A local discontinuous Galerkin method for nonlinear parabolic SPDEs
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 55 (2021), pp. S187-S223

In this paper, we propose a local discontinuous Galerkin (LDG) method for nonlinear and possibly degenerate parabolic stochastic partial differential equations, which is a high-order numerical scheme. It extends the discontinuous Galerkin (DG) method for purely hyperbolic equations to parabolic equations and shares with the DG method its advantage and flexibility. We prove the L2-stability of the numerical scheme for fully nonlinear equations. Optimal error estimates (O(h(k+1))) for smooth solutions of semi-linear stochastic equations is shown if polynomials of degree k are used. We use an explicit derivative-free order 1.5 time discretization scheme to solve the matrix-valued stochastic ordinary differential equations derived from the spatial discretization. Numerical examples are given to display the performance of the LDG method.

DOI : 10.1051/m2an/2020026
Classification : 65C30, 60H35
Keywords: Local discontinuous Galerkin method, nonlinear parabolic stochastic partial differential equations, multiplicative noise, stability analysis, error estimates, stochastic viscous Burgers equation
@article{M2AN_2021__55_S1_S187_0,
     author = {Li, Yunzhang and Shu, Chi-Wang and Tang, Shanjian},
     title = {A local discontinuous {Galerkin} method for nonlinear parabolic {SPDEs}},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {S187--S223},
     year = {2021},
     publisher = {EDP-Sciences},
     volume = {55},
     number = {Suppl\'ement},
     doi = {10.1051/m2an/2020026},
     mrnumber = {4221304},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/m2an/2020026/}
}
TY  - JOUR
AU  - Li, Yunzhang
AU  - Shu, Chi-Wang
AU  - Tang, Shanjian
TI  - A local discontinuous Galerkin method for nonlinear parabolic SPDEs
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2021
SP  - S187
EP  - S223
VL  - 55
IS  - Supplément
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/m2an/2020026/
DO  - 10.1051/m2an/2020026
LA  - en
ID  - M2AN_2021__55_S1_S187_0
ER  - 
%0 Journal Article
%A Li, Yunzhang
%A Shu, Chi-Wang
%A Tang, Shanjian
%T A local discontinuous Galerkin method for nonlinear parabolic SPDEs
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2021
%P S187-S223
%V 55
%N Supplément
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/m2an/2020026/
%R 10.1051/m2an/2020026
%G en
%F M2AN_2021__55_S1_S187_0
Li, Yunzhang; Shu, Chi-Wang; Tang, Shanjian. A local discontinuous Galerkin method for nonlinear parabolic SPDEs. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 55 (2021), pp. S187-S223. doi: 10.1051/m2an/2020026

I. Babuska, R. Tempone and G. E. Zouraris, Galerkin finite element approximations of stochastic elliptic partial differential equations. SIAM J. Numer. Anal. 42 (2004) 800–825. | MR | Zbl | DOI

F. Bassi and S. Rebay, A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier-Stokes equations. J. Comput. Phys. 131 (1997) 267–279. | MR | Zbl | DOI

A. Bensoussan, Some existence results for stochastic partial differential equations. In: Stochastic Partial Differential Equations and Applications (Trento, 1990). Longman Sci. Tech., Harlow (1992) 37–53. | MR | Zbl

Y. Cao, R. Zhang and K. Zhang, Finite element and discontinuous Galerkin method for stochastic Helmholtz equation in two- and three-dimensions. J. Comput. Math. 26 (2008) 702–715. | MR | Zbl

Y. Cao, R. Zhang and K. Zhang, Finite element method and discontinuous Galerkin method for stochastic scattering problem of Helmholtz type in d ( d = 2 , 3 ) . Potential Anal. 28 (2008) 301–319. | MR | Zbl | DOI

P. Castillo, B. Cockburn, D. Schotzau and C. Schwab, Optimal a priori error estimates for the h p -version of the local discontinuous Galerkin method for convection-diffusion problems. Math. Comput. 71 (2002) 455–478. | MR | Zbl | DOI

T. Chen, B. Rozovskii and C.-W. Shu, Numerical solutions of stochastic PDEs driven by arbitrary type of noise. Stoch. Part. Differ. Equ.: Anal. Comput. 7 (2019) 1–39. | MR

P. Ciarlet, The Finite Element Method for Elliptic Problem. North Holland (1975). | MR | Zbl

B. Cockburn and C.-W. Shu, The Runge-Kutta local projection P 1 -discontinuous Galerkin method for scalar conservation laws. MMNP 25 (1991) 337–361. | MR | Numdam | Zbl

B. Cockburn and C.-W. Shu, TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws II: general framework. Math. Comput. 52 (1998) 411–435. | MR | Zbl

B. Cockburn and C.-W. Shu, The Runge-Kutta discontinuous Galerkin method for conservation laws V: multidimensional systems. J. Comput. Phys. 141 (1998) 199–224. | MR | Zbl | DOI

B. Cockburn and C.-W. Shu, The local discontinuous Galerkin method for time-dependent convection-diffusion systems. SIAM J. Numer. Anal. 35 (1998) 2440–2463. | MR | Zbl | DOI

B. Cockburn, S.-Y. Lin and C.-W. Shu, TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws III: one dimensional systems. J. Comput. Phys. 84 (1989) 90–113. | MR | Zbl | DOI

B. Cockburn, S. Hou and C.-W. Shu, The Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws IV: the multidimensional case. Math. Comput. 54 (1990) 545–581. | MR | Zbl

Y. L. Dalecky and N. Y. Goncharuk, On a quasilinear stochastic differential equation of parabolic type. Stoch. Anal. App. 12 (1994) 103–129. | MR | Zbl | DOI

A. M. Davie and J. G. Gaines, Convergence of numerical schemes for the solution of parabolic stochastic partial differential equations. Math. Comput. 70 (2001) 121–134. | MR | Zbl | DOI

A. Debussche and J. Printems, Weak order for the discretization of the stochastic heat equation. Math. Comput. 78 (2009) 845–863. | MR | Zbl | DOI

K. Du and J. Liu, On the Cauchy problem for stochastic parabolic equations in Hölder spaces. Trans. Am. Math. Soc. 371 (2019) 2643–2664. | MR | DOI

Q. Du and T. Zhang, Numerical approximation of some linear stochastic partial differential equations driven by special additive noises. SIAM J. Numer. Anal. 40 (2002) 1421–1445. | MR | Zbl | DOI

N. Y. Goncharuk, On a class of quasilinear stochastic differential equations of parabolic type: regular dependence of solutions on initial data. Stochastic Partial Differential Equations. Cambridge University Press, Cambridge (1995) 97–119. | MR | Zbl | DOI

I. Gyöngy, Lattice approximations for stochastic quasi-linear parabolic partial differential equations driven by space-time white noise I. Potential Anal. 9 (1998) 1–25. | MR | Zbl | DOI

I. Gyöngy and T. Martínez, On numerical solution of stochastic partial differential equations of elliptic type. Stochastics 78 (2006) 213–231. | MR | Zbl | DOI

S. He, J. Wang and J. Yan, Semimartingale Theory and Stochastic Calculus. Science Press, New York, (1992). | MR | Zbl

M. Hofmanová, Strong solutions of semilinear stochastic partial differential equations. Nonlinear Differ. Equ. App. 20 (2013) 757–778. | MR | Zbl | DOI

A. Jentzen and P. E. Kloeden, Overcoming the order barrier in the numerical approximation of stochastic partial differential equations with additive space-time noise. Proc. R. Soc. A: Math. Phys. Eng. Sci. 465 (2009) 649–667. | MR | Zbl | DOI

G. Jiang and C.-W. Shu, On a cell entropy inequality for discontinuous Galerkin methods. Math. Comput. 62 (1994) 531–538. | MR | Zbl | DOI

P. Kloeden and E. Platen, Numerical Solution of Stochastic Differential Equations, 3rd ed. In: Vol. 23 of Applications in Mathematics, Stochastic Modelling and Applied Probability. Springer-Verlag, Berlin (1999). | Zbl | MR

M. Kovacs, S. Larsson and F. Saedpanah, Finite element approximation of the linear stochastic wave equation with additive noise. SIAM J. Numer. Anal. 48 (2010) 408–427. | MR | Zbl | DOI

R. J. Leveque, Numerical Methods for Conservation Laws. In: Lectures in Mathematics. Birkhauser, Basel (1992). | Zbl | MR

Y. Li, C.-W. Shu and S. Tang, A discontinuous Galerkin method for stochastic conservation laws. SIAM J. Sci. Comput. 42 (2020) A54–A86. | MR | DOI

G. J. Lord and T. Shardlow, Postprocessing for stochastic parabolic partial differential equations. SIAM J. Numer. Anal. 45 (2007) 870–889. | MR | Zbl | DOI

X. Mao, Stochastic Differential Equations and Applications, 2nd ed. Horwood, Chichester (2008). | MR | Zbl

A. Millet and P. L. Morien, On implicit and explicit discretization schemes for parabolic SPDEs in any dimension. Stoch. Process. App. 115 (2005) 1073–1106. | MR | Zbl | DOI

T. Müller-Gronbach and K. Ritter, Lower bounds and nonuniform time discretization for approximation of stochastic heat equations. Found. Comput. Math. 7 (2007) 135–181. | MR | Zbl | DOI

T. Müller-Gronbach, K. Ritter and T. Wagner, Optimal pointwise approximation of infinite-dimensional Ornstein-Uhlenbeck processes. Stoch. Dyn. 8 (2008) 519–541. | MR | Zbl | DOI

É. Pardoux, Stochastic Partial Differential Equations. Lecture notes for the course given at Fudan University, Shanghai, (2007).

É. Pardoux and S. Peng, Backward doubly stochastic differential equations and systems of quasilinear SPDEs. Probab. Theory Relat. Fields 98 (1994) 209–227. | MR | Zbl | DOI

W. Pazner, N. Trask and P. J. Atzberger, Stochastic discontinuous Galerkin methods (SDGM) based on fluctuation-dissipation balance. Results Appl. Math. 4 (2019) 100068. | MR | DOI

C. Prévôt and M. Röckner, A Concise Course on Stochastic Partial Differential Equations. In: Vol. 1905 of Lecture Notes in Mathematics. Springer, Berlin (2007). | MR | Zbl

P. Protter, Stochastic Integration and Differential Equations, 2nd ed. Springer-Verlag, New York, (2004). | MR

M. Roozbahani, H. Aminikhah and M. Tahmasebi, Numerical solution of nonlinear SPDEs using a multi-scale method. Comput. Methods Diff. Equ. 6 (2018) 157–175. | MR

C. Roth, A combination of finite difference and Wong-Zakai methods for hyperbolic stochastic partial differential equations. Stoch. Anal. App. 24 (2006) 221–240. | MR | Zbl | DOI

P. E. Souganidis, Fully nonlinear first- and second-order stochastic partial differential equations. In: CIME Lecture Notes (2016) 1–37.

J. B. Walsh, Finite element methods for parabolic stochastic PDEs. Potential Anal. 23 (2005) 1–43. | MR | Zbl | DOI

J. B. Walsh, On numerical solutions of the stochastic wave equation. Illinois J. Math. 50 (2006) 991–1018. | MR | Zbl | DOI

H.-J. Wang and Q. Zhang, Error estimate on a fully discrete local discontinuous Galerkin method for linear convection-diffusion problem. J. Comput. Math. 31 (2013) 283–307. | MR | Zbl | DOI

Y. Yan, Galerkin finite element methods for stochastic parabolic partial differential equations. SIAM J. Numer. Anal. 43 (2005) 1363–1384. | MR | Zbl | DOI

Cité par Sources :