Numerical approximations for a fully fractional Allen–Cahn equation
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 55 (2021), pp. S3-S28

A finite element scheme for an entirely fractional Allen–Cahn equation with non-smooth initial data is introduced and analyzed. In the proposed nonlocal model, the Caputo fractional in-time derivative and the fractional Laplacian replace the standard local operators. Piecewise linear finite elements and convolution quadratures are the basic tools involved in the presented numerical method. Error analysis and implementation issues are addressed together with the needed results of regularity for the continuous model. Also, the asymptotic behavior of solutions, for a vanishing fractional parameter and usual derivative in time, is discussed within the framework of the Γ -convergence theory.

DOI : 10.1051/m2an/2020022
Classification : 65R20, 65M60, 35R11
Keywords: Fractional Laplacian, Caputo derivative, semilinear evolution problems
@article{M2AN_2021__55_S1_S3_0,
     author = {Acosta, Gabriel and Bersetche, Francisco M.},
     title = {Numerical approximations for a fully fractional {Allen{\textendash}Cahn} equation},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {S3--S28},
     year = {2021},
     publisher = {EDP-Sciences},
     volume = {55},
     number = {Suppl\'ement},
     doi = {10.1051/m2an/2020022},
     mrnumber = {4221301},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/m2an/2020022/}
}
TY  - JOUR
AU  - Acosta, Gabriel
AU  - Bersetche, Francisco M.
TI  - Numerical approximations for a fully fractional Allen–Cahn equation
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2021
SP  - S3
EP  - S28
VL  - 55
IS  - Supplément
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/m2an/2020022/
DO  - 10.1051/m2an/2020022
LA  - en
ID  - M2AN_2021__55_S1_S3_0
ER  - 
%0 Journal Article
%A Acosta, Gabriel
%A Bersetche, Francisco M.
%T Numerical approximations for a fully fractional Allen–Cahn equation
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2021
%P S3-S28
%V 55
%N Supplément
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/m2an/2020022/
%R 10.1051/m2an/2020022
%G en
%F M2AN_2021__55_S1_S3_0
Acosta, Gabriel; Bersetche, Francisco M. Numerical approximations for a fully fractional Allen–Cahn equation. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 55 (2021), pp. S3-S28. doi: 10.1051/m2an/2020022

G. Acosta and J. P. Borthagaray, A fractional Laplace equation: regularity of solutions and finite element approximations. SIAM J. Numer. Anal. 55 (2017) 472–495. | MR | DOI

G. Acosta, F. Bersetche and J. P. Borthagaray, A short FEM implementation for a 2d homogeneous Dirichlet problem of a fractional Laplacian. Comput. Math. App. 74 (2017) 784–816. | MR

G. Acosta, F. M. Bersetche and J. P. Borthagaray, Finite element approximations for fractional evolution problems. Fract. Calc. Appl. Anal. 22 (2019) 767–794. | MR | DOI

M. Ainsworth and C. Glusa, Aspects of an adaptive finite element method for the fractional Laplacian: a priori and a posteriori error estimates, efficient implementation and multigrid solver. Comput. Methods Appl. Mech. Eng. 327 (2017) 4–35. | MR | DOI

M. Ainsworth and Z. Mao, Analysis and approximation of a fractional Cahn-Hilliard equation. SIAM J. Numer. Anal. 55 (2017) 1689–1718. | MR | DOI

M. Ainsworth and Z. Mao, Well-posedness of the Cahn-Hilliard equation with fractional free energy and its Fourier Galerkin approximation. Chaos, Solitons Fractals 102 (2017) 264–273. | MR | DOI

G. Akagi, G. Schimperna and A. Segatti, Fractional Cahn-Hilliard, Allen-Cahn and porous medium equations. J. Differ. Equ. 261 (2016) 2935–2985. | MR | DOI

S. M. Allen and J. W. Cahn, A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening. Acta Metall. 27 (1979) 1085–1095. | DOI

F. M. Bersetche, Numerical methods for non-local evolution problems. Ph.D. thesis, Universidad de Buenos Aires (2019).

J. P. Borthagaray, L. M. Del Pezzo and S. Martínez, Finite element approximation for the fractional eigenvalue problem. J. Sci. Comput. 77 (2018) 308–329. | MR | DOI

A. Braides, Gamma-Convergence for Beginners. Clarendon Press. 22 (2002). | MR | Zbl | DOI

H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations. Universitext, Springer, New York (2011). | MR | Zbl | DOI

J. W. Cahn and J. E. Hilliard, Free energy of a nonuniform system. I. Interfacial free energy. J. Chem. Phys. 28 (1958) 258–267. | DOI

P. M. De Carvalho Neto, Fractional differential equations: a novel study of local and global solutions in Banach spaces. Ph.D. thesis, ICMC-USP (2013).

E. Di Nezza, G. Palatucci and E. Valdinoci, Hitchhiker’s guide to the fractional Sobolev spaces. Bull. Sci. Math. 136 (2012) 521–573. | MR | Zbl | DOI

K. Diethelm, The Analysis of Fractional Differential Equations: An Application-Oriented Exposition Using Differential Operators of Caputo Type. In: Vol. 2004 of Lecture Notes in Mathematics, Springer-Verlag, Berlin (2010). | MR | Zbl | DOI

C. M. Elliott and S. Larsson, Error estimates with smooth and nonsmooth data for a finite element method for the Cahn-Hilliard equation. Math. Comput. 58 (1992) 603–630. | MR | Zbl | DOI

X. Fernández-Real and X. Ros-Oton, Boundary regularity for the fractional heat equation. Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Mat. 110 (2016) 49–64. | MR | DOI

C. Gal and M. Warma, Fractional in time semilinear parabolic equations and applications. In Vol. 84 of Mathématiques et Applications (2020). | MR | DOI

G. Grubb, Spectral results for mixed problems and fractional elliptic operators. J. Math. Anal. App. 421 (2015) 1616–1634. | MR | Zbl | DOI

D. He, K. Pan and H. Hu, A fourth-order maximum principle preserving operator splitting scheme for three-dimensional fractional Allen-Cahn equations. Preprint arXiv:1804.07246 (2018). | MR

T. Hou, T. Tang and J. Yang, Numerical analysis of fully discretized Crank-Nicolson scheme for fractional-in-space Allen-Cahn equations. J. Sci. Comput. 72 (2017) 1214–1231. | MR | DOI

B. Jin, R. Lazarov, J. Pasciak and Z. Zhou, Error analysis of semidiscrete finite element methods for inhomogeneous time-fractional diffusion. IMA J. Numer. Anal. 35 (2014) 561–582. | MR | DOI

B. Jin, R. Lazarov and Z. Zhou, Two fully discrete schemes for fractional diffusion and diffusion-wave equations with nonsmooth data. SIAM J. Sci. Comput. 38 (2016) A146–A170. | MR | DOI

M. Karkulik and J. M. Melenk, -matrix approximability of inverses of discretizations of the fractional Laplacian. Adv. Comput. Math. 45 (2019) 2893–2919. | MR | DOI

S. Larsson, Semilinear parabolic partial differential equations: theory, approximation, and application. New Trends Math. Comput. Sci. 3 (2006) 153–194. | MR | Zbl

Z. Li, H. Wang and D. Yang, A space–time fractional phase-field model with tunable sharpness and decay behavior and its efficient numerical simulation. J. Comput. Phys. 347 (2017) 20–38. | MR | DOI

H. Liu, A. Cheng, H. Wang and J. Zhao, Time-fractional Allen-Cahn and Cahn-Hilliard phase-field models and their numerical investigation. Comput. Math. App. 76 (2018) 1876–1892. | MR

C. Lubich, Convolution quadrature and discretized operational calculus. I. Numer. Math. 52 (1988) 129–145. | MR | Zbl | DOI

C. Lubich, Convolution quadrature revisited. BIT 44 (2004) 503–514. | MR | Zbl | DOI

K. Mikkola, Infinite-dimensional linear systems, optimal control and algebraic Riccati equations. Ph.D. thesis, Helsinki University of Technology Institute of Mathematics (2002). | MR

I. Podlubny, Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications. In: Vol. 198 of Mathematics in Science and Engineering, Academic Press, Inc., San Diego, CA (1999). | MR | Zbl

X. Ros-Oton and J. Serra, Local integration by parts and Pohozaev identities for higher order fractional Laplacians. Disc. Contin. Dyn. Syst. 35 (2015) 2131–2150. | MR | Zbl | DOI

O. Savin and E. Valdinoci, Γ -convergence for nonlocal phase transitions. In: Vol. 29 of Annales de l’Institut Henri Poincaré (C) Non Linear Analysis. Elsevier Masson (2012) 479–500. | MR | Zbl | Numdam | DOI

F. Song, C. Xu and G. E. Karniadakis, A fractional phase-field model for two-phase flows with tunable sharpness: algorithms and simulations. Comput. Methods Appl. Mech. Eng. 305 (2016) 376–404. | MR | DOI

M. Stynes, Too much regularity may force too much uniqueness. Fract. Calc. Appl. Anal. 19 (2016) 1554–1562. | MR | DOI

Cité par Sources :