In this article, we analyse an integral equation of the second kind that represents the solution of N interacting dielectric spherical particles undergoing mutual polarisation. A traditional analysis can not quantify the scaling of the stability constants- and thus the approximation error- with respect to the number N of involved dielectric spheres. We develop a new a priori error analysis that demonstrates N-independent stability of the continuous and discrete formulations of the integral equation. Consequently, we obtain convergence rates that are independent of N.
Keywords: Boundary integral equations, numerical analysis, error analysis, $$-body problem, polarisation
@article{M2AN_2021__55_S1_S65_0,
author = {Hassan, Muhammad and Stamm, Benjamin},
title = {An integral equation formulation of the {\protect\emph{N}-body} dielectric spheres problem. {Part} {I:} numerical analysis},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
pages = {S65--S102},
year = {2021},
publisher = {EDP-Sciences},
volume = {55},
number = {Suppl\'ement},
doi = {10.1051/m2an/2020030},
mrnumber = {4221299},
language = {en},
url = {https://www.numdam.org/articles/10.1051/m2an/2020030/}
}
TY - JOUR AU - Hassan, Muhammad AU - Stamm, Benjamin TI - An integral equation formulation of the N-body dielectric spheres problem. Part I: numerical analysis JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2021 SP - S65 EP - S102 VL - 55 IS - Supplément PB - EDP-Sciences UR - https://www.numdam.org/articles/10.1051/m2an/2020030/ DO - 10.1051/m2an/2020030 LA - en ID - M2AN_2021__55_S1_S65_0 ER -
%0 Journal Article %A Hassan, Muhammad %A Stamm, Benjamin %T An integral equation formulation of the N-body dielectric spheres problem. Part I: numerical analysis %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2021 %P S65-S102 %V 55 %N Supplément %I EDP-Sciences %U https://www.numdam.org/articles/10.1051/m2an/2020030/ %R 10.1051/m2an/2020030 %G en %F M2AN_2021__55_S1_S65_0
Hassan, Muhammad; Stamm, Benjamin. An integral equation formulation of the N-body dielectric spheres problem. Part I: numerical analysis. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 55 (2021), pp. S65-S102. doi: 10.1051/m2an/2020030
, and , Computational methods for multiple scattering at high frequency with applications to periodic structure calculations. Wave Propag. Periodic Media Prog. Comput. Phys. 1 (2010) 73–107.
, A Survey of Numerical Methods for the Solution of Fredholm Integral Equations of the Second Kind. Society for Industrial and Applied Mathematics, Philadelphia, PA (1976). | MR | Zbl
and , Numerical solution of Fredholm integral equations of the second kind. In: Theoretical Numerical Analysis: A Functional Analysis Framework. Springer, New York (2005) 447–522. | MR | Zbl
, and , Efficient and accurate simulation of dynamic dielectric objects. J. Chem. Phys. 140 (2014) 064903.
, Functional Analysis, Sobolev Spaces and Partial Differential Equations. Springer-Verlag, New York (2011). | MR | Zbl
, , and , Direct measurement of three-body interactions amongst charged colloids. Phys. Rev. Lett. 92 (2004) 078301.
, A single trace integral formulation of the second kind for acoustic scattering. In: ETH, Seminar of Applied Mathematics Research (2011).
and , Multi-trace boundary integral formulation for acoustic scattering by composite structures. Commun. Pure Appl. Math. 66 (2013) 1163–1201. | MR | Zbl
, , and , Novel multi-trace boundary integral equations for transmission boundary value problems. In: Unified Transform for Boundary Value Problems, chapter 7, edited by and . (2014) 227–258. | MR
, and , A second-kind Galerkin boundary element method for scattering at composite objects. BIT Numer. Math. 55 (2015) 33–57. | MR | DOI
, and , Second kind boundary integral equation for multi-subdomain diffusion problems. Adv. Comput. Math. 43 (2017) 1075–1101. | MR | DOI
and , Many-body electrostatic interactions in electrorheological fluids. Phys. Rev. E 48 (1993) 2721. | DOI
, Some historical remarks on the positivity of boundary integral operators. In: Boundary Element Analysis. Springer (2007) 1–27. | MR | Zbl
and , A direct boundary integral equation method for transmission problems. J. Math. Anal. App. 106 (1985) 367–413. | MR | Zbl | DOI
, and , Hitchhiker’s guide to the fractional Sobolev spaces. Bull. Sci. Math. 136 (2012) 521–573. | MR | Zbl | DOI
, The double layer potential operator over polyhedral domains I: Solvability in weighted Sobolev spaces. Appl. Anal. 45 (1992) 117–134. | MR | Zbl | DOI
, The double-layer potential operator over polyhedral domains II: Spline Galerkin methods. Math. Methods Appl. Sci. 15 (1992) 23–37. | MR | Zbl | DOI
, and , Potential techniques for boundary value problems on -domains. Acta Math. 141 (1978) 165–186. | MR | Zbl | DOI
, Introduction to Partial Differential Equations. Princeton University Press (1995). | MR | Zbl
, Perturbative many-body expansion for electrostatic energy and field for system of polarizable charged spherical ions in a dielectric medium. J. Chem. Phys. 141 (2014) 034115. | DOI
and , A high-order algorithm for multiple electromagnetic scattering in three dimensions. Numer. Algorithms 50 (2009) 469. | MR | Zbl | DOI
and , An efficient algorithm for simulating scattering by a large number of two dimensional particles. ANZIAM J. 52 (2011) 139–155. | MR | DOI
, The rapid evaluation of potential fields in particle systems. Ph.D. thesis, Yale University, New Haven, CT, USA (1987). | MR | Zbl
and , A fast algorithm for particle simulations. J. Comput. Phys. 73 (1987) 325–348. | MR | Zbl | DOI
, , , and , Electrostatic self-assembly of macroscopic crystals using contact electrification. Nat. Mater. 2 (2003) 241–245. | DOI
and , On decomposition method for acoustic wave scattering by multiple obstacles. Acta Math. Sci. 33 (2013) 1–22. | MR | Zbl | DOI
and , An integral equation formulation of the -body dielectric spheres problem. Part II: complexity analysis. Preprint arXiv:1911.07258 (2019).
and , Computer Simulation Using Particles. CRC Press (1988). | Zbl | DOI
and , -adaptive discontinuous Galerkin finite element methods for first-order hyperbolic problems. SIAM J. Sci. Comput. 23 (2001) 1226–1252. | MR | Zbl | DOI
, and , Stabilized -finite element methods for first-order hyperbolic problems. SIAM J. Numer. Anal. 37 (2000) 1618–1643. | MR | Zbl
, and , Discontinuous -finite element methods for advection-diffusion-reaction problems. SIAM J. Numer. Anal. 39 (2002) 2133–2163. | MR | Zbl
and , Boundary Integral Equations. Springer-Verlag, Berlin Heidelberg (2008). | MR | Zbl
, , and , Direct observation of particle interactions and clustering in charged granular streams. Nat. Phys. 11 (2015) 733.
, , , , and , An integral equation approach to calculate electrostatic interactions in many-body dielectric systems. J. Comput. Phys. 371 (2018) 712–731. | MR
, , , and , Dynamic simulations of many-body electrostatic self-assembly. Philos. Trans. R. Soc. A: Math. Phys. Eng. Sci. 376 (2018) 20170143.
, Electrostatics in the presence of spherical dielectric discontinuities. J. Chem. Phys. 128 (2008) 214505.
and , Non-Homogeneous Boundary Value Problems and Applications. Springer-Verlag, Berlin Heidelberg 1 (2012). | MR | Zbl
and , An analytical electrostatic model for salt screened interactions between multiple proteins. J. Chem. Theory Comput. 2 (2006) 541–555.
, Boundary integral equations. In: Analysis IV: Linear and Boundary Integral Equations. Springer Berlin Heidelberg, Berlin, Heidelberg (1991) 127–222. | Zbl
, and , Electrostatic self-assembly of polystyrene microspheres by using chemically directed contact electrification. Angew. Chem. Int. Ed. 46 (2007) 206–209.
, Strongly Elliptic Systems and Boundary Integral Equations. Cambridge University Press (2000). | MR | Zbl
, Image charges in spherical geometry: Application to colloidal systems. J. Chem. Phys. 117 (2002) 11062–11074.
, Foundations of the Mathematical Theory of Electromagnetic Waves. Springer-Verlag, Berlin Heidelberg (1969). | MR | Zbl
, Philosophiæ Naturalis Principia Mathematica (1687). | Zbl | MR
, Sur le problème des trois corps et les équations de la dynamique. Acta Math. 13 (1890) A3–A270. | JFM
, , , , and , A theory of interactions between polarizable dielectric spheres. J. Colloid Interface Sci. 469 (2016) 237–241.
, The global solution of the -body problem. Celestial Mech. Dyn. Astron. 50 (1990) 73–88. | MR | Zbl
, Solution of acoustic scattering problems by means of second kind integral equations. Wave Motion 5 (1983) 257–272. | MR | Zbl
and , Boundary Element Methods. Springer-Verlag, Berlin Heidelberg (2011). | MR | Zbl
, , , and , Structural diversity in binary nanoparticle superlattices. Nature 439 (2006) 55–59.
, , , and , Charging of multiple interacting particles by contact electrification. J. Am. Chem. Soc. 136 (2014) 13348–13354.
, and , Neumann’s method for second-order elliptic systems in domains with non-smooth boundaries. J. Math. Anal. App. 262 (2001) 733–748. | MR | Zbl
, Mémoire sur le problème des trois corps. Acta Math. 36 (1913) 105–179. | MR | JFM
, Layer potentials and regularity for the Dirichlet problem for Laplace’s equation in Lipschitz domains. J. Funct. Anal. 59 (1984) 572–611. | MR | Zbl
, Boundary integral equations for mixed Dirichlet, Neumann and transmission problems. Math. Methods Appl. Sci. 11 (1989) 185–213. | MR | Zbl
, Electrostatic interaction in the presence of dielectric interfaces and polarization-induced like-charge attraction. Phys. Rev. E 87 (2013) 013307.
Cité par Sources :





