We propose numerical schemes that enable the application of particle methods for advection problems in general bounded domains. These schemes combine particle fields with Cartesian tensor product splines and a fictitious domain approach. Their implementation only requires a fitted mesh of the domain’s boundary, and not the domain itself, where an unfitted Cartesian grid is used. We establish the stability and consistency of these schemes in W$$-norms, s ∈ ℝ, 1 ≤ p ≤ ∞.
Keywords: Particle methods, splines, fictitious domains, ghost penalty
@article{M2AN_2021__55_S1_S301_0,
author = {Kirchhart, Matthias},
title = {On particles and splines in bounded domains},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
pages = {S301--S321},
year = {2021},
publisher = {EDP-Sciences},
volume = {55},
number = {Suppl\'ement},
doi = {10.1051/m2an/2020032},
mrnumber = {4221300},
zbl = {1490.65229},
language = {en},
url = {https://www.numdam.org/articles/10.1051/m2an/2020032/}
}
TY - JOUR AU - Kirchhart, Matthias TI - On particles and splines in bounded domains JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2021 SP - S301 EP - S321 VL - 55 IS - Supplément PB - EDP-Sciences UR - https://www.numdam.org/articles/10.1051/m2an/2020032/ DO - 10.1051/m2an/2020032 LA - en ID - M2AN_2021__55_S1_S301_0 ER -
%0 Journal Article %A Kirchhart, Matthias %T On particles and splines in bounded domains %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2021 %P S301-S321 %V 55 %N Supplément %I EDP-Sciences %U https://www.numdam.org/articles/10.1051/m2an/2020032/ %R 10.1051/m2an/2020032 %G en %F M2AN_2021__55_S1_S301_0
Kirchhart, Matthias. On particles and splines in bounded domains. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 55 (2021), pp. S301-S321. doi: 10.1051/m2an/2020032
and , Sobolev Spaces, 2nd edition. In: Vol. 140 of Pure and Applied Mathematics. Elsevier (2003). | MR | Zbl
and , Interpolation Spaces. An Introduction. In: Vol. 223 of Grundlehren der mathematischen Wissenschaften. Springer (1976). | MR | Zbl
and , The Mathematical Theory of Finite Element Methods, 3rd edition. In: Vol. 15 of Texts in Applied Mathematics. Springer (2008). | MR | Zbl
, La pénalisation fantôme. C.R. Math. 348 (2010) 1217–1220. | Zbl
, , , , and , An adaptive Particle-In-Cell method using multi-resolution analysis, edited by , , and . In: Vol. 7 of Numerical Methods for Hyperbolic and Kinetic Problems. IRMA Lectures in Mathematics and Theoretical Physics. European Mathematical Society (2005) 29–42. | MR | Zbl | DOI
and , Optimal approximations of transport equations by particle and pseudoparticle methods. SIAM J. Math. Anal. 32 (2000) 616–636. | MR | Zbl | DOI
, A new approach for the analysis of vortex methods in two and three dimensions. Ann. Inst. Henri Poincaré. Anal. nonlin. 5 (1988) 227–285. | MR | Zbl | Numdam | DOI
and , Vortex Methods. Cambridge University Press (2000). | MR | DOI
and , The stability in and of the -projection onto finite element function spaces. Math. Comput. 48 (1987) 521–532. | MR | Zbl
, and , Multi-dimensional spline approximation. SIAM J. Numer. Anal. 17 (1980) 380–402. | MR | Zbl | DOI
, A construction of nonnegative approximate quadratures. Math. Comput. 21 (1967) 578–582. | MR | Zbl | DOI
and , Interpolation of Besov spaces. Trans. Am. Math. Soc. 305 (1988) 397–414. | MR | Zbl | DOI
and , Besov spaces on domains in . Trans. Am. Math. Soc. 335 (1993) 843–864. | MR | Zbl
, and , The stability in of the -projection into finite element function spaces. Numer. Math. 23 (1974) 193–197. | MR | Zbl | DOI
and , Efficient integration method for fictitious domain approaches. Comput. Mech. 56 (2015) 725–738. | MR | Zbl | DOI
and , The Particle-in-Cell Method for Hydrodynamic Calculations. Los Alamos National Lab NM (1957).
, Practical Methods of Optimization, 2nd edition. Wiley 7 (2000). | MR
, Convergence of vortex methods for Euler’s equations. II. SIAM J Numer. Anal. 16 (1979) 726–755. | MR | Zbl | DOI
and , A smooth partition of unity finite element method for vortex particle regularization. SIAM J. Sci. Comput. 39 (2017) A2345–A2364. | MR | Zbl | DOI
, A higher order isoparametric fictitious domain method for level set domains, edited by , , and . In: Vol. 121 of Geometrically Unfitted Finite Element Methods and Applications. Lecture Notes in Computational Science and Engineering. Springer (2017) 65–92. | MR | Zbl
, and , Immersed interface interpolation schemes for particle–mesh methods. J. Comput. Phys. 326 (2016) 947–972. | MR | Zbl | DOI
, , and , A stabilized Nitsche fictitious domain method for the Stokes problem. J. Sci. Comput. 61 (2014) 604–628. | MR | Zbl | DOI
, An analysis of particle methods, edited by . In: Vol. 1127 of Numerical Methods in Fluid Dynamics. Lecture Notes in Mathematics. Springer (1985) 243–324. | MR | Zbl | DOI
, The formation of vortices from a surface of discontinuity. Proc. R. Soc. London 142 (1931) 170–192. | Zbl
, Spline Functions. Basic Theory, 3rd edition. Cambridge University Press (2007). | MR | Zbl
, Minimal positive stencils in meshfree finite difference methods for the poisson equation. Comput. Methods Appl. Mech. Eng. 198 (2008) 592–601. | MR | Zbl | DOI
and , The Theory of Cubature Formulas, 1st edition. In: Vol. 415 of Mathematics and Its Appl. Springer (1997). | MR | Zbl
, Singular Integrals and Differentiability Properties of Functions. In: Vol. 30 of Princeton Mathematical Series. Princeton University Press (1970). | MR | Zbl
, Formules de cubatures mécaniques a coefficients non négatifs. Bull. Sci. Math. 81 (1957) 123–134. | MR | Zbl
, A general algorithm for nonnegative quadrature formulas. Math. Comput. 23 (1969) 253–258. | MR | Zbl | DOI
, , and , Petascale turbulence simulation using a highly parallel fast multipole method on GPUs. Comput. Phys. Commun. 184 (2013) 445–455. | MR | DOI
Cité par Sources :





