@article{M2AN_1991__25_3_337_0,
author = {Cockburn, Bernardo and Shu, Chi-Wang},
title = {The {Runge-Kutta} local projection $P^1${-discontinuous-Galerkin} finite element method for scalar conservation laws},
journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique},
pages = {337--361},
year = {1991},
publisher = {AFCET - Gauthier-Villars},
address = {Paris},
volume = {25},
number = {3},
mrnumber = {1103092},
zbl = {0732.65094},
language = {en},
url = {https://www.numdam.org/item/M2AN_1991__25_3_337_0/}
}
TY - JOUR AU - Cockburn, Bernardo AU - Shu, Chi-Wang TI - The Runge-Kutta local projection $P^1$-discontinuous-Galerkin finite element method for scalar conservation laws JO - ESAIM: Modélisation mathématique et analyse numérique PY - 1991 SP - 337 EP - 361 VL - 25 IS - 3 PB - AFCET - Gauthier-Villars PP - Paris UR - https://www.numdam.org/item/M2AN_1991__25_3_337_0/ LA - en ID - M2AN_1991__25_3_337_0 ER -
%0 Journal Article %A Cockburn, Bernardo %A Shu, Chi-Wang %T The Runge-Kutta local projection $P^1$-discontinuous-Galerkin finite element method for scalar conservation laws %J ESAIM: Modélisation mathématique et analyse numérique %D 1991 %P 337-361 %V 25 %N 3 %I AFCET - Gauthier-Villars %C Paris %U https://www.numdam.org/item/M2AN_1991__25_3_337_0/ %G en %F M2AN_1991__25_3_337_0
Cockburn, Bernardo; Shu, Chi-Wang. The Runge-Kutta local projection $P^1$-discontinuous-Galerkin finite element method for scalar conservation laws. ESAIM: Modélisation mathématique et analyse numérique, Tome 25 (1991) no. 3, pp. 337-361. https://www.numdam.org/item/M2AN_1991__25_3_337_0/
[1] and , Approximate Riemman Solvers, and Numerical Flux Functions ICASE-NASA Langley Center report n° 84-63, Hampton, VA, 1984. | Zbl
[2] and , Consistance et Stabilité des Schémas LRG pour les Lois de Conservation Scalaires, INRIA report # 370 (1987).
[3] and , The Local Projection Discontinuons Galerkin Finite Element Method for Scalar Conservation Laws, M2AN, 23 (1989), pp. 565-592. | Zbl | MR | Numdam
[4] and , A Finite Element Method for the 1D Water Flooding Problem with Gravity, J. Comput. Phys., 45 (1982) pp. 307-344. | Zbl | MR
[5] , The Finite Element Method for Elliptic Problems, North Holland, 1975. | Zbl | MR
[6] , The Significance of the Stability of Difference Schemes in Different lp-spaces, SIAM Review, 24 (1982),pp. 413-426. | Zbl | MR
[7] , , and , An Implicit-Explicit Hybrid Method for Lagrangian Hydrodynamics, J. Comput Phys., 63 (1986), pp. 283-310. | Zbl | MR
[8] and , Systems of Conservation Laws, Comm. Pure and Appl. Math., 13 (1960), pp. 217-237. | Zbl | MR
[9], Riemman Solvers, the Entropy Condition, and Difference Approximations, SIAM J. Numer. Anal., 21 (1984), pp. 217-235. | Zbl | MR
[10] , Towards the Ultimate Conservative Scheme, VI. A NewApproach to Numerical Convection J. Comput.Phys., 23 (1977), pp. 276-299. | Zbl
[11] , TVB uniformly high-order schemes for conservation laws, Math.Comp., 49 (1987), pp. 105-121. | Zbl | MR
[12] and , Efficient Implementation of Essentially Non-Oscillatory Shock-Capturing Schemes, J. Comput. Phys., 77 (1988), pp. 439-471. | Zbl | MR






