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ON PARTICLES AND SPLINES IN BOUNDED DOMAINS

MATTHIAS KIRCHHART™

Abstract. We propose numerical schemes that enable the application of particle methods for advection
problems in general bounded domains. These schemes combine particle fields with Cartesian tensor
product splines and a fictitious domain approach. Their implementation only requires a fitted mesh
of the domain’s boundary, and not the domain itself, where an unfitted Cartesian grid is used. We
establish the stability and consistency of these schemes in W*P-norms, s € R, 1 < p < oc.
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1. INTRODUCTION

1.1. Summary of results

In this work we are going to build on and extend the results from our previous work on particle regulariza-
tion [19]. In there, we constructed spaces of C*°-smooth trial functions, which however have the disadvantage
that an explicit representation of their basis functions is unavailable. As a first step we are therefore replacing
these spaces with Cartesian tensor product splines. Secondly, while the key idea to our approach remains the
same, we find it important to document that the analysis extends to general W#P-spaces, with s € R, 1 < p < oo.
The main result of this work is summarized in Theorem 4.7. These error bounds closely mirror those given by
Raviart [23] for the whole-space. Thus, all the benefits of particle methods in the whole-space case also carry
over to the case of bounded domains. At the same time, our method is faster: once the regularized field has
been obtained by solving a sparse, well-conditioned linear system, its evaluation at an arbitrary point only costs
O(1) operations, as only the B-splines covering that point need to be evaluated. The conventional blob-based
approach, on the other hand, requires O(Nparticles) Operations due to the global support of the blob-functions.

It turns out that splines and particles seem to ideally complement each other and that it is also possible to
solve the problem of particle initialization in the bounded setting. This problem has not been addressed in our
previous work [19] and our results are summarized in Theorem 3.1. We recall evidence that these results are
essentially optimal and cannot be expected to be considerably improved.
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1.2. Linear transport equation

We begin by introducing a simple toy problem: let Q C R” be an open, bounded Lipschitz domain and let
a:Qx[0,T] — RP denote a given, smooth velocity field. Moreover, let us for simplicity assume that a satisfies
a-n = 0 on the boundary 0f2, such that we do not need to worry about boundary conditions. We are then
interested in solving the initial value problem for the transport equation, i.e., given initial data ug : 2 — R,
find w: Q x [0,T) — R such that:

@+v-(au)=o in Q x (0,7),

ot (1.1)
u(x,0) = ug(x) on Q.

1.3. Grid-based schemes

It is well-known that the discretization of this problem with conventional grid-based schemes such as finite
differences, volumes, or elements causes a lot of problems when a is large: for explicit time-stepping schemes the
CFL-condition forces one to use tiny time-steps. For the spatial discretization, on the other hand, a common
approach to guarantee stability is upwinding. But this comes at the cost of introducing significant amounts of
spurious, numerical viscosity: in a numerical solution with a = const an initial step function ug quickly turns
into a “ridge” of ever decreasing slope. This is the source of many of the difficulties experienced in numerical
simulations of turbulent flows and computational fluid dynamics in general. In short, while there certainly are
more advanced schemes, it is fair to say that it is very hard to construct grid-based methods that are accurate,
stable, and efficient when applied to advection problems.

1.4. Particle methods

Particle methods like Smoothed Particle Hydrodynamics (SPH) or Vortex Methods (VM) pursue a quite
different approach to tackle this problem. Here, the initial data ug is approximated with a special quadrature
rule ug , called particle field. It consists of weights U; € R and associated nodes x; € 2,7 =1,..., N, such that
for arbitrary smooth functions ¢ one has:

N
ZUigp(xi)%/uogpdx. (1.2)
i=1 Q

Equivalently, ug, may be interpreted as a functional: ug ) = Zfil Uidx,, where 0x, denotes the Dirac ¢-
functional centered at x;. The reason for such an approximation is as follows. Given such discretized initial data
Up,n A U, it can be shown that the problem (1.1) is well-posed and that its unique solution is given by moving
the particles with the flow, i.e., by modifying x; over time according to:

dx; .
I (t):a(xi(t),t) 1=1,...,N. (1.3)

The fact that this is the exact solution means that apart from the discretization of the initial data, no
further error is introduced by the spatial discretization over time. Moreover, when both a and diva €
L>(W™>=(Q),[0,T]), n € N, one can show that the advection equation is stable in the sense that for all
t € [0,T] the following holds':

[w(®)[lwer@) S lluollwsr ), —n<s<n. (1.4)

In this clarity these facts seem to first have been established by Raviart [23] and Cottet [7] in the 1980s. In
the context of particle methods the Dirac d-functional has already been mentioned in 1957 in Appendix IT

Here and throughout this text the notation a < b will mean that there exists a constant C' > 0 independent of a, b, h, and o
such that a < Cb. The variables h and o refer to certain mesh sizes and will be made precise later.



ON PARTICLES AND SPLINES IN BOUNDED DOMAINS S303

0.5 12
0.4 |- N 10 =
8 ]
0.3 [~ =
6 ]
0.2 - =
4 ]
0.1 ﬂﬂﬂ - 2 B
0 0
—1 0 1 2 3 —1 3

FIGURE 1. Approximation of the exponential function (blue) on the interval [0,2]. Left: a
highly accurate particle approximation. The particle weights, depicted by the arrows’ heights,
usually do not correlate well with the local function values. Right: conventional smoothing of the
particle field yields a globally smooth approximation (red) of the target function’s non-smooth
zero-extension. This results in poor approximations near its discontinuities at the boundaries.
The stabilized L?-projection (brown) [19] yields an approximation of a smooth extension. It is
not only accurate on the entire interval but also extrapolates well after its ends.

of Evans’ and Harlow’s work on the Particle-in-Cell method [16]; particle methods themselves at least date
back to the early 1930s and Rosenhead’s vortex sheet computations [24]. In practice the ODE system (1.3) is
solved numerically using, e.g., a Runge-Kutta scheme and it can be shown that there is no time-step constraint
depending on the discretization to guarantee the stability of the method. Simulations with billions of particles
have been carried out [31], and practice has shown that particle schemes have excellent conservation properties
and are virtually free of numerical viscosity. In short, particle methods are ideally suited for advection problems.

1.5. Particle methods in bounded domains

A particle field u, can only be interpreted as a special quadrature rule; it is important to understand that
the U; are weights and not function values. In general, the U; do not give a good picture of the local values
u(x;) of the approximated function, much like the quadrature weights from ordinary quadrature rules do not
give a good picture of the number 1. This can for example clearly be seen on the left of Figure 1, where a highly
accurate particle approximation of the exponential function on the interval [0, 2] is depicted. In reality, however,
one is of course interested in function values and a particle approximation is of little practical use. This work
therefore focuses on the following two questions:

(1) Given a function u, how does one construct a particle approximation up, ~ « and what error bounds does
it fulfill? Here, h denotes some form of particle spacing and will be defined precisely later. This problem is
called particle initialization.

(2) Given a particle approximation uj = u, how does one obtain a function approximation u, ~ up, and what
error-bounds does it fulfill? Here, o denotes a smoothing length, which will also be defined precisely later.
This problem is called particle reqularization.

While in the whole space case these questions are well understood, one of the reasons why particle methods
are so rarely used in engineering practice is the difficulty to answer these questions in general bounded domains.
In this work we will develop and analyze schemes which aim two solve these problems. Our proposed solutions
will only require a mesh of the boundary 92, not of the domain § itself. Instead, a simple, unfitted Cartesian
mesh is used for €2, which can be obtained easily by a process known in computer graphics as “voxelization”.

The first problem can essentially be solved using quadrature rules. Especially particle regularization, however,
is not obvious in the presence of boundaries. The most common approach to the regularization problem is to
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mollify the particle field with a certain, radially symmetric blob-function (,: us, := up * (5, where o denotes
the radius of the blob’s core ([8], Sect. 2.3). These blobs are “unaware” of the boundaries and yield poor
approximations in their vicinity. In fact, this approach yields globally smooth approximations of the zero-
extension of u. Unless w itself and its derivatives vanish on 02, however, this extension is not smooth and
cannot be well approximated with a smooth function. This is depicted on the right of Figure 1. In Particle-
in-Cell schemes one uses interpolation formulas to obtain a grid-based approximation of the particle field. In
the vicinity of boundaries these formulas need to be specifically adapted to the particular geometry at hand
and cannot be used for arbitrary domains. Recently, however, Marichal et al. [21] introduced a promising
interpolation scheme for general boundaries, but a rigorous error analysis seems unavailable at this time. They
also give a review of some other previous approaches and come to the conclusion that “None of the schemes
above truly succeeds in the generation of accurate particle — or grid — values around boundaries of arbitrary
geometry.”

Recently, we proposed another approach to the regularization problem, which is based on the L?-projection
and allows a rigorous analysis [19]. First, C°°-smooth finite-element spaces V,, on simple uniform Cartesian
grids are created, where o denotes the length of the cells. Then a fictitious domain approach is employed and
one searches the L?-projection of u onto V.. In other words one looks for u, € V, such that

/ Uy Vo dX = / uv, dx Yo, € V. (1.5)
Q Q

If one is only given a particle approximation up =~ u, the integral on the right is replaced by Zf\;l Uivy (%;).
The addition of a high-order stabilization term then ensures accuracy and stability of the method independent
of the position of the boundary 0f2 relative to the Cartesian grid. It was established that the resulting u, then
approximates a smooth extension of v and is optimal in a certain sense. The result of this approach corresponds
to the brown line on the right of Figure 1, and this figure clearly highlights its accuracy at the boundaries and
even beyond.

2. SPACES OF FUNCTIONS AND FUNCTIONALS

In this section we will introduce the function spaces and recall some important results that our analysis will
make use of. Throughout this text we will assume that the domain of interest Q C R” is an open, bounded
set that satisfies the strong local Lipschitz condition; for short, a Lipschitz domain. This assumption will in
particular allow us to make use of the Sobolev embeddings as well as the Stein extension theorem. The symbol
(O C RP will be used as a placeholder for any bounded Lipschitz domain.

2.1. Sobolev spaces of integer order

As usual, for n € N, 1 < p < oo, the Sobolev spaces W™P(()) are given by:
WH(O) 1= {f: O — R|94f € L(O) V0 < |u| < n},

n 1/p
I lwrneo) = <Z| Zvjv'e‘v(d) 7

= (2.1)

1/p

oo = | 10O |

|nl|=k
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where WOP(0) := LP(Q), p € N denotes a multi-index, 9" the weak derivative, and the usual modifications
for p = oo:

|- w0y == ki%&_l_%n\ w0
o (2.2)

| lwro(0) max 10 ()l = (0)-

[l
Whenever the index 1 < p < oo appears, we define ¢ as its Holder conjugate such that % + % = 1. For

n # 0 we define W—P(Q) := (W”’Q(O))/ to be the normed dual of W™?¢((), following the convention of,

e.g., Brenner and Scott [3], but opposed to the convention W~"P(() = (WJ’Q(O))I of Adams and Fournier [1].
We define the norm || - [[yy—».» () as usual, denoting the duality paring by (-, -):

<'7U>
I llw-ne) == sup

__bw (2.3)
vewna(Q) [Vllwna(o)

2.2. Sobolev and Besov spaces of fractional order

We will later introduce spline spaces of approximation order n € N. In terms of integer order Sobolev
regularity, these splines however only lie in W»~ 1P, which in the end would only allow us to prove suboptimal
results. We thus introduce intermediate spaces of fractional order, in terms of which the splines possess the
necessary amount of regularity.

We define intermediate spaces of fractional order using the “real” interpolation method ([1], Chap. 7). In
particular, for 0 < 0 < 1, 1 < p,p’ < oo we define the Besov spaces as BZ,”’p(O) = [LP(Q),W"”’(Q)]GW,.
Here s := On € R, measures the smoothness and 1 < p < oo denotes the underlying L?(())-space. Varying
the secondary index p’ for fixed values of s and p only results in miniscule changes; bigger values of p’ result
in slightly larger spaces: B;;IP(Q) — B;QP(Q), 1 < py < py < oo. On the other hand, for every r > s and
1 <p' < 0o we have B*(O) — By*(O). For p # oo this definition of Besov spaces is equivalent to the one
using appropriate moduli of smoothness (for 0 < p < 1 this has been established by DeVore and Sharpley ([13],
Thm. 6.3). For 1 < p < 0o a proof can be found in Adams’ and Fournier’s book ([1], Thm. 7.47)).

For non-integers s > 0 we define the Sobolev spaces of fractional order as W*?(Q) := B,?(O). For p # oo
these spaces coincide with the Sobolev—Slobodeckij spaces ([13], Thm. 6.7), but unless p = 2 they differ from
the fractional order Sobolev spaces obtained by the “complex” interpolation method as defined by Adams
and Fournier. For integer values s = k the Besov spaces B;,f’p (O) do not coincide with W*?((), except for
the pathological case p = 2 ([1], Sect. 7.33). For this reason, we will often first establish our results for all
integer values s = k and then conclude by interpolation to the intermediate spaces. However, one always has
B;P(0) = W (O) — B (O).

The intermediate spaces with negative index are defined via interpolation, analogously to the positive case:
W=0mr(0) := [(L‘I(Q))/7 (an'J(Q))/]am. For p # 1, i.e., ¢ # 00, it can be shown that they in fact are the dual

spaces of the corresponding intermediate spaces with positive index: W=2((Q) = (stq(O))/ ([2], Thm. 3.7.1).
In summary, the spaces W#P(()) are defined for all s € R, 1 < p < co.

2.3. Sobolev embedding and Stein extension

Before moving on to the spline spaces, we recall the Stein extension theorem ([28], Chap. VI, Thm. 5): there
exists a linear extension operator E that fulfills ||Eully:rmp) S |ullws»ro) for all u € W*P(O), s > 0,
1 < p < co. We also will use the following variant of the Sobolev embedding theorem: WP:1((0) — C(Q) and
[ullzoe (o) S lullwra(oy ([1], Thm. 4.12).

2.4. Spline spaces

The spline spaces will be defined on uniform Cartesian grids, which we introduce first, after which we define
the spline spaces and recall some of their properties from approximation theory.
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FIGURE 2. An illustration of the fictitious domain approach. The domain Q (blue), in this
case a circle, may intersect the infinite Cartesian grid in an arbitrary manner. The fictitious
domain €, (red) is defined as the union of all intersected cells. The domain g in this case
consists of the four elements entirely lying in £2. The set of faces F, is highlighted using bold
lines. It can be thought of forming a bridge between 22 and the remaining elements in QL.

Definition 2.1 (Cartesian grid and fictitious domains). Let o > 0 be given. With each A € ZP we associate a
Cartesian grid-point xy := (A\;0, A\20,...,Apo) " and an element Qy := Hle (/\da, (Mg + 1)0). We define the
fictitious domain 2, as the union of all elements that intersect the physical domain 2. Furthermore we define
cut and uncut elements QL and Q2, respectively:

Q, = int U{clos Qx | measp(@x N Q) > O},
QF ==int | J{closQx |Qx € Qo A Qx ¢ O}, (2.4)
Qg :=1nt | J{closQx|Qx € 2 AQx C Q}.
The stabilization will make use of the following set of faces near the boundary:
F, :={F is a face of some element Qx € QF and F ¢ 99,}. (2.5)

Here and in what follows we write Qx € Q,,Qx € QL and Qx € Q2 to refer to the elements these domains
are composed of. An illustration of these definitions is given in Figure 2. We will make use of the following
somewhat technical assumption: for every Qx € QL there exists a finite sequence (Fx1,Fxg, .. Far) C Fs
such that the following conditions are fulfilled: every two subsequent Fj j, and Fj p41 are faces of a single
element @, € Q,, the number K is bounded independent of ¢ and A, and the last face F x belongs to an
uncut element @, € Qf. This assumption means that uncut cells can always be reached from cells in QL by
crossing a bounded number of faces. For sufficiently small o this condition is often fulfilled with K = 1; if
necessary it can be enforced by moving additional elements from Q2 to Q.

Definition 2.2 (Spline spaces). Given n € N and 1 < p < 0o, we define the tensor product spline space on the
Cartesian grid, equipped with the LP-norm:

VIP(RP) = {f :RP” > R| flg, € Qu-1,A € Z°} N CF>*(RP),

(2.6)
|- HVJ’F(RD) = ”LP(RD)»

where the symbol Q,,_; refers to the space of polynomials of coordinate-wise degree n — 1 or less. For () C RP,
we define V*?(() by restriction from R? to (). In analogy to the Sobolev spaces, the normed dual of V()
will be denoted by V,7™P(()), where g denotes the Holder conjugate to p. Denoting as usual the duality paring
by (-, ), its norm is thus given by:

(- v0) ( vq)

| llyrnoy = swp = sup

_nve) 2.7)
veevei ) lvellveaoy  voeveao) Ivellzao)
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For a fixed bounded domain () and fixed values of ¢ > 0 and n € N, these spaces of course all have the
same topology and are in this sense independent of p. In the next sections this notation will prove to be
useful, in the other cases the index p will be omitted. It is well-known that for n € N, 1 < p < oo, one has
V() € Wn=tr((). For p # oo this can be improved to V*(O) C B3P(0), § :=n—1+ % =n- %, and
furthermore V* () ¢ W*P(()) for all 0 < s < § [12,13]. In particular, the spaces V*(() are not, but “almost”
are embedded in W™1(().

2.5. Some properties of splines

We now introduce some important basic properties of the spline spaces, of which our analysis will make
frequent use. For proofs of these results, we refer to Schumaker’s book [25]. The B-splines form a particularly
useful basis for the spaces V*(Q).

Definition 2.3 (B-splines). The cardinal B-splines b : R — R, n € N, are defined recursively via:

b(x) := {1 z€[0,1), b (z) = (b xb")(2) :/0 vz —y) dy. (2.8)

0 else,

Reusing the symbol b, the corresponding multivariate B-splines are defined coordinate-wise as b"(x) :=
H,?:1 b"(xq). For a given o > 0, with each Cartesian grid point xx, A € ZP, we associate the shifted and
scaled B-splines by 5 (x) := b"(***). For a given domain O C RP the corresponding index set is defined as:

A2(O) = {X € Z” | measp (supp b x N O) > 0}. (2.9)

This basis has many desirable properties, among which are the smallest possible support of its members
supp by 5 = Hle[)\da, (Mg + n)o], their positivity 0 < by » < 1, the fact that they form a partition of unity
> oxezp by = 1, and most importantly the norm equivalence that follows.

In what follows, the symbol O will refer to an arbitrary finite collection of entire cubes from the Cartesian
grid, e.g., the domains ,, Q2, or QL. On such domains one can show some very useful properties, of which we

will make frequent use.

Lemma 2.4 (Stability of the B-splines basis). Let 0 C RP be a finite collection of entire, uncut cubes from
the Cartesian grid of size 0 > 0. Then every function u, € V2*(O), n € N, can be written as

Up= > Ugably, (2.10)
AeAn(d)

with a uniquely determined coefficient vector u, = (ug,x) € P(AM(O)) = RI™VS"E) | The LP- and

AeAn(D)
P -norms of respectively u, and u, are equivalent for 1 < p < co:

D D
a7 |[ugller S uslle@y S o uoller (2.11)

Lemma 2.5 (Inverse estimates). Let u, € V*(O), n € N. On every element Q € O and for all 1 < p1, pa < o0,
0 <r <s, the following local inequality holds:

D _ r—s
lluollwsri(@) S orr P20 *||uglwrrs () (2.12)

1 1

Globally one has for all 1 <pj,ps <00, 0<s<n-—1 —|—min{p—17 E} ors=mn-—1:

D _

min< 0, L
o ey S 0™ O g e o, (2.13)

andforalllgpgoo,0§7‘§8<n—1—|—%ors:n—l:

[uollwer@ < 0" lluollwre@)- (2.14)
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Lemma 2.6 (Quasi-interpolator). For every n € N there exists a projection operator P? : L*(O) — V(D)
called the quasi-interpolator. For all uw € W*P(0O), k € Ng, 0 < k < n this operator fulfills:

lu — Prullwirq) Uk_l|u|Wk,,,(Q) 1e€{0,...,k}, Qe (2.15)

<
S Jk_l|U|Wk,p(Q) ledk,...,n}, Qel (2.16)

[P ulwie(q)
where Q =0n U)\eAn(Q) supp by , is the union of the supports of all the B-splines that do not vanish on Q.

Remark 2.7. This result can be improved in the sense that the right hand side of the above inequality (2.15)
only needs to involve “pure” derivatives in the coordinate directions [10]. We will not be able to use this fact,
however, because our analysis will rely on the Stein extension theorem, which is formulated for the usual Sobolev
spaces involving mixed derivatives.

On domains OJ the L?(0)-projection is bounded as an operator from LP(0) — VP(0), 1 < p < oo [9,14].
From this fact and the stability of the B-splines basis it is an easy task to derive the following lemma.

Lemma 2.8. Every functional f € V. ™P(0), 1 < p < 0o, has a unique representative f, € V»P(0) such that:

(fyvg) = /D fove dz Y, € V4(0). (2.17)

The norms of f and f, are equivalent:
||fa||LP(D) S Hf”v;"vp(m) < Hfa”LP(D)- (2.18)

3. PARTICLE INITIALIZATION

In this section we discuss how to construct particle approximations wj of spline functions a, € V;"*(§),
where as before our domain of interest €2 is Lipschitz and h > 0. A particle approximation of general functions
u € LP(Q) can then be obtained by setting @, to a suitable approximation of u. In this section we will restrict
ourselves to the case n > D, which will simplify the analysis. Similar results can be obtained for smaller choices
of n at the cost of a more technical analysis, but we see no clear benefit from this. Later in Section 4 we will
further restrict ourselves to the case n > D.

After first giving an overview of the construction, we proceed by describing its ingredients and discussing
their feasibility. The main result of this section is the error-bound of Theorem 3.1, which we then argue to be
essentially optimal.

3.1. Overview

The task of constructing a particle approximation uy, of 4, can be broken down into a set of independent, local,
small-scale problems by using the locality of the B-splines basis. We thus first seek a particle approximation for
each B-splines by, 5, A € Aj(Q).

For each A € A} (Q2) we chose quadrature nodes x5 ; € 2N supp by,  and associated positive weights wx ; > 0,
it =1,..., Ny, such that for all multi-indices p € Nj of total degree |p| < n:

O n XX,i — XX H n X — X\ K
Z Wby A (Xx,0) ) =, b A (%) A dx. (3.1)
i=1

::I&M

Here we wrote x) = hA as in Definition 2.1, such that the terms (%)“ correspond to the appropriately shifted
and rescaled monomials. In practice it will suffice to replace the exact integrals I , with approximations Iy ,
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of accuracy |I~>\,u — Inpl S ™. In particular, if [Iy 4| S A" for all |p| < n, the B-splines by y may be skipped
altogether.

Given such quadrature nodes and weights, let us denote by (cx)ae A7) the B-splines coeflicients of u; such
that @, = ) 5¢ Ap(@) ADh x- We then define the particle approximation uy, as follows:

N
Up, = Z Cx (Z ’LU)HZ'Z)Z’)\(X)\J)(SXAJ) . (3'2)

AEAT (Q) i=1

For those B-splines by,  whose support supp b , C (2 lies entirely in the domain, this can easily be achieved
by using GauBi—Legendre quadrature rules on the cells of the Cartesian grid. For the remaining B-splines with
cut support, we proceed in two steps: first we approximate the integrals Iy ,, after which we seek nodes xy ;
and associated positive weights wx; > 0, ¢ = 1,..., Ny, such that the conditions (3.1) are fulfilled. These two
steps are discussed separately in the following subsections.

3.2. Approximation of I ,

All that is required to compute approximations I ap Of In, is a mesh of the boundary. The product

biy A(x) (x_hx")” is again of the form HdD:1 Py(xq), where the P, are certain one-dimensional, piecewise
polynomials of global smoothness W” %>, Let us for example consider P;. Its ordinary, one-dimensional

anti-derivative Py(z) := [*  Pi(2')da’ is known explicitly. We define the vector-valued function F(x) :=

T
(’Pl(xl) HdD:2 Py(zq), 0, 0, ..., 0) , and note that V-F = HdD:1 Py(xa) = by, 5(x) (2= )”. The divergence

theorem thus allows us to convert the volume integral to a boundary integral:

/Q hoa (%) <X_hx)‘>”dxz/QV.FdXZ/aQPl(a?l)(el~n)dl[_—)[2Pd(a:d)dS(x). (3.3)

On each patch of the boundary mesh the integrand on the right is W~ *°-smooth. The integral can thus be
efficiently approximated with standard quadrature rules on the boundary mesh. This is similar to the approach
of Duczek and Gabbert [15], who successfully applied it to less smooth shape functions. The illustration in
Figure 3 shows the trace of a spline of order n = 3; clearly highlighting its smoothness.

3.3. Computation of quadrature nodes and weights

Once the approximations I A, have been computed, quadrature rules can for example be constructed using
the following procedure:

(1) Randomly scatter (additional) points xx; over 2N supp by, y.
(2) Solve the following linear programming problem for the unknown weights wy ;:

2 n i —xa\Y s
D wa i A(xa) — ) =l Vlpl <n,

1=1
Wi Z 03

where pu € NP is a multi-index.
(3) If no solution exists, go to step 1 and repeat.

This approach is reminiscent of Wilson’s algorithm [30], who also demonstrated that it is feasible to implement
in practice. In the case Iy, = I ., the existence of quadrature nodes with positive weights is guaranteed by
Tchakaloff’s theorem [29]. An alternative proof has been given by Davis [11], we also refer to Wilson’s work [30]
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FIGURE 3. Left: a spline of order n = 3 defined on a 2D Cartesian grid restricted to a cir-
cular domain. Right: the boundary trace of this function (blue) inherits the smoothness. Its
integral can thus be efficiently approximated using standard quadrature rules on the boundary
mesh. The trace of F is even smoother but difficult to visualize. In comparison, the trace of

a conventional, piece-wise linear finite element shape function (red) typically contains many
kinks.

for further references. As long as the sequence of random points is dense in 2N supp by, 5 and the error in I Ap
is small enough, the above algorithm is therefore guaranteed to eventually terminate.

The question whether we can do better than picking points at random is very complicated and its answer
will in general heavily depend on the particular geometry at hand. This can for example be seen in the related
problem of computing positive finite difference stencils for the Poisson equation. For this problem Seibold [26]
gave the exact geometric conditions that the point cloud needs to fulfill for positive stencils to exist.

The linear programming problem is a so-called “Phase I Problem” that can be efficiently solved using the
simplex method ([17], Chap. 8). If any solution to problem (3.4) exists, the simplex method will find one. The
solution will in general not be unique; the simplex method will however always return a solution with at most
#u = (D +g_1) non-zero weights. In other words, the number of quadrature nodes for each b, » is bounded
independent of h and A. As an example, for D = 2, n = 3 one obtains #u = 6, while D = 3, n = 4 yields
#p = 20.

3.4. Error bounds
We will identify the function @), € V;"*(Q) with the functional

(Tp, ) = / appdx Ve e LIQ). (3.5)
Q
The key result of this section is the following theorem.

Theorem 3.1. Let uy, denote the particle approzimation from (3.2) withn > D. Furthermore assume that the
approzimations Ix , on the right-hand side of (3.4) fulfill the error-bound |Ix , — Iyl < Cquaah™ for some
Cquad > 0. Then for all D < s <n, 1 <p < oo the particle approxzimation uy, fulfills the following error-bound:

|@n — unllw-sr@) S P |@nllLr@p)- (3.6)
The hidden constant only depends on Cquad, D, s, p, and n.

Proof. Tt suffices to prove the result for all integers k € {D, ..., n}, for the intermediate spaces the claim follows

by interpolation. Thus let ¢ € W*4(Q), 1 < p < oo, % + % = 1, be arbitrary and let Ep denote its Stein
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extension such that ||Ep|lyr.qmpy S [l@llwka). For any X € Aj(§2) we let Bap denote the Bramble-Hilbert
polynomial of total degree less than k that approximates Ey on Sx := suppby, 5 = Hle[/\dh, (Ad + n)h]. This
polynomial fulfils for all [ =0, ...,k ([3], Lem. 4.3.8):

|Bxe — E¢lwiaisyy S B HE wracsy)- (3.7)

One then has:

N
(in —un, @) =| > ea (/S . b ap dx — ZwA,in’)\(XA,i)(P(X)\,i)>
AN

AEAT(Q) i=1
N
< Y e / b (P — Bag) dx — > wa bt A (xx) (9(xa:) — BA‘P(XA,i))>
AEAT(Q) Sxna i=1
@
Nx
+ Z c (/ by xBapdx — Z wA,in’/\(x,\’i)B,\go(x)\,i)> . (3.8)
AEAR(Q) San i=1

(I1)

We first consider the term (I). For the integral we obtain by the Bramble-Hilbert lemma (3.7) together with
Holder’s inequality:

b7 (¢ — Bag) dx < ||b7 Ey— B < KRB 3.9
h,A(SD MP) X > H h,AHLP(Sx) || ¥ )\‘PHL‘I(SU > || 50||WM(SA)~ (3.9)
SaNQ N———

o

<hv

Using the Sobolev embedding WP:1(Sy) < C(Sy), and the fact that 0 < bi A(x) < 1 and wx,; > 0 we obtain
for the sum:

N Holder [ I
D waibh a(xa) (P(xai) = Bag(xai)) < <Z wx,ibz,x(xx,z‘)> [E — Bag|l L= (sy)
i—1 i1

<hP, (34) for p =0

Sobolev D (3.7) & Lq(SA);’Ll(Sk) kD
S REEe — Bapllwoaisyy S RCIE@|lweacsy) S TP [[Epllwra(sy)- (3.10)

Together with the usual modifications for ¢ = oo, the stability of the B-splines basis, and a finite overlap
argument, part (I) can thus be estimated by:

Q=

Holder D
M 5 B e)lenrey | D, 1Beles,
AEAT ()

(2.11) Stein
< hk”uh”LP(Qh)||E§0||W’€v‘1(RD) < thuhHLP(Qh)||90||ka‘1(§2)' (3.11)
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For part (II) we may write Bap = Zka Cap (x_hx* )”, with uniquely determined coefficients cy ,. We can

then make use of the fact that these monomials are integrated up to an error e = O(h"):

Nx
/ b aBapdx — Y wa by 5 (%x.:) Bag(xa.:)
SanQ2 i=1
" X — X\ K N " Xxi — X K| Hslder "
<3 el [ a0 =Y wa G ) (22 W (exmlulln
ENGIS h ; h
[l <k > i=1
Shn
(3.12)
We now may invoke the stability of the monomial basis, analogously to Lemma 2.4:
b L% (Sx)—L(Sx) Sobolev
[(exwluller S h™7IIBagllLrsy) S [Brelle(syy < IBapllwoacsy)
(3.7) LUSx) =LY (Sx)
S Eellwras,) S h? [[E@llwp.asy)- (3.13)
Thus, similarly to part (I), we obtain for part (II):
Holder il q K i~
I < A" ealloap@) | D 1Bl ybas, | S @ lelwpa@)- (3.14)
ACAR ()
The combination of the estimates for parts (I) and (IT) gives the desired result:
[{un = an, ©)| S h*l[anll o I@llwra@) + 1" @nl Lo @ lellwo.a@) S B [anlles @) l@lwra@).  (3.15)
O

One of the key features of this estimate is the fact that it only depends on the LP-norm of the spline @y, similar
to the results of Cohen and Perthame [6]. Previous estimates have mostly been of the form: ||u —up||w—sr0) S
P |lullwer(q) ([8], Thm. A.1.1), suggesting that there might be room for improvement to h*¢. This is not the
case, and we believe that this fact is not well-known in the particle method communities. We therefore recall a
theorem of Bakhvalov ([27], Chap. 4, Sect. 3), which indicates that these estimates are in fact optimal in terms
of convergence order.
Theorem 3.2 (Bakhvalov). Let Q C RP be a bounded Lipschitz domain, n € N, n > %, and let w = 1. Let
Uhk = vaz"l Uk,i0x,.., k = 1,2,..., denote a sequence of particle approximations of u such that Ny — oo as
k — oo and let us define the average particle spacing as h := h(k) := {/measp(2)/Ni. Then for every such
sequence one has:

||u - uh“lc”an,z(Q) Z h™ k— o0, (316)
with the hidden constant independent of k.

Noting that the error bounds only depend on the LP(£2;)-norm of the function 4y, this constraint can to
some extent be bypassed by choosing n very large. This would later allow one to chose the smoothing length o
essentially proportional to h. On the other hand, the hidden constants in the <-notation get larger as n grows.
Furthermore, this approach would require the use of equally smooth trial spaces. The spline spaces that we are
going to employ for regularization in the next section only have finite smoothness, however.
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4. PARTICLE REGULARIZATION

Let n € Nand 1 < p < co. Our approach will make use of the following operators:

A:VIP(Qy) = VIP(Qy), (Aug,ve) = /Quavg dx, (4.1)
n—1 n—1

JVIP9,) = Vi (9,), (Jug,vg) = 0?1 S / Ha “f]| Ha Ufﬂds, (4.2)
Fer, F 8n’} 6n}@

and A, := A+ eJ, where € > 0 denotes a user-defined stabilization parameter that can be chosen independent
of o and the position of the boundary 9 relative to the Cartesian grid. The symbol [-] refers to the jump
operator; it is the difference of the one-sided traces on a face F'. The symbol np stands for the face’s normal
vector, which in our case always coincides with some Cartesian basis vector: np € {ej,es,...,ep}. For a
function u that is continuous on both of the cells that F is a face of, and x € F, the jump operator thus is given
by [u(x)] = limp\ o w(x + hnp) — u(x — hnp). If u is continuous across F, then Ju(x)] = 0.

The stabilization operator J will be called the ghost penalty [4]. The operator A effectively restricts a function
from €, to 2. We will establish that its stabilized version A, is invertible, yielding the approximate extension
operator AZ1L.

When considered as an operator that acts on Q only, i.e., V,”™P(Q) — V*P(£), the operator A~! corresponds
to the L2(£2)-projection and its stability for p = 2 is guaranteed. For the case p # 2, however, inverse estimates
are required, which are only available on domains [J consisting of entire cells. Let us, for example, consider some
A € AZ(£2) such that the support supp b} 5 N2 of its associated B-splines b, 5 is “tiny”. Due to the tiny support,
large variations of its coefficient cx will not influence the L?(2)-norm of the resulting function significantly. But
a large coefficient ¢y does cause “spikes” in the solution near the boundaries, which dramatically impact the
L>°(Q)-norm. Thus, stability for p = 2 does not imply stability for p = co in this case. The ghost penalty term
J punishes such spikes near the boundary and thereby ensures the stability on all of €2,. This comes with the
pleasant side-effect that the system matrix corresponding to A in terms of the B-splines basis can be shown to
be well-conditioned.

4.1. Continuity and consistency

For € = 0 the approximate extension operator AO_1 is the L2(Q)-projection onto V*(£2,). For ¢ > 0, however,

AZ! ceases to be a projection, but the difference to Ay 1'is small; a fact we will call consistency. The main

difference to previous analyses of the ghost penalty operator is that we consider results in LP-spaces for p # 2.

Lemma 4.1. The ghost-penalty operator J is continuous. In other words, for all u, € V"P(Q,), n € N,
1 <p < oo, it holds that:
”JUU”VU—"W(Qd) < ”uaHLP(QU)' (4.3)

Moreover, for any u € W*P(Q,), 0 < s < n, the quasi-interpolant PTu (see Lem. 2.6) of u fulfils:
PG ully g,y S o llullwer@,)- (4.4)
Proof. For arbitrary u, € VP(Q,) and v, € V9(§,) we obtain by repeatedly using Holder’s and the trian-

gular inequality:
n—1 n—1
> [ 5] |G| as
F 6IIF 8nF

FeF,

oty

2n—1 § : o

= ( H |[ 511”}:‘71
FeF,

[(Jug. )] = g2t

1

p ) ; < Z H Han_lvoﬂ
n—1
L (F) rer, Il Ong

|=

q q
) (4.5)
Li(F)
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with the usual modifications for p = oo or ¢ = co. For arbitrary w € W1P(Q), 1 < p < o0, Q € Q, an arbitrary
1 1

cube from the Cartesian grid, we have the trace estimate ||wl|z»a0) < Hw||zp(Q)||w||§,1,p(Q) ([3], Lem. 1.6.6).
Together with an inverse estimate this leads to:

oL, 1 1 212) |
5zl s el smqe el 5 o Hurhwnssan, (16)
)
an—lvg 1 1 (2.12) 1
52]| - stontcsaaeloalnaimy & o Huclnioaim (47)
F La(F)

The W™P- and W™%-norms in the intermediate step are to be interpreted in the “broken”, element-wise sense
and Q(F') denotes the two elements that F' is a face of. Thus, using a finite-overlap argument, one obtains
together with another application of the inverse estimates: [{Juo, vo )| < 02" 2|[tg |lwn—10(0,) Vo [wn-1a(0,) S
HUUHLP(QU)”UUHL‘?(QU)-

Let us now consider (4.4). It suffices to establish this inequality for all integer values s € {0,1,...,n}; for
the intermediate spaces the result then automatically follows by interpolation. For integers s € {0,...,n — 1}
estimate (4.4) follows from |(Ju,, vo )| < 0™ ue|lwa-1.0(0,) Ve || La(0,) Dy letting uy = PPu and:

(2.14) (2.16)

" Muollwe-rr@,) S Cllucllwer@,) S o®llullwer,)- (4.8)

In order to show (4.4) for s = n, we need to extend J’s domain of definition. For this, note that the derivatives
of order n — 1 of functions u € W™P(Q,) are continuous across hyper-surfaces and thus Ju = 0 for such w. In
other words, J is defined as an operator on V?(Q,) + W™P(Q,) and W™P(Q,) C kerJ. For ¢ := Plu —u

equation (4.6) then becomes:
or 1A
5=,

where the W™P(Q(F'))-norm is again to be interpreted element-wise. Now we can make use of the approximation
properties of P

1 1
SNl s o 1 oy (4.9)
Lr(F)

(2.15)

lallwn-1e@ry) = llu = Prullwn-1ery < ollullynns oy (4.10)
(2.15)

lallwnr@ry = lu— Prullwerr)y S Ny (4.11)

Note that the norms on the right do not need to be interpreted element-wise, because we have assumed u €
WmP(Q,). Thus

o la ]] 1
P o ullyyn O ry)- (4.12)
H@nF Lo(F) Q)
Again invoking a finite-overlap argument, one thus obtains:
[(Ja,v5)| S o™ [ullwnr,)llvellLace,)- (4.13)
The claim now follows by recalling that JP?u = J(Plu — u) = Ju. O

4.2. Stability

The following core result regarding the stability properties of the ghost penalty operator in L? has already
been established at several places in the literature, for example by Lehrenfeld ([20], Lem. 7) or Massing et al. ([22],
Lem. 5.1):
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Lemma 4.2. Lete > 0 be sufficiently large, but independent of o and the position of 0S) relative to the Cartesian
grid. Then, for small enough o > 0, one has for all u, € V*(Qy):

luollZ(,) S lluellz(ag) +€(Jta, us), (4.14)
where the hidden constant is also independent of o and how the boundary 0) intersects the Cartesian grid.

From this one easily obtains that AZ! exists and is bounded as an operator from V,™2(Q,) — V2(Q,).
We will now establish that AZ! also is bounded as an operator from V,"™?P(Q,) — V"P(Q,), 1 < p < oo.

Lemma 4.3. Lete > 0 be sufficiently large, but independent of o and the position of 0S) relative to the Cartesian
grid. Then, for small enough o > 0, the approzimate extension operator AZ! is bounded. In other words, for all
feV™P(Q,), 1 <p<oo it holds that:

IAZ* Fllzr @0y S Ifllyne o,y (4.15)
where the hidden constant is also independent of o and how the boundary 052 intersects the Cartesian grid.

Proof. Our proof is similar to those of Crouzeix and Thomée [9] as well as Douglas et al. [14]. Because of
Lemma 2.8, it suffices to consider functionals of the form fQﬁ fvsdz, f € LP(Q,). We fix an arbitrary u € ZP
such that Q, € Q,. We set f, = f on Q, and f, = 0 else and define u, ,, := AZ'f,. We will show that u,
decays at an exponential rate away from @,. To this end we define the domains D, g := 0, D1 1= Qp, and
Dy = {QA €N, | IA—p| < k} for all other integers k, where |-| denotes the max-norm over Z”. Furthermore,
we set:

Fiok .= {Fer, ‘ Both elements that F' is a face of are in Q5 \ Dy }- (4.16)

First we note that because f,, = 0 outside of @,,, one has by the definition of u, ,, that (Acts p, Vo) = (fu, Vo) =
0 for all v, € V(Q,) that vanish on Q,. We now choose such a special v,. Let k > n and set the B-splines
coefficients of v, such that v, = 4, on Q, \ D, and set the remaining coefficients to zero. It follows that
Ve =0o0n Dy j_(n—1). Because (A.ug,u,v5) = 0 one easily obtains that:

u? ,dx +eo®" /Hn ug”]] ds
~/Q\Du,k * > On

FeFkk

_ / U 0, dx 4 521 Z /Han—lug,”ﬂ |[8n 1, ﬂds . (17
onpa. onp! on!

FeF\F&*

Because of Lemma 4.2 the left side of this equality can be bounded from below by
Hug,“||%2(ﬂo\Dmk). Because v, = 0 on D, (,—1), the integral on the right can be bounded by
[to,ull22(Dy \Dpyso 01 1V | L2(Dy i \Dp (0 —1y)- The same bound follows for the sum, using the argu-
ments in the proof of Lemma 4.1. In fact, for most choices of p and k, this sum is empty. But clearly, by the
stability of the B-splines basis, we have [|vo|[12(D,, \\Dp i (n_1y) S [toullL2(D, \D y- Thus, in total we
obtain the existence of a constant C' > 0 such that:

. k—(n—1)

||Ua,u||%2(9c,\pu B) = CHUauHLz(DM\DM (n—1))

(4.18)

= C (o2, \Dp s rry) — Moz, 10,000 )

and therefore:

C
2 2
(Q\Dpi) S 1+CHUUW«HLQ(QU\D”T,C_(n_l))' (4.19)
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For large values of k this argument can now be repeated on the right hand side, leading to the existence of
another constant 0 < v < 1 such that ”u""‘HQL"’(QU\DM oS ’Y%H“o,u”iqgc,y This is the desired exponential
decay. Using Lemma 4.2, we get together with the inverse estimates:

(4.14)
lto oy S (Actio o) = / Fuodz < |fllwetou ol oo

©

(2.12

12) L, , b b
S oo [ flleru oz < o P I flr@ullvonllLe @, ), (4.20)

D _
2

and thus [|ue,ulr20,) S o B £l zr(q,.)- For every XA € ZP, Qx € Q, this leads to:

(2.12) D_D
lzron) S 07 2 luoullzzgny SO

D_D
P 2

YA gl L2y S APl @,)- (4.21)

Let consider the case p = co. Noting that u, := AZ1f = ,u Uo,u We obtain by the triangular inequality for
arbitrary A:

||ua7,,,

ol S IFllLe(@,) Yy (4.22)
n

Because of the grid’s uniformity and the exponential decay, the latter sum remains bounded for any A, and
therefore ||uq||z~(,) S Ifllz>(q,)- For p =1 we obtain similarly:

Holder
i@,y =D luoliany S D A Iflegn < Il mgXZV‘*‘“' (4.23)
A A, A

and thus [lus|lz1,) S Ifllz1q,)- For 1 < p < oo the result now follows by the Riesz-Thorin interpolation
theorem. (]
4.3. Condition numbers

In order to implement the approximate extension operator in practice, it is important that the condition
number of the corresponding system matrix A, remains bounded. Let us abbreviate N := dim VP (Q,). We
may assign a numbering 1,..., N to the index set A;(€2;) and refer to the B-splines b 5 as b;, i € {1,...,N}.
The system matrix A, € RVXV is then defined via:

e/ Ace; = (Acbi,b;)  Vije{l,....N}, (4.24)

where e;,e; € RY refer to the ith and jth Cartesian basis vectors, respectively. One easily obtains the following
corollary, which guarantees that systems involving A. can efficiently be solved using iterative solvers.

Corollary 4.4 (Condition of A.). Let the conditions of Lemma 4.3 be fulfilled. Then the system matriz A €
RVNXN s symmetric A. = A, positive definite:

ug Aty = 0P|ug||% Yu, € RY, (4.25)
and well-conditioned:
Yu, € RV : JDHugHmo S Acugller S 0D||ug||gp = cond,(A.) = HAEngHszA;lepﬁep ~ 1. (4.26)

Proof. The symmetry of A, is obvious. With every u, € RV we associate u, = Zf\;l u;b;. Then, with help of
the stability of the B-splines basis:

. (4.14) ) 1y )
Ug Aty = (Actig, ug) 2 ||u0||L2(QL,) Z 07 ugllze. (4.27)
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Moreover, for the lower inequality:

@11) . (15)
Plusle < ollusllire, S o7 lActuollv-no@,)
A (2.11) TA
=09  sup {Actio, o) < o7 sup \/]‘3’75% = ||Acus||er- (4.28)
veeVii(2,) IVollLac) Ve €VIU(Q) 0 ||V || o
Similarly, for the upper inequality:
TA . (211) A
IAcugllr = sup TS —7; stio: Vo)
Vo ERN Vo | ¢a Vo ERN g ¢ ||/Ug-||Lq((20_)
“3) (211
S ouslir,) S 0" llusller (4.29)
O
4.4. Convergence
Every uq € LP(Q2) may be interpreted as an element of V- ™P(£),) by setting
(ug,vg) = / uQUs dx Yo, € VI09(82y). (4.30)
Q

Similarly, any element of W~*P(Q),0 < s < n— %, can be interpreted as an element of V,7™P(Q,) by restricting

the test functions from V»4(Q,) C W*4(Q,) to 2. We now prove that A-'ugq converges to the Stein extension
on the entire fictitious domain €2, at an optimal rate.

Theorem 4.5 (Approximate extension). Let n € N, k,1 € Ny, ug € WFP(Q), 0 <k <n, 1 < p < co. Let
o > 0 be sufficiently small and € > 0 big enough, but independent of o and the position of the boundary OS2
relative to the Cartesian grid. Then the approzimate extension operator AZY fulfills:

|Buq — AZ Muallwis,) S o luallwes @ 0 <! <min{k,n —1}, (4.31)
1AZ  wallwir o,y S o Hluallwsr @) k<l<n-1 (4.32)

The hidden constant is independent of o, ug, and how OS2 intersects the Cartesian grid. If one interprets the
norms on the left side of the inequalities in the broken, element-wise sense, they also remain true for |l = n.

Proof. Let us first consider (4.31) and note that
[Eug — AZ M ualwir,) < [[Bua — PBug|lwir(a,) + [PBug — A tuallwie ), (4.33)

where we abbreviated P = P. The first term can be bounded as desired by (2.15) and the continuity of the
Stein extension. For the second term it suffices to consider the case [ = 0, the remaining cases then follow by
the inverse estimates (2.14). Thus:

||PEUQ — AE_1UQHLP(Q{7) = ||A5_1A5 (PEUQ — AE_1UQ) HLP(Q,,)

(4.15)
—1
< |JAe(PEug — AZ'ug) y]V;,L,p(QU) = ||A-PEuq — uQHV;n,,,(Qg). (4.34)
For this last term, we obtain for arbitrary v, € V»9(8,):
(AcPEuq — uq,vy) = / (PEUQ — UQ)'UO— dx + e(JPEuq,v,). (4.35)
Q
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With the help of Hoélder’s inequality, (2.15), and the boundedness of the Stein extension operator, the integral
can be bounded by o*|lugllwr.s o) l|vsLa(q,)- The same bound follows for the second term by (4.4). Thus
HAEPEUQ — uQHVW,p(Q ) < UkHU/Q”Wn,p(Q) as desired. For (4.32) we now obtain:

2.14
1A e llwir,) S Uk_lHAZluﬂHwkm(Qd)
< " AT fug — Eugllwrsa,) + | Buallwrr@,)), (4.36)

where the first term can now be bounded as desired by (4.31) and the second by the continuity of the Stein
extension. 0

Every function in V*(0) can be extended to R? by simply removing the restriction on the B-splines it is
composed of. Because of (2.11), one also has [|AZ 'ug||»ro) S lluallLr (o). When considered only on the domain
), on the other hand, we also obtain the following super-convergence result.

Corollary 4.6 (Super-convergence). Under the same conditions as the previous theorem we have for alll € Z,
—n < <min{k,n — 1}:

lug — AZ Muallwrse) S 0" Hluallwrs ), (4.37)
The hidden constant is independent of o, ug, and how 0S2 intersects the Cartesian grid. If one interprets the

norm on the left in the broken, element-wise sense, the statement also remains true for I = n.

Proof. For non-negative [, this result is obtained from (4.31) by restriction from €, to Q. Let us thus consider
! < 0 and denote u, := AZlug. Then, for all ¢ € W=54(Q)

/ (uQ — uo)gpdx = / (uQ — ug)PEgo dx +/ (uQ — ua) (gp — PEgo) dx. (4.38)
Q Q Q

=e(Juy ,PEy)

The second term can be bounded as desired by Holder’s inequality, (2.15) and (4.31):

/Q (ue = ug) (¢ = PEp) dx < |luq — A ug | 1o @)l — PE@| Laa)

S " Huallwes @ lellw-rag)- (4.39)

For the first term note that J is symmetric: (Juy,, PEp) = (JPEp,u,). We therefore obtain using the same
arguments as in the proof of Lemma 4.1:

(JPEp,us) S 0" YPEg|lw-1.4(0,)lltelwrr o, ), (4.40)

where for k = n the W*P-norm on the right is to be interpreted in the “broken”, element-wise sense. The claim
now follows by applying (4.32), (2.16), and the continuity of the Stein extension operator. O

By interpolation these results also extend to the intermediate spaces. The conditions become slightly technical
when interpolating on k and [ simultaneously, however. On the other hand by interpolating on only one of them,
one for example immediately obtains:

HA5_1UQ — EUQ”LP(QU) 5 O'SHUQHWa‘,p(Q) 0<s<n, (4.41)

||A€_1UQ — ’LLQHWs,p(Q) < Un_s||uﬂ||Wn,p(Q) —n<s<n-—1. (4.42)
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4.5. Application to particle fields

Our aim is to apply the approximate extension operator A-! to an evolving particle field W~=5?(Q) >
up(t) =~ u(t). For this, we consider the following particle method: given n € N, n > D, and o > 0 we will set
h = 27", k € Ny, such that V() C V,*(Q). Given ug € WP(Q) N L2(2), 0 < s <n, 1 < p < oo, we set
Uo,p = Uo,0 = A;luo. The particle approximation ug p, is then constructed from g j, as described in Section 3.1.
Finally, up(¢) is defined by modifying the particle positions x;, i = 1,..., N according to the system of ODEs:

dX,L'
dt

We then obtain the following estimate for the error ||Eu(t) — AZ up(t)| e (g, ), Which is the main result of this
article.

(t) = a(x;(t),t) i=1,...,N. (4.43)

Theorem 4.7. Let ug € WSP(Q)NL®(Q),0<s<n,1 <p<oo,ne€N,n>D, and let the given velocity
field be sufficiently smooth, such that both a and diva € L* (W”’OO(Q), [07T]), Let the particle approzimation
up(t) be defined as described above. Then for every t € [0,T] and for arbitrarily small § > 0 the regularized
particle field AZYuy(t) fulfills the following error bound:

B . h n—=a
18U ~ Az (D10, S ool + (5) ol (1.49)

Moreover, if s = k is an integer, one has for all integers 0 <1 < min{k,n — 1}:

n—>9y
- _ i (h

I1Bu(0) - A nOlwrsiay S o lualwrsior +07 (£) 7 uollmca (1.45)
Proof. Let us denote by u(t) and @ (t) the respective exact solutions of the advection equation with initial data

ug and @g,,. We can split the error into three parts:

@
|Bu(t) — AZ un () lwioa,) < TBu(t) - AZ () lwing,)

AT (u(t) — an () lwer(e,) + AT (@ (8) = un(®)) lwiso,y - (4.46)

(IT) (T11)

By (4.5) and the stability of the advection equation (1.4) we have (I) < o®|uo|wsr) for I = 0 and
respectively (I) < o*~|uglyr.n(q) otherwise. For the terms (II) and (III) it suffices to consider the case
I = 0, the other cases follow by the inverse estimate (2.14). For (II) we first make use of Lemma 4.3 to obtain
(A1) S lu(t) = @n(t)lly -, By Holder’s inequality we see that [|u(t) — tn(t)|lynrq ) < [lu(t) = @n(t)l L)
and subsequently obtain by the same arguments as for the first term that: (II) < o®||uollws»()-

For the last term we denote r := n — § and note that because r > D we have up € W~"°°(Q)). Furthermore,

one trivially has || - [|zr(q,) S || - [z (0, ). Thus

(4.15)
(ID) S AT (@n(®) = un(®) =0 S Nan(t) = un(@®llynoe o, )- (4.47)

At this point we make use of the fact that we have V*(Q,) C W"(Q,), n — 1 < r < n; the reason why we
introduced fractional order Sobolev spaces. By inverse estimates one obtains:
[an(t) —un()lly e,y =  sup  (@n(t) = un(t),vo)/|[vsllL1(0,)
UUEVH’I(QG)
(2.14)
S o7 sup  (un(t) —un(t), vo)/llvelwria,)
v, €VI1(Q,)

< o7 "[an(t) — un(t)|[w-ro(q)- (4.48)
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Now, by the stability of the advection equation (1.4) and Theorem 3.1:
o an(t) — un(®)lw-re @) S 07" lGo,n — wonllw-reo (o)
S (Z)rmo,h“me(na) S <Z>THUOHL°°(Q)~ (4.49)

O

When restricted to the domain 2, it is a simple task to confirm that this result also holds for negative [,
analogous to the super-convergence result Corollary 4.6. If one assumes that the exact solution is smooth, these
results suggest choosing h ~ o2 in order to balance the error contributions, similar to the earliest analyses [18].
In that case this choice in particular implies that one essentially has (up to 6), [Ju(t) — AZ un(t)||w-nr(0) =
O(a?) = O(h™). In other words A 'uy(t) and uy(t) asymptotically fulfill the same error bound which is the
most one can expect from a regularization scheme.

5. DISCUSSION AND OUTLOOK

In general, it is inherently difficult to choose h such that the error contributions from regularization and
quadrature are balanced. In particular, one usually does not know a-priori how smooth the solution actually is.
Let us first consider the choice h = o. Clearly, upon initialization, we have ||dp,o — uh70||vr;n,p(Qa) =0, and it
is unlikely that for small times 0 < ¢ < T this error immediately increases to significant levels. On the other
hand, it is well-known from computational practice that this choice of h does not lead to converging schemes
for extended periods of time. After all, the advection equation is stable in W ™%P- and not in V_™P-norms.
This motivates so-called remeshed particle methods, where the particle field is reinitialized with its regularized
version after every other time-step or so. Practice has shown that these methods seem to work well.

On the other hand, the choice h ~ 02 requires one to manage significantly larger numbers of particles which
at early times t do not significantly improve the method’s accuracy. But there also is an advantage to this
approach: such a particle field carries sub-o-scale information about small features, which can arise over time
due to the distortion of uy by the velocity field. Furthermore, in a computer implementation it is easy to handle
large numbers of particles, as there is no connectivity involved. A reinitialization of the particle field destroys
this sub-grid information.

In practice, particle fields tend to get thinned out in some parts of the domain, and clustered in others. In
fact, being an exact solution, particle fields naturally adapt to the flow field. It would thus also make sense
to adaptively regularize. The spline spaces discussed in this article famously form a multi-resolution analysis
and the approximate extension operator yields approximations of smooth extensions on the whole-space. This
opens up the possibility to use wavelets. One way to achieve adaptive regularization might be to first choose
h = o and compute the regularized particle field as discussed in this paper. Afterwards one would perform a fast
wavelet transform on the regularized particle field and filter out high-oscillatory components with large wavelet
coefficients by a thresholding procedure. Such an approach has been used successfully before in the whole-space
case [5] and might be able combine the best of both approaches.

In this work only the linear advection equation was considered. In computational fluid dynamics, however, the
velocity a also is unknown. Let us for example consider the two-dimensional Euler equations in their vorticity
formulation. Following the notation of this article, they read: d;u + V - (au) = 0, where w is the vorticity, and
the velocity a is the solution to the system V-a = 0,V x a = wu. In vortex methods u is discretized using
particles yielding wj, while the system for the velocity is solved using the regularized u,, yielding a,. The
ODE system (1.3) then is solved using a, instead of a. This additional error from discretizing the velocity and
the non-linearity complicate the analysis and would exceed the scope of this work. However, for conventional
blob-methods convergence analyses do exist ([8], Sect. 2.6). Given the stability properties of the regularization
derived in this work, it is reasonable to hope that the non-linear analysis also can be extended to the present
scheme.
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