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SOME MULTIPLE FLOW DIRECTION ALGORITHMS FOR OVERLAND FLOW
ON GENERAL MESHES

JULIEN COATLEVEN*

Abstract. After recalling the most classical multiple flow direction algorithms (MFD), we establish
their equivalence with a well chosen discretization of Manning—Strickler models for water flow. From
this analogy, we derive a new MFD algorithm that remains valid on general, possibly non conforming
meshes. We also derive a convergence theory for MFD algorithms based on the Manning—Strickler
models. Numerical experiments illustrate the good behavior of the method even on distorted meshes.
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1. INTRODUCTION

Overland water flow plays a major role in hydrogeology at many time scales, from million of years for
stratigraphic studies of interest for the oil and gas industry to several days or weeks for predicting river flooding
and landslides. Intermediate time scales are also increasingly studied as they are of crucial interest for climatic
forecasts, from glacier withdrawal to desert expansion. Of course, a huge literature exists in the corresponding
fields, describing the physical phenomenons involved with an equally huge model diversity (Navier—Stokes,
Stokes, shallow water, etc...). Due to the complexity underlying flow models, approximate, phenomenologically
based models have been developed to increase computational speed. Among those models, a common approach
that has given satisfactory results is the one based on the so-called multiple flow directions algorithms (MFD).

The idea underlying all MFD algorithms is that water routing at large space scales will be mainly governed by
the topographic slope. Using digital elevation models that provide a meshed representation of the topography,
those algorithms compute water flow by distributing water from the topographically higher discrete cells to
the topographically lower ones, each distribution formula corresponding to a specific MFD algorithm. In most
cases, the MFD algorithms are developed assuming that the mesh is a uniform cartesian grid, with the same
space step in each direction. Historically, the first MEFD algorithms were in fact single flow direction algorithms,
where the distribution formula selected only one neighbour, generally the one with the steepest slope. The
deficiencies of such simple algorithms are the origin of the development of MFD algorithms (see [26]). The most
classical MFD algorithm [16, 22] uses directly the slope to distribute the flow, while models using powers of
the slope were developed to concentrate the flow and limit diffusion effects due to the use of coarse meshes
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(see [18,21,25]). Some attempts have been made to apply MFD algorithms on more general meshes, with an
emphasis on triangular ones (see [24,27]). We refer the reader to [9] for a comparison of some of those methods,
and to the references in the aforementioned papers for a more complete overview of the tremendous literature
on MFD algorithms, on which we will not try to be exhaustive.

All those algorithms proceed sequentially from the higher cells to the lower ones, however as was already
noticed in [23], using an MFD algorithm is in fact equivalent to solving a linear system using a specific cell
ordering. The key idea underlying the present paper comes from a deeper study of the linear system associated
with one of the earliest MFD algorithm. Indeed, we will explain that this linear system is completely equivalent to
a two point flux finite volume scheme (see [10]) applied to a stationary Manning—Strickler model for water flow.
It was then clear that replacing the TPFA scheme that requires a strong orthogonality hypothesis on meshes to
remain valid by more advanced flux approximation schemes would allow us to derive MFD algorithms adapted
to general meshes. Moreover, this equivalence will also allow us to derive a theoretical framework within which
we will be able to study the convergence properties of MEFD algorithms. In our numerical experiments, we have
considered two flux reconstructions inspired by two finite volume schemes: the hybrid finite volume (see [11,12])
and the virtual volume method (or conservative first order virtual element method, see [5]). Of course, other
choices could have been made (for instance VAG finite volumes [13,14] or discontinuous Galerkin methods [7]),
however those two schemes will be sufficient to illustrate our approach.

The paper will be organized as follows: after describing the data and meshes, we recall the most classical mul-
tiple flow direction algorithms, and reformulate them in a more algebraic fashion. Next, using this reformulation
we explain how they are linked with the TPFA scheme for a family of Manning—Strickler models. We elaborate
on this basis to overcome the mesh limitations induced by the TPFA scheme, introducing a new family of MFD
algorithms that will remain valid on a huge class of meshes, including those with hanging nodes. We then study
the convergence properties of all methods and conclude by some numerical illustrations.

2. CLASSICAL MULTIPLE FLOW DIRECTION ALGORITHMS

2.1. Mesh and data description

Let Q be a bounded polyhedral connected domain of R?, whose boundary is denoted 0Q = Q\$). We recall the
usual notations describing a mesh M = (7,F) of Q. T is a finite family of connected open disjoint polygonal
subsets of Q (the cells of the mesh), such that Q = Uger K. For any K € 7, we denote by |K| the measure of
|K|, by 0K = K\K the boundary of K, by hy its diameter and by xy its barycenter. F is a finite family of
disjoint subsets of hyperplanes of R? included in © (the faces of the mesh) such that, for all o € F, its measure
is denoted |o|, its diameter h, and its barycenter x,. For any K € T, there exists a subset Fx of F such that
0K = Uyer, 0. Then, for any o € F, we denote by T, = {K € 7 | 0 € Fx}. Next, for all K € T and all 0 € Fk,
we denote by nk , the unit normal vector to o outward to K, and di » = ||, — € x||- The set of boundary faces
is denoted Fext, while interior faces are denoted Fin. Finally for any o € Fint, we denote dxr = ||xx — x|
where 7, = {K, L}. We assume that there exists a subset Fext in 0f Fext such that:

= |J 7 where Q= {@edQ|Vb-n>0}

O'E]:ext,in

and we denote of course Fext out = Fext \Fext,in- AS usual, h = maxger hx will denote the mesh size. In what
follows, we will assume that our mesh satisfies:

(A1) There exists a real number p > 0 and a matching simplicial submesh S7 of M such that for any T € ST,
phr < rp where r is the inradius of T', and for any T' € 7 and any T € S7 such that T'c K, phx < hr.

From [3,7], we know that assumption (A1) implies that for any k € N, there exists Cy,., > 0 independent on h
such that for any K € 7, any o € Fx and any p € Pp(K):

Pl £2(0y < Corihy 2 |Ipl| 22 (1) (2.1)
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FIGURE 1. Example of real topography.

There also exists Cy, > 0 independent on h such that for any v € H(K):

B 1/2
ollz20) < Cor (AR 101 a0y + Pl VollBay ) - (2:2)

Finally, assumption (A1) implies that for any integer k, there exists Cpory,x > 0 such that for any K € 7 and
any v € H*(K) with s € {1,...,k + 1}, there exists p € P, (K) such that

|v = plam k) + h%2|’u —plam k) < Cpoly,khic " |vlgs (k) for me{0,...,s—1}. (2.3)

In the estimates that will follow, the constant C' > 0 will always denote by convention a quantity independent
on the mesh size h, whose value can change from line to line. Also by convention for any o € Fiy we will
denote 7, = {K, L}. In the same way, when considering a cell K and one of its interior faces o € Fx N Fint, by
convention the cell L will denote the other element of 7.

In order to be able to establish error estimates, we assume that the topography, often called the basement in
the geological community and thus usually denoted b, satisfies b € W% (Q) and that there exists a > 0 such
that —Ab > « for almost every € Q2. However, from the practical point of view b is only known through some
pointwise values, very often given as a digitized surface elevation, on which some interpolation and upscaling or
downscaling processes have been applied (see Fig. 1). Thus, its Laplacian cannot be expected to be practically
computable, and the above assumption should really be considered as an abstract technical requirement for
establishing convergence estimates. Thus, our data will more realistically consists in some discrete mesh-based
(Bk) ger representation of b, where each By can represent several pointwise values of b, complemented by a
water source term f € L®(Q), possibly also only known through a mesh-based representation.

2.2. The classical multiple flow direction algorithm

In the geological literature, multiple flow direction algorithms are considered as purely algorithmic ways of
distributing water from one cell to another. Thus, they are generally described in a purely algorithmic fashion.
Consequently, in this section to introduce the most classical MFD algorithms we will follow the presentation
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generally found in the geological community, that is to say a purely algorithmic point of view. One of our first
tasks will precisely consists in abstracting ourselves from this algorithmic setting. For any K € 7, let bx be a
value for the topography associated with cell K. To fix notations, consider for the moment that

1
b :—f b VKeT
B R Je

but other approximations can be considered, for instance b = b(xg) for any K € 7 if b is regular enough.
Multiple flow direction algorithms are based on formulae to distribute the water flow from a cell to its neighbours
that are topographically lower. The most classical distribution formula consists simply in distributing the flow
proportionally to the ratio sk, /sk of the discrete slope sk, between the high cell K and the low cell L regarding
the total positive slope si of the high cell K, where the discrete slope sk, is given by

lo|

SKL = 75— (bx —br)
KL

and the total positive slope sk of cell K is given by

SK = Z ﬂ(b}(*b[‘).

0€F Kk NFint bk 2bL, KL

Notice that in many cases of the literature, as the MFD algorithm is applied on a uniform cartesian mesh with
the same space step in every direction, the face measure |o| is simply omitted (see for instance [16,22]), with
no impact on the ratio sxr/sk. To give a detailed description of the most classical multiple flow direction
algorithms, we need to introduce some notations. Let by = max{bx | K€ T}, 7o = {K €T |bx =bp} and
7.1 = . The set Ty thus denotes the set of cells with maximum topographic height. Then, for any n € N we
define the set 7, of elements of 7 by setting:

T.= |J T where T,={KeT |bx=0b} and bizmax{bK|KeT\’j}_1}.

0<i<n

By construction, as 7 is a finite set there exists N, > 0 such that Ty, 1 # & and j'Nb_l = 7. Thus, for any
n = Ny, we have 7, = J and 7,, = Tn,_1.
To model water sources, we define a family (fx )7 by setting:

1
fK:mJKf VKeT.

The classical MFD algorithm (reformulated from [16,22]) then reads as follows (see Fig. 2 for a visual illustration,
where the width of the arrows is roughly following the amount of distributed water):

(i) For any K € 7, the water influx Gk is initialized at 0.
(ii) For any K € 7y, the water influx gk is given by ¢k = |K|fk.
(iii) Loop forn =1... N, — 1.

(iii-1) For any L € 7,1, we distribute the entire water influx §;, to the neighbours that belong to 7, propor-
tionally to the slope between the cell L and its neighbour, i.e.:
I < Gk + > 5 (b, —bg) forall K €T,

0€F Kk N Fint,bx <br,Led,_1
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FIGURE 2. Basic principle of MFD algorithms: water is distributed to lower neighbouring cells
proportionally to the slope.

where sy, is the total positive slope in cell L, and «— denotes the action of updating ¢ .

(iii-2) For any K € 7, the water influx is complemented by the local sources by setting
ik «~— qrx + |K|fx.
(iv) End loop forn =1...N, — 1.

The MFD algorithm admits a reformulation as a linear system that will play a key role in the remaining of
the paper. To our knowledge, only [23] mentioned this reformulation, although without exhibiting an explicit
formula. This link seemed to have been most of the time simply overlooked by the geological community:
Theorem 2.1. The MFD algorithm is equivalent to solving the following linear system for the unknown
(aK)KET | |~

~ o
dKx — > di (br —bx) = |K|fx VKeT (2.4)
0'6]“1(ﬁ.7“m¢,b;{<b[, KLSL
where o]
o
Sk = > —— (bx —br)

0€F Kk NFint,br =brL, KL

using an ordering for the cells of T based on decreasing topography bx and a lower triangular solver.

Proof. First, notice that as cells K € 7, are updated only at step n, their expression is complete past this step
and given by:

dx = Z M(bL—bK)—FuﬂfK for allKeT\Tn.

o€FK ﬁ-7:int7bK<bL7Le,j-n—l
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However, by construction of the sets 7;, any L € T such that by, > by for K € 7,,, will satisfy L € 7,,_1. Thus,
the above expression can be simplified in:

~ |lo|dL
dx = 3 ders: (b —br) + |K|fx for all K € T\T,

c€F Kk NFint,bx <br,
where the set 7,,_1 no longer appears. As for any K € 7, there exists 0 < n < N, — 1 such that K € 7,
and noticing that s;, > 0 as soon as there exists 0 € Fp n Fint, 7o = {K, L} such that by, > bk, (2.4) follows
by induction. Finally, starting from (2.4), if one chooses an ordering for the cells of 7 based on decreasing
topography by, it is clear that the above system becomes a lower triangular one for gx. It should be obvi-
ous at this point that the associated lower triangular solver then coincides exactly with the classical MFD
algorithm. O

A great advantage of considering the above system rather than its algorithmic counterpart is that it makes
clear that triangular solvers are not the only possible linear solvers, which was indeed the main point of [23].
A wide range of linear solvers can be used to solve (2.4), and most importantly parallel solvers than can
considerably speed up the solving process on meshes with a huge cell number.

Remark 2.2. Many variants of this classical MFD algorithm exist, which at least to the authors knowledge
mainly consist in modifying the way the influx is distributed from an upper cell to its lower neighbours: powers
of the slope instead of the slope, probabilistic repartitions, repartitions using a specified number of neighbours
for a given mesh structure, etc... With the exception of distribution formulae that use powers of the slope instead
of the slope itself, proceeding as we have done for the most classical MFD algorithm it is not difficult to show
that all those variants can be rewritten under the form:

- ool
qK — Z ﬂ(bL—b}()Z‘KUK VKET

c€F Kk NFint, b <bL dKLSL

with this time

Ao
SK = Z ‘O-| (bK—bL).

d
0€F Kk NFint,bx =br, KL

The coefficient A\, associated with each face will take different values depending on the way one want to modify
the influx repartition. Notice that we have chosen to not consider distribution formulae based on powers of the
slope as they only had some technical difficulties with no fundamental differences in the analysis.

3. ON THE LINK WITH MANNING—STRICKLER MODELS

Consider the following classical transient Manning—Strickler model:

a—u —div(AuVb)=f in Q
ot
—u™Vb-n=0 on 00

where wu is the water height, m a parameter and n denotes the outward normal to 2. The coefficient A € L*(Q)
is the inverse of the Manning—Strickler coeflicient expressing soil roughness, and is assumed to satisfy 0 < A_ <
A < Ay < +oo almost everywhere in €. Formally, the steady state associated with the above system is the
following stationary Manning—Strickler model for overland flow:

—div(Au™Vb) = f in Q

(3.1)
-Au"™Vb-n=20 on 0.
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Denoting uy, = Au™ , B = —-Vb € Wh*(Q) and p = —Ab > a >0 € L*(Q), remark that (3.1) can be
rewritten:
B Vuxm+ purxm=f in Q
(3.2)
Ux,m =0 on 0Qy,.
Stationary transport problems of the form (3.2) have of course received a lot of attention in the existing
literature, in particular as they correspond to a popular model for neutron transport. Their well-posedness has
been considered for instance in [1,2], or more recently in [8,15,17]. Thus, from the results of [8,15] and the
regularity hypotheses on b, f, and A, we know that there exists a unique u € L*(Q) solution of (3.2). As the
water height u only appears through its m-th power v, in the remaining of the paper we will with a slight
abuse of notations directly use u instead of u™.
We are now going to explain that the classical MFD algorithm coincides with a well chosen discretization
of the stationary Manning—Strickler model. Assume that the mesh is orthogonal, i.e. there exists a family of
centroids (T x ) o7 such that:

T — Tk

EKE]’P{ VKET and . =
|z — Tkl

nkg., for o€ Fiy, 0 ={K,L}
and let us denote dg , the distance of T to the hyperplane containing o for any o € Fx and any K € 7.
Then, one can use a two-point finite volume scheme to discretize the steady-state Manning model. Assume that
b = b(Tk) or at least a second order approximation of it. Denoting ux for any K € 7 the discrete water
height unknown, if one further assumes that b, = bx for any o € Foyy and K € 7, which is generally what is
done in practical applications of the MFD algorithm, for any K € 7 we get:

Z T LUy (bx —br) = |K|fK
g€F Kk N Fint

where 0P = ug if bxg > by, and UM = uy, if bx < by, and the transmissivity 7k, is given for instance by the
harmonic mean:

|O’|/\K /\L
Aedr.o + Ardr o
Immediately we deduce the following equivalence result, which despite its simplicity is the cornerstone of the
present paper:

Theorem 3.1. The TPFA scheme for Manning Strickler’s model is equivalent to the MED algorithm.

1
TKL = where Ag = mj A
K

Proof. Gathering the faces by upwinding kind, we get:

> Trruk (b —br) — >, Trerur (b — br) = |K[fk. (3.3)
c€F K NFint,bx =br, ceF Kk NFint,bx <br
Setting
Sk = > i1 (bx —br)

0€F K N Fint,brx =br

and noticing that s;, > 0 as soon as there exists o € Fr, n Fint such that by, > by, we see that equation (3.3)
can be rewritten:

SKUK — Z Trrur (b —bk) = |K|fKk.

ceFk NFint,brx <br

Defining the water influx by §x = sxuk, we thus obtain:

~

(TK* Z TKL%(bL*bK) = |K|fK (34)

ce€Fk NFint,brx <br

If we take A = 1, immediately we see that (3.4) is exactly the MFD equation (2.4). O
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Surprisingly, this result seems to be absent of the MFD literature. The main reason is probably that formu-
lations of MFD algorithms as linear systems are equally difficult to find. From this equivalence between the
classical MFD and the two-point flux approximation (TPFA) of the classical Manning—Strickler model, some
useful observations can be made. Probably the most surprising one is that the MFD unknown (Gx ) o7 can be
used instead of ux to solve the two-point approximation of the Manning—Strickler model. Moreover, existence
and uniqueness of solutions of the MFD problem (3.4) are now an immediate consequence of its equivalence
with the MFD algorithm without requiring any hypothesis on the topography. Next, let us mention that when
modeling overland flow, the quantity of interest is not the water height but the water discharge, i.e. the norm
[|AR™Vb|| of the water flux vector. This is the reason why no water height explicitly appears in MFD algorithms.
However, a crucial consequence of our equivalence result is that the usual unknown gx of the MFD algorithm,
while an excellent choice from the algebraic perspective, is probably not the good quantity to represent the water
discharge. Indeed, using §x = sxux and the consistency of the two-point formula we see that it approximates:

gk~ >, | u(=AVb-ng,)"

O’G}—K g

where vt = max(0,v). We cannot expect such a §x to be an approximation of the norm of A\uVb, as it
approximates the accumulated influx in a cell which is a mesh dependent quantity. Thus, no kind of convergence
let alone approximation properties can be expected for such a quantity in general. To effectively compute a
discrete water discharge gx for each cell K € 7, we reconstruct cellwise the water flux vector by setting:

TKLJK TKLAL
Qx = > K] (bx —br) (B — @K ) — > Ks (br = bx) (To — k) -
0€F Kk N Fint,br >br, SK o€F g N Fing,brx <br L
The consistent water discharge is immediately given by gk = ||Q || We will illustrate in the numerical section

the convergence deficiency of ¢k, and how gk has a much better behavior. Obviously, for any K € 7 such that
sk # 0, we can compute an equivalent positive water height by setting ux = ¢k /sk. Cells where sx = 0 are
cells where all discrete fluxes are ingoing fluxes, thus it is clear that one should either set ux = 400 or ug = 0
depending if water effectively reaches the cell or not. From the definition of Qg , we see that the value of ug
for such cells will have no influence on the water discharge and its asymptotic convergence. It is thus clear that
one can always define ug by setting:

9K if s >0
U = | SK
0 otherwise.

Remark 3.2. Notice that using the harmonic mean is not mandatory if one can use an approximation of A
directly on the faces, leading to the transmissivity 7xr, = |0|A,/dxr in which case (3.4) will correspond to one
of the many variants of the classical MFD.

4. SOME CONSERVATIVE AND CONSISTENT FLUX RECONSTRUCTIONS ON GENERAL MESHES

From the equivalence between the MFD algorithms and the TPFA scheme for the stationary Manning—
Strickler model, an obvious way of generalizing MFD algorithms to general meshes consists in replacing the
TPFA flux reconstruction formula by more advanced flux reconstruction techniques that are still valid on
general meshes. We follow the idea of [4]: we consider a gradient reconstruction in each cell that will consist in
a consistent part plus a stabilization part. However, contrary to [4] where the stabilization was used to obtain
coercivity, here we will use this stabilization to enforce conservativity.
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4.1. A conservative flux reconstruction formula

For any cell K € 7, let us denote Bx = Dk (b) the local values associated with the topography b, and
X = RV the set of local values, with N the number of local values. The operator Dy : HY(K) —> Xg
will of course depend on the considered reconstruction formula, however to simplify notations we consider that
the value by at ¢ always belongs to the set of local values. Those local values represent all the knowledge we
have in practice of the field b, and once again its Laplacian cannot be expected to be computable. For typical
applications such as stratigraphic modelling it consists in cell values complemented by vertex or face values, thus
conditioning the schemes we can effectively use. We assume that we are given a gradient reconstruction operator
Vi : Xg — R2, and we define a reconstruction formula in each cell through the operator I : X — P; (K),
where Py (K) is the set of first order polynomials on K and:

IIg (BK) (m) =bg + Vg (BK) . (:B—(BK)

and thus VIIg (Bg) = Vg (Bk). Such gradient reconstructions are the usual basis of modern finite volume
methods (see [4,5,12]), and many formulae can be found in the literature. Using those reconstructions, it is
tempting to define the flux operator Fi , (Bg) by setting:

Fg o (Bg) = —|0|AkVK (Bk) -k q.

As consistency of the flux will of course rely on the consistency of the gradient reconstruction operators, the
above definition will indeed lead to consistent fluxes, however to construct our generalized MFD algorithms
conservativity will play a crucial role. This means that we will require the conservativity of the flux:

> Fro(Bg) =0
KeT,

which cannot be satisfied in general (except by the two-point fluxes) with such a simple formula. This is the
reason why, following the ideas of [4], we introduce a stabilized gradient operator Vi, : Xxg x R — R by
setting:

Vk,o (Bk,ps) = Vi (Bk) +

7 ((po —br) = VK (Bk) (x5 — Tk)) MK ,0
K,o

where 77 > 0 is a stabilization parameter. Then, for any K € 7 and any o € Fg, we define an intermediate flux
operator g, : X x R —— R by setting:

FK,O’ (BKapa) = _|0-‘)\KVK,0‘ (BKapa) ‘MK

Obviously, for any o € Fint, we would like to define f)a as the solution of

N Fro (BK,EU) —0. (4.1)

KeT,

Fortunately, as A is positive almost everywhere we immediately deduce that such a by is always defined and is
given by:

I;a<1><2 Z)\KbK-f- Z VK(BK)'(W(wcf—wK)_AKnKﬁ>>' (4.2)

NAnr Ket, YKo KeT, Ko

MeT, dM’U

Thus, for any o € Fiy, it is legitimate to define the conservative flux operator Fi , : X rer, Xp — R by
setting:

Fk.o(By) = Fxo (BK, 13,,) (4.3)
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where b, is the unique solution of (4.1), while for any o € Fext, we simply set:

Fr o (Bo) = —|o| Ak VK (Bk) - Ko (4.4)

Remark 4.1. It is tempting to recover conservativity using the following simpler formula for E K,o (Bo):

Fico (By) = 3 (Fico (Bi) — Fro (Br)).

The main drawback of this alternative formula can be understood in cases where ) is discontinuous, where this
would obviously lead to a very coarse approximation of the flux along the lines of discontinuity of A. Provided
those discontinuities are resolved by the mesh, our formula for FKJ (Bs) will instead behave as the usual
harmonic mean. It is thus a more robust and versatile choice.

4.2. Consistency properties of the flux
Denoting B(z, £) the ball centered at @ of radius ¢ and Bq(z,£) = B(x, &) N, we recall the usual definition

of strong consistency for gradient reconstruction operators:
Definition 4.2 (Strong consistency). The gradient reconstruction operator Vg is strongly consistent if and
only if there exists C' > 0 independent on h such that for any ¢ € C? (m), every 0 < £ < 2hi and
every « € Bq (xk,&):

IVo(z) — Vi (Dr(9))| < C&llollweo (Bo(@x.6)n0)-
As an immediate consequence of the above definition, we have, using Taylor’s expansion and the density of
c*® (m) in W2% (Bq(zx,&)) that for any ¢ € W2%(Q) there exists C > 0 depending on ¢ but not on
h such that for every hx < & < 2hg, any K € 7 and almost every @ € Bq (zk,§):

Vo(x) = Vi (Pr(9))] < CEllellw2o(Ba(ax.)

and
lp(x) — Tk (Pr(9)) (®)] < CE@llw2 (Ba(@r.0)-

Another immediate consequence is the consistency of our discrete fluxes:

Proposition 4.3. Assume that assumption (A1) is satisfied and that the gradient reconstruction operator is
strongly consistent. Then, there exists C > 0 independent on h such that for any K € T, any o € Fk, any
be W2%2(Q) and any A € WH*(Q), we have:

1
HMFK’U (BU) + AVb - NK,s

< Chi|[M[wree (@)l [bl[ w2 () (4.5)
LOC(BQ(iEK72hK))

Proof. By density of C* (Q) in Wh*(Q) and W (1), it is clear that it suffices to establish the result for
A e C® (ﬁ) and b € C® (ﬁ) Assuming such regularity, we start by establishing that there exists C' > 0
independent on A such that for any o € Fiy:

by — b(xo) | < Ch¥||bl|lw2e() and |b, — g (Bg) (z4) | < Chi||bllw2n@y VK €T,.  (4.6)
As by construction, we have Ili (Bk) (,) = bx + Vi (Bk) - (s — k), slightly rewriting (4.2) we get:
. 1 A
by — b (a,) - ) < S AL (1, (By) (20) — b(@a) — ) AV (By) nL>

( Z n)\M LeT, dL’J LeT,
MeT, dM’U
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Immediately, using the strong consistency of the gradient operator we get that for all K € 7,:

|HK (BK) (330) —b (w0’> | < Ch%(HbHWQ""O(Bsz(mK,hK))
and thus for all K € 7,:

A
5 2
1 ’I’])\L LeT, Lo 2
> L1, (By) (0) — b(@e) | < CF bl lwae (Bt iy < Rl Bl
( 2 77>\M> Lez, YL < Ui M>
MeT, Ao MeT, Ao

as under assumption (A1), we know (see [3,7]) that there exists C' > 0 such that for any (K, M) € 72 such that
Fr nFyu # &, we have hyy/h < C. Moreover, as the gradient operator is strongly consistent, we know that:

Ak Vi (Bk) = A(@o) Vb (o) | < Ch (||A][wre @)l [bllwe @) + Ao @) bl lwzee @) -

Using:

D1 M @) Vb (m0) - mg o =0
KeT,

we get:

Z McVk (Bg) Nk,
KeT,

< Ch ([|Mllwree @ ||l w1 ) + [|[M] = @) [bl w2 ) -

Meanwhile, we clearly get using again assumption (Al):

1 1 1 1 1 Ch
max dys o max hy; < K

-— < — < < — ——K
( Z 77)\M> nA_ < Z 1 ) nA_card (7,) MeZ, nA_ MeT, nA_

MeT, dM’U MeT, dM’U

which finally establishes that: A

b — b (o) | < Ch%l bl w2r )
and (4.6) immediately follows using the triangular inequality and the strong consistency of the gradient operator.
Then, for any x € Bg (xk,2hk) and any o € Fin:

|71‘FK70— (Bg) + )\(:c)Vb(w) ‘MK = )\K(Vb(iL') — Vi (BK)) "MK o+ ()\(iB) — )\K> Vb(w) e

LY
dK,U

(EU g (Bx) (:cc,)) .

Immediately, as the gradient reconstruction operator is strongly consistent we get:
Ak (Vb(z) — Vi (Bk)) - k0| < CALhi|[bl[wze(q)
while Taylor’s expansion immediately gives:
|(A(®) = Ak) Vb(@) - ni 0| < Chic|[Alwee (|0l lwr.ee-

Under assumption (A1), we have hx/dk » < hix/prx < 1/p which combined with (4.6) gives the desired result

for o € Fing. For o € Feyy, we directly get:
1
mFK’U (Bg) + )\(dﬁ)Vb(df) "MK = )\K (Vb(a:) — VK (BK)) ‘MK s+ ()\(CC) — >\K) Vb(a:) "MK

and thus applying the same estimates than in the case of interior faces concludes the proof of (4.5). O
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5. A MULTIPLE FLOW DIRECTION ALGORITHM ON GENERAL MESHES

5.1. The generalized MFD algorithm

Given an approximation (Bg) . of the topography and (fx)x.s of the source term as data, and using
both upwinding for the water height and our discrete fluxes, the most natural discrete formulation of the

Manning—Strickler model consists in finding ((u K) ket > (Uo) ) such that:

UEJ:git,in
2 UEPFK,J (BU) = |K|fK VKeT

oceFK (51)

Us =0 Yo e FP

ext,in

where the upwinding formula v2P for any set of cell values (vk) o7 is defined by:

) if Fgo(Bs) =0
e (Bo) Vo € Fni, T, = (K, L)
(5 if FK70' (Bg) <0
and
v if Fgo(By)>=0
L Ko (Bo) Vo € Fu, Tp = {K)

0 if Frxo(B,)<0

and where we have defined the influx boundary associated with the discrete fluxes by setting

]:e?(t,in ={0€Fext | Fko (Bs) <0, T, = {K}}.
By construction of the fluxes, for any o € Fiy, we have that F, , (By) = —Fk o (B,). Mimicking what we have
done for the TPFA scheme, we gather faces by upwinding kind and use the fact that ul® = 0 for all o € fgmm
leading to:

FK,U (B(r) UK — Z ULFL,J (BO') = ‘K|fK
0€F K, Fr,0(Bs)=0 0€F Kk N Fint,FL,o(Bs)>0
Defining:
Sp = Z Fgo,(By) and §x =sguk

UE]:K,FK,U(BU)ZO

and noticing that s, > 0 as soon as there exists o € Fr, such that Fr , (B,) > 0, we see that the above equation
can be rewritten:

N L
qK — Z ;FL,U (BJ): |K‘fK
GEFK A Fint Fr,0(Ba)>0
For any o € fgt)in, we set:
Sg = — Z FK,a’ (Ba) and E[H = SoUc-

KeT, ,Fik »(Bs)<0

Gathering all those results, we obtain:

~

aK_ 2 tiL,o (B0)= |K‘fK VKeT
0€Fk N FintsFr o (Bs)>0 L (5.2)
4> =0 Yo € fgt,in.
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Notice that the above system is set for the unknowns ((&K) ket » (o) e rm ), thus it has the same number of
ext,in

unknowns than the original system (5.1). We still reconstruct a water flux vector cellwise by setting:

q. d.
Qk = Z 7KFK,U (Bo) (@ — k) + Z 7LFK7U (Bo) (@ — k) (5.3)
eFi,F |[Klsx , |K|sL
o K K,G‘(BO')>O U‘E]‘—Kﬁ]‘-mt,FKY‘,(BU)<O
the consistent water discharge being given by ¢k = ||@Q || Finally, for any cell K € 7, we set ux as we have
done for the TPFA case: N
dK .
— if sg#0
U = | SK K (54)
0 otherwise

while for any o € fg(t’in, us = 0. Notice that this new system allows to correctly define the numerical method,
while the system (5.1) does not uniquely define the water height on cells where sk = 0. Contrary to system (3.4),
system (5.2) admits no obvious renumbering of mesh elements that makes the system triangular. However, as
it is anyway necessary to enable parallelism, we say that the generalized MFD algorithm will consists in solving
the linear system (5.2) using any linear solver of the literature. Notice that as we are using the unknown g rather
than u, the discrete system (5.2) takes the form of a perturbation of the identity matrix. Thus, we expect its
condition number to be relatively good (depending of course of the coefficient A) and in any case much better

than if had tried to solve (5.2) directly.

5.2. On existence and uniqueness for the generalized MFD algorithm
Existence and uniqueness of a solution to the above system are much less obvious than in the case of the
TPFA scheme. To explain this fact, let us denote
T*={KeT|sg>0}.

Using the definition of 7*, summing (5.2) over K € 7, after a straightforward manipulation of the last sum we
get:

Z dx + Z Z quKFK,U (Brr)* Z Z %FL,H (Brf) = Z ‘K|fK

S
KeT\T* KeT* 0eFi,Fr.o(Bo)>0 K LET* 6€F A Fint,F1.0(Bo)>0 - KeT

and consequently:

Yo+ D 3 I fr o (Bo) = Y |K | (5.5)

KeT\T# KeT* 0eFk nFoxe,Fic.o(By)>0 ~ K KeT
Thus, the existence of a solution for any second member (fx ).y requires that:
A= (T\T*)oT* # @& where T** ={KeT"| {0€Frxn Fext | Fro (B,) >0} # J}. (5.6)

In the case of the TPFA scheme, condition (5.6) is necessarily satisfied. If condition (5.6) is not satisfied,
then (5.2) can have a solution only if

Z |K|fx = 0.

KeT
From this observation, it seems clear that establishing an exhaustive existence and uniqueness theory for system
(5.2) is a more complex task than what one could expect. For the continuous problem, well-posedness is directly
linked to the properties of the topography b and in particular to its Laplacian. Unsurprisingly, well-posedness
of (5.2) will be directly linked to the properties of the quantity that plays the role of the topography b at the
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discrete level, that is to say the flux family (Fik » (Bg))KeT)UEfK. Without any further assumption on the mesh,
far from the asymptotic regime consistency alone cannot be expected to ensure well-posedness for coarse meshes.
This means that well-posedness will in general be controlled by the structure of the discrete flux family rather
than by the properties of b. As in practice the Laplacian of b cannot be computed in general, it is anyway better
to have an existence result that uses only computable quantities. In fact, not only the necessary condition (5.6)
must be satisfied, but it also requires that there does not exist what we will call a flux cycle. For any subset C
of 7, we denote:

Foy ={0€Fn | T, =C}.
We say that a set of cells C € 7 form a flux cycle if and only if for any K € C

Fr.o (By) <0 VYoe Fr\(Fx nFy)

and > Fro(Bs) >0 and > Fi.o (By) < 0.
O'E]:Kﬁ]:C FK,G(BG-)>O O’E]:Kf\}-c FK)U(BG)<O

int? int?
The first condition implies that water can enter the cycle but not leave it, while the second condition implies that
water will run through the cycle without stopping anywhere. Whether such configurations can exist on coarse
meshes for consistent flux families is a difficult question. However, from the physical point of view flux cycles
are completely unrealistic as they represent regions where water will at some point go from a topographically
low region to a topographically higher one. Moreover, under the positivity hypothesis on the Laplacian of the
topography, we know that for the exact fluxes we have:

do| -AVbnk, >0
oeFK g

and thus no flux cycle can exist. Thus, the presence of flux cycles should be considered as anomalous and a
sign that a too coarse mesh has been used. A natural sufficient condition of existence and uniqueness for (5.2)
should then be one that is satisfied by the continuous fluxes and immediately implies that no flux cycle exist.

Proposition 5.1. We say that there exists a flowing path from K € T\A to A if there exists K € A such that
dngeN, ng >0 and (Ui)ogiganl suchthat o; € Fint VO<i<ng—1
and T,, = {Ki,K;11} Y0<i<ng—1 where K=K, K=K,, and Fk, o (By)>0.
If A # & and for any cell K € T\A there exists a flowing path to A, then (5.2) is well-posed.

Proof. As system (5.2) is linear, it suffices to establish uniqueness to ensure the existence of solutions. Thus,
assume that ¢ = ((qNK)KeT,(qNU)UG}-D ) is solution of (5.2) with zero right-hand side. Then, taking the
ext,in

modulus of (5.2) and summing over K € 7 we get:
~ qr
AEDS 3 g, (B.). (5.7)
KeT KeT 0eFx nFin, Fr.o(By)>0
Again, we have:
~ ~ Jx Jx
Yl - Yl Y > 0l g, o)+ Y > g, (B,)
KeT KeT\T# KeT* 0eFk nFoxr Frc.o (Bs)>0 ~ K KeT* 0eFx nFint,Fit.o (By)>0 K

while:

Z Z %FL,U (BO') = Z Z %FL,G’ (BO')'

KeT UE.}‘KH]‘-;H“FL,U(BU)>O LeT* O’E]‘-L nfint7FL,a(Bo')>O
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Injecting this into (5.7), we obtain:

Z |dk| + Z Z |QK|FKU(BU)<O

S
KeT\T# KeT* 0eFk nFoxt,Fit.o(Bo)>0 K

which immediately implies that §x = 0 for any K € A. Next, let us denote 7y = 7 and Ag = A, and define 7;
for any ¢ > 1 by setting:
T=T\ |J A where A= (T\T*)uT*
0<k<i—1
with
T* ={KeT|sxk >0} and T**={KeT*|{oceFxnFiy|Fro,(B,) >0} I}

andforanyz 1:
Fi={oeF|TonTi#J} and Fiy={ceFinFum|TocT} and F., =F\Fi,.

Clearly, as A # & we have 77 < 7y or 7; = . We now proceed by induction. Assume that for n > 1, we have
established that

gk =0 forall K e U A, and T, 7T,y or T,=0 Vi<i<n-1.

0<k<n-—1

If 7,, = O, then there is nothing to prove. Otherwise, as for any K € 7, there exists a flow path to A, then
7% % . Thus, summing over 7, and proceeding as above we obtain that:

~ K
> laxl+ ) D |§ |FKU(B(,)<().
KeT, \TF* KeT* 0€FxnFl Fik o (Bs)>0 K

Thus, we obtain that §x = 0 for any K € A,, and A,, # J which implies 7,,.1 & 7,,. Then, it is clear that the
sequence (7;) i>0 18 strictly decreasing in the sense that it satisfies 7; € 7;_1 or 7; = (J because of the flow path
assumption. Thus, there exists ny > 0 such that 7,,, = ¢ and thus ¢ = 0, which concludes the proof. (Il

6. CONVERGENCE ANALYSIS

The main idea underlying our convergence analysis is that for all consistent fluxes, if the topography b is
regular enough numerical fluxes will converge to the continuous ones. The major originality of the present
analysis regarding for instance finite volumes or discontinuous Galerkin methods for steady-advection diffusion
problems of the form (3.2) is that here the coefficients 3 and p are approximated through discrete differential
operators applied to the topography b. Thus, this additional approximation has to be handled carefully to
recover the correct convergence estimates.

To establish precise error estimates we first need to choose a discrete norm. To this end, we define

WK,o (IFk.o (Bo) | + ol [IAVD - i ol Lo (B 2hk)) )

L\D\»—*

and set for v = (V) ger:

ol = 92 3 Kk + 5 D > ookl XY wrlur — o)

KeT KETOEmefext,FK1U(Bg)>O KGTUE}—K,FKVU(BU)<O

In the above expression, one would more naturally expect to find Fk , (B,) instead of wg ,. However, their
behavior is difficult to control and in particular, it is complex to estimate the way this fluxes stay away from zero
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when the continuous fluxes SU AVb-nk , cancel creating technical difficulties, which wg , avoids. Immediately,
we get that:

1
|WK7U - ‘FK,U (BU) ‘ | = ) | |FK7U (BU) - |U| ||)‘Vb "MK,o

|LQC(B(EK,2}LK))

and thus: )
wio = [Fr.o (Bo) || < SRK .o (6.1)

where for any K € 7 and any o € Fx we have denoted:

Ry, = max <’FK,U (B,) + f AVh - ng o

[1Fice (B2) | = 1ol [0V micallipiaranen] ) (62

Notice that from (4.5), we get that there exists C' > 0 such that for any K € 7 and any o € Fk, we have:
Ri,o < Clofhl|[Allwre=@)llbllw2. ) (6.3)

The main objective of this section is to establish the following explicit L? error estimate:

Theorem 6.1. Assume that the gradient operator underlying the fluxes is consistent. Further assume that the
mesh satisfies assumption (A1), that X € W1*(Q) and that the solution U of (3.1) belongs to H'(Q). Let

RK,O’ RK,U
~v(h) = max sup — su —
KeT,0eFk,Fi,0(Bs)<0 WK,0 KeT,0€FKAFoxt,Fi,0(Bo)#0 WK,o

with Ry, defined by (6.2). Then, there exists Ij,(u) € L*(Q) such that for any K € T, Ij,(u)|x = Ik () is
constant on K and: "
@ — T (@) 72 0y + M [0 = Tic (@) 72050y < Crotyhcll i (i) -

Moreover if v(h) — 0 when h — 0, then there exists hg > 0 and C > 0 depending on w, A\, b and the mesh
parameters such that for any h < hg:

e~ Zo (@)l < € max(h. 5 (1)) 2] 1 (6.4)

where u is reconstructed by (5.4) from the solution of (5.2).

Notice that the existence of Z;, (%) in the above result is an immediate consequence of assumption (A1) and
(2.3). As a corollary, we will then be able to establish an explicit error estimate for the water discharge:

Corollary 6.2. Under the assumptions of Proposition 6.1, there exists hg > 0 and C > 0 depending on u, A,
b and the mesh parameters such that for any h < hg:

1/2
( D= xuvh - QKH%Z(K)?) < Cmax(h,y(h)"*(1 + max(h, y(h)"*)| [l 11 (0 (6.5)
KeT

The error estimates use the surprising factor v(h) instead of h as one could legitimately expect. This comes
from the fact that we use approximate fluxes, which is equivalent in some sense to using a quadrature formula
for the coefficients of (3.2). As the natural norm for the discrete problem uses those approximate fluxes, it
seems unfortunately unavoidable that this impacts the error estimate. In the case where for any K € 7 and any
o € Fi that is indeed present in the norm || ||, the wgk ,’s are bounded by below by a constant independent on
h, which will happen most of the time in practice, then v(h) will behave as h and we retrieve a convergence at
rate h'/2. Controlling the lower bound for w K,o is the reason why we have used a supremum on a set containing



SOME MULTIPLE FLOW DIRECTION ALGORITHMS 1933

more than K in the definition of wg . If this supremum is zero, most gradient reconstruction operators and
in particular those described in our numerical experiments will provide a discrete gradient that aligns with the
continuous one and the discrete flux will be zero too, avoiding most of the problematic cases for the asymptotic
behavior of wg . In the case of exact fluxes it is known that for the water height v the optimal convergence
rate to @ is h'/2, even if superconvergence at rate h is very often observed in practice, as revealed by [6,19] (see
also [7]). Thus, as additional flux consistency terms could only decrease the convergence rate, it seems clear
that our estimate for the water height cannot be expected to be improved in terms of order of convergence.
The proof of Theorem 6.1 being rather lengthy, we will try to decompose it as much as possible. Let us notice
that in the special case where Vb is constant, the discrete flux are exact. Then our problem corresponds to
a piecewise constant version of the discontinuous Galerkin method described in [20], and we can in principle
follow the steps of their proof. Denoting |[v||2 = ¥ et |\v||§<h with obvious notations, the first step of their
proof is to establish a local error identity for ||ux — vk||k, for any vk in R, using the exactness of the flux.
Then, taking vg = Zx(u) and summing over K € 7, they obtain a global error estimate where the residual
terms only involve @ — Z (@), which can be straightforwardly estimated using polynomial approximation results.
The general guideline of our proof is the same, however we have to endure some additional technicalities due
to the non exactness of the flux. We first start by establishing the equivalent of the local error identity of [20],
but keeping our approximate flux in the result. Thus, an additional residual term standing for the consistency
error of the flux will appear on the right hand side of our identity. Then, to match the definition of the || - ||
norm, each time our estimates will involve the sum of the flux over the full set Fx, we will replace it by the
Laplacian of b, and put the difference in a residual term. For an isolated flux term, we will do the same using
this time either wg » if the term is involved in the || - ||, norm or by the continuous flux if it is directly a residual
term. Thus, when summing the local error identities over K € 7 to obtain the global error estimate, residual
terms involving the discrete counterpart of the Laplacian will be handled through a technical result described
in the following subsection, while other residual terms will be estimated directly using the strong consistency of
the flux. The reason for doing so is to obtain an error estimate involving only the || - ||, norm on the left-hand
side and residual terms involving either @ — Z (%) or flux consistency error terms on the right-hand side. Finally,
each residual term will be estimated using polynomial approximation results and the consistency of the flux.

6.1. Local error identity and approximation results for the Laplacian

Let us now establish an abstract local error identity, following the lines of [20].

Lemma 6.3. For any K € T, any vk € R and any n = (n,) € L?(0K) constant on each o € Fr, we have:

0’6.7:1(
1 2 1 up 2
5 2 FreBo)uk—vx)+5 X Fre(Bo) (P o)
O'G]"K,FKYU(BO-)>O O'E]"K,FK,U(BU) <0
1
-5 > FKU (Bo) ((uxe —vie) = (ui? = o))" + 5 Z Fro (By) (ux — vx)’
0€Fk,Fr,0o(Bo oefx
= fFKU ) (T —vk) (ug — vK)

O'G.FK,FK g

+ |JFKO' o’ _na)(uK_UK)
O'GJ:K,FK G-(Bg)<0

- J < Fk .o (Bo) +Wb-nK,c,) T (uk — Vi) (6.6)

oceFK

where U is the solution of the continuous problem (3.1).
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Proof. This proof is a direct adaptation of its counterpart in [20]. For any wx € R and any £ = (o)oer, €
L?(0K) constant on each o € Fg, consider:

Iw =~ >, Fio (Bo) (wi — &) wi + Y Freo (Bo) wh.
0eFk,Fk o (Bs)<0 cEF K

Using the identity a(a —b) = 3 (a® — b* + (a — b)?), we obtain:

1 1
Ik = Z Fr o (Bo)wif_g Z Fk.o (Ba)w%(“‘i Z Fro (B,) &2
ceFKk 0€Fk,Fk o (Bs)<0 0eFk,Fk o (Bs)<0
1
-5 Z Fk o (Ba) (wK_fa)2
UE]“K,FKVG(B,,)<O
and thus:
1 1
I = Z Fro (Ba)w%(+§ Z Fi.o (Bo) &
G’E.FK,FK’U(BO-)>O O’E.FK,FK U(BG)<O
1
_5 Z FK,G‘(B)(wK gcf Z FKO’ o'
0€FK FK,o(B,)<0 067"}(

On the other hand, from (5.1) multiplying by wg and using the definition of u2P we have by construction:
— Z FKJ,— (Bg) (uK—ugp)wK—k Z FK,O’ (B[,—)’LLKU)K =J fwK.
0€F K, Fr.0(Bs)<0 o€FK K
Let us now set wx = uxg — vk and &, = uyP — 7, for all o € Fx. We obtain:
Ti=— Y Fro(Bo) (e —vi)w + f fuk — S Fio (By)vicue.
G'E]:K,FK,U(BG)<O O'E]:K

Using —div (@AVb) = f, this leads to:

Tk = — Z FKJ (Bo) (nava)wK+J *diV(ﬂ)\Vb)wa Z FKJ (BU)UKU)K.
0€FK,Fi o (Bs)<0 K oEF K

Integrating by parts, we get:

f —div (VD) wx = — ). f AVb - g ,Tw

K oeF K

fFKg qu— Z J ( FKU g)+)\vb'nK7g)ﬂwK.
o’GfFK ‘ ‘ oceFg VY
Then:
Ik = — B |JFKO' o) (Mo — VK ) WK + Z B |J‘FKO' ) (T —vk)wk

ceFk, FKU(BG)<O ceF K

- Z J( Fr., (B, )+>\Vb~nK,a)ﬂwK
oceFK

= |O_|J‘FKCF o) No) WK + | |fFKU ) (T —vk) wk

oeFk, FKU(BU)<O oeFk, FKU(B

— Z J( FKO‘ g)+Avb'nK70)ﬂwK

oceFK

which finally establishes the desired identity.
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In the above local error identity, one can see that the left hand side strongly looks like the K-term of the ||-||5
norm. However, to match the || - || norm, we need to replace the sum of the fluxes over Fx by the Laplacian
of b, as well as isolated flux by wg . If this last operation straightforwardly leads to a residual term because of
(6.1), however the following lemma precise what kind of link we can expect between the discrete Laplacian and
the true Laplacian:

Lemma 6.4. For any (wi) ez, one has:

DD Fro(Bo)wg = — )] L{ Abwg + ) > L(IJIIFKU (BU)+)\Vb~nK70)

KeT oceFi KeT KeT 0eFk ,Fi,o (Bos)<0

1
X (wr — wiP) + Z Z J <|0FK,G (Bs) + AVb- nK,a> WK

KeT oeFg nFext,Fi,o(Bo)>0

Proof. Let us first notice that:

D)) Fro(Bow = ) > Fx.o (B,) wiP.

KeT oeFxk KeT 6€Fx nFoxt, Fic,0 (Bos)>0

Indeed, using Fi , (By) + FL o (Bs) = 0 for any o € Fiy, To = {K, L} we have

Y Fro(Bo)wiP =0

KeT oeFi N Fint

while for o € Feyq such that Fi , (B,) > 0, 7, = {K}, w2P = 0 immediately implies that:

> > Fy., (By)w™ = 0.

KeT ceFxnFext,Fr,o(Bo)<0

Thus, we have:

Z Z FKyg (BJ)’wKZ Z 2 FK,O (Ba) (wawgp)

KeT oceFk KeT o0eFk ,Fk,o(Bs)<0

+ Z Z F‘K,,7 (BU)UJK

KeT oeFi nFext,FK,o(Bos)>0

using the definition of wjP. In the same way:

> L{ “Mbuwg = > > | “AVb-ng wg = Y. > J—Wb.nm (wi — wiP)

KeT KeT oeFi VO KeT 0eFk ,Fi,o(Bs)<0

+ ) > L —AVb - Nk swi.

KeT oeFrnFext,Fk,o0(Bo)>0

Combining those expressions gives the expected result. (|

6.2. Global error estimate

From the local error identity, and the link between the discrete and continuous Laplacians, we deduce a global
estimate for the discrete norm of the error:
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Lemma 6.5. Using the hypothesis and notations of Proposition 6.1, we have:

- T@IR < Y. o ] i (B (1 ) (i~ Ty (o~ T

KeT UefxﬁfmtaFK o (

Py P |JFK,, ) (7 — T (7)) (u — T (7))

KeT oeFk ﬁ]:exc,FK o

" o IJFK" ) (@ — T3P (@) (ux — Tk (W) — (ui — TP (w)))

KeT oeFk ﬂfexc,FK o

-y 3 f( Fi.o (B )+)\Vb-nK,a>U(UK_IK(U))

KeT ceFk
- (Z J Mblug — Tx (@)|* + 2 Z Fk o (Bo) |uk IK(U)|2>
KeT KeT oceFk

-5 Z > (IFxo (Bo)| = wie.o) ((ur = Txe (@) = (ui® — T3P (w)))*

KET 0€Fk,Fk,o(Bos)<0

-5 Z > (IFk.o (Bos) | — wi,o) lux — T (w)|.

KGT 0€F K NFext,Fi, o (Bs)>0

Proof. We start from (6.6) with vxg = Zx(u) and 1, = Z'P(4). Summing over K € 7 the second term of the
left hand side of (6.6) leads to:

Y Fre B - T@)?

KETO’E]:K Fg U(B ) <0

— Z Z FL,U (Ba) (UL 7IL(ﬁ))2

LeT 0€Fr,NFint,FL o (Bo)>0

N % 3 3 Fr.o (Bo) (uy — I, (@)

KeT oceFgnFext,Fr,o(Bo)<0

_ 1 Z D Fu, (By) (ug, — Ip, (1))

LET 0€FLNFint,Fr,0(Bs)>0

as both u, and Z, (@) cancels for o € fext in- Thus, summing over K € 7 the first two terms of the left hand
side of (6.6), we obtain:

5 Y Fee Bk -Tx@P Y Y Fre(Bo) (i - I (@)?

KETJE.'FK,FK o (Bs)>0 KeT 0eF,Fi,0(Bo)<0

2 Z )y Fi.o (Bo) (hm,x — T (%))

KeT 0€F K NFext,Fi,0(Bo)>0
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Consequently, summing over K € 7 the entire left hand side of (6.6) leads to:

N Ix=1 3 Y Fico (Bo)ux — Ix(@)]

KeT KeT oeFk

- Z 3 Fi.o (Bo) ((ux — I (@) = (uf® = T,* (1))

KET 0€FK,Fk,o(Bs)<0

1
T3 Z Z Fro (Bo) lux —Ix(@)|* = Fi + Fy + F.
KETO’E]‘—KF\.'FEX“FKYU(B”)>O

The first term of the above expression rewrites:

5 3 | Ak - Ze@P

KeT
(ZJ )\Ab|uK IK |2+ 2 2 FKO’ |uK IK( )|>_L0+L1
KeT KeT oeFk
while the second term and third term give:
1
FaF=5 Y Y ke — T®) - (P - TP @)

KeT 0eFk ,Fk,o(Bs)<0

+% Z Z wK’o'|uK_IK(E)|2

KeT oceFgnFext,Fr,o(Bo)>0

XY Fke (Bo) |~ o) (e — Tae(m) — (ul® — T30 ()2

KeT O’E]“K,FK,U(BU)<0

1
tg 2 2 (Fico (Bo) | = wico) fuxc = Tic(@[* = Lz + Ly + La + Ls
KETUG}-KG}-(;X';,FK,G(BG)>O

with obvious notations. Immediately, using the hypothesis on A and b we have:
Lo > 2 K| (ux — Tk (W)
KeT

Then, noticing that the second member of the sum over K € 7 of (6.6) can be decomposed into three terms
T, + Ty + T35 with obvious notations and combining the above results, we have that )| xer I =T1 + 1o + T3
is equivalent to ||u — Z,,(w)||? < Ty + T + T5s — L1 — Ly — L5 as Lo + L + L3 exactly gives the square of the

|| - [|» norm. Using the fact that both u, and Z, () cancels for o € FZ, ;, we obtain:
h+T= Y o | o (B @ 720 (@) (22~ Z22(@) (e~ Zac)

KeT ae]-'Km}',m Fr,o(Bs)<0

- . |fFKa ) (@ — Zic (@) (uxc — I (@)

KeT o’EfKﬁ]:emeK o(Bg)>0

' Z | | f FKU U_I P( )) ((uK _IK(E)) — (ng _I;p(ﬂ)))

KETUEfKﬁ]:ext F}(g B, )<0

which concludes the proof. O
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6.3. Estimation of the residual terms

Establishing Proposition 6.1 now just consists in estimating each term appearing in the second member of
the above global estimate. From Lemma 6.5, we see that ||u — Z,(u)||? < 21‘7=1 T; with obvious notations. The
first three terms account for the polynomial approximation error, while the four other terms account for the
consistency error of the flux. We now estimate those two families of residual terms separately.

Proof of Proposition 6.1: terms accounting for polynomial approximation error. Using Cauchy—Schwarz
inequality and the fact that (u2P — Z'*(u)) — (ux — Ik (@)) is constant on o gives:

mf < Y, (][ 1 (B - 222 ) e~ o

KGTUG]‘—Kﬁfmt Fk,o(Bo)<0

As the gradient operator underlying the fluxes is consistent, we know from Proposition 4.5 that there exists
C > 0 such that:

1

< ||| ‘FKG (BG) — )\Vb~nK70||Lco(U) + ||>\Vb nK,o‘HLOO(o)

' e (B)| <

Jo]

< Chf|A[lwree @)l [bl w20 ) + [[Al| Lo o [[b] w2 (02)-

As soon as h < hg for some fixed hg this leads to the existence of some C > 0 independent on h such that

T3 < CllAlwn bl ( [ -z @) -zl

KGTJEfKﬁ]:mt FK ‘7

Then, using the definition of Zj (u), we get
| -z @P < Chuce el

where, if 0 € Fiy, K = K if Fx,(B,) = 0 and K = L if Fg,(B,) < 0, and K = K
if 0 € Fexs. From [7], we know that assumption (Al) implies that card (Fx) is bounded by a constant
pr depending on the mesh parameters but independent on h, and thus there exists C' > 0 such that
IT1 12 < 2hC||A| w1 ) [l | w2 ] 32 @llu—Zn(@ )||2. For Ty, obviously we have using Cauchy—Schwarz inequal-

ity:

mf < Y, (], s Btz ) 1T

KeT UE]:K:’\]:E.Xt FK U(B

and thus, proceeding the same way than for T3, we obtain [T5|* < 2hC||A|[wr. ()| [b] w2 [U|F: @llu—Zn(@ )|z

The situation is more delicate for T5. Indeed, Z'P(w) = 0 for o € fext in> While T = 0 on 0 € Fexq in, thus TP (1)

N Fext,in, LoP (W) = u = 0 and thus the contribution

is not directly a good approximation of %. For any o € F2 °

ext,in

to T3 is zero. Then, it just remains to consider the case where o € fext in and o & Fexe in. In this case we have
—§_AVb-ng, >0 while Fi , (B,) < 0. However, by definition of the residual [Fk , (Bo) + § AVb-ng | <
Ry » which immediately implies that ‘SJ AVDh - nK70| < Rik,, and |Fk » (Bs)| < Rik,o. Consequently, we get

using Cauchy—Schwarz inequality:

5 < | D] > ﬁRK,aJ @’

KeT oeFg nFext,Fi,o(Bo)<0

1/2

1/2

<[ 3 3 Ricq ((ure = Ixc (@) — (uf? — TP (w)))?

KeT oeFrnFext FK,o(Bg)<0



SOME MULTIPLE FLOW DIRECTION ALGORITHMS 1939

Using the definition of v(h) and the trace inequality on 2, this leads to:

1/2
1
T <o | ) )3 e | 7| lu=Tu@l < OhY2 (02l o= T ()
KeT 0eFxNFext, Fi,o (Bo)<0 g
(Il
It finally remains to estimate the terms accounting for the consistency error on the fluxes.
Proof of Proposition 6.1: terms accounting for flux consistency error. For T}, let us first remark that:
-8 X (g (Bo) ATy ) (e~ Tl - (a2~ Z32()
KeT oceFgnFint
-y > f ( Fi.o (B,) + /\Vb-nK’a> T (ug — I ().
KeT 0€Fk A Foxt
Using the fact that both u, and Z, (@) cancel for o € Fx N Fexy and Fi » (B,) < 0, this rewrites:
n--% N (| 1P (Bo) + AVD: nm) (= I (@) = (ui? = I3°(@)))
KETUE?K,FK,U(BG)<O g
1
— Z Z f (HFK,U (Bs) + AVb- nK,a) U(ur — I (W) = Tag + Ty
KeT 0eFx NFoxt,Fi,o0(Bo)>0"7 g
Cauchy—Schwarz inequality then leads to:
1/2
1
Taal < | D] > HRK,UJ u°
KETUE}_K,FKYU(BU)<O o g
1/2
XY Bre (e - Tx@) - (w - TP @))
KETO'E]:K,FKYU(BU)<O
Using (6.3), (2.2) and the definition of v(h), we easily get:
1/2
Tia| < Cy(W)V2 [ ) > hKJ @ | [lu=Zn@)||n < Cv(R) 21l o) lJu = Zn (@) n-
KeT 0eFx ,Fr,-(Bs)<0 g
In the same way, Cauchy—Schwarz inequality and this time the trace inequality on €2 directly gives:
1/2
| Tual < Cy()V2 | ) > hKJ @ | lu=TZn@)ln < Cy(B) 202l s oyl lu — Zn(@)||n-

KeT ceFxnFext,Fi,o(Bo)>0

From Lemma 6.4, we deduce that:

<Y, Y R ((ux —Te(@)’ - (i - T@)°)

KeT 0eFk ,Fk,o (Bs)<0

+ 2 Z RK,G’ (’U,K—IK(E))Q.

KeT ceFrnFext , Fr,0(Bo)>0
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Using (a? — b?) = (a — b)(a + b) and Cauchy—Schwarz inequality, we obtain:

1/2
IT5) < 4(W)"2[Ju = Tu@)[n | D] > Rio (ur — i () + (ug? — I3P(w)))*
KeT 0eFk ,Fk,o(Bs)<0
1/2
+ (0P lu = Th@)||n | ) > Rk o (ux — Tx (7))
KGTG'E]:Kﬁ]:ext,FK,U(Bg)>0
Using (6.3) and assumption (Al), we immediately obtain that:

> > Riq (ux — Ik (@)* < Cpr Y K| (uk — Ik (0)*

KeT 0eFk ,Fk,o(By)<0 KeT

and in the same way, using the fact that u? = and Z'P(@) = 0 on any ¢ € Fex such that Fx , (B,) < 0 and
the commensurability of hx and hy, if Fx n Fx # & under assumption (Al):

D > Rio (ul —I®(@)* < C )] > lo|h (h — TpP (@)

KeT 0eFk,Fk,o(B,)<0 LeT oeFL, ,Fr - (By)>0
< Cpr Y K| (uk — I (w)*
KeT
and also:
> >, Ri.q (ux — Ix(@)* < C )] > lolhi (uk — Ii (@))?
KeT ceF g nFext , Fi,0(Bs)>0 KeT ceF g nFext , Fi,0(Bs)>0
<Cpr Y |K|(ux — Tk (m))*.
KeT

Gathering those intermediate results, we get that |T5| < Cy(h)"?||u — Zy(a@)||?. Finally, we have by definition
of y(h) and || - ||5 that |Ts + T%| < Cy(h)Y?||u — Z(w)||?. Then, using the hypothesis that (k) goes to zero
when h goes to zero, for any C' > 0 independent on h there exists ho > 0 such that 1— C max (h,v(h))"? > 1/2,
and the result then immediately follows. O

6.4. Error estimate for the water discharge
To establish Corollary 6.2, we will need an auxiliary discrete stability result:

Lemma 6.6. The following estimates holds:

PSR By Y ) Ficr (Bo) i

KeT oceFk KeT O-ETKmfcxt,FK7U(Bg)>O
1
—3 2 Z (ux — utP)? F o (B,) = 2 | K| freur. (6.7)
KeT O'E]'-K,FK,U(BG)<O KeT

Proof. To establish (6.7), using the definition of ulP, we obtain multiplying (5.1) by ux and summing over
KeT:

Z 2 FKJ (BU)U%{-‘F Z Z FKJ (Bo') U;p’qu = 2 |K‘fKUK

KeT 0eFk ,Fi,o (Bo)>0 KeT 0eFk ,Fk,o(Bs)<0 KeT
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Remark that ulPuyx = 1 (u%( + uz”2> — 2 (ukx — u)? which immediately leads to
1
Z |K|fKuK: Z Z FK,J(BU)U%(+§ Z Z FK,U(BU)U%(
KeT KeT 0€Fk ,Fk,o(B,)>0 KeT 0eFk ,Fk,o(Bs)<0
1 2 1 2
- up- _ _ up
+ 9 Z Z Fr.o (Bg) ug 9 Z Z Fr.o (Bg) (ux —ug”)".
KeT 0eFk ,Fi,o (Bos)<0 KeT 0eFk ,Fi,o (Bo)<0

Using the fact that:

YN FreBour=- 3 2 Fro (Bo)u

KETO'E}-K,FK,G(B(,)<0 LET”Efmeint7FL1o‘(Bg)>O

we immediately get (6.7) as:

% > > Fr . (By)u¥ +% > > Fi .o (By) u

KeT 0eFk ,Fk,o (Bs)>0 KeT 0eFk ,Fi,o (Bs)<0
1 2
=3 > Fk 5 (By) u.

KeT oeFgnFext,Fi,o(Bo)>0

O

Proof of Corollary 6.2. Let us denote (ei)osisl the canonical basis of R2. Assume that h < hg, where hq is
defined in Proposition 6.1 and consider:

QKZ Z ulFK,U(BU)(wU_wK)‘

oe7x Kl
We begin by establishing that
1/2
( 2 = xavy— QK||%Z<K)2> < Cmax(h, y(m) "2 [1l 112 0. (6:8)
KeT

Indeed, we have:

J )\Kagbz J A VbV (xifoyi) = —J )\KAb(l’z *xK,i)'i‘ Z J )\KVZPTLKJ (CL’Z 756}(,1').
K K K ceFi VO
Using again the consistency estimate of Proposition 4.5 for the fluxes, we get:

|

oeFk Vo

1

<—)\KVb ‘NMre— —FKko (BU)> (zi — xK’i)

|0’| < C|O’|CaI‘d (fK) h%(||)\| |W1,oo(Q) | |b| |W2,oc(Q).

And thus, using assumption (A1) we get that:

1 .
'—UK)\KH(| JK Vb — QK‘ < ChK||)\HW1,m(Q)||bHW2,m(Q)|uK|.
Using the triangle inequality:
|| = AuVb — QKH%2(K)2 <|[[(A— )\K)EVZ’H%%KP + Ak (@ —uk) Vbﬂiz(xﬁ

1 1 A
A Vb— — | Vb —Axug— | Vb— i .
v (90 i [ 98 e + 11 = M gr [ 90 QuclBagu
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Poincare-Wirtinger’s inequality applied component by component (see [7]) gives:
1
HVb —— J VbHLz(K)z < CPhK||b||H2(K)
(K| )i

where Cp > 0 is independent on h under assumption (A1), and (6.8) follows from Proposition 6.1 and the above
estimate. To conclude, it suffices to remark that by definition:

K| (QK - QK) = Z (ug —ur) (T — k) Fr o (Bo)
G'E}_Km}_iumFK,a(Bo)<0

+ Z UK (-’BU*CCK)FK,U (Ba)'
0EF K NFext , FK,o (Bo)<0

Thus applying Cauchy—Schwarz inequality, we get:

. 2 |2 — k||
3 K| )QK_QK‘ <2| )] > T|FK,U (Bo)|

KeT KeT oeFrnFint, Frc,o (Bo)<0

2

T, —T
Ly 5 2222 i (B el
KETUEJ:Kr\fext,FK,a(BU)<O
olh?
<oy 0 ) ol

KeT 0eFk ,Fr,o (Bos)<0 |K|

using the bound on the flux from the proof of Proposition 6.1, and where:

MDY > Fieo Bo)lul? =5 31 % Fieo (Bo) (e —ui)?.

KETO'EJ:Kﬁ]:eXt,FKYU(BU)>O KETUE]:K,FKYU(BU)<O

From (6.7) we know that, still denoting u the cellwise constant function of L?(Q2) taking the value ux in cell K:

ullf < I llz@llullzz@) = Y, Y, Fro (Bo) uk-
KeT oceFk

However, one has
> D) Fro(Bo)ug = ). U Ab+ > Fro (Bg)> ujo— Y. f Abu.
KeT oeFk KeT K oeFK KeT VK

Using Stokes’ formula, the consistency of the flux (4.5) and assumption (A1), we get:

<C ) |olhx < CIK].

oceFK

> Fr.o(Bo) +J AVb -1k,

oeFk

L Ab+ Y Fko(Bo)

ceFK

Thus, we have [[ul[} . < |[f|l2@llullL2@) + C”“”?ﬂ(ﬂ)’ and using the triangle inequality ||ul|r2(q) < |Ju —
EHLZ(Q) + ||ﬂHL2(Q), we get that:

[l < € (1 +masx(, 7)) (I1fl]2() + (1 +max(h, /(W) ) [allar @) ) s oy

which concludes the proof. O
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F1cURrE 3. Example of meshes for the 2dDelaunay and 2dDualDelaunay mesh sequences.

7. NUMERICAL EXPLORATION

To assess the asymptotic behavior of the method, we use a very simple analytical solution on which the positiv-
ity of the Laplacian is guaranteed (contrary to typical geological applications). Let us consider the square domain

Q =10, L[x]0, L[ associated with the topography b(x,y) = by — & ((:L' —20)* + (y — yO)Z) where 2o = yo = L/2,
for which —Ab = 4. Consider the water height @ defined by @(z,y) = wugexp (—a ((x — xo)2 + (y— y0)2)>.
Defining A(x,y) = 1, we obtain —div(A\uVb) = f with f(z,y) = 40u(z,y) (1 -« ((m —20)’ + (y — y0)2)). The

corresponding water discharge ¢ = ||A@Vb|| is given by

q = 26u(x,y) ((JJ —z0)? + (y — 90)2) v

In practice we take up =1, a =2, § = 1/2, by = 2 and L = 1. We consider seven types of mesh sequences. The
first sequence consists in classical Delaunay meshes (2dDelaunay). The second one (2dDualDelaunay) is obtained
by considering the dual meshes of a sequence of Delaunay meshes (Fig. 3). The third sequence (2dVoronoi) is
made of Voronoi meshes, possessing the mesh orthogonality property. The fourth sequence (2dKershawBox) is
a sequence of Kershaw meshes, while the fifth one (2dCheckerBoardBoz) is a sequence of checkerboard meshes.
These two sequences have only quadrangular cells which are distorted for the sequence 2dKershawBox, while
the sequence 2dCheckerBoardBox allows to test the behavior of the method in presence of non conformities.
The sixth sequence, named 2dSquareCart, is simply a uniform cartesian mesh with square cells, while the
seventh one named 2dRectCart is a uniform cartesian mesh with rectangular cells. These two last sequences are
mainly intended to serve as reference. For the generalized MFD algorithm, we consider two consistent gradient
reconstructions coming from finite volumes: the first one is the hybrid finite volume gradient operator of [12],
that uses faces values for the topography b, while the second one is the vertex based finite volume gradient
operator (VVM) of [5].

As it is the quantity of practical interest, we will express our convergence results directly in terms of the water
discharge ¢ instead of using the water height. Let us begin by some results for sequences 2dSquareCart, 2dRect-
Cart and 2dVoronoi. Being the only ones that satisfy the mesh orthogonality requirement (see Figs. 4 and 5),
we expect that the TPFA scheme will also converge on those sequences. The corresponding results are displayed
on Figures 6 and 7, while the associated approximate convergence orders for each scheme are given in Table 1.
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F1GURE 4. Example of meshes for the 2dVoronoi and 2dKershawBox mesh sequences.
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Fi1GURE 5. Example of meshes for the 2dCheckerBoardBozr and 2dRectCart mesh sequences.

Clearly, on the basic cartesian cases 2dSquareCart and 2dRectCart, all the schemes give identical results. A
closer look at our generalized flux formula immediately reveals that this is perfectly normal as the flux Fk ,
degenerate into the two-point flux formula on those cartesian meshes where the barycenter of each internal face
is exactly the intersection point between the face and the segment joining the cell centers on each side of the
face (see [12]). Moreover, Table 1 reveals that all the methods are superconvergent on the three orthogonal mesh
sequences. In [20] it is indeed established in the case of exact fluxes that the approximation of the water height
superconverges at least on rectangular meshes, which explains that this observed superconvergence is probably
not anomalous. Next, we turn to the other mesh sequences, for which we cannot expect convergence for the
TPFA scheme. The corresponding results are displayed on Figures 8 and 9, while the associated approximate
convergence orders for each scheme are given in Table 2.

As expected, the TPFA scheme does not converge anymore, however the generalized MFD algorithm is
converging for both the hybrid and virtual volume (VVM) gradients. The results for those two variants are in
fact relatively close to each other. In particular, the behavior of the method on sequence 2dCheckerBoardBox
confirms its ability to deal with non conformities and thus local mesh refinement. Remark that superconvergence
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2dBox mesh, MFDQuadBaseGaussWater 2dRectBox mesh, MFDQuadBaseGaussWater
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FIGURE 6. Convergence curves for sequences 2dSquareCart and 2dRectCart.

TABLE 1. Approximate orders of convergence for the three schemes on orthogonal meshes.

2dSquareCart  2dRectCart  2dVoronoi

TPFA  0.943 0.942 1.147
Hybrid 0.943 0.942 1.061
VVM 0.943 0.942 1.061

2dVoronoi mesh, MFDQuadBaseGaussWater

—4
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™
=
= -6
=)
QS
~
TPFA —&5—
Hybrid —®&—
VVM —e—
-8

-4 -35 -3 —-25 -2 —-15 -1
log h

F1cURE 7. Convergence curves for sequence 2d Voronoi.
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2dDelaunay mesh, MFDQuadBaseGaussWater 2dDualDelaunay mesh, MFDQuadBaseGaussWater
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F1GURE 8. Convergence curves for sequences 2dDelaunay and 2dDualDelaunay.

2dKershawBox mesh, MFDQuadBaseGaussWater 2dCheckerBoardBox mesh, MFDQuadBaseGaussWater
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FIGURE 9. Convergence curves for sequences 2dKershawBox and 2dCheckerBoardBox.

TABLE 2. Approximate orders of convergence for the three schemes on general meshes.

2dDelaunay  2dDualDelaunay — 2dKershawBox  2dCheckerBoardBox

Hybrid 0.991 1.081 0.941 1.032
VVM 0.971 1.084 1.213 1.032
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F1GURE 10. Comparison between influx and water discharge for the TPFA scheme on orthog-
onal meshes (exact water discharge is bottom right).

is also achieved again on those test cases. To conclude, on Figure 10, we represent on the bottom-right the correct
water discharge, while the top-left figure is the water influx g for sequence 2dSquareCart, the top-right figure is
the water influx for sequence 2dRectCart and the bottom-left figure is the water influx for sequence 2d Voronoi.
These very basic examples illustrate our point on the water influx ¢ : it is clearly a mesh dependent quantity,
that cannot be expected to reproduce the behavior of the discharge correctly, even on those very simple cases. If
one does not consider the Manning—Strickler framework, one of the tricky features of §x is that on very common
cartesian mesh sequences such as 2dSquareCart and 2dRectCart it has a relatively nice qualitative behavior.
It even seems to converge, although to a mesh sequence dependent quantity. This explains why it has been
used inadvertently in the hydrogeology community, despite of its mesh dependent nature: on the widely used
cartesian meshes, it has an acceptable behavior that cannot be easily discarded without a reference continuous
model, in particular for complex topographies. However, on more general meshes, the situation is very different,
even for the TPFA scheme as the case of sequence 2dVoronoi reveals. We display on Figure 11 the water influx
Gk for the four other mesh sequences, in the case of the hybrid gradient. It is completely obvious on those
sequences that ¢k should not be considered as a physically relevant quantity.

8. CONCLUSION

We have established the equivalence between a classical family of multiple flow direction algorithms and the
TPFA scheme applied to a family of stationary Manning—Strickler models. From this equivalence we have pro-
posed an improvement of the derivation of the discrete water discharge based on a consistent flux reconstruction
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FIGURE 11. Water influx for hybrid gradient on meshes 2dDelaunay, 2dDualDelaunay, 2dKer-
shawBozx and 2dCheckerBoardBozx.

rather than directly using the water influx intermediate unknown that is not only non convergent in general, but
does not approximate the water discharge in any case. Then, using more advanced flux reconstruction schemes,
we have proposed a multiple flow direction algorithm adapted to general meshes. A convergence theory that
covers both cases was developed, and numerical experiments illustrate the good behavior of the method. Remark
that the extension to the case of Manning—Strickler tensors rather than coefficients is straightforward, as would
be the extension of the present analysis to multiple flow direction models that use powers of the topographic
slope.
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