A convergent convex splitting scheme for a nonlocal Cahn–Hilliard–Oono type equation with a transport term
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 55 (2021), pp. S225-S250

We devise a first-order in time convex splitting scheme for a nonlocal Cahn–Hilliard–Oono type equation with a transport term and subject to homogeneous Neumann boundary conditions. However, we prove the stability of our scheme when the time step is sufficiently small, according to the velocity field and the interaction kernel. Furthermore, we prove the consistency of this scheme and the convergence to the exact solution. Finally, we give some numerical simulations which confirm our theoretical results and demonstrate the performance of our scheme not only for phase separation, but also for crystal nucleation, for several choices of the interaction kernel.

DOI : 10.1051/m2an/2020028
Classification : 34K28, 35R09, 65M12, 65M60, 82C26
Keywords: Cahn–Hilliard–Oono equation, transport term, nonlocal term, convex splitting scheme, stability and convergence, numerical simulations
@article{M2AN_2021__55_S1_S225_0,
     author = {Cherfils, Laurence and Fakih, Hussein and Grasselli, Maurizio and Miranville, Alain},
     title = {A convergent convex splitting scheme for a nonlocal {Cahn{\textendash}Hilliard{\textendash}Oono} type equation with a transport term},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {S225--S250},
     year = {2021},
     publisher = {EDP-Sciences},
     volume = {55},
     number = {Suppl\'ement},
     doi = {10.1051/m2an/2020028},
     mrnumber = {4221297},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/m2an/2020028/}
}
TY  - JOUR
AU  - Cherfils, Laurence
AU  - Fakih, Hussein
AU  - Grasselli, Maurizio
AU  - Miranville, Alain
TI  - A convergent convex splitting scheme for a nonlocal Cahn–Hilliard–Oono type equation with a transport term
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2021
SP  - S225
EP  - S250
VL  - 55
IS  - Supplément
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/m2an/2020028/
DO  - 10.1051/m2an/2020028
LA  - en
ID  - M2AN_2021__55_S1_S225_0
ER  - 
%0 Journal Article
%A Cherfils, Laurence
%A Fakih, Hussein
%A Grasselli, Maurizio
%A Miranville, Alain
%T A convergent convex splitting scheme for a nonlocal Cahn–Hilliard–Oono type equation with a transport term
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2021
%P S225-S250
%V 55
%N Supplément
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/m2an/2020028/
%R 10.1051/m2an/2020028
%G en
%F M2AN_2021__55_S1_S225_0
Cherfils, Laurence; Fakih, Hussein; Grasselli, Maurizio; Miranville, Alain. A convergent convex splitting scheme for a nonlocal Cahn–Hilliard–Oono type equation with a transport term. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 55 (2021), pp. S225-S250. doi: 10.1051/m2an/2020028

N. Abukhdeir, D. Vlachos, M. Katsoulakis and M. Plexousakis, Long-time integration methods for mesoscopic models of pattern-forming systems. J. Comput. Phys. 18 (2013) 2211–2238. | MR | Zbl

A. C. Aristotelous, O. Karakashian and S. M. Wise, A mixed discontinuous Galerkin, convex splitting scheme for a modified Cahn-Hilliard equation and an efficient nonliniear multigrid solver. Disc. Cont. Dyn. Syst. B 20 (2015) 1529–1553. | MR | Zbl

P. W. Bates and J. Han, The Neumann boundary problem for a nonlocal Cahn-Hilliard equation. J. Diff. Equ. 212 (2005) 235–277. | MR | Zbl | DOI

P. W. Bates and J. Han, The Dirichlet boundary problem for a nonlocal Cahn-Hilliard equation. J. Math. Anal. App. 311 (2005) 289–312. | MR | Zbl | DOI

P. W. Bates, S. Brown and J. Han, Numerical analysis for a nonlocal Allen-Cahn equation. Int. J. Numer. Anal. Model. 6 (2009) 33–49. | MR | Zbl

A. Bertozzi, S. Esedoglu and A. Gillette, Analysis of a two-scale Cahn-Hilliard model for binary image inpainting. Multiscale Model. Simul. 6 (2007) 913–936. | MR | Zbl | DOI

L. A. Caffarelli and N. E. Muler, An L bound for solutions of the Cahn-Hilliard equation. Arch. Ration. Mech. Anal. 135 (1995) 129–144. | MR | Zbl | DOI

J. W. Cahn and J. E. Hilliard, Free energy of a nonuniform system I. Interfacial free energy. J. Chem. Phys. 28 (1958) 258–267. | DOI

L. Cherfils, A. Miranville and S. Zelik, The Cahn-Hilliard equation with logarithmic potentials. Milan J. Math. 79 (2011) 561–596. | MR | Zbl | DOI

L. Cherfils, A. Miranville and S. Zelik, On a generalized Cahn-Hilliard equation with biological applications. Disc. Cont. Dyn. Sys. B 19 (2014) 2013–2026. | MR | Zbl

L. Cherfils, H. Fakih and A. Miranville, Finite-dimensional attractors for the Bertozzi–Esedoglu–Gillette–Cahn–Hilliard equation in image inpainting. Inv. Prob. Imag. 9 (2015) 105–125. | Zbl | MR

L. Cherfils, H. Fakih and A. Miranville, On the Bertozzi–Esedoglu–Gillette–Cahn–Hilliard equation with logarithmic nonlinear terms. SIAM J. Imag. Sci. 8 (2015) 1123–1140. | MR | DOI

L. Cherfils, H. Fakih and A. Miranville, A Cahn-Hilliard system with a fidelity term for color image inpainting. J. Math. Imag. Vision 54 (2016) 117–131. | MR | DOI

L. Cherfils, H. Fakih and A. Miranville, A complex version of the Cahn-Hilliard equation for grayscale image inpainting. Multiscale Model. Simul. 15 (2017) 575–605. | MR | DOI

D. Cohen and J. M. Murray, A generalized diffusion model for growth and dispersion in a population. J. Math. Biol. 12 (1981) 237–248. | MR | Zbl | DOI

E. Davoli, L. Scarpa and L. Trussardi, Local asymptotics for nonlocal convective Cahn-Hilliard equations with W 1 , 1 kernel and singular potential. Preprint arXiv:1911.12770v1 [math.AP] (2019). | MR

E. Davoli, H. Ranetbauer, L. Scarpa and L. Trussardi, Degenerate nonlocal Cahn-Hilliard equations: well-posedness, regularity and local asymptotics. Ann. Inst. Henri Poincaré C, Anal. non Lin. 37 (2020) 627–651. | MR | Numdam | DOI

F. Della Porta and M. Grasselli, Convective nonlocal Cahn-Hilliard equations with reaction terms. Disc. Cont. Dyn. Syst. B 20 (2015) 1529–1553. | MR | DOI

I. C. Dolcetta, S. F. Vita and R. March, Area-preserving curve-shortening flows: from phase separation to image processing. Interfaces Free Bound. 4 (2002) 325–343. | MR | Zbl | DOI

Q. Du, M. Gunzburger, R. Lehoucq and K. Zhou, Analysis and approximation of nonlocal diffusion problems with volume constraints. SIAM Rev. 54 (2012) 667–696. | MR | Zbl | DOI

D. J. Eyre, An unconditionally stable one-step scheme for gradient systems. Available at: https://www.math.utah.edu/eyre/research/methods/stable.ps (2020).

H. Fakih, A Cahn-Hilliard equation with a proliferation term for biological and chemical applications. Asympt. Anal. 94 (2015) 71–104. | MR

P. C. Fife, Models for phase separation and their mathematics. Electron. J. Diff. Equ. 13 (2002) 353–370. | MR | Zbl

H. Gajewski and K. Gärtner, On a nonlocal model of image segmentation. Z. Angew. Math. Phys. 56 (2005) 572–591. | MR | Zbl | DOI

C. G. Gal, A. Giorgini and M. Grasselli, The nonlocal Cahn-Hilliard equation with singular potential: well-posedness, regularity and strict separation property. J. Differ. Equ. 263 (2017) 5253–5297. | MR | DOI

G. Giacomin and J. L. Lebowitz, Exact macroscopic description of phase segregation in model alloys with long range interactions. Phys. Rev. Lett. 76 (1996) 1094–1097. | DOI

A. Giorgini, M. Grasselli and A. Miranville, The Cahn–Hilliard–Oono equation with singular potential. Math. Models Methods Appl. Sci. 27 (2017) 2485–2510. | MR | DOI

M. Grasselli and H. Wu, Well-posedness and longtime behavior for the modified phase-field crystal equation. Math. Models Methods Appl. Sci. 24 (2014) 2743–2783. | MR | Zbl | DOI

Z. Guan, C. Wang and S. M. Wise, A Convergent convex splitting scheme for the periodic nonlocal Cahn-Hilliard equation. Numer. Math. 128 (2014) 377–406. | MR | Zbl | DOI

Z. Guan, J. S. Lowengrub, C. Wang and S. M. Wise, Second-order convex splitting schemes for periodic nonlocal Cahn-Hilliard and Allen-Cahn equations. J. Comput. Phys. 277 (2014) 48–71. | MR | DOI

Z. Guan, J. S. Lowengrub and C. Wang, Convergence analysis for second order accurate convex splitting schemes for the periodic nonlocal Allen-Cahn and Cahn-Hilliard equations. Math. Methods Appl. Sci. 40 (2017) 6836–6863. | MR | DOI

T. Hartley and T. Wanner, A semi-implicit spectral method for stochastic nonlocal phase-field models. Disc. Cont. Dyn. Syst. 25 (2009) 399–429. | MR | Zbl | DOI

F. Hecht, New development in FreeFem++. J. Numer. Math. 20 (2012) 251–265. | MR | Zbl | DOI

D. Hornthrop, M. Katsoulakis and D. Vlachos, Spectral methods for mesoscopic models of pattern formation. J. Comput. Phys. 173 (2001) 364–390. | MR | Zbl | DOI

E. Khain and L. M. Sander, A generalized Cahn-Hilliard equation for biological applications. Phys. Rev. E 77 (2008) 051129. | DOI

I. Klapper and J. Dockery, Role of cohesion in the material description of biofilms. Phys. Rev. E 74 (2006) 0319021. | MR | DOI

J. S. Langer, Theory of spinodal decomposition in alloys. Ann. Phys. 65 (1975) 53–86. | DOI

Q.-X. Liu, A. Doelman, V. Rottschäfer, M. De Jager, P. M. J. Herman, M. Rietkerk and, J. Van De Koppel, Phase separation explains a new class of self-organized spatial patterns in ecological systems. Proc. Nat. Acad. Sci. 110 (2013) 11905–11910. | MR | DOI

S. Maier-Paape and T. Wanner, Spinodal decomposition for the Cahn-Hilliard equation in higher dimensions: nonlinear dynamics. Arch. Ration. Mech. Anal. 151 (2000) 187–219. | MR | Zbl | DOI

S. Melchionna and E. Rocca, On a nonlocal Cahn-Hilliard equation with a reaction term. Adv. Math. Sci. App. 24 (2014) 461–497. | MR

A. Miranville, Asymptotic behavior of the Cahn–Hilliard–Oono equation. J. Appl. Anal. Comput. 1 (2011) 523–536. | MR | Zbl

A. Miranville and S. Zelik, The Cahn-Hilliard equation with singular potentials and dynamic boundary conditions. Disc. Cont. Dyn. Syst. 28 (2010) 275–310. | MR | Zbl | DOI

C. B. Muratov Droplet phases in non-local Ginzburg-Landau models with Coulomb repulsion in two dimensions. Commun. Math. Phys. 299 (2010) 45–87. | MR | Zbl | DOI

R. H. Nochetto, A. J. Salgado and S. W. Walker, A diffuse interface model for electrowetting with moving contact lines. Math. Models Methods Appl. Sci. 24 (2014) 67–111. | MR | Zbl | DOI

Y. Oono and S. Puri, Computationally efficient modeling of ordering of quenched phases. Phys. Rev. Lett. 58 (1987) 836–839. | DOI

A. Oron, S. H. Davis and S. G. Bankoff, Long-scale evolution of thin liquid films. Rev. Mod. Phys. 69 (1997) 931–980. | DOI

E. W. Sachs and A. K. Strauss, Efficient solution of a partial integro-differential equation in finance. Appl. Numer. Math. 58 (2008) 1687–1703. | MR | Zbl | DOI

C.-B. Schönlieb and A. Bertozzi, Unconditionally stable schemes for higher order inpainting. Commun. Math. Sci. 9 (2011) 413–457. | MR | Zbl | DOI

U. Thiele and E. Knobloch, Thin liquid films on a slightly inclined heated plate. Phys. D 190 (2004) 213–248. | MR | Zbl | DOI

S. Tremaine, On the origin of irregular structure in Saturn’s rings. Astron. J. 125 (2003) 894–901. | DOI

S. Villain-Guillot, Phases modulées et dynamique de Cahn–Hilliard, Habilitation thesis. Université Bordeaux I (2010).

K. Zhou and Q. Du, Mathematical and numerical analysis of linear peridynamic models with nonlocal boundary conditions. SIAM J. Numer. Anal. 48 (2010) 1759–1780. | MR | Zbl | DOI

Cité par Sources :