi Dirr + Z Urr Hipr - (2.26)
k'#k k' £k k'#k
For sake of readibility, the dependance on Y has been omitted for the previous introduced terms I'px/, Dgg/,

Yrkr, Vi and Hypr.
A consequence of (2.7) is that the following dyadic transfers cancel each other:

Fkk’ + Fk’k = 07 Dkk’ =+ Dk’k = 0, \Ijkk’ + \Ijk’k =0. (227)

Indeed, for instance, 'y represents the mass transfer from phase k towards phase k’: this mass transfer is
exactly equal to the mass transfer obtained by phase k' from phase k (which can be seen as the opposite of the
mass transfer taken from phase k' and given to phase k). Now, considering the second term in Sg,:

g Vi Dirr = E (Vi Diir + ViekDyr) = E (Vi — Viek) Dy = 0.
k' £k K>k K>k

The previous term is indeed equal to zero because each dyadic bound is independent. This leads to vk — vk =
0. Similar equations can be written for the third term in Sg,. , so that we finally get:

Vkk = Vik;  Hiw = Hirg. (2.28)
The source terms have to comply with the entropy growth within time for weak solutions:
oY)+ Ve (Y)+ A, (Y, Vag) > 0. (2.29)

It implies some constraints on the right-hand-side term RHS,,(Y) of entropy equality (2.10). RHS,(Y) (2.13)
can be rewritten by isolating each independent effect in four different contributions:

RHS, = RHS? + RHS + RHS] + RHS},. (2.30)

In order to satisfy the second principle, each contribution needs to be positive on its own.
— Contribution RHS:I;:

9]
].:{I’IS(I> ( (I)k; + ag Z Hkk/q)k/ + pza;’i@k>

E (Z Hkk/q)kl —|— qu)k)

k

(2.31)

where aj, = Tk_l.
Using miscibility constraints (2.17), we get:
RHS; = ®{ai(P; + Ku) + ay (=P, + Ku)
+ ag(_Pg + Kgl) + asKsl}
+ (bs{alKls + av(_Pv + K’us)
+ ag(=Py + Kgs) + as(Ps + Kos)} (2.32)
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It becomes by injecting the general solution for the (Kgx )k rex:
RHSf =9 (H ak> {®1(P,— (Py+ Py)) + @s(Ps — (P, + Py))}- (2.33)
k

Recalling that © = (aqjayay0s + ajavasBy + ajagasB, + avagasﬁl)_l and ap = Tk_1 > 0, the final entropy
constraint on the ®; prefactors reads:

©,(P — (P, + P,)) + ®,(P, — (P, + P,)) > 0. (2.34)

Finally, an admissible model for ®; and @, is the following:
q)l _ Pl - (PU + Pg)
(cps) D <PS SR, (2.35)
where D is a symmetric positive semi-definite matrix:

D= <Elli; Z;z) s dig > 0, dog > O, dia = \ di1dos sin(@),@ € R.

Contribution RHSE’:

Since:
RHS;?P = Zak Z \Ijkk/ , (236)
k k' £k
a simple constraint on (Vpe )k ek is obtained:
V(k, k') € K%k # K, (ar, — ap ) ¥pp > 0. (2.37)
Contribution RHST?:
It reads:
RHS)) = Zak Z vk Dk — uk Z Dy | - (2.38)
k k' £k k' £k
We assume the following particular form for vy to comply with the Galilean invariance principle:
Vi = Beeuk + (1 = B )i,  with  Bppr € [0,1]  and  Brrr + B = 1, (2.39)

with Brr + Brri = 1 because, due to equation (2.27), vgg = Vgrk.
Then, we get the following constraint on (Dww )k xrexc:

V(k, k/) c ]C2, k 75 kl, [ak(l — ﬂkk/) + ak/(l - ﬂk/k)](uk/ - uk)Dkk/ 2 0. (240)

Contribution RHS{I:
The chemical potential ju; (J.kg™1) is defined by: pux = ex — T + %. RHSE can be written as:

u2
RHS) == > > apulowr + Y ax Y <Hkk' + 7k - ukvkk/) D (2.41)

k k'#k ko K#k
Previous expression (2.41) suggests a simple choice for Hyj and vige (in accordance with (2.39)):

Ui Uy’ 1
Hypp = k2 k i Vi = 5(111« +uy). (2.42)




S260 J.-M. HERARD ET AL.

With this assumption, a simple constraint on I'yx can be written:
V(k, k’/) S /CZ, k # K, (agpr — apr o) Trgr > 0. (2.43)

Source terms complying with the second principle of thermodynamics can now be explicitely introduced, like
for instance in [50]. They involve relaxation time scales, that need to be defined by the user; some propositions
can be found for instance see [45] for 7, and also [18,32] for 7 and 7r, and more recently [11,22,39] for 7,
relaxation time scales (considering different averaging processes).

3. PROPERTIES OF THE CONVECTIVE PART OF THE MODEL

Some interesting properties of the model built in Section 2 are now highlighted. For sake of simplicity, only
the 1D-case will be considered in the sequel. It is not restrictive since the system (2.18) is invariant by rotation:
thanks to a projection on the normal direction, a one-dimensional system can always be written, while neglecting
variations in the transversal directions.

3.1. Structure of the convective system

The following state vector is considered:
W = (al7a37plaula Plvplhuinpva Pg,Ug, Pg;ﬂsﬂLSa Ps)t' (31)

The homogeneous system of equations associated with (2.18) can be rewritten for smooth solutions in the
quasi-linear form:

W +B(W)9,W =0 (3.2)

with B a block matrix:
Cz O3x2 03yx2 0352 O3x2
G B O3x3 O3x3 O3x3
B=|C 03x3 By 0O3x3 03x3 (3.3)
Ce 03x3 0353 Bg 0343
Cs 0O3x3 0353 O3x3 Bs

where, with the notation ¢, = M % and 0,, €, = Oer
mg (9Pk ok (9pk Py
—g—ll(v] —uy) 0
Cr = <%I 31) . G= e ek (3.4)
a(piopea + Ku) oK
0 —gj—:(vf — Us)
C, = % % ; (3.5)
Ko ¢s(p20,,65 + Kiss)
%(01 — u) 2—’;(7}1 — uk)
Yk € {v,g},C = e T ; (3.6)
Ck(—piapkﬁk + K1) Ck(—Piapk ex + Kis)
U Pk 0
Vk € /C,Bk = 0 Uk Tk | . (3.7)

2
0 PECy Uk
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For the closure (2.20) vy = Y, cx Bruk, matrices Cy, k € K can be rewritten taking into account (2.23) and
introducing the following notations:

Aup, = vy —ug Vk € ’C; (38)
APy =Py — (P, + P,), k€ {l,s}; (3.9)
—%Aul 0
‘ZﬁlTl {ZBITL
a = “m AR T AP ; (3.10)
2 (Ope) 'SATAR - pie?| 2% |(9pa) 'TATIAR|
0 — L2 Ay
Qg -
Cy— LA, AR, : (3.11)
S [(@p,e) ' THTAR] A2 [(0p,c) T TBT.AP, — pe]
Qg ag
T By
Vk € {v, g}, Ck = AR, EHAP, . (3.12)
. |:(8Pk€k)_1T6kaAPl + Pickﬂ o [(3Pk€k)_1(fﬂkaAPs + Pickﬂ

3.1.1. Hyperbolicity
Proposition 3.1 (Hyperbolicity). The system (3.2) is hyperbolic with the following eigenvalues:

/\1,2 = Vr;

A3 = uy; Ay = Uy; A5 = Ug; A6 = Us;

A7 =u; + ¢ A8 = Uy + Cy; Ao = ug + ¢g4; Ao = Us + Cs; (3.13)
A1 = u — ¢ A12 = Uy — Cy; A13 = Ug — Cg; A4 = Ug — Cs.

Associated right eigenvectors span the whole space R, except if resonance occurs, that is to say:

Auf = =(vr—w)?—cf=0 or Au?—-c=(vy—u,)?*—c2=0 or

Aul —cl=(vy—ug)? =2 =0 or Aul—cl=(v—us)’—c;=0. (3.14)

The proof consists in exhibiting the eigenvectors. They are given in Appendix C.

8.1.2. Structure of waves

The definition of a Riemann invariant is recalled: considering an eigenvalue A admitting n eigenvectors (ry)x,
a Riemann invariant Iy associated to A is a scalar quantity verifying:

Vk € [\1,n|], VWI)\(W) -I‘k(W) =0.

A very important requirement for our model is to correctly manage the non-conservative terms thanks to
uniquely defined jump relations. Indeed, it guarantees that two different consistent and stable numerical schemes
will converge towards the same solution by refining the mesh. However, this property will not hold if 1,2-fields
associated with vy are genuinely non linear. To avoid this problem, (8x)rex can be chosen so that 1,2-fields
associated with vy are linearly degenerate (see [12] for two-phase flow models).

Only two particular choices for (8g)recx will be considered

- Bs=1and 3 = B, = By =0, so that:
vr = Us; (3.15)



S262 J.-M. HERARD ET AL.
— B = Gk Vk € K with M =", _,c my, so that

Vf = Uy, = — Uy (3.16)

Remark 3.2. These choices for v; are not the only ones: for example, for the two-phase flow case, a wider
family of suitable models (e.g. that ensure linear degeneracy) has been exhibited in [14] (see also [26]).

Remark 3.3. The property of linear degeneracy for the coupling wave is fully independent from the chosen
closures for the (Txy/) Kk ek With the latter choices for vy, even if the mixture entropy is defined in a different
way than (2.9) (which also implies a different expression for Ixy/), the property of linear degeneracy for the
coupling wave still holds, as well as the hyperbolicity for the convective system (see Appendix C).

We emphasize that, in the sequel, the set of (Ilgx) complies with (2.23). The following three propositions
can then be straightforwardly proved after rather long but simple computations.

Proposition 3.4 (Nature of the coupling wave). If vy = us or if v; = Uy, fields associated with A\ = Ao = vy
are linearly degenerate.

— If v; = Uy Uy, @S an eigenvalue of multiplicity 2; there are 12 Riemann invariants:

VI=Um (W) = Um;
Igjfum (W) = Ss = Si; Ivj:um (W) = Ss = Su; Ivjfum (W) = 55 = Sg;
Iy, (W) =y (g, — wp); 19,y (W) = 1y (U — 1)
IZIZUm, (W) = mg(um - Ug)?
P 1
8 l 2
IUI_’LLm(W) =€ + E + i(um - Ul) )
P Wy o1 2 3.17
’U1=um( )—€U+E+§(um_uv) ) ( . )
P, 1
I&?:u (W) =€+ £ + 7(um ug)2§
P, 1
111)11=um (W) =€+ — + §(um - us)2§

I&?:um (W) = Z {akPk —+ mk(um — uk)z} ,
ke

verifying for all k € [|1,12]]:
ri (W) = VwIF

VI=Um *

VwlF

VI=Um

Iro (W) =0.

— Ifvr = ug: us = Ay = Ay = Xg is an eigenvalue of multiplicity 3; there are then 11 Riemann invariants:

I’i[:ub (W) = Us;
131:u5 (W) = 815 I’SIZUS (W) = Su; I’L‘;l]:’l_l/S (W> = sg;
5 . 6 _ .
Iv;:us (W) = ml(us - ul)7 IvlzuS (W) - mU(U’S - uﬂ)’
IZI:uS (W) = mg(“s ug)’
) 1
IS;:u (W) =€ + E + §(ug — Ul)2,
P, 1
Ig[:u (W) =€, + — + - (us “v)2§
° pv 2
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P, 1
I&? w. (W) = €g + £+ S (us — ug)2§
s pg 2
I, (W) = {onPr + mi(us — u)?} (3.18)
kek

verifying for all k € [|1,11]]:
VWI’U[ Ug ( ) VWI’L}:)I—’M ( ) VWI’L’?] =Ug (W) = 0'

Proposition 3.5 (uj + cj—waves). Fields associated with eigenvalues Az = u; + ¢, Ag = Uy + oy, Ag = Ug + ¢4
and Ao = us + ¢ as well as fields associated with A\i1 = u; — ¢, A2 = Uy — Cy, A13 = Ug — Cq and A4 = Us — Cs
are genuinely non linear and admit 18 Riemann invariants (by noting k € [|1,13]]):

VWil o 17(W) = Vwlil . 1s(W)=Vwl} . ro(W)=Vwl} . 110(W)=0
and
Vwlf o t11(W) = Vwlj . r1s(W)=Vwl . ri3(W)=Vwl . ria(W)=0.
They read, for j € K:

P cj(r, s5)
I, (W)= Ifjicj (W) = u; q:/o J . 12 dr;
I, Wy=a; I, (W)=oa (3.19)
- 5,6,7 _ 8,9,10 _ .
Vk e K\ {j}: Iu Lo (W) = Iujicj (W) = uy;
IH2I8(W) = Py,

Proposition 3.6 (uj-waves). If vr = up, (resp. if vi = u,): fields associated with eigenvalues A3 = w;, Ay = uy,
A5 = Ug, ¢ = Us (resp. A3 = uj, Ay = Uy, A5 = ug) are linearly degenerated. They admit 13 Riemann invariants
L, g €K (resp. j € K\ {s}):

Vk e K\ {j}: L, (W) =uj; I (W)=P; I (W)=a; I, (W)=a

(resp. Vk € K\ {s,7} 1) 15;6’7(W) = pi; IS;Q’N(W) = ug; (3.20)

Ill,l2,13(w) _ Pk
Remark 3.7. Other choices for v;(W, Vay, Va,) have been proposed for instance in [56]. They read:
v (W, Vay, Va,) = 18 (W) 4+ a;VH (W) x Vay + arh* (W) x Vas.

for which we may choose for instance the velocity v9 from equation (2.20). Structure of the governing equations
for oy and a will be modified and of course, Proposition 2.4 should be modified. One should be careful that
the choice of v9(W) should lead to uniquely defined jump conditions.

3.1.3. Jump conditions field by field

An isolated discontinuity travelling at speed o separating two states L (left) and R (right) is considered. The
operator [.] refers to the jump of a quantity accross the o-discontinuity, so that [g] = gr — g1

Proposition 3.8 (Jump conditions). Accross an isolated discontinuity travelling at speed o, the following jump
conditions hold for each genuinely nonlinear p-field, p € [|7,14]]:

]
[mk(ur — 0) + arP] = 0; (3.21)
[ozkEk(uk — 0') + Oszkuk] 0;
o] =0;  [up] =0; [pw]=0 VE €\ {k}.
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Note that the p-Riemann invariants and the jump conditions coincide for the linearly degenerate p-fields,
p € [|1,6]]. Except for the coupling wave associated with A; o = vy, the jump conditions are those of a single-
phase Euler system.

Since the mixture entropy 7 is defined by 7 = >, ;- m;s; and recalling the general jump condition for #:

(1) = —aln] + [fy] >0,

the mixture entropy n will also be modified through a ¢ = uy % ¢ shock-wave because of the contribution of
the phase k. Indeed, since for any quantity g, [pr] = 0 V&' # k, (I) reads through a o = uy, + ¢ shock-wave:

(I) : —J[mksk] + [mkskuk] > 0.

As s increases through a uy £ ¢ shock-wave, n will also increase.

8.1.4. Connecting solutions through the coupling wave

Analytical solutions are very useful to build some verification test cases for the model. Let us consider a one-
dimensional Riemann problem for system (3.2): the solution is a self similar function composed of intermediate
states separated by the p-waves (p € [|1,14]]) of the system. If it is a very tricky task to solve such Riemann
problems in a general way (hence giving arbitrary left and right initial states), an easier way of building analytical
solutions however exists from a given left state by prescribing the wave structure of the system (from left to
right). Indeed, since the sequencing and the nature of waves is known, each intermediate state can be built
step by step. More precisely, for a given left state in R just before any single p-wave, p € [|3,14]], we can
straightforwardly deduce from Riemann invariants (or jump conditions) the right state, while enforcing one
scalar quantity on the right side.

As far as the coupling 1,2-wave is concerned, for a given left state WX in R and for a given (af > 0,af >
0, pF > 0) with 1 > off + alR, the approach is the following in the case vy = us.

Step 1. Compute (X, Xy, X,) = (off, pf, pl).

Indeed, by introducing the enthalpy hg(pk, sk) = €(pk, Sk) + Lilprssi)

Pk
1 2
I3, (W) = I3 (W) = hu(pf, sF) + 5 (ul = uf)

1 2
= 15 (W) = (ol ) + &l — uf)’.

Since: . .
L _ Ius (W )

SlL = Sﬁ = IES(WL); ulR(WL>Xl) = Ug OélRXl

an equation enabling to get X; as a function of Wy, and of* is obtained:

1 /I3 (WL ?
I (W) = h(X0, 12 (W) + - | 50— ) -
uS( ) l( Iy ub( ))+ 2 OéﬁXl
Similarly, we get X, and X, by solving:
1 18 (WL) ?
I (W5) = hy(X,, I (W5) + = s
u ( ) (X, I ( )+ 2\ (1-aff —al)X,

and

L
HLOOW) = 1y (6, 8, (W) - ()
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Step 2. Once (X, Xy, Xy) = (pff, pit, pl) are known, we deduce (P, PF, P) such that:

I (WE) = si(PF X0 I (WE) = so(P,X0); I (WE) = sy(P X)

and also (uf', ulf, uff) using:
° (WE
T
a; Xl
IS (WE)
R L L u
W 7X’U = Ug — y 9
o { e R N N5
I (W5)

R L L
WL X)) =ul - .
t (W) S T e,

Step 3. The remaining unknown P comes from:

LYWE) = > (anPr+ mi(us — ug)?) = o' PR
kekK\{s}

Step 4. One should carefully check whether the right state is admissible or not.

Remark 3.9. In the case v; = u,,, the connection through the coupling wave A 7 is far more complex because
Riemann invariants I2 (W) = s; — s, I3 (W) =5, — s, and I} (W) = s, — s, couple all the phases.

3.2. Symmetrization

Even if our model can not be written in a conservative form, some theoretical results hold when symmetriz-
ability is proved: indeed, Kato’s theorem [48] on quasi-linear symmetric systems induces that, far from resonance,
there exists a unique local-in-time smooth solution to the Cauchy problem.

Proposition 3.10 (Symmetrization). We restrict to smooth solutions of (3.2). Then, system (3.2) is sym-
metrizable: there exists g a C'-diffeomorphism from R to R, g : W s W with:

OHW + C(W)9, W = 0,

so that there exists S(W) a symmetric positive definite matrix satisfying:

S(W)a;W + C(W)9,W =0; C(W)=S(W)C(W) and C=C

A general proof by construction, similar to [38,55] and based on cumbersome computations, is given in
Appendix D. Here, we propose a simpler proof, motivated by [25], but only valid in the one-dimensional case.

Resonance excluded, system (3.2) is hyperbolic, and thus, diagonalizable. By noting L the matrix concatening
the left eigenvectors, there exists D a diagonal matrix so that B = L™'DL and ;W +L"'DLO, W = 0. Then,
the symmetric positive definite matrix S = L!L suits: SB = L!DL is indeed symmetric and SO; W +SBI, W =
0.

Note that in general this proof can not be extended in the multidimensional case, because, if 9, W +B,0, W +
B,0,W = 0, the left eigenvectors of B, and B, are usually different for real systems coming from fluid
mechanics.
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4. A FEW REMARKS ABOUT THE MODEL

In this section, only the case 18 considered.

Model (3.2) reads then, when restricting to regular solutions:

Oray + us0,ap = @

Orvg + usOpary = P

Orp1 + w0z pr + prOzu; — pl(uiTl_ul)amaz =S,

Otps + usOpps + psOzus = Sy,

(k=v,9) Orpr + ukOypr + prOyuy + M(@cal + O0zas) = S

(ke K\ {s}) By + Dot + 105 Pe = Su, (4.1)
Osts + UgOptig + TsOz Ps + mi (AP0, + APsO,a5) = S,

° A (us —u
0P+ w0, P+ pici 0wy — M&ral = Sp,

aq
atPs + usazps + psczawus = SP
PrCi(us — ur) (
g

(k=wv,9) 04 Py + up 0y Py + prcizuy + Oz + 0ra5) = Sp,

Section 2.3.2 highlighted that the source terms should satisfy constraints depending on relative phasic gaps,
1.€.:

Aup = ug — u;
Au = | Auy, = us — uy | (see (3.8));
Aug = us — Ug

M: (API =P - (Pv :%))) (see (3.9));

AP, =P, — (P,

as — ay Qgslbs — QL]
Aa=|as—ay |; Aap=|asps — ayfly

as — ag Qsfbs — Qgllg

These dependances are the following:

(gl) = DAP, with D symmetric positive definite matrix (see (2.35));

S = Spy, (AP, Aap); Suy, = Suy, (AP, Au, Aap);
Sp, = Sp, (AP, Au, Aa, Aap) Vk € K.

We recall that the previous terms are deduced from the closures satisfying constraints (2.35), (2.37), (2.39),
(2.40), (2.43) written in Section 2.3.2.

4.1. Preservation of the thermodynamically admissible domain

Let us recall the definition of the thermodynamically admissible domain:
Ex = {(Pr pr) € RXR™™ / ex(Py, pr) > 0}.

We wish to check whether Ey, k € K, is preserved by the convective part of our model (without source terms)
for a given equation of state. We consider for instance the stiffened gas equation of state for each phase k € KC:

Py + Il = (e — Dprex, e >1, I >0. (4.2)
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For this equation of state (4.2), Ej reads:
E. = {(Pk;pk) eR x R+*/Pk > —Hk}.

Let us define Py, = myep — lgay. Note that P, > 0 is equivalent to (Py, pr) € Eg. Thus, we aim to study the
sign of Py for each phase k € I by writting an equation on Py from € (see (A.4)) with vy = us.
For k € K:

0t Py + ur0:Pr + Pr (Ve Orur + (v — 1) (ug — us)0x(In(ag)) = 0. (4.3)

Equation (4.3) can be rewritten as:
Vk e K, 0P+ updPr + v PrOzvr = 0,

by defining:

—1
Dy — Datg + ”’3% ~ u)d(In(o)).
k

Using a classical lemma proved in [49], the following proposition holds:

Proposition 4.1 (Preservation of E; for a smooth solution). Considering T > 0 and a 1-D spatial domain
Q C R, under the following assumptions:

—up € L>([0,T] x Q),
- Opug + (v — 1)(ug — us)0:(In(ay)) € L>([0,T] x Q) for k € K,

since initial conditions ensure an admissible thermodynamical state for all phases, i.e.:

- Pr(t=0,2) >0 Vk € K;
~ Pr(t >0,z €T, (t) >0Vkc K, with ', (t) = {x € 92/ (u.n)(t,z) <0},

then, Qy is preserved within time for all phases for a reqular solution, i.e.:

Pe(0<t<T,2)>0 VkeKk.

Remark 4.2. Recalling that v; = u, for solutions with discontinuities, it can be proved, following an approach
very similar to [33], that the solution of a one-dimensional Riemann problem with stiffened gas equation of state
for all phases will remain physically relevant, since the connection of states through the waves of the system
ensures that 0 < ag, 0 < myg and 0 < Py.

4.2. Preservation of pressure equilibria

An important requirement for the model is the preservation of pressure equilibria. Then, when taking the
following uniform state as initial conditions in (4.1) without mass source terms:

u, =0 VkeK;
Pl:}Ds:PO;

P, =Py, Py=P — F;
T, =Ty VkeKk,

(4.4)

since dyur = 0, P, = 0 and ux = 0 for all k& € K, pressure equilibria are indeed maintained within time,
regardless of J,«; and 0,c; at time ¢t = 0.
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4.3. Effects of the pressure relaxation

Without mass, momentum and energy transfer and without convection terms (i.e. “9, = 07), the system
should naturally relax towards pressure equilibria P, = P, + P, = F.

Still assuming now that vy = us, and recalling the admissible form for ®; and ®, (2.35), model (2.18) without
convection and without mass, momentum and energy source terms reads:

o AP,
o (2:) -2 (37)
at(mk) =0
at(mkuk) =0 (4.5)
at(Oqu) + POy =0
(k=wv,9) O(arEy)— Pr(0ias+ 0iay) =0
6t(OésEs) — APlatO{l + (Pv + Pg)(?tas = 0,

where D is a symmetric positive definite matrix.
From equations on oy Ey, equations on phasic pressures can be written (see Appendix A), by noting A, =
PECE,
g
0: Py + Apdray, =0 (k‘ = l,v,g),
{atps — (epsdp, ) M APDyor + { Ay — (upsOp, €))L AP,} s = 0. (4.6)

Then, equations on AP, = P, — (P, + P;) and AP, = P; — (P, + P,), expressing the deviation from pressure
equilibria, are obtained:

&(22)+AD<§2):0, (4.7)
with:
_ Alvg Avg
AmHJUD_(&@—&ABAW{<&Aﬂ)’ (4.8)

where Ay = Ay + Ay, Appg = A1 + Ayg, Apgs = Apg + A and By = (m4Op,es) L. AP, and AP, are coupled,
so that we are not able to analytically solve the previous system. An approximated resolution is proposed,
by considering a frozen convection matrix A*D*, obtained by freezing AP, and AP;. It leads to the following

simplified system:
a{ﬁg)+ﬁpﬂﬁg>:q (4.9)

with A* the following matrix, independent from AP, and AP; at time ¢:

L (A, A,
A(mgzﬁm? A%, — BIAP? (4.10)

and
D= (di d;lﬂz) , diy >0, djy >0, djy = \/df;d5,sin(6),0 € R. (4.11)

Then, studying the spectrum of A*D* gives pressure relaxation conditions. From now, .* on the matrix coeffi-

cients will be omitted in the computations for a sake of readibility and the two eigenvalues of A*D* are noted
At

We assume from now that the equation of state for phase “s” is such that: dp_e; > 0. One can now exhibit
conditions ensuring relaxation, depending on the type of eigenvalues:
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— if A4 € R, there are two conditions:

Ay + A = tr(A*D*) >0 (4.12)
and
A A_ = det(A*D*) > 0. (4.13)
— otherwise, only condition (4.15) is required; condition (4.12) is automatically fulfilled since Ay A_ = [A4]? =

det(A*D*); moreover, condition (4.15) is sufficient in order to ensure the return towards pressure equilibria;
however, oscillations may occur in some areas of the domain since Im(Ay) # 0.

Since det(D) > 0, (4.12) requires that det(.A*) > 0. Hence, the following two quantities must be positive:

tr(A*D) = di11Ag + 2d12A4g + dazAygs
— B, {d1sAP + dps APY) (4.14)
=di1 A + daoAg + Ayg(di1 + dag + 2d12)
>0
— B, {di2AP] + da2 AP} }
det(A") = ApgAuvgs — Agg
4 By {Ay AP, — Ay AP} (115)
= A A + A Ay
+ By {Ay AP — Ay APC}.

Now, we introduce |AP| = max(|AP|,|APs|) and only the worst case will be considered for each condition to
obtain a sufficient constraint on |AP]:

— for (4.15), the worst case occurs when d12AP;, > 0 and APs; > 0 and we get:

di1A; + dooAs + Ayg(din + dao + 2d12)

AP| < = &5 . 4.16
ol Bs(|di2| + da2) = (4.16)
>0
— for (4.12), the worst case occurs when AP, < 0 and APs > 0 and we get:
AjAg + Al A,
NP LT (4.17)

Bs(Avg + Alng) =~
>0

The previous observations are summarized in the following proposition:

[P

Proposition 4.3 (Threshold effect for pressure relaxation). Since the equation of state of phase “s” is such
Op,€s > 0, the relazation system relazes towards equilibrium when initial pressure gaps are small enough. A
threshold effect is thus observed: pressure relazation is ensured as soon as |AP| = max(|AP|,|APs|) is bounded
as follows, depending on the type of Ay, the eigenvalues of the system (4.9):

- |AP| < min(Sl,Sg) Zf A ER;
- |AP| < & otherwise.

Remark 4.4. Orders of magnitude for §; and S; are now evaluated for data close to primary nuclear reactor
conditions by considering stiffened gas equations of state for all components. This coarse assumption is still
reasonable for liquid water and liquid metal at high pressures.

Moreover, we assume that dio = 0. In this case, (4.16) becomes:

di1A; + doAg + Ayg(din + da2)
Bydao

|AP| < = S;.
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TABLE 1. Classical behaviors concerning the pressure relaxation for models with two or three

J.-M. HERARD ET AL.

phases.
Nb Fields Model Threshold Oscillations? Ref
phases type effect?
2 liquid @ vapor Barotropic  No No [13], see
(4.18) in
item (i)
2 liquid @ vapor With Yes No [10] (Ap-
Energy pendix
A2)
2 liquid @ (vapor+gas) With Yes No [38], see
Energy (4.19) in
item (ii)
3 liquid @ vapor @ metal Barotropic  No May exist [9]
(stable)
3 liquid @ vapor @ metal With Yes May exist [10]
Energy (stable)
3 liquid @ (vapor+gas) @ metal With Yes May exist (4.9)
Energy (stable)

Notes. ¢1 @ ¢2 means that ¢1 and ¢2 are two immiscible fields whereas ¢1 + ¢2 means that ¢1 and ¢2 are miscible.
A threshold effect appears in some cases: pressure relaxation is ensured only if the initial pressure gap(s) is (are) small
enough. Pressure relaxation can be uniform towards 0, or some oscillations may occur in some area of the domain. For
each model, a bibliographic reference [] describing the considered model is given. When the pressure relaxation is not
explained in [-], the suitable equation is recalled in the present document (the corresponding equation number is given

in ().

In particular, since A;, A,, and dy;, are all positive:

Furthermore:

For a stiffened gas, B;! =
ps ~ 10900kgm™3 and ¢, ~ 1800ms~'. Moreover, v, — 1

It means that the maximal phasic pressure gap |AP| needs to be smaller than a huge value of pressure. Then,

S > Angl.
AsA, 1
Sy > — _ A B
2= 2B5Al1)g 2 s
Qg psC? ) . .
i.e. AgB7l = 751 Uranium dioxyd is taken as metal field s so that
Vs — Vs —

1
min(Sy, Sz) > 514835_1

~ 1. Finally:

10° bar.

both constraints (4.16) and (4.17) are thus not limiting for our targeted applications.

Remark 4.5. Let us recall that the present model belongs to a model family. A pressure relaxation process
has already been exhibited for models with two or three fields. We sum up in Table 1 remarkable behaviors that

have been observed in previous works.

For barotropic models (without energy equation), pressure relaxation is ensured unconditionaly, whereas for
models with an energy equation, a threshold effect appears, i.e. relaxation occurs only if the initial pressure
gap(s) is (are) small enough. Pressure relaxation is uniform only in the two-phase flow case. When three phases

coexist, oscillations may occur in the relaxation process.



A FOUR-FIELD THREE-PHASE FLOW MODEL S271

We briefly comment Table 1 as follows. We insist on the difference between fields and phases: a phase is a
field or the mixture of two (or more) miscible fields.

(i) We recall the relaxation pressure equation for a barotropic model with two immiscible phases (I and v),
which can be very easily obtained from the model described for instance in [13]. By noting AP = P, — P,
and still neglecting spatial derivatives, we get:

2 ~ ~
aAP+ | Y %) gap=0, d>o. (4.18)
hetw Ok

As 3, ” Zii > 0, AP unconditionally and uniformly relaxes.
(ii) Then, the model proposed in [38] is also a two phase flow model, with three fields (I, v, g), whose two are
miscible gases (v and g¢). There is only one “efficient” pressure gap AP, = P, — (P, + P,). The obtained
pressure relaxation equation is then very similar to (4.18), except that an additional term appears since the

model is no more barotropic:

2
AP + Z pf% + (miOpe)) *AP | dAP, =0, d>0. (4.19)
k
k=lv,9

Pressure relaxation process occurs when the following constraint is satisfied:

2
=0 PiC
AP0 <midpe Y o (4.20)
k=lv,g
Once the previous constraint fulfilled, for this hybrid model, pressure uniformly relaxes without oscillations,
unlike for the four-field model studied in this work with three “real” phases (4.9).

5. CONCLUSION

A three-phase flow model with four components has been proposed and studied, with both immiscible phases
(liquid water, liquid metal and gaseous phase) and miscible phases (steam and non-condensable gas). The
whole modelling approach has been presented, by specifying step by step the consequences of each additional
assumption. On the one hand, the choice of a mixture entropy enforces unique closures for the non-conservative
terms of the equations: the model is then uniquely defined, up to some relaxation time scales to be prescribed
by the user. On the other hand, particular choices for the interfacial velocity v; lead to a linearly degenerate
coupling wave and thus uniquely defined jump conditions, independently from the chosen closure for (g )k kreic
(i.e. the LD-property holds even with another definition of the entropy as (2.9)).

A particular admissible submodel has been deeply studied: the case v; = wu,. The model is hyperbolic,
complies with the second principle of thermodynamics and admits uniquely defined jump conditions, which
enables to build analytical solutions.

Despite the hybrid miscibility conditions, no major mathematical difficulty appears, comparing with the
immiscible three-phase flow model [33]. Still, note that the Dalton’s law holds here: the relevant pressure gaps
to consider for our present model are P, — (P, + P,) and P, — (P, + P,). However, the direct generalization to
models with more than three phases and hybrid miscibility constraints is not obvious; whereas properties like
the convexity of the entropy or the existence of a symmetric form for the convective system, have been proved
in [55] for multiphasic barotropic models containing N immiscible pure phases, with N arbitrarily large.

The next step will obviously concern the numerical approximation of the present model.

Restricting to the approximation of the convective part, rough schemes, for instance those currently imple-
mented in [9,10] in order to obtain approximate solutions of immiscible three-phase flow models [33,35], are
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not accurate enough: they require too fine meshes that are hardly affordable for industrial multi-dimensional
applications. Thus they should be clearly improved using more accurate schemes. Actually, while restricting to
two-phase flow models, we recall that the numerical scheme, initially developped in [21,36] for the two-phase
flow case with immiscible components, has been indeed much improved, both in terms of accuracy and stability,
using the relaxation scheme [15,17]; a detailed comparison of the latter with other schemes, namely the ap-
proximate Godunov solver [57], and the HLLC scheme [58], confirmed its advantages and strong potentialities.
Moreover, a recent accurate and efficient relaxation scheme has been proposed in [54] for the barotropic immis-
cible three-phase flow model [35], which is precisely an extension of the one developped in [15,17] for two-phase
flows with immiscible components. This new relaxation scheme relies on the properties of the coupling wave:
such a method should certainly be suitable for our model too, thanks to the properties listed in Section 4.

Relaxation procedures to tackle the source terms require additional efforts. The strategy developed in [9,10]
still relies on the use of the fractional step method (used in [36]), and treats separately convective terms and
source terms. The latter contain the velocity pressure relaxation step which is rather tricky (see also [27] for
similar issues). Moreover, these techniques might certainly be improved, while getting rid of the fractional step
strategy, and introducing a more coupled numerical approach, as suggested by [43]. Obviously, a lot of work has
still to be done on these aspects.

In order to avoid introducing a fourth field with its own velocity for the non-condensable gas as done in the
present work, another idea might be to consider a three-phase flow model with three immiscible phases like in
[33], and to replace the vapor water by a miscible mixture of vapor water and non-condensable gas with a unique
velocity and a unique mixture equation of state. The main difficulty is then to build this mixture equation of
state for the miscible gaseous phase, complying with the second principle and enabling to manage the phase
transition for water.

Modelling the phase transition as a chemical reaction like in [28] would perhaps enable to treat the gaseous
phase. However, it would require a entire new work, to completely study the compatibility of such thermody-
namical hypotheses with the current formalism (in particular, the fact that we have an energy equation for each
phase contrary to [28]) and its consequences in terms of hyperbolicity.

The mixture equation of state for the gaseous phase could also be built with the same guidelines as those used
for instance in [6,41]. A first step would be to develop a bifluid two-phase flow model based on [12], with such
an EOS for the miscible mixture of non-condensable gas and vapor water. If this “hybrid” two-phase flow model
(with both miscible and immiscible phases) had all the required properties, it would certainly be interesting to
consider the extension of this approach to a three-phase flow hybrid model (with both miscible and immiscible
components).

APPENDIX A. ENTROPY EQUALITY

A smooth solution is considered. From (2.18), additional phasic equations can be written for density, velocity:

'y — pp®
Bupr + we. Vo + piVoug + 2 (wy — vi).Vay = £ PEZk, (A1)
(a3 (673
1 Saqk — w '
Opug +u.Vug + 7, VP, + — | PV, + Z M Vag | = —=—— ——". (A.2)
my mg

k' £k
The governing equation for the kinetic energy can then be deduced:

Ipuyg

m u2 m u2
8t( l; k>+V-( k2 kuk>+akuk-VPk+PkUk-Vak+ZHkk'uk-Vakfzuk'(SQk—
k' £k

) . (A3)
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Recalling the definition of the total energy Ej (2.2), the equation on internal energy can be written by sub-
stracting the total energy equation and the previous kinetic energy equation:

P T'ru
3tek+uk V€k+ V uk+ Z i Vo = — SEk =+ Z I ®p —ug - <SQk — k2 k> —erl'y
k' £k k' £k

Se,
(A.4)
The internal energy is the equation of state, given in the (Py, pr)-plane. Dependance on P can then be explicitely

written from the previous equation, since e (P, pr):

0 - de,
OuPet - VP + prcV - e + 8]63}C o) > My Vo + pi 3& Vay,
N Pk M k' #k Pk P
1 8€k N aek
my 0Py , (S v — €kl e+ pr Don . (PrPr k)) Sp, (A.5)

The entropy definition sg(pg, Px) (2.4) can now be used to deduce the phasic specific entropy equation:

_ Os
9P,

&Sk

Ty — pp®Pr
L vl P (A.6)

v —u
Osk +uy - Vs + aki( ! k) E g Var + PeVayg
95
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k K%k

The definition of mixture entropy (2.9) gives the mixture entropy governing equation.
APPENDIX B. UNICITY OF (Kyi )k wex FOR A GIVEN vf
Minimal entropy dissipation (2.12) reads:

Ay (Y, (Vag)kex) =0

i.€. Z T]; \'% l.l]C Z Hkk’ Vak/ + kaak =0. (Bl)
kex k'#k

There are three independent relative velocities, for instance:
U, —W;  Ug — Uy;  Ug — Ug.
Because of miscibility constraints (2.15), there are only two independent gradients, for instance:
Vay; Vag,

and it reads:
Vo, = —Va; — Vo, = Vay.

Finally, A, (Y, Vay) = 0 reads:

.A%l(us —w) - Vo + Aﬁf(us —w) - Vo, + Azl(uS —u,) - Va; + Ap¥(us —uy) - Vag
+ A‘Zl(uS —uy) - Vag + Ay (us — uy) - Vag =0, (B.2)
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which implies in fact six constraints:
i _ Q. ls _ (. vl _ 0. Vs __ (. gl _ n. gs _
Ay =0 AP =0, AF=0; A°=0 AY=0; A®=0, (B.3)
where, for k € {I, s}:

A%k = (1 - B)aKy, — Biay Ko, — BiagKg, — Bias K, — S5,
Agk = _BvalKlk + (1 — ﬁv)avak — Bvagng - /3'UG/SKS]€ - 615? (B4)
Azk = _ﬁgalKlk - ﬁgavak + (1 - ﬁg)agng: - ﬁgasKsk - Gi;

where:

0 0

Sl — &) _ | —uP(=8) —au P — ag Py |
6% alf)lﬂv + a'UPU(l - ﬁv) - angﬂv ’
62 al]Dlﬂg 7avpvﬂg+agpg(l 769)
0 0

S — g _ —CLUPUﬂl — angﬂl + asPsﬂl

3 ayPy(1 = By) — ag Py, + asPsf,

GH —ay P,y + agPy(1 — By) + asPsfy

Moreover, the balance momentum constraint (2.8) gives two additional equations:
Kll + Kvl + Kgl + Ksl = O; Kls + Kvs + Kgs + Kss = 0. (B5)

Finally, for given 8y, (Kgk )k i ek are solutions of the following system:

M 044 5_ (&
(OM ax >R— (65 , (B.6)
with:
1 1 1 1
D (1 - ﬁl)al _ﬁlav _Blag _ﬁlas
—Boay (1 - ﬂv)av 751)@9 —Boas |’
_/Bgal _590411 (1 - ﬁg)ag _ﬁgas
A= (Kll; Kvl, Kgl7 Ksla KlS7 Kvs, Kgsa Kss)t~
As:

M Ogxa
det (04><4 m ) = (wayasfy + aagasfy + ayagasfy + amavagfs)? # 0, (B.7)
the system (B.6) is inversible. The final solution is given by (2.19).

APPENDIX C. EIGENVECTORS OF THE SYSTEM (3.2)

It must be reminded that «; and a can not be equal to 0 or 1. Eigenvectors can be exhibited independently
from the chosen mixture entropy (i.e. without expliciting gk )k i ek)- Recalling:

Auy, = vr —ug Vk € K;
we use the following notations in the sequel, with i € {l, s},j € {v, g}, k € {i, s}:

b = gy A+ (B K+ )]
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ak = O{((Ajl)g_g) [—ci? + 7i(Ps + Ki) {1+ (Op,e5) ' 7} 5

ok = m [ i (Au)?e + (P + K (e + (M) (@pe) )]
k= anul)zc) [Kad1 + (9p,6) 773}

o a((Ajt)”_g) [re K1+ (Op,e) 7]

k= m (Kl + (Aui)*(Oper) '1i}] -
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v, = o [y (B + (K — PS4 (Auy)2(0r,¢) )]

7 a((Auy)? = )

Eigenvectors ri for the homogeneous system (3.2) are given below, with the same order as in (3.14) (resonance
is excluded).

l l l l l l l l Ly,
ry = (1 O,Zp” upxPL ypvvyuvayp aypg7yugayP 7Zp<72us ZPS)

s s .
rs = (Ovlazpla u“ZPL ypvvyuv?yP,,vypqayuqayP7 psvxu xP;)

r3 = (0,0,1,0,0,0,0,0,0,0,0,0,0,0)" rs = (0,0,0,0,0,1,0,0,0,0,0,0,0,0)"
rs = (0,0,0,0,0,0,0,0,1,0,0,0,0,0); re = (0,0,0,0,0,0,0,0,0,0,0,1,0,0);
t t
ry = (0507pla15plcl7070a0507070a0a0a0> ; rg = (070707()’05[c)vvlapvcv707070a05070> ;
t t
(0 0,0,0,0,0,0,0, pg,l,pgcg,() 0, o> : r10 = (0,0,0,0,0,0,0,0,0,0,0,’C’S,l,pscs> :
t t
:(0,0, plcl,OOOOOOOOO); r12:<00000 - pUCU,OOO()OO);
'U
t t
- (0 0,0,0,0,0,0,0, — 2 pgcg,o,o,o) . ppa= (0,0,0,0,0,0,0,0,0,0,0,—ps,l,—pscs) .
g Cs

APPENDIX D. SYMMETRIZATION

The proof for the symmetrization of system (3.2) is given in the multidimensional case. It is a direct extension
of the proofs presented in [55] or [38].
The case is treated, but the case vy = u, would have been very similar.

A different state vector as (3.1) is considered:

t
W = (Oéhas,Sl,Ul,P[,SU,UU,PU, Sg,uganvsmusaPS) . (Dl)
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The associated convective matrix B(W) keeps the same structure as (3.3); only the block matrices By, k € K
should be slightly modified and replaced by By:

_ Uk 0 0
VEeK,Byk=|0 ur 7% |- (D.2)
0 prci up

We aim to build a suitable matrix S enabling to symmetrize the system. We assume a particular block symmetric
structure for S:

adldaxs MY MY Mgt M

M Dy 0O3x3  O3x3  Osx3 100
S = My, 0343 Dy, 0343 03«3 |; Vke K:,'Dk =10 picﬁ 0], (D3)
Mg O03x3 03x3 Dg 0343 0 0 1

M 03x3  0O3x3 Ozx3  Ds
with ag € R and My € R3*2, k € K, satisfying some constraints to determine.

— Step 1 of the proof: SB is symmetric:
Imposing SB = B'S induces some conditions:

(1) DBy = Bk Dy for any k € K, which can be easily checked;
(2) B;kth = vrMy + DxCy: excluding resonance conditions (i.e. if |ug — uy,| # cx) and since u,, # ug,
(Bkt —vrIdsxs) is inversible, a suitable definition for My is obtained:
M = (B — v/Idsx3) " DiCx; (D.4)
(3) advrIdasa+ > My'Cr = avrIdaxe+ 3 Ci ' My: one can check that for any k € K, My 'C = Ci My,
kek ke
thanks to the previous definition for My and the property Dkék" = (gkn)tDk, n € N.
— Step 2 of the proof: S is semi-definite positive:
Using the block structure, S can be rewritten as follows:

2 t
_ %Id2x2 M . 12x2, 12x12
S = ( M D > ;. MeR ;. DeR .

Consider the quadratic form ¥ associated to S: ¥ : X = (z,9) € R?*1?2 — X'SX = a2||z||? + 2z Mty +
y*Dly. We will impose conditions so that ¥(z,y) > 0 V(z,y) # (0,0).
Ifx—Oandy#Oorac;éOandy—O o(z,y) > 0. We assume from now z # 0 and y # 0. Moreover, we

introduce v = lel’ z= W and D7 the square root matrix of D (since D is diagonal with strictly positive

eigenvalues):

U(a,y) = |lal? (a +2(D7EM2)'DEv + (D30)! (D))
= llal? (IID¥o + (*M'DH)!|2 + af - D~ E Mz||?) .
The following constraint on ag is obtained:
Vz, a2 — || M'DE |2 > 0, (D.5)
which leads to the following sufficient condition, where p(.) denotes the spectral radius of a matrix:

ap > p(M'D™3). (D.6)
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Finally, by multiplying on the left system (3.2) by S defined in (D.3) and fulfilling both (D.4) and (D.6), we
get as expected a symmetric system.
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