After recalling the most classical multiple flow direction algorithms (MFD), we establish their equivalence with a well chosen discretization of Manning–Strickler models for water flow. From this analogy, we derive a new MFD algorithm that remains valid on general, possibly non conforming meshes. We also derive a convergence theory for MFD algorithms based on the Manning–Strickler models. Numerical experiments illustrate the good behavior of the method even on distorted meshes.
Keywords: Multiple flow direction algorithm, overland flow, virtual element method, hybrid finite volume, general meshes
@article{M2AN_2020__54_6_1917_0,
author = {Coatl\'even, Julien},
title = {Some multiple flow direction algorithms for overland flow on general meshes},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
pages = {1917--1949},
year = {2020},
publisher = {EDP Sciences},
volume = {54},
number = {6},
doi = {10.1051/m2an/2020025},
mrnumber = {4150230},
zbl = {1467.65099},
language = {en},
url = {https://www.numdam.org/articles/10.1051/m2an/2020025/}
}
TY - JOUR AU - Coatléven, Julien TI - Some multiple flow direction algorithms for overland flow on general meshes JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2020 SP - 1917 EP - 1949 VL - 54 IS - 6 PB - EDP Sciences UR - https://www.numdam.org/articles/10.1051/m2an/2020025/ DO - 10.1051/m2an/2020025 LA - en ID - M2AN_2020__54_6_1917_0 ER -
%0 Journal Article %A Coatléven, Julien %T Some multiple flow direction algorithms for overland flow on general meshes %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2020 %P 1917-1949 %V 54 %N 6 %I EDP Sciences %U https://www.numdam.org/articles/10.1051/m2an/2020025/ %R 10.1051/m2an/2020025 %G en %F M2AN_2020__54_6_1917_0
Coatléven, Julien. Some multiple flow direction algorithms for overland flow on general meshes. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 54 (2020) no. 6, pp. 1917-1949. doi: 10.1051/m2an/2020025
[1] , Problèmes aux limites pour les équations aux dérivées partielles du premier ordre à coefficients réels; théorèmes d’approximation; application à l’équation de transport. Ann. Sci. Ec. Norm. Sup. Ser. 4 3 (1970) 185–233. | MR | Zbl | Numdam
[2] , Existence results in Sobolev spaces for a stationary transport equation. Ricerche Mat. Suppl. XXXVI (1987) 173–184. | MR | Zbl
[3] and , The Mathematical Theory of Finite Element Methods, 3rd ed.. Springer (2008). | MR | Zbl
[4] , Semi hybrid method for heterogeneous and anisotropic diffusion problems on general meshes. ESAIM: M2AN 49 (2015) 1063–1084. | MR | Zbl | Numdam | DOI
[5] , A virtual volume method for heterogeneous and anisotropic diffusion-reaction problems on general meshes. ESAIM: M2AN 51 (2017) 797–824. | MR | Zbl | Numdam | DOI
[6] , and , Optimal convergence of the original DG method for the transport-reaction equation on special meshes. SIAM J. Numer. Anal. 46 (2008) 1250–1265. | MR | Zbl | DOI
[7] and , Mathematical Aspects of Discontinuous Galerkin Methods. Springer (2012). | MR | Zbl | DOI
[8] and , Ordinary differential equations, transport theory and Sobolev spaces. Invent. Math. 98 (1989) 511–547. | MR | Zbl | DOI
[9] , , and , Comparison of grid-based algorithms for computing upslope contributing area. Water Resour. Res. 42 (2006) W09416. | DOI
[10] , and , Finite volume methods, edited by and . In: Handbook of Numerical Analysis: Techniques of Scientific Computing, Part III. North-Holland, Amsterdam (2000) 713–1020. | MR | Zbl
[11] , and , A new finite volume scheme for anisotropic diffusion problems on general grids: convergence analysis. C. R. Math. Acad. Sci. Paris 344 (2007) 403–406. | MR | Zbl | DOI
[12] , and , Discretisation of heterogeneous and anisotropic diffusion problems on general nonconforming meshes SUSHI: a scheme using stabilisation and hybrid interfaces. IMA J. Numer. Anal. 30 (2010) 1009–1043. | MR | Zbl | DOI
[13] , and , Benchmark 3D: the vag scheme. In: Vol. 2 of Springer Proceedings in Mathematics, FVCA6, Prague (2011) 213–222.
[14] , and , Small-stencil 3D schemes for diffusive flows in porous media. ESAIM: M2AN 46 (2011) 265–290. | MR | Zbl | Numdam | DOI
[15] , , , Mathematical modeling and analysis of visco-elastic fluids of the oldroyd kind, edited by and . In: Vol. VIII of Handbook of Numerical Analysis: Numerical Methods for Fluids, Part 2. North-Holland, Amsterdam (2002) 543–661. | MR | Zbl | DOI
[16] , Calculating catchment area with divergent flow based on a regular grid. Comput. Geosci. 17 (1991) 413–422. | DOI
[17] and , and regularity of the solution of a steady transport equation. C. R. Acad. Sci. Paris, Ser. I 348 (2010) 885–890. | MR | Zbl | DOI
[18] , Multiple flow direction algorithms for runoff modelling in grid based elevation models: an empirical evaluation. Hydrol. Process. 8 (1994) 327–334. | DOI
[19] , , An analysis of the discontinuous Galerkin method for a scalar hyperbolic equation. Math. Comput. 46 (1986) 1–26. | MR | Zbl | DOI
[20] and , On a finite element method for solving the neutron transport equation. Publ. Math. Inf. Rennes S 4 (1974) 1–40. | MR | Zbl
[21] , , , , and , An adaptive approach to selecting a flow-partition exponent for a multiple-flow-direction algorithm. Int. J. Geog. Inf. Sci. 21 (2007) 443–458. | DOI
[22] , , snd , The prediction of hillslope flow paths for distributed hydrological modelling using digital terrain models. Hydrol. Process. 5 (1991) 59–79. | DOI
[23] , and , IDA: an implicit, parallelizable method for calculating drainage area. Water Resour. Res. 50 (2013) 4110–4130. | DOI
[24] and , A new triangular multiple flow direction algorithm for computing upslope areas from gridded digital elevation models. Water Resour. Res. 43 (2007) W04501. | DOI
[25] , A new method for the determination of flow directions and upslope areas in grid digital elevation models, Water Resour. Res. 33 (1997) 309–319. | DOI
[26] and , Comparison of single and multiple flow direction algorithms for computing topographic parameters in topmodel, Water Resour. Res. 31 (1995) 1315–1324. | DOI
[27] , and , Estimating surface flow paths on a digital elevation model using a triangular facet network, Water Resour. Res. 47 (2011) W07522. | DOI
Cité par Sources :





