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A CONVERGENT CONVEX SPLITTING SCHEME FOR A NONLOCAL
CAHN-HILLIARD-OONO TYPE EQUATION WITH A TRANSPORT TERM

LAURENCE CHERFILS', HUSSEIN FAKIH>3*, MAURIZIO GRASSELLI* AND
ALAIN MIRANVILLE®®

Abstract. We devise a first-order in time convex splitting scheme for a nonlocal Cahn-Hilliard—Oono
type equation with a transport term and subject to homogeneous Neumann boundary conditions.
However, we prove the stability of our scheme when the time step is sufficiently small, according to
the velocity field and the interaction kernel. Furthermore, we prove the consistency of this scheme and
the convergence to the exact solution. Finally, we give some numerical simulations which confirm our
theoretical results and demonstrate the performance of our scheme not only for phase separation, but
also for crystal nucleation, for several choices of the interaction kernel.
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1. INTRODUCTION

1.1. Cahn—Hilliard equation
The authors proposed in [8] the following Ginzburg-Landau type free energy:

eute) = [ (S196t+Fo)) as (1)

in order to describe the phase separation of a binary mixture, and, more precisely, the so-called spinodal
decomposition. Here, @ ¢ RY, N < 3, is a bounded domain occupied by the mixture components A and B,
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with respective mass fractions p 4 and pp, and the order parameter is defined by ¢ = %. Furthermore, ¢ is

the diffuse interface thickness and % |V|? is a surface tension term which ensures a smooth transition between
the two pure states. Finally, F' is a double-well potential which favors phase separation.
Once the free energy is defined, the phase separation can be described as a gradient flow (see, for instance [23]),

dp A _ 9&en

2
s . = — ‘A
i By 9y flp) —e*Ayp,

where p is the chemical potential and f = F’.

This corresponds to the well-known Cahn-Hilliard equation which plays an important role in Materials
Science. In particular, phase separation phenomena play an essential role in the mechanical properties of an
alloy (for instance, its strength). We refer the reader to, e.g., [8,9,37,39,42] for more details.

It is worth recalling that Cahn—Hilliard type equations are also relevant in other contexts, namely, the ones in
which phase separation and coarsening/clustering processes can be observed or come into play. We can mention,
for instance, population dynamics [15], bacterial films [36], wound healing and tumor growth [10, 22, 35], thin
films [46, 49], image processing and inpainting [6, 11-14, 19, 48], and even the rings of Saturn [50] and the
clustering of mussels [38].

1.2. Nonlocal Cahn—Hilliard equation

1.2.1. Giacomin and Lebowitz model

The purely phenomenological derivation of the Cahn-Hilliard equation is somehow unsatisfactory from a
physical point of view. This led G. Giacomin and J.L. Lebowitz to consider the problem of phase separation
from a microscopic point of view, using a statistical mechanics approach (see [26]). Performing the hydrodynamic
limit, they deduced a continuum model which is a nonlocal version of the Cahn—Hilliard equation. This model
is characterized by the following Helmholtz free energy functional

Eumle) == [ [ J@-ne@pededs+ [ Siple) s (12

where J : RY — R is a smooth convolution kernel such that J(z) = J(—z). Furthermore, the convex potential
S here is defined as follows:

S(s)=(s+1)In(s+1)+(1—s)In(1 —s), s€]—1,1]. (1.3)

This potential is usually approximated by a convex polynomial. In that case, the nonlocal version of the Cahn—
Hilliard system reads

dp A _ 9&cm

5 = A p B = flp) = I *xq ¢, (1.4)

where

(me)(z,t)=/QJ(~’C—y)<p(y,t)dy, zeNt>0.

We refer the reader to the recent paper [25] (see addition in the references) for a rather complete theoretical
picture.

1.2.2. Bates and Han model

On the other hand, P.W. Bates and J. Han in [3, 4] proposed the following nonlocal version of the Cahn—
Hilliard energy

Eucna(e) = 1 [ [ I =9)(ele) = o) dedy+ [ Plola) da, (1.5
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where F' is the double-well potential as in the classical Cahn-Hilliard model (non convex potential), which is
usually approximated by a smooth double-well potential of the form

4 _
F(s) = SZ L+ > 22 yseR, (1.6)

where 7;,7 = 1,2 are nonnegative constants. Here 71 — 72 < 0. However, note that, up to the constants, if
Y1 — 72 > 0 then F' can be seen as a smooth approximation of S.

1.2.3. Combined models
On account of (1.2) and (1.5), we introduce the following energy, for o € {0,1},

Eun() = 1 [ [ I =) (ela) = o(w)? dway

a—1

_ N2 da o)) da .
2 [ e = et sdy + [ Pl as W

where F' is given by (1.6). If &« = 0 and 3 — 2 > 0 then the energy can be viewed as an approximation of (1.2),
while if @ =1 and y; — 72 < 0 then we obtain (1.5). Therefore, we consider

850 a(C/’nCH
—_— = A = = ]_ — ]..
5 = Om p R a(J *o L) + flp) = T *a ¢, (1.8)
which can be rewritten as the following convective nonlocal and nonlinear diffusion equation:
0
5 =V (I +a T+ ) Vo) +aV - (VI sal)g) = V- (VI xa ). (L9)

The term [f'(¢) + aJ xq 1] is referred to as the diffusive mobility, or simply the diffusivity. We assume that (1.8)
is strictly non-degenerate, that is, there exists some a > 0 such that

f8)+a(Jxl)(z) >a>0, aa xz€Q, VseR. (1.10)
Observe that J xq 1 is not necessarily constant unless we work with a periodic domain.

Remark 1.1. Note that (1.10) can be written as

a 1
3 0 such that (Jxq 1 > -+ = —f'(s)), a.a. Q.
a > 0 such that (J*q 1) (x) a+a1§1€a§<( f'(s), aa. z¢€
Referring to (1.6), this assumption can be seen as
3b> 0 such that (Jxq1)(xz) >0, aa. xz€l. (1.11)

Let Q be such that 0 satisfies the interior cone condition, namely, there exists an angle 5 > 0 and r > 0 such
that, for each point z € 92, there exists a rotation R € SO(N) such that

(z + RCg) N B,.(x) C Q,

where C'z is the cone of opening angle 3, that is,

Cﬁz{xERN;$~€1<|$|COS<§>}.

Assume that J is either ELN times the indicator function of the ball of radius € or it behaves like a gaussian
kernel of standard deviation ¢, that is,

2

1 ]. 1 z|\2 1 2
3 C > 0 such that ——Neff(%) <J@)<C ),
087 £2

Then (1.11) holds, provided that OS2 satisfies the interior cone condition for a suitable £.
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1.2.4. Cahn—Hilliard—Oono model

A further example of a nonlocal Cahn-Hilliard equation is obtained by considering the following Ohta—
Kawasaki free energy

2
ECHO(QD):%/Q|Vg0|2dx+/QF(tp)dx

22 [ [ 6= 1) 6t = (D) (000) ~ () doay (112

where G describes the long-range interactions and o > 0. In particular, in Oono’s model (see [45], cf. also
[51]), G is the Green function associated with the Laplace operator (up to a multiplicative constant). When the
problem is associated with Neumann (or periodic) boundary conditions, we have (see [43])

1

—AG(z—y) =d0(z—y) - m

in Q /de =0. (1.13)
Q

Setting
1
= — d
the gradient flow for this energy can be derived exactly as for the Cahn—Hilliard equation, namely,

9¢ _ \ 9&no
ot dp

which is equivalent to
dp

S ol (o) =2u u=—eAp+ f(p).

A more general form of the above equation is given by

d¢
5 Tole—m) =4 p=—Ap+ f(p),
where m is real constant.

If m = (p), then the mass is conserved. However, m can be a constant which is not necessarily equal to the
spatial average of the initial datum. This is the so-called off-critical case and the total mass is conserved only
asymptotically. Indeed, in that case we have, for all ¢ € [0, T,

(o) =m+e7" ((po) —m). (1.14)

This equation is known as the Cahn—Hilliard—Oono equation and was introduced to model long-range interac-
tions; actually, this equation was also proposed in order to simplify numerical simulations (see [45]). Short-range
interactions tend to homogenize the system, whereas long-range ones penalize the formation of too large struc-
tures; the competition between these two effects translates into the formation of a micro-separated state (also
called super-crystal) with a spatially modulated order parameter, defining structures with a certain length
scale at which modulation happens mostly (see [51] for more details and references). Note that the long-range
interactions are repulsive when ¢(x) and ¢(y) have opposite signs and thus favor the formation of interfaces
(see [51] and the references therein). For theoretical results see [27,41] and the references therein (see also [2]
for numerical results in the conserved case).
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1.3. Our problem

Taking the previous models into account, here we consider the following initial and boundary value problem:

0

SV (wp) + o ((g) —m) = Autg, in Qx(0,7),
p=T*xql)o—J*xqo+ fle) +0G*q (¢ — {¢)), in Qx(0,T), (1.15)
o ’
%_0, on 00 x (0,7),

¢(0) = o, in Q,

where G is the Green function defined in (1.13). The system (1.15);—(1.15)5 is the nonlocal version of the Cahn—
Hilliard—Oono equation with a transport term which accounts for a possible flow of the mixture at a certain
given velocity field v and an external source g. We must note that in our case the free energy is not necessarily
decreasing unless we are not in the off-critical case and the velocity field vanishes.

This equation was studied in [18] (see also its references). In particular, well-posedness and existence of the
global attractor were established. Furthermore, well-posedness results for (1.15) with singular potential and a
degenerate mobility were obtained in [40].

Here we shall study the case o = 1. The case a = 0, with (1.3), will be considered elsewhere.

Remark 1.2. Integrating (1.15); over  we find

Clp) ol =omt (),

which yields, for o # 0,

(o) =m+  {g) + ¢~ (o) — m) .

As far as the classical nonlocal Cahn—Hilliard equation is concerned (i.e., u =0, g = 0 and o = 0), very few
results dedicated to numerical simulations, or numerical methods, are available. The authors in [1] consider an
implicit-explicit time stepping framework for a nonlocal system modeling turbulence, where, as in the present
article, the nonlocal term is treated explicitly. Furthermore, the finite element approximation (in space) of
nonlocal peridynamic equations with various boundary conditions is addressed in [52] (¢f. [20] for a review). In
addition, a finite difference method for the nonlocal Allen-Cahn equation with non-periodic boundary conditions
is applied and analyzed in [5]. The work in [32] uses a spectral-Galerkin method to solve a nonlocal Allen—Cahn
equation, but with a stochastic noise term and an equation modeling heat flow. For other articles dealing with
approximating solutions to the nonlocal Cahn—Hilliard equation, see [24,34,47]. Finally, the authors in [29, 30]
study the nonlocal Cahn—Hilliard equation with periodic boundary conditions and finite difference discretizations
in space. Recently, stronger convergence results of convex splitting schemes for the periodic nonlocal Allen—Cahn
and Cahn—Hilliard equations have been obtained in [31].

In this article we give a first order in time numerical scheme for problem (1.15), derived from a convex
splitting of the nonlocal energy. In particular, we show the stability of the scheme and the convergence to
the exact solution. We also give two-dimensional numerical simulations that confirm our theoretical results
and demonstrate the efficiency of our scheme. It should be noted here that the numerical computations of
the nonlocal terms are particularly heavy: computing the nonlocal terms at every iteration thus becomes very
difficult when the mesh discretization is small. To overcome this, we consider, in the numerical simulations, a
rectangular domain €2 and we use the Discrete Fast Fourier Transformation (DFFT) function to compute the
nonlocal terms.
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2. PRELIMINARIES

2.1. Notation

We denote by ((-, -)) the usual L2-scalar product, with associated norm ||-||. We further set ||-||, = [[(=A)~2-|,
where (—A)~! denotes the inverse minus Laplace operator associated with Neumann boundary conditions and
acting on functions with null spatial average. More generally, || - || x denotes the norm of the real Banach space
X.

We further denote by (v) the spatial average of a function v € L(£2), namely,

1
(v) = meas($) (0, 1) )y (o) -

Therefore, the norm
1
2
(o= @) 12 + )
is equivalent to the usual norm of (H'(£2))*.

2.2. Assumptions

We make the following assumptions:

(A1) Q c RN, N <3, is a bounded domain with a smooth boundary.

(A2) J:RYN — R satisfies J = J; — Jy, where J;, Jo are nonnegative functions in W11 (RY)
(A3) Jy and Jy are even, i.e., J;(—z) = Ji(z), Vo € RN, i =1,2.

(Ad) f'(s)+ (Jxq1)(z) 2a>0, aa =z, VseR.

(A5) G :RY — R is the Green function (cf. (1.13)).

(A6) o is a nonnegative constant.

(A7) m is a given constant.

(A8) u e (L=(2) N B ()™

(A9) g € (H'(Q))"

We now state the existence and uniqueness of a weak solution (see [18]).

Proposition 2.1. Let (A1)-(A9) hold. Let oo € L*(Q) be such that F(pg) € L*(Q). Then, for every T > 0,
there exists a unique weak solution ¢ to problem (1.15) on [0,T] such that

© € L>(0,T; L*(Q)) N L*(0,T; H' ().

Remark 2.2. In the sequel for some results, we will require a higher regularity of the solution. To achieve that,
the initial datum should be more regular as well as the interaction kernel J. For details the reader is referred
to [3] where the existence of a classical solution is established (see also [25] for the singular potential case). In
particular, the boundedness of solution can also be proven for smooth potentials. The presence of an additional
linear reaction term does not affect the regularity results.

2.3. Convex energy splitting

Note that the physical range of the phase-field variable is [—1, 1]. Replacing the original potential with one
whose growth is quadratic outside [—1,1] is a common modification in the literature (see, e.g., [7,44]). When
the logarithmic potential is approximated by, e.g., (1.6), one cannot ensure that the solutions take values in the
physical range. However, also thanks to their global boundedness (which can be proven), numerical simulations
available in the literature show that eventually the solution to the equation with the approximated potential
takes its values in the interval [—1, 1] where the two potentials coincide. Here we give in Section 4 (¢f. Fig. 7)
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some numerical evidences illustrating that the solutions with the double well potential or with its quadratic
approximation are indeed quite similar. More precisely, in place of (1.6) we will take the following:

3471 — L
%(34—1)24—(%—%—1)(5+1)+1+%2%’ s<-1
1 —

F(s)={ —s*+ 22722 sl =1, 21)
1 2
3+ L
SR (1) (g — oy — (s )+ g+ 2 s>

where ~;, i = 1,2, are nonnegative constants.
Note that (2.1) implies that F' € C?(R) and f’ = F" satisfies the following global bound:

[F()] €3+ —l,

for all s € R, i.e., f’ is globally bounded.
We consider the following nonlocal energy:

E(p) = /QF(sD) da + E/Q/QJ(HJ—y)(w(a?) — o(y)? dedy
* %/Q/QG(JC —y)(p(x) = () (e(y) — (p)) dzdy,

where F' is given by (2.1).

For o = 0 in (2.2), we obtain energy (1.7) which can be related to the (local) Ginzburg-Landau energy (1.1).
This relationship between the local and nonlocal energies can formally be obtained by using a Taylor expansion.
In particular, noting that (¢(z) — ¢(y)) = (z — y) - V() we find that

i/Q/QJ(w—y)(@(x)_¢(y))2dxdyz E/Q/QJ(QJ"_Q)((&C—?J)-Vso(m))Qdmdy.

Using Fubini’s theorem, we obtain an anisotropic version of the Dirichlet energy of ¢. This argument is just
formal but it underlines the link with the original (local) model. However, it is interesting to note that it can
be made rigorous by taking ( )

Qe\T — Y

= e
where g is a family of radial mollifier, and letting € go to 0 (see [16]). Concerning non-singular (e.g., smooth)
kernels, like in the present case, we refer the reader to the recent contribution [16].
From assumptions (A3) and (A5), we can rewrite (2.2) in the following form:

£(6) = 5 (T30 1p.0) + (Fl9), 1)) = 3 (T %0 9.0)
+2(Gxa (9~ (o), (— (). (23)
Besides that, using J = J; — Ja, the last two terms in (2.2) can be written as
1] [ =i —ewtasar+ 5 [ [ 66— - @) - o) dsdy
=1 [ ] B =) - o) aray + 5 //J (v~ y)((x) — pl))? e dy

+ %/Q/QG(@" —y)(p(@) — () (p(y) = (¥))dz dy.
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Thus, expanding the square (¢(z) — ¢(y))? and completing the square of (o(z) — () (p(y) — (©)) in the first
term and the last one of the last equality, respectively, we get

//Jl T —y Vdedy + - //J1 T —y )2 dx dy
—f//Jl T—y y)dedy + — //Jg T—y — ())2dxdy
aJa /o
/ Glx—vy )2 dedy + - //Gx— () dz dy
Q Q
—*//Gm—y p(x) — ¢(y))* de dy,

which yields, owing to the symmetry of Ji, Jo, G

//J1 T—y dxdy—f//,]l T—y y)dz dy
QJa aJa

_7//']256_ ple) — o) dxdy—z/ G(z —y)(p(x) — o(y))* dz dy

//Gm— ()2 dz dy. o

Note now that

—i/ﬂ/ﬂm—y><w<m>+w<y>>2dxdy:—1//Jlx— ) (p(@))? da dy
—7//J1 (z—y y) dz dy,

where we have expanded the square and used the symmetry of J;. Therefore,

1] [ Ie=ne@ - emraray+ § [ [ @e—new - @b - @)
=—1//J1x— () <>>2dxdy—3//J2x— D) (p(@) — () dr dy
//J1 (x—vy dxdy—f//Gx— z) — p(y))? de dy
//G:c— ()2 dz dy.

We then deduce that

1] [ e =te@ —ewrasay+ § [ [ 6= — @) - o) dedy

- _}/ / Ji(z —y) (@) + oY) + (Jo(z — y) + 0G(z — y))(p(z) — gp(y))ﬂ dz dy

//J1 x—y P dzdy + — //G:c— () dady.

Consequently, a convex splitting of £ is given by

E(p) = Ei(p) — Ea(w),
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where
aie) = [ [ hlw=u)(el)? dedy -
+5 [ [ 6-iet) ~ e avay+ 5 [ (pw)a |

and
&) = 7 | [ [7e =)o)+ o)) + (alo = 1) + oGl = 1) (o(0) = (0)?] de dy -

- [ Fle@yae+ 3 [ (o)

Remark 2.3. If ¢ is large enough, it is easy to show that & and & are convex. Note that the choice (2.1)
allows us to put a convex quadratic term in . Thus, we can handle this term explicitly (i.e., we can avoid
Newton’s method). This simplifies the computational problems. As we noted above, this choice does not seem
to affect the numerical simulations. In particular, if o, u, and g vanish then we obtain numerical results which
are comparable with the ones obtained in [29].

3. NUMERICAL SCHEME: DEFINITIONS AND PROPERTIES

As far as the Euler time discretization for this problem is concerned, the time step 6t > 0 is fixed. The
resulting time-stepping scheme reads

e = Apntl = 96
ot dp

o5

(") 90

(™).

9

This translates into a numerical scheme of the form ((1.15); and (1.15)2)

1 n n n
5 (P ) = At
P =2k 1) @™ e (9" = 9") + fe")
— (N1 1+ Jaxa 1) " + 0 (Gxa 1) (" = ") + 0G xq (9" = (¢")) — J xq @™

where f(¢™) = F'(¢™). Using the properties of the Green function G when the problem is endowed with no-flux
boundary conditions (see (1.13)), the scheme can be rewritten as follows

1
— ("t — ") + o — (™) = Ap"T,

ot
p = 2(J ko D"+ e (" — ™) + fle™)
— (Jixo 14+ Jaxq )" — J xq ¢".

More generally, we replace (©™) by a real constant m which is not necessarily equal to the spatial average of
the initial datum since we are interested to take the off-critical case into account. So we have the following
numerical scheme:

1
(g — ") 4o —m) = At

ot
Pt =2y ko D" +er (" — ") + fe")
— (Jl *q 1+ Ja xq 1)(pn — J *xq (p”.



S234 L. CHERFILS ET AL.

Finally, we add a transport term which models a possible flow of the mixture at a certain given velocity field
u, that is, the scheme reads

1
a(@"“ — ")+ (" —m)+ V- (up") = Ap" T+ g, (3.1)
Pt =2(J ko D" + e (" — ") + fe")
— (.]1 *0 1+ Jo % 1)@” —J *q (pn. (32)

for a given external source g.

3.1. Consistency of the scheme
Let ¢, = p(x,ndt) be the exact solution of (1.15) at time ndt, where ¢ is the exact solution. Then we have

the following.

Proposition 3.1. Let (A1)-(A9) hold. Let o € H3(Q) satisfies the compatibility condition g—ff =0 a.e. on ON).

In addition, suppose that H%()H and ||?Tf(')||H1(Q) are continuous with respect to time. Then, the numerical
scheme (3.1) and (3.2) is consistent with the continuous equation (1.15) and is of order one in time. This yields
that the local truncation error of the scheme, defined as (see [48] for instance):

7a(60) = 5 (Pt — 2n) — 1 APre1 — on) — 28((J1 %0 Donra)
~ A(f(n) + ol —m) + Al %0 1+ o xa D)
+ A(J *Q Spn) +V- (u@n-i-l) -9 (33)

satisfies
||Tn||(H1(Q))* =0(ot), as ot — 0.

Furthermore, the global truncation error of the scheme satisfies

7(6t) = max |7, || (g1 ()« = O(dt), as ot — 0.

Proof. First, observe (from (1.15), o = 1) that

_ %f(mst) +2A((J1 0 Dpn) — V- (upy)

=0(pn —m) — A((J x@ 1)pn) + A(J % pn) — Af(on) + 2A((J1 %0 1)pn) — g
=0(pn —m) + A(J xq ©n) + A((J1 *q 1 4+ J2 %o Den) — Af(on) — g

Therefore, the local truncation error 7, (0t) is given by

T’ﬂ(ét) = %(‘pvrkl - @n) - clA(SDnJrl - (pn) - 2A((‘]1 *Q 1)(90n+1 - @n))

FV - (ulnss — on) — 2 (nbt).

(3.4)

Integrating (3.4) over Q, we obtain

(r6)) = (7 oss = o) = (080
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and by using standard Taylor expansion arguments and the boundedness of <§Tf(')>’ it is easy to show that
(12 (88)) = O(6t). (3.5)
On the other hand, we can rewrite the local truncation error 7,,(6t) as follows:
T = TL(8t) + 72(0t), where
a0 = %wnﬂ ~ on) = 2 (i)

and
75(575) = 2A((J1 %@ 1)(Pn+1 = 9n)) + V- (u(@nt1 — ¢n)) — c1A(Pnt1 — ¢n).-

By using standard Taylor expansion arguments and the boundedness of || atQ 2(-)]], it is easy to show that
Il = O(ét).
Owing to the last equality, (3.5), and the continuous embedding from (H'(£2))* to L?(2), we then have
75l @) = O(31).

Moreover, writing

)
Oni1 = pn + 0t Z2(tY), € (ndt, (n + 1)),

ot
we have
de dy Op
2 _ )|
T, = —20tA ((Jl *xq 1) — 1 (t )) + 6tV - ( Bt —(t )) c10tA— 9 (t*)
and
1 1 Op Op 1 0y
— 372 = — 2 —T(tF) — T (tF — — PR
(=A) 277 20t(—A)z (J1 % 1) 9 (t*) — ot (u T (t )) c10t (—A) 91 (t*)
Thus, we get
72| < cét H' ((J1 *Q) 1 >H H ‘ +c V%—f(t*) } .

Hence we have
dyp

9,
5t &)

ot

I=2(0)]|, < ot (Hf,;:(t )

which yields, owing to (3.5),

+|v

+

2
o)
HY(Q)

| 72(68) || 71 ()~ = O(t), as 6t — 0,

and

T = max 1 7all (11 ()= = O(dt), as dt — 0.
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3.2. Solvability and stability of the scheme

Assume that © = g = 0 and ¢ = 0. Then, it can be shown that the convex splitting framework automatically
confers unconditional solvability and stability properties to our scheme (see [21]). We now assume that u, g #Z 0
and o > 0. The solvability follows immediately from the fact that &; is convex, see [21].

On account of (2.1), the stability of the scheme is stated and proved here below.

Theorem 3.2. Let ™ be the n-th iterate of (3.1) and (3.2). We assume that (A1)-(A9) are satisfied and that
the kernel J satisfies
0<fB8=34+11—7l<J*xql, ae in Q. (3.6)

Then, for any 0 < T < oo provided 6t is sufficiently small, the sequence @' with | € N such that | < % s
bounded in L*(S2), i.e.,

112 12
a ot||vV < C,
O&Tx/stllw 7+ at[|[Ve'||® <

where C' is a constant which only depends on N, T, Q, 8, o, J, g, u, and on the initial conditions.
Remark 3.3. Note that (3.6) is nothing but (A4) reformulated for the modified potential (2.1).
Proof. We have, owing to Young’s inequality and testing (3.1) with 1 = 25t +!,

" T2 — ™12 + 28t (Vi +, V™)
< 26t (ugp”“, V(p”“) + 26t (g, <p”+1) — 206t (" —m, <p”+1) . (3.7)

Now, multiply (3.2) by —25tA¢"*! to obtain

26t (VT V") = 46t(V[(Jy %o 1) ], V)
+ 2016 (V" T — V", V™) + 26t (£ (") V™, V")
— 25H(V[(J1 *q 1 4 Jo *q 1)@"], V") — 26H(V(J xq ¢™), V" 1), (3.8)

Collecting (3.8), on account of (3.7), we infer

™ FHIP = [l (1> < = 2¢18t(Vp™ T — Vi, V)
— 48t(V[(J1 o 1)), V1) = 26t(f' (™) V", V" tT)
+ 20t(V[(J1 xq 1+ Joy xq 1)"], V") — 206t (™ — m), ")
+ 26t(V(J %q ¢"), V") + 26t ((u™ L, V1) + 26t (g, 0" 1))
=1+ +HI+1V + V + VI + VII + VIIL (3.9)

Applying Young’s inequality, we have
1< —c16t| Ve 12 + 16t V™2, (3.10)
and

IT = — 40t((Jy %o 1)V "L, Venth)
— 46t(V(Jy %q )", Vet

< —4615/ (J1 %o 1|V T 2de
Q

4 n n
=0ty " + bt V", (3.11)
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for all kK > 0. Furthermore, owing to assumption (3.6),
T < Bot([Vee™ 12 + [V 7).
Observe now that
IV < 5t/Q(J1 xq 1+ Jyxq 1)|[Ve" 2 dz

+ 6t/Q(J1 *q 1+ Jo xq 1)|V<,0”|2 dz

+ §5t(|\J1||%4/1,1 + 1 llf ) lle™ 17 + mt]| Ve T2,
for all k > 0. Besides, we further have

V < o6t| ™ ||* + 200t]| " T |2 + om?meas(Q)dt
and

VI wat] T 24 L2 e

for all k > 0. Finally, using assumptions (A8) and (A9), we find

2
VIT < k0t Vo™ 1”4 7”"1“” otfle"

and

lg — (g, 1>(H1(Q))*,H1(Q) |

2
- *5t+205t <g71>(H1(Q))x7H1(Q) <g0n+1>

VIIT < w6t|| V" |2 +

2
lg = 40 Vi oy e I 49 Doy i) 5,

< kBT + ot + ¢ :

for all k > 0. Collecting (3.10)—(3.17), on account of (3.9), we infer

™2 — [0 + 5t/ﬂ [cl Y4k l) — (Lixal+ Jaxol) — - 5,4] V12 da

< 5t/ [cl +(Jixql+Jaxql) Jrﬁ} V" |* da
Q

4|\ 1|12 %00
+6t( H 1£W1,1 + ||U"LL +I€+20’> ||§0n+1||2

c(||J- 2 11+ J: 2 1 J 2 1
o (R V) s

K

2
g .
+ (Jm2meas(Q) + |H(HI(Q))> dt.
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(3.12)

(3.13)

(3.14)

(3.15)

(3.16)

(3.17)

(3.18)
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Summing over n from n =0 ton =1 — 1, we have

-1
17 = 1671 + 8¢ [ (@) = 50) 3 [V P+ 6t [ (G(a) + 201 %0 1) 2 = 50)| V' da
Q

n=1 Q
4 J 2 200 -1
< ( H 1||W1,1 T ||UHL +I{+20’> 5tz ‘|¢n+1||2
K K "—0

K K

-1
. (c(nJln%Vl,l 1 2la) 17 +0> 53 6

n=0

+ / (c1+ (Jixal+ Jaxq 1)+ B) |V | da
0

2
g *
+ om®meas(Q) + (Hl(m)] 1ot,
K

(3.19)

with {(x) 1= (J *xq 1)(z) — f > 0 for almost any = € Q according to (3.6). Hence, taking x small enough such

that 2r < ((x) for almost any x € {2, we obtain

2¢(z) =5k >0, for aa. z€Q,

and
nx):=c1+4(J*xql)— (J1*xql+ Ja*xq 1) — f— 5k
:<($)+2(J1*Q 1)+Cl—5l€
=2((x) =5k + (Ji*ql) + (Jaxol)+ 1+ 3 >1, for aa. xz€q.
Setting
4| J- 2 2c>o
C = | 1HWI’1+HHHL + k + 20,
K K
J 211 J 211 J211
CQC(H 1||W= +|| 2HW1 )+|| ”W +o,
K K K
and

lgll? .
C3 = om*meas(Q) + w +/ (1 + (Ji %o L+ Jaxq 1) + B) [V |* d,
Q

it thus follows from (3.19) to (3.21) that

-1 -1
641 + 6tV 12 < Crat Y 1™ 1P + Cadt Y [l (I + Csldt + ],
n=0 n=0

whence, after some simplifications,

-1
(1= Ci6t)[|']* + 6t V' |* < (C1 + C2)at Y [l [1* + (Cs + Calle®|17)i6t + | °1%.

n=1
Assuming that 0t < ﬁ and [0t < T and dividing the last inequality by (1 — §tC}), we arrive at

-1
! 17 + 6tV |* < 2(Cr + C2)at Y @™ |1* + 2T(Cs + Calle’|I?) + 2/,

n=1

An application of the discrete Gronwall’s inequality yields the desired result and the proof is complete.

(3.20)

(3.21)

(3.22)

(3.23)

(3.24)
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3.3. Convergence to the exact solution

In this section, we establish the convergence of the discrete solution to the continuous one as the time step
ot — 0.
Taking Remark 2.2 into account, we have

Theorem 3.4. Let (A1)-(A9) hold. Let o € H3(SY) satisfies the compatibility condition % =0 a.e. on ON.
Then define the discretization error e, = ¢, — @™, where p, = p(not). Assume that the assumptions of
Proposition 3.1 and Theorem 3.2 hold. Then, for any 0 < T < oo provided 0t is sufficiently small, the sequence
e, with 1 € N such that | < % is bounded in L*(12), i.e.,

max H61||2 + (§t||Vel||2 < C(ét)Q,
0<I<T /6t

where C' is a constant which only depends on N, T, Q, 3, o, J, g, u, and on the initial conditions.

Proof. Tt follows from (3.1) to (3.3) that

% —c1Aent1 —2A((J1 *xq 1ens1) + V- (uepntq)
1 1
= E(@nJrl — Pn) — a(‘ﬁ"+1 - @n) —Cc1APpy1 + 01A<P"+1 +V- (U<Pn+1)

— V- (up™) = 2A((J1 % Dent1) + 28((J1 o 1))

(A(f(pn)) — c1Bpn — A((J1 %o L+ J2a xa 1)pn) — A(J *q ¢n) — 0pn) +Tn
(A(f(") = aade" = A((Jixo 1+ 2 xo 1)¢") = A(J *q ¢") — 0¢")
(A(f(e") = fpn)) = alA(@" = ¢n) = A((J1xo 1+ J2 %o 1)(¢" = ¢n))
— A(J xq (¢" = ¢n)) = o(¢" — @n)) + Tn.

Therefore, we find

ent1 — €n = C10tA(ent1 — epn) + 20tA((J1 *xq 1)ent1) — 0tV - (uepy1) — SEA(J *q €r)
+ 8tA(f(pn) — f(™) — SEA((J1 *q 1 + Jo *q 1)e,,) — odte, + otr,. (3.25)

Integrating (3.25) over , we get

% <€n+1 - en> +o <6n> = <T7l> . (326)

Using the fact that eg = 0, we have
(€0) =0

and, owing to (3.5), we obtain
1
5 (e1) = O(6t).

So by mathematical induction, assuming that the assertion is true for n = k, i.e.,

1
2 fex) = 0(51),
we find, thanks to (3.26) and (3.5),

1

5t (ers1 —ex) + 0 (er) = (i) -

Hence, we have that

% (ers1) + (06t — 1O(5t) = O(51),
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which yields
(exs1) = O((6t)°)

and
(en) = O((6t)%), Vn>1. (3.27)

We multiply (3.25) by 2e,41. This gives

lent1ll* = llenl® + llensr — enll® = =26t(V(f(¢n) — F(¢™), Vent1)
—45t(V((J1 *q ent1)s Veny1) — 2¢106(V(ent1 — €n), Vent1)
+ 20t (uent1, Vent1) + 206 (V((J1 %o 1+ J2 *xq 1)ey), Vent1)
+ 20t(V(J xq en), Vent1) — 200t(en, ent1) + 20¢(Tn, €nt1)

=I4+1I4+1II14+1IV +V 4 VI + VII + VIII (3.28)
Note that, since f’ is locally Lipschitz continuous, then

L= 20t(— £ (¢")Ven + Vou(F/ (") — /() Vens)
< 286t Venlll[Vens ]| + 268t Vipull L oy llen | Vensa |

A Venl3 o
e +

< B6t]|Ven | + + (8 + k)8t Ven ||, (3.29)

for all kK > 0. Arguing as for the estimates obtained above ((3.10), (3.11) and (3.13)—(3.17)) we find

11 < - 45t/(J1 *Q 1)|v€n+1|2dl‘
Q

4
+ 0t illysallensa|® + w0t Venia 1%, (3.30)
I < — ¢16t||Venii||® + c1t||Ven||?, (3.31)
9 ||U||2Loo(9) 2
v < K)(;t”ven+1” + Tdt”ewﬂ“ 5 (332)

V < 6t/ (T % 1+ Jo %0 1)|Vensa|? dz + 6t/ (J1 40 1+ Jo %0 1)|Ven 2 do
Q Q

c
+ 0t ([ T1llvs + [ T2l )llenll® + w0t Venia %, (3.33)
1132 > 2
VI < . dtllen|® + wt||Ventill?, (3.34)
VII < o6t|en||? + odt|lens ], (3.35)

for all k > 0. From Proposition 3.1 and (3.27), we further have

VI < 2¢ 6t |7 || (2 @)y +e lent1 |z o)

5tHen+1”H1(Q +C(5t) ot
KOU([|Vens|® + (ens1)?) + C(51)%5t

<
<K
<
< KOt||Veny1|? + C(61)3, (3.36)
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where C' > 0. Combining the above results, we infer
lental? = llenll? + 515/9 e+ 4% 1) = (Ji#a 1+ Faxa 1) = 8 = 64 [Veqs 2 da
< 5t/ﬂ {cl F(hixalt Jaxol)+ 5} Ven|? da

JuII2 WALk J|I? [ Ven7
+&CNAWM+ﬁWn+HHW@+ ie@ | o) e,
K K

R

e ullz
+6t< | 1L|Wl'1 i) ”f{ «) +a> lent1l® + C(62)?,

with C' independent of §t and [. Summing over n from n = 0 to n = [ — 1 and using the fact that eg = 0, we
obtain

-1

ledl2 + 6t/9(2((a;) —65) S Ve 2 do+ (5t/ﬂ(§(w) + 200 1) + 01 — 68)|[Verda
n=1

T + |1l J|I2 | Venl|? =
<<duuwuﬁu2mmn+n|?m,+ L o) 55 e
n=0

K

A2, el =
+< I lrs Lﬁ“’) o |6t llenstl? +ClsE)?, (3.37)

n=0

where we have used, on account of (3.6), that {(z) = (J *q 1)(x) — 8 > 0, for almost any = in 2. Taking
3k < ((x), for almost any = € Q, we obtain

2¢(z) — 6k >0, for aa. z€Q, (3.38)

and
C(x)+2(J1*ql)+c1 —6k 21, for aa xe. (3.39)

Proceeding as in the proof of Theorem 3.2, we introduce the constants

4||<]1H%/(/1,1 + HUH%OO(Q)

C) = +o
K K
and ) )
2
) = (Il + 1 920171.0) N (Bl L IVénlL () iy
K K K
and obtain -
el (1 = 6¢C1) + 6t Ver||* < 66(C1 + C5) Y [lenl|* + CL(5H)*.
n=1
Then, dividing the last inequality by (1 — 6¢C7) and choosing 6t < ﬁ and 16t < T yields

-1
lex|? + 8t Ver | < 26t(C; + C) D llenll? + 2C1(5t)°.

n=1

An application of the discrete Gronwall Lemma entails
led? + 6t[|Ver||* < C(51)?,
with C independent of §t and I. O
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FIGURE 1. J = J,, u =0, f(s) = s> — s, m = (pg) ~ 0. First column: solutions at T' = 0.4.
Second column: solutions at T = 1.2. Third column: solutions at T = 2. First row: o = 0, second
row: 0 = 0.5, third row: o = 2, fourth row: o = 10, fifth row: o = 50.

4. NUMERICAL SIMULATIONS

In the time-stepping scheme (3.1) and (3.2), we use a Pl-finite element for the space discretization. The
numerical simulations are performed with the software Freefem++ (see [33]).

In the numerical results presented below, Q is a (—5,5) x (—5,5)-square, so that we can use the DFFT
function to compute the nonlocal terms.

The numerical simulations presented below show the efficiency of the model not only for phase separation
phenomena, but also for crystal nucleation. In particular, when ¢ = 0, and v = g = 0, the results can be
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FIGURE 2. J = J,, u= (0,7y(10 — 2)(10 — y)/20), f(s) = s* —s, m = (po) ~ 0. First column:
solutions at T' = 0.4. Second colummn: solutions at T = 1.2. Th,zrd column: solutions at T = 2.
First row: 0 = 0, second row: ¢ = 0.5, third row: o = 2, fourth row: o = 10, fifth row: o = 50.

p—

compared with the ones presented in [29,30]. The simulations presented below illustrate, from the numerical
point of view, the modified nonlocal model proposed by Bates and Han with varying values of o, with varying
values of m (which characterizes of the loss of mass in the model) and varying values of u (corresponding to
a transport term that accounts for a possible flow of the mixture at a certain given velocity field u). In each
picture, the maximum value of ¢ ~ 1 is colored in black , the minimum value of ¢ &~ —1 in white, and the
values of ¢ in between correspond to different shades of grey.
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FIGURE 3. J = J,, u = (xy(10 — 2)(10 — 3)/50,0), f(s) = s> — s, m = {pg) ~ 0. First column:
solutions at T' = 0.4. Second column: solutions at T' = 1.2. Third column: solutions at T = 2.
First row: 0 = 0, second row: o = 0.5, third row: o = 2, fourth row: o = 10, fifth row: o = 50.

4.1. Phase separation and coarsening: dynamics of the solutions of the nonlocal Cahn—
Hilliard—Oono equation with positive GGaussian kernel

Here, the triangulation of €2 is obtained by dividing €2 into 128 x 128 rectangles and by dividing each rectangle
along the same diagonal.
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S
£

FIGURE 4. J = J,, u =0, f(s) = 83 — 5, {po) ~ 0, m = 1. First column: solutions at T = 0.4.
Second column: solutions at T = 1.2. Thzrd column: solutions at T' = 2. First row: o = 0.05,
second row: o = 0.2, third row: o = 0.5, and fourth row: o = 1.

Dynamics of the solutions with a null transport term

In Figure 1, we consider a random initial datum between —0.05 and 0.05, which leads to a spatial average
close to 0. In that case, the interaction kernel J := J, is given by a positive Gaussian function defined as follows

212 + 192
1 - 2
Jo(z1,70) = > e 1 (4-1)
€1
where 1 = 0.05. Furthermore, we consider the typical choice of the nonlinear term f (s ) = 3 — 5 and take
m = (o) ~ 0. The parameters of the numerical simulations are h = £, 6t =2 x 107%, u = (0,0), and g = 0.

The final time for the simulation is T" = 2.

For 0 = 0, we present the dynamics of the solution to the nonlocal Cahn—Hilliard equation at T = 0.4,
T =1.2, and T = 2, respectively.

Note that, when o is close to zero, the dynamics of the nonlocal Cahn—Hilliard—-Oono equation is close to
that of the nonlocal Cahn—Hilliard equation. Finally, we show the effects of the long-range interactions on the
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FIGURE 5. J = J,, u = 0, f(s) = s — s, {pg) =~ 0.2, m = —1. First column: solutions at
T = 0.4. Second column: solutions at T = 1.2. Third column: solutions at T = 2. First row:
o = 0.05, second row: ¢ = 0.2, third row: ¢ = 0.5, and fourth row: o = 1.

nonlocal Cahn-Hilliard equation with o = 0.5, 0 = 2, 0 = 10 and o = 50 respectively. As it was noticed in [2],
we observe that the coarsening is inhibited for large values of o.

Effects of the transport term

We present in Figures 2 and 3 the evolution of the nonlocal Cahn—Hilliard—Oono equation again, with the same
parameters and functions as in Figure 1, but we now take a non-vanishing transport term. First, in Figure 2, we
take a transport term u = (0, zy(10—2)(10—y)/20) and then, in Figure 3, we take u = (zy(10—2)(10—y)/50, 0).
In both cases, the influence of the velocity field on the pattern formation phenomenon is clearly visible. In
particular, the choice of a vertical transport term in Figure 2 shows that the corresponding evolution is distinctly
vertical for different choices of ¢ and similarly, the choice of an horizontal transport term in Figure 3 shows
that the corresponding evolution is distinctly horizontal for different choices of o.

Off critical case (i.e., m # {(pq))

We present in Figures 4 and 5 the evolution of the nonlocal Cahn—Hilliard—Oono equation, with the same
parameters and functions as in Figure 1, but we now assume loss of mass (i.e., m # (o)), where {(¢g) = 0 and
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0.4 4

—— computed <phi> when sigma=0.2 "ﬁ‘,t_

-0.8 4| —— computed <phi> when sigma=1 -—Ak"ﬂ—fﬂk_t
& <phi> forecasted with (1.12), sigma=0.2
A <phi> forecasted with (1.12), sigma=1
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0 0.2 0.4 0.6 0.8 1 12 14 16 18 2
t

FIGURE 6. Computed and predicted values of (@) with respect to time, when ¢ = 0.2 and
o =1 (cf. Fig. 5).

FIGURE 7. First line: solutions at ¢ = 2, under the conditions of Figure 1, o = 10, with the
potential f(s) = s* — s (left) and with the quadratic regularized potential defined by (2.1)
(right). Second line: solutions at ¢ = 2, under the conditions of Figure 5, ¢ = 0.2, with the
potential f(s) = s* — s (left) and with the quadratic regularized potential defined by (2.1)

(right).

m = 1 in Figure 4 and (o) ~ 0.2 (¢o randomly distributed between —0.3 and 0.7) and m = —1 in Figure 5. We
emphasize that our results are consistent with (1.14). Indeed, when m = (pq), the quantity () is conserved.
Moreover, when m # (pg) the spatial average follows perfectly the predicted values given by (1.14) (see Fig. 6).

In Figure 7, we compare the solutions, under the conditions of Figures 1 and 5, obtained with the “physical”
potential f(s) = s® — s and with the quadratic regularized potential arising from (2.1). As it can be noticed,



L. CHERFILS ET AL.

5248

>

[

3

=0.5
second

)

5. First row: o0 =0

0.2. First column: solutions at T

~
~

(o)

Second column: solutions at T = 1. Third column: solutions at T’

row: o = 5 and third row: o = 50.

—s,m=

=Ju u=0, f(s)=s

FIGURE 8. J

leading to quite similar solutions

,15],
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with both potentials, the computed solutions stay in the interval [—1.15;

and justifying our modified potential.

kernel
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d growth w

on an

4.2. Nucleat

Here, the triangulation of 2 is obtained by dividing 2 into 300 x 300 rectangles and by dividing each rectangle

along the same diagonal.

Six-fold anisotropic shape (cf. [30] for this terminology)

which leads to a spatial average close
Jo (in view of [30] where the nucleation and growth in this case
are very similar to the simulations of the anisotropic PFC equation) is given by the difference of two positive

In Figure 8, we consider a random initial datum between —0.3 and 0.7,

to 0.2. In that case, the interaction kernel
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Gaussian functions defined as

0.1 (—é—“ﬁ) 7 3
Jo(z1,22) = s5 e\ 1 T/ 4 —
2 2
3¢ 3¢t
z1 By \? VBzy— w92
o (CEL A
: €1 °1 - =T
+ 72 e — 72 e €3 €2 (42)
3¢t 3¢5
z) _ VBxy\? Ve | (z2))? © - Ve w52
_(E) () g -bne (5 -%)
0.08 3 <3 0.08 3 <3
——5e€ ——5e€
2 2
3¢5 3¢5

where 1 = 0.08, g5 = 0.2. Furthermore, we take f(s) = s® — s. The parameters of the numerical simulations

are h = %, ot =1072, m = (o), u = (0,0), and g = 0. The final time for the simulations is T = 5. We present

the results for the nonlocal Cahn-Hilliard equation (¢ = 0) and the nonlocal Cahn-Hilliard-Oono equation for
c=005atT=05T=1,and T = 5.
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