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NUMERICAL APPROXIMATIONS FOR A FULLY FRACTIONAL ALLEN–CAHN
EQUATION

Gabriel Acosta and Francisco M. Bersetche*

Abstract. A finite element scheme for an entirely fractional Allen–Cahn equation with non-smooth
initial data is introduced and analyzed. In the proposed nonlocal model, the Caputo fractional in-time
derivative and the fractional Laplacian replace the standard local operators. Piecewise linear finite
elements and convolution quadratures are the basic tools involved in the presented numerical method.
Error analysis and implementation issues are addressed together with the needed results of regularity for
the continuous model. Also, the asymptotic behavior of solutions, for a vanishing fractional parameter
and usual derivative in time, is discussed within the framework of the Γ-convergence theory.
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1. Introduction

Several physical and social phenomena have shown to be efficiently described by means of nonlocal models.
From anomalous diffusion to peridynamics and from image processing to finance, a rich collection of applications
pervades the recent scientific literature, showing the relevance and versatility of this kind of models. In particular,
many classical problems have been extended from the local to the nonlocal context in order to capture behaviors
that are beyond the modeling capabilities of differential operators. A fact that, in turn, have nurtured the interest
in their mathematical foundations as well the corresponding development of numerical methods. Basic examples
of this kind of models can be elaborated by considering the fractional Laplace operator,

(−∆)𝑠𝑢(𝑥) = 𝐶(𝑛, 𝑠) P.V.
∫︁

R𝑛

𝑢(𝑥)− 𝑢(𝑦)
|𝑥− 𝑦|𝑛+2𝑠

d𝑦, (1.1)

where 0 < 𝑠 < 1 and 𝐶(𝑛, 𝑠) =
22𝑠𝑠Γ(𝑠+ 𝑛

2 )
𝜋𝑛/2Γ(1−𝑠)

is a normalization constant. From the probabilistic point of view,
(−∆)𝑠 corresponds with the infinitesimal generator of a stable Lévy process and can be shown, by means of the
Fourier transform [15], that the standard Laplacian and the identity operator can be recovered when 𝑠→ 1− or
𝑠→ 0+, respectively. Thanks to this, the fractional Laplacian can be used to model a wide range of anomalous
diffusion processes, where particles are allowed to perform arbitrarily long jumps.
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On the other hand, even though (1.1) makes perfect sense for 𝑛 = 1, lateral versions are necessary for
dealing with the time variable. In such a case, the so-called Caputo and Riemman–Liouville derivatives of order
0 < 𝛼 ≤ 1, given respectively by

C𝜕𝛼
𝑡 𝑢(𝑥, 𝑡) =

{︃
1

Γ(1−𝛼)

∫︀ 𝑡

0
1

(𝑡−𝑟)𝛼
𝜕𝑢
𝜕𝑟 (𝑥, 𝑟) d𝑟 if 0 < 𝛼 < 1,

𝜕𝑢
𝜕𝑡 𝑢(𝑥, 𝑡) if 𝛼 = 1,

(1.2)

and

RL𝜕𝛼
𝑡 𝑢(𝑥, 𝑡) =

{︃
1

Γ(1−𝛼)
𝜕
𝜕𝑡

∫︀ 𝑡

0
1

(𝑡−𝑟)𝛼𝑢(𝑥, 𝑟) d𝑟 if 0 < 𝛼 < 1,
𝜕𝑢
𝜕𝑡 𝑢(𝑥, 𝑡) if 𝛼 = 1,

are widely used in applications.
Our aim, in this paper, is to extended the classical Allen–Cahn equation

𝜕𝑡𝑢− 𝜀2∆𝑢 = 𝑓(𝑢) in Ω× (0, 𝑇 ), (1.3)

where 𝑓(𝑢) = 𝑢−𝑢3 and Ω ⊂ R𝑛 is a domain with smooth enough boundary, to the nonlocal setting. Originally
introduced to model the motion of phase boundaries in crystalline solids [8], the unknown function 𝑢 represents
the density of the components, describing full concentration of one of them where 𝑢 = 1 (or −1). Remark-
ably, the original formulation of the phase-field models [13] contemplates nonlocal interactions, and have been
subsequently simplified and approximated by local models.

In this way, we focus on the following problem,⎧⎪⎨⎪⎩
C𝜕𝛼

𝑡 𝑢+ 𝜀2(−∆)𝑠𝑢 = 𝑓(𝑢) in Ω× (0, 𝑇 ),
𝑢(0) = 𝑣 in Ω,
𝑢 = 0 in Ω𝑐 × [0, 𝑇 ],

(1.4)

where 𝑣 belongs to a suitable fractional Sobolev space. Our model (1.4) is based on the Caputo’s version, due
to its compliance with standard formulations based on initial conditions [16].

Several numerical techniques have been recently developed for space and time non-local versions of equa-
tion (1.3), most of them based on finite differences or spectral methods [7, 21, 22, 27, 28, 35]. Also, numerical
methods have been studied for nonlocal versions of related phase separation models, like the Cahn–Hilliard
equation [5, 6]. In [19], a rigorous analysis of a general form of problem (1.4) is presented, providing existence
and regularity results for a large class of operators, including the fractional Laplacian (1.1) considered here. A
similar analysis is also presented in [14].

The article has been organized in the following way. In Section 2, a theoretical treatment of a modified
version of problem (1.4) with non-smooth initial datum, including existence, uniqueness and regularity results,
is presented. We focus on certain specific kind of regularity results that are tailored to suit the analysis of our
numerical method. In Section 3 the numerical scheme, based on Finite Elements for the spatial discretization and
convolution quadrature rules for the time variable is presented and the error estimation is treated in Section 4.
Some arguments, developed in Section 5, show that our analysis can be extended to the model problem (1.4).
A complementary result, inspired by the behavior of solutions obtained in our numerical simulations, is given
in Section 6 where we study the asymptotic behavior of solutions of (1.4), with 𝛼 = 1, when the fractional
parameter 𝑠→ 0+. Strange behaviors, as the displacement of the equilibrium states, are analyzed by means of
the Gamma-convergence theory applied to the associated non-local Ginzburg–Landau energy functional. Finally,
numerical experiments are shown in Section 7.
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2. A fractional semilinear equation

In order to study (1.4), we temporally focus first on a “restricted” problem,⎧⎪⎨⎪⎩
C𝜕𝛼

𝑡 𝑢+ 𝜀2(−∆)𝑠𝑢 = 𝑔(𝑢) in Ω× (0, 𝑇 ),
𝑢(0) = 𝑣 in Ω,
𝑢 = 0 in Ω𝑐 × [0, 𝑇 ],

(2.1)

where 𝑔 verifies the following conditions (H1) and (H2),

(H1) 𝑔 ∈ 𝐶2(R), (2.2)
(H2) |𝑔|, |𝑔′|, |𝑔′′| < 𝐵 for some 𝐵 > 0. (2.3)

Clearly, the function 𝑓 of problem (1.4) does not comply with (H2). The goal is to apply later our results
to a problem of the form (2.1) with a source term that, in addition to (H1) and (H2), agrees with 𝑓 in some
interval [−1−𝑅, 1 +𝑅], for an arbitrary 𝑅 > 0. In this case, the condition ‖𝑣‖𝐿∞(Ω) ≤ 1 implies ‖𝑢‖𝐿∞(Ω) ≤ 1
which in turn allows to remove (H2) in this context. Therefore, for such initial condition, (2.1) and (1.4) are
equivalents. This 𝐿∞ bound is obtained indirectly through the analysis of the semi-discrete in time scheme
deferred to Section 5.1.

2.1. Weak formulation

For any 𝑠 ∈ (0, 1), we consider an open set Ω ⊂ R𝑛. We define the fractional Sobolev space 𝐻𝑠(Ω) as

𝐻𝑠(Ω) =

{︃
𝑣 ∈ 𝐿2(Ω): |𝑣|𝐻𝑠(Ω) :=

(︂∫︁∫︁
Ω2

|𝑣(𝑥)− 𝑣(𝑦)|2

|𝑥− 𝑦|𝑛+2𝑠
d𝑥d𝑦

)︂ 1
2

<∞

}︃
.

This set, together with the norm ‖ · ‖𝐻𝑠(Ω) = ‖ · ‖𝐿2(Ω) + | · |𝐻𝑠(Ω), becomes a Hilbert space.
Another important space of interest for the problem under consideration is that of functions in 𝐻𝑠(R𝑛)

supported inside Ω, ̃︀𝐻𝑠(Ω) =
{︀
𝑣 ∈ 𝐻𝑠(R𝑛) : supp 𝑣 ⊂ Ω̄

}︀
.

The bilinear form

⟨𝑢, 𝑣⟩𝐻𝑠(R𝑛) := 𝐶(𝑛, 𝑠)
∫︁∫︁

(R𝑛×R𝑛)∖(Ω𝑐×Ω𝑐)

(𝑢(𝑥)− 𝑢(𝑦))(𝑣(𝑥)− 𝑣(𝑦))
|𝑥− 𝑦|𝑛+2𝑠

d𝑦 d𝑥 (2.4)

constitutes an inner product on ̃︀𝐻𝑠(Ω). The norm induced by the bilinear form, which is just a multiple of the
𝐻𝑠(R𝑛)-seminorm, is equivalent to the full 𝐻𝑠(R𝑛)-norm on this space, due to the fact that a Poincaré-type
inequality holds in it. See, for example, [1] for details.

We call 𝑢 a weak solution of (2.1), if 𝑢 ∈𝑊 1,1((0, 𝑇 ), 𝐿2(Ω)) ∩ 𝐶((0, 𝑇 ], ̃︀𝐻𝑠(Ω)) and{︃(︁
C𝜕𝛼

𝑡 𝑢, 𝜙
)︁

+ 𝜀2 ⟨𝑢, 𝜙⟩𝐻𝑠(R𝑛) = (𝑔(𝑢), 𝜙) ∀𝜙 ∈ ̃︀𝐻𝑠(Ω),
𝑢(0) = 𝑣 in Ω,

(2.5)

almost everywhere in (0, 𝑇 ).
Let us note that, defining the operator 𝐴 : ̃︀𝐻𝑠(Ω) ⊂ 𝐻−𝑠(Ω) → 𝐻−𝑠(Ω),

(𝐴𝑢,𝜙) = ⟨𝑢, 𝜙⟩𝐻𝑠(R𝑛) ∀𝜙 ∈ ̃︀𝐻𝑠(Ω), (2.6)

the first identity of (2.5) can be rewritten as
C𝜕𝛼

𝑡 𝑢+ 𝜀2𝐴𝑢 = 𝑔(𝑢), (2.7)

a.e. in (0, 𝑇 ).
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2.2. Solution representation

For the fractional eigenvalue problem,{︂
(−∆)𝑠𝑢 = 𝜆𝑢 in Ω
𝑢 = 0 in R𝑛 ∖ Ω, (2.8)

it is well-known that there exists a family of eigenpairs {(𝜑𝑘, 𝜆𝑘)}∞𝑘=1, such that

0 < 𝜆1 < 𝜆2 ≤ . . . , 𝜆𝑘 →∞ as 𝑘 →∞,

with the eigenfunctions’s set {𝜑𝑘}∞𝑘=1 constituting an orthonormal basis of 𝐿2(Ω).

Remark 2.1. Unlike eigenfunctions of the classical Laplacian, solutions of (2.8) are in general non-smooth.
Indeed, considering a smooth function 𝑑 that behaves like 𝛿(𝑥) = dist(𝑥, 𝜕Ω) near to 𝜕Ω, all eigenfunctions
𝜑𝑘 belong to the space 𝑑𝑠𝐶2𝑠(−𝜀)(Ω) (the 𝜀 is active only if 𝑠 = 1/2) and 𝜑𝑘

𝑑𝑠 does not vanish near 𝜕Ω [20, 33].
Moreover, the best Sobolev regularity guaranteed for solutions of (2.8) is 𝜑𝑘 ∈ 𝐻𝑠+1/2−𝜀(R𝑛) for 𝜀 > 0 (see [10]).

With {(𝜑𝑘, 𝜆𝑘)}∞𝑘=1, solutions of (2.8), and the Mittag–Leffler functions 𝐸𝛼,𝜇 : C → C, given by

𝐸𝛼,𝜇(𝑧) :=
∞∑︁

𝑘=0

𝑧𝑘

Γ(𝛼𝑘 + 𝜇)
, (2.9)

for each 𝛼 > 0 and 𝜇 ∈ R, we define the operators

𝐸𝛼(𝑡)𝑣 :=
∑︁

𝑘

𝐸𝛼,1(−𝜆𝑘𝑡
𝛼)𝜑𝑘(𝑣, 𝜑𝑘)𝐿2(Ω), (2.10)

and
𝐹𝛼(𝑡)𝑣 :=

∑︁
𝑘

𝑡𝛼−1𝐸𝛼,𝛼(−𝜆𝑘𝑡
𝛼)𝜑𝑘(𝑣, 𝜑𝑘)𝐿2(Ω), (2.11)

for every 𝑣 ∈ 𝐿2(Ω). Following the theory for the linear case (see for instance [3]), the solution of (2.1) should,
at least formally, satisfy the integral equation

𝑢(𝑡) = 𝐸𝛼
(︀
𝜀2𝑡
)︀
𝑣 +

∫︁ 𝑡

0

𝐹𝛼
(︀
𝜀2(𝑡− 𝑠)

)︀
𝑔(𝑢(𝑠)) d𝑠. (2.12)

We say that 𝑢 is a mild solution of problem (1.4), if 𝑢 is a solution of equation (2.12) and in this case, we use
the notation 𝑢(𝑡) =: 𝑀(𝑣, 𝑔).

For technical purposes we define the interpolated norm

‖𝑤‖𝜃,𝑠 :=

(︃∑︁
𝑘

𝜆𝜃
𝑘(𝑤, 𝜑𝑘)2𝐿2(Ω)

)︃ 1
2

. (2.13)

It can be easily verified that ‖𝑤‖0,𝑠 = ‖𝑤‖𝐿2(Ω), ‖𝑤‖1,𝑠 = |𝑤|𝐻𝑠(R𝑛), and ‖𝑤‖2,𝑠 = ‖(−∆)𝑠𝑤‖𝐿2(Ω). Additionally,
we denote 𝐻̇𝜃(Ω) ⊂ 𝐻−𝑠(Ω), 𝜃 ≥ −1, the space induced by the norm (2.13).

The following two lemmas provide helpful estimates for the operators (2.10) and (2.11).

Lemma 2.2. Consider 𝑡 > 0, then we have

‖𝐸𝛼(𝑡)𝑣‖𝑝,𝑠 ≤ 𝐶𝑡−𝛼(𝑝−𝑞)/2‖𝑣‖𝑞,𝑠, if 0 ≤ 𝑝− 𝑞 ≤ 2, (2.14)

‖𝐹𝛼(𝑡)𝑣‖𝑝,𝑠 ≤ 𝐶𝑡−1+𝛼(1+(𝑞−𝑝)/2)‖𝑣‖𝑞,𝑠, if 0 ≤ 𝑝− 𝑞 ≤ 4. (2.15)

Proof. The proof is analogous of that of Lemma 2.2 from [23] (see also [9], Lem. 2.0.2). �

Lemma 2.3. If 𝑣 ∈ 𝐻̇𝑞, 𝑞 ∈ [0, 2], then for 𝑚 ≥ 1

‖𝜕𝑚
𝑡 𝐸

𝛼(𝑡)𝑣‖𝐿2(Ω) ≤ 𝐶𝑡𝑞𝛼/2−𝑚‖𝑣‖𝑞,𝑠.

Proof. The proof can be carried out as in Theorem A.2 of [24] (see also [9], Lem. 2.0.3). �
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2.3. Existence and uniqueness

For the sake of simplicity we are going to consider 𝜀2 = 1 along this section.
To obtain an existence and uniqueness result for the integral equation (2.12), we use standard fixed point

arguments adapted to the present context. Our approach follows [14,26]. For 𝑞 ∈ (0, 1] and 𝜏 > 0, we introduce
the space,

V𝑞
𝜏 :=

{︀
𝑤 ∈ 𝐶([0, 𝜏 ], 𝐿2(Ω)) ∩ 𝐶1((0, 𝜏 ], 𝐿2(Ω)) such that ‖𝑤‖V𝑞

𝜏
<∞

}︀
where ‖𝑤‖V𝑞

𝜏
is defined as

‖𝑤‖V𝑞
𝜏

:= sup
𝑡∈[0,𝜏 ]

‖𝑤(𝑡)‖𝐿2(Ω) + sup
𝑡∈[0,𝜏 ]

𝑡(1−𝑞)𝛼/2|𝑤(𝑡)|𝐻𝑠(R𝑛) + sup
𝑡∈[0,𝜏 ]

𝑡1−𝑞𝛼/2‖𝜕𝑡𝑤(𝑡)‖𝐿2(Ω).

The inclusion V𝑞
𝜏 ⊂ V𝑞′

𝜏 , for 𝑞′ < 𝑞, follows immediately from the definition, while the fact that V𝑞
𝜏 is a Banach

space can be proved by means of standard arguments. In the sequel, the parameter 𝑞 plays a role in connection
with the regularity of the initial datum 𝑣. In particular, if ‖𝑣‖𝑞,𝑠 <∞ for some positive 𝑞, we show below that
𝜕𝑡𝑢 ∈ 𝐿1

(︀
(0, 𝑇 ), 𝐿2(Ω)

)︀
. This condition on 𝜕𝑡𝑢 is important for the analytical treatment of the numerical error

and a fundamental assumption for a right definition of the Caputo operator (1.2).

Remark 2.4. It is important to observe that we necessarily need 𝑣 ∈ 𝐻̇𝑞(Ω) for some positive 𝑞. Otherwise, the
fractional derivative in time could not be well defined for solutions of problem (1.4). In fact, even considering
a simpler problem, taking 𝑓 ≡ 0 in (1.4), it is possible to construct a function 𝑣 ∈ 𝐿2(Ω) in such a way
that 𝑣 ̸∈ 𝐻̇𝑞(Ω) for all 𝑞 > 0 and, for that initial datum, the solution 𝑢 ̸∈ 𝑊 1,1

(︀
(0, 𝑇 ), 𝐿2(Ω)

)︀
. We refer to

Remark 2.1.5 of [9] for details.

The following is a local existence result.

Theorem 2.5. Suppose that ‖𝑣‖𝑞,𝑠 ≤ 𝑅0 for some 𝑅0 > 0 and 𝑞 ∈ (0, 1]. Then, there exist 𝜏 > 0 small enough,
such that equation (2.12) has a unique solution 𝑢 ∈ V𝑞

𝜏 .

Proof. First, we define the operator 𝒮(𝑢)

𝒮(𝑢)(𝑡) := 𝐸𝛼(𝑡)𝑣 +
∫︁ 𝑡

0

𝐹𝛼(𝑡− 𝑠)𝑔(𝑢(𝑠)) d𝑠, (2.16)

and 𝐵𝑅 =
{︀
𝑤 ∈ V𝑞

𝜏 such that ‖𝑤‖V𝑞
𝜏
≤ 𝑅, and 𝑤(0) ≡ 𝑣

}︀
. It can be easily verified that 𝐵𝑅 ⊂ V𝑞

𝜏 is a closed
set. Our goal is to show that there are parameters 𝜏 > 0 and 𝑅 > 0, in such a way that we can apply Banach’s
fixed point theorem. That is, we look for 𝜏 and 𝑅, such that 𝒮 maps 𝐵𝑅 into itself, and results in a contraction
over 𝐵𝑅.

Indeed, observing first that 𝒮(𝑢)(0) ≡ 𝑣 for all 𝑢 ∈ V𝑞
𝜏 , then the condition 𝑢(0) ≡ 𝑣 is satisfied for every output

of 𝒮. Furthermore, by means of Lemma A.1, it can be seen that 𝒮(𝑢)(𝑡) ∈ 𝐶
(︀
[0, 𝜏 ], 𝐿2(Ω)

)︀
∩𝐶1

(︀
(0, 𝜏 ], 𝐿2(Ω)

)︀
.

Suppose now 𝑢 ∈ 𝐵𝑅, from (2.16), Lemma 2.2 and the definition of 𝑔, we have

𝑡(1−𝑞)𝛼/2|𝒮(𝑢)(𝑡)|𝐻𝑠(R𝑛) ≤ 𝑡(1−𝑞)𝛼/2|𝐸𝛼(𝑡)𝑣|𝐻𝑠(R𝑛)

+ 𝑡(1−𝑞)𝛼/2

∫︁ 𝑡

0

|𝐹𝛼(𝑡− 𝑠)𝑔(𝑢(𝑠))|𝐻𝑠(R𝑛) d𝑠 ≤ 𝐶‖𝑣‖𝑞,𝑠

+ 𝐶𝑡(1−𝑞)𝛼/2

∫︁ 𝑡

0

(𝑡− 𝑠)𝛼/2−1‖𝑔(𝑢(𝑠))‖𝐿2(Ω) d𝑠,

using the boundedness of 𝑔 and computing the resulting integral, together with the fact 𝑡 < 𝜏 , we get

𝑡(1−𝑞)𝛼/2|𝒮(𝑢)(𝑡)|𝐻𝑠(R𝑛) ≤ 𝐶𝑅0 + 𝐶𝜏𝛼. (2.17)
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With the same idea we can obtain
‖𝒮(𝑢)(𝑡)‖𝐿2(Ω) ≤ 𝐶𝑅0 + 𝐶𝜏𝛼. (2.18)

On the other hand, by means of Lemma A.1, we have

𝜕𝑡

(︂∫︁ 𝑡

0

𝐹𝛼(𝑡− 𝑠)𝑔(𝑢(𝑠)) d𝑠
)︂

= 𝜕𝑡

(︂∫︁ 𝑡

0

𝐹𝛼(𝑠)𝑔(𝑢(𝑡− 𝑠)) d𝑠
)︂

(2.19)

= 𝐹𝛼(𝑡)𝑔(𝑣) +
∫︁ 𝑡

0

𝐹𝛼(𝑠)𝑔′(𝑢(𝑡− 𝑠))𝜕𝑡𝑢(𝑡− 𝑠) d𝑠,

and we can write

𝑡1−𝑞𝛼/2‖𝜕𝑡𝒮(𝑢)(𝑡)‖𝐿2(Ω) ≤ 𝑡1−𝑞𝛼/2‖𝜕𝑡𝐸
𝛼(𝑡)𝑣‖𝐿2(Ω) + 𝑡1−𝑞𝛼/2‖𝐹𝛼(𝑡)𝑔(𝑣)‖𝐿2(Ω)

+ 𝑡1−𝑞𝛼/2

∫︁ 𝑡

0

‖𝐹𝛼(𝑠)𝑔′(𝑢(𝑡− 𝑠))𝜕𝑡𝑢(𝑡− 𝑠)‖𝐿2(Ω) d𝑠

≤ 𝐶𝑅0 + 𝐶𝑅𝑡1−𝑞𝛼/2

∫︁ 𝑡

0

𝑠𝛼−1(𝑡− 𝑠)𝑞𝛼/2−1 d𝑠

where we have applied Lemmas 2.3 and 2.2, the fact that 𝑡1−𝑞𝛼/2‖𝜕𝑡𝑢(𝑡)‖𝐿2(Ω) ≤ ‖𝑢‖V𝑞
𝜏
≤ 𝑅, and

𝑡1−𝑞𝛼/2‖𝐹𝛼(𝑡)𝑔(𝑣)‖𝐿2(Ω) ≤ 𝜏 (1−𝑞/2)𝛼‖𝑣‖𝐿2(Ω). The integral in the second term can be estimated in terms of
the beta function 𝐵(𝛼, 𝑞𝛼/2). Indeed, making the change of variables 𝑠/𝑡 = 𝑟, we obtain

𝑡1−𝑞𝛼/2‖𝜕𝑡𝒮(𝑢)(𝑡)‖𝐿2(Ω) ≤ 𝐶𝑅0 + 𝐶𝑅𝑡𝛼
∫︁ 1

0

𝑟𝛼−1(1− 𝑟)𝑞𝛼/2−1 d𝑟 (2.20)

≤ 𝐶𝑅0 + 𝐶𝑅𝐵(𝛼, 𝑞𝛼/2)𝜏𝛼.

Combining (2.17), (2.18) and (2.20), we have

‖𝒮(𝑢)‖V𝑞
𝜏
≤ 𝐶𝑅0 + 𝐶𝑅𝜏𝛼,

where 𝐶 = 𝐶(𝛼). Then, fixing 𝑅 = 2𝐶𝑅0, we can choose 𝜏 > 0 small enough to satisfy the inequality ‖𝒮(𝑢)‖V𝑞
𝜏
<

𝑅. Hence, for this 𝜏 , 𝒮 maps 𝐵𝑅 into itself.
Now we want to see that 𝒮 is a contraction over 𝐵𝑅. Indeed, let 𝑢 and 𝑤 ∈ 𝐵𝑅, using |𝑔′| ≤ 𝐵 and Lemma 2.2,

we have

𝑡(1−𝑞)𝛼/2|𝒮(𝑢)(𝑡)− 𝒮(𝑤)(𝑡)|𝐻𝑠(R𝑛) ≤ 𝐶𝑡(1−𝑞)𝛼/2

∫︁ 𝑡

0

(𝑡− 𝑠)𝛼/2−1‖𝑔(𝑢(𝑠))− 𝑔(𝑤(𝑠))‖𝐿2(Ω) d𝑠 (2.21)

≤ 𝐶𝐵𝑡(1−𝑞)𝛼/2

∫︁ 𝑡

0

(𝑡− 𝑠)𝛼/2−1‖𝑢(𝑠)− 𝑤(𝑠)‖𝐿2(Ω) d𝑠

≤ ‖𝑢− 𝑤‖V𝑞
𝜏
𝐶𝐵𝑡(1−𝑞)𝛼/2

∫︁ 𝑡

0

(𝑡− 𝑠)𝛼/2−1 d𝑠

≤ 𝐶𝑡(2−𝑞)𝛼‖𝑢− 𝑤‖V𝑞
𝜏
≤ 𝐶𝜏𝛼‖𝑢− 𝑤‖V𝑞

𝜏
.

With similar arguments it can be seen that

‖𝒮(𝑢)(𝑡)− 𝒮(𝑤)(𝑡)‖𝐿2(Ω) ≤ 𝐶𝜏𝛼‖𝑢− 𝑤‖V𝑞
𝜏
. (2.22)

Recalling the equality (2.19), we have that

𝑡1−𝑞𝛼/2‖𝜕𝑡

(︀
𝒮(𝑢)(𝑡)− 𝒮(𝑤)(𝑡)

)︀
‖𝐿2(Ω) ≤ 𝑡1−𝑞𝛼/2‖𝐹𝛼(𝑡) (𝑢(0)− 𝑤(0)) ‖𝐿2(Ω)

+ 𝑡1−𝑞𝛼/2𝐶

∫︁ 𝑡

0

𝑠𝛼−1‖𝑔′(𝑢(𝑡− 𝑠))𝜕𝑡𝑢(𝑡− 𝑠)− 𝑔′(𝑤(𝑡− 𝑠))𝜕𝑡𝑤(𝑡− 𝑠)‖𝐿2(Ω) d𝑠.
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Using the identity
𝑔′(𝑢)𝜕𝑡𝑢− 𝑔′(𝑤)𝜕𝑡𝑤 = 𝑔′(𝑢)(𝜕𝑡𝑢− 𝜕𝑡𝑤)− (𝑔′(𝑢)− 𝑔′(𝑤))𝜕𝑡𝑤,

and the fact that 𝑢(0) ≡ 𝑤(0) ≡ 𝑣, 𝑡1−𝑞𝛼/2‖𝜕𝑡𝑤(𝑡)‖𝐿2(Ω) ≤ 𝑅, |𝑔′|, |𝑔′′| ≤ 𝐵, we can write

𝑡1−𝑞𝛼/2‖𝜕𝑡 (𝒮(𝑢)(𝑡)− 𝒮(𝑤)(𝑡)) ‖𝐿2(Ω) ≤ 𝑡1−𝑞𝛼/2𝐶𝐵

∫︁ 𝑡

0

𝑠𝛼−1‖𝜕𝑡 (𝑢(𝑡− 𝑠)− 𝑤(𝑡− 𝑠)) ‖𝐿2(Ω) d𝑠 (2.23)

+ 𝐶𝐵𝑅𝑡1−𝑞𝛼/2

∫︁ 𝑡

0

𝑠𝛼−1(𝑡− 𝑠)𝛼/2−1‖𝑢(𝑡− 𝑠)− 𝑤(𝑡− 𝑠)‖𝐿2(Ω) d𝑠

≤ 𝐶(1 +𝑅)‖𝑢− 𝑤‖V𝑞
𝜏
𝑡1−𝑞𝛼/2

∫︁ 𝑡

0

𝑠𝛼−1(𝑡− 𝑠)𝑞𝛼/2−1 d𝑠

≤ 𝐶𝐵(𝛼, 𝑞𝛼/2)𝜏𝛼‖𝑢− 𝑤‖V𝑞
𝜏
,

where the integrals in the last inequality have been estimated in terms of the beta function, as in (2.20), and
𝐶 = 𝐶(𝑅).

Finally, combining (2.21)–(2.23), we can conclude that

‖𝒮(𝑢)(𝑡)− 𝒮(𝑤)(𝑡)‖V𝑞
𝜏
≤ 𝐶𝜏𝛼‖𝑢− 𝑤‖V𝑞

𝜏
,

with 𝐶 = 𝐶(𝛼,𝑅), and it is clear that we can choose 𝜏 small enough, such that 𝒮 results in a contraction over
𝐵𝑅. Hence, for that 𝜏 , a unique solution for problem (1.4) in the interval [0, 𝜏 ]. �

Now we need to derive an a priori estimate for the time derivative of the solution. To this end, we first recall
the following Gronwall type inequality.

Lemma 2.6. Let the function 𝜙(𝑡) ≥ 0 be continuous for 0 < 𝑡 ≤ 𝑇 . Then, if

𝜙(𝑡) ≤ 𝐴𝑡−1+𝛼 +𝐵

∫︁ 𝑡

0

(𝑡− 𝑠)−1+𝛽𝜙(𝑠) d𝑠 0 < 𝑡 ≤ 𝑇

for some constants 𝐴, 𝐵 ≥ 0 and 𝛼, 𝛽 > 0, there exists a constant 𝐶 = 𝐶(𝐵, 𝑇, 𝛼, 𝛽) such that

𝜙(𝑡) ≤ 𝐶𝐴𝑡−1+𝛼. (2.24)

Proof. See for instance Lemma 6.3 of [17]. �

Now, we are ready to state the following result.

Lemma 2.7. Let 𝑢(𝑡) = 𝑀(𝑣, 𝑔)(𝑡) with 𝑣 ∈ 𝐻̇𝑞(Ω) and 𝑡 ∈ [0, 𝑇 ], there exists a constant 𝐶 = 𝐶(𝛼, 𝑇 ) such
that

‖𝜕𝑡𝑢(𝑡)‖𝐿2(Ω) ≤ 𝐶𝑡𝛼/2−1. (2.25)

Proof. For ℎ > 0 we can write

𝑢(𝑡+ ℎ)− 𝑢(𝑡) = (𝐸𝛼(𝑡+ ℎ)− 𝐸𝛼(𝑡)) 𝑣 +
∫︁ 𝑡+ℎ

0

𝐹𝛼(𝑡+ ℎ− 𝑠)𝑔(𝑢(𝑠)) d𝑠−
∫︁ 𝑡

0

𝐹𝛼(𝑡− 𝑠)𝑔(𝑢(𝑠)) d𝑠 (2.26)

= (𝐸𝛼(𝑡+ ℎ)− 𝐸𝛼(𝑡)) 𝑣 +
∫︁ 𝑡+ℎ

0

𝐹𝛼(𝑠)𝑔(𝑢(𝑡+ ℎ− 𝑠)) d𝑠−
∫︁ 𝑡

0

𝐹𝛼(𝑠)𝑔(𝑢(𝑡− 𝑠)) d𝑠

= (𝐸𝛼(𝑡+ ℎ)− 𝐸𝛼(𝑡)) 𝑣 +
∫︁ 𝑡+ℎ

𝑡

𝐹𝛼(𝑠)𝑔(𝑢(𝑡+ ℎ− 𝑠)) d𝑠

+
∫︁ 𝑡

0

𝐹𝛼(𝑠) (𝑔(𝑢(𝑡+ ℎ− 𝑠))− 𝑔(𝑢(𝑡− 𝑠))) d𝑠
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= (𝐸𝛼(𝑡+ ℎ)− 𝐸𝛼(𝑡)) 𝑣 +
∫︁ 𝑡+ℎ

𝑡

𝐹𝛼(𝑠)𝑔(𝑢(𝑡+ ℎ− 𝑠)) d𝑠

+
∫︁ 𝑡

0

𝐹𝛼(𝑡− 𝑠) (𝑔(𝑢(𝑠+ ℎ))− 𝑔(𝑢(𝑠))) d𝑠.

Now, considering ℎ small enough, and taking norms at both sides of the equality; using Lemma 2.3 in the
first term on the left side; estimation (2.15), and estimation |𝑔| < 𝐵 in the second term and the same idea in
the last one, we obtain

‖𝑢(𝑡+ ℎ)− 𝑢(𝑡)‖𝐿2(Ω) ≤ 𝐶

(︃
ℎ𝑡𝑞𝛼/2−1 +

∫︁ 𝑡+ℎ

𝑡

𝑠𝛼−1 d𝑠+
∫︁ 𝑡

0

(𝑡− 𝑠)𝛼−1‖𝑢(𝑠+ ℎ)− 𝑢(𝑠)‖𝐿2(Ω) d𝑠

)︃

≤ 𝐶(𝑇 )
(︂
ℎ𝑡𝑞𝛼/2−1 +

∫︁ 𝑡

0

(𝑡− 𝑠)𝛼−1‖𝑢(𝑠+ ℎ)− 𝑢(𝑠)‖𝐿2(Ω) d𝑠
)︂
. (2.27)

Finally, applying Lemma 2.6 we derive (2.25). �

Combining the former results, we are now able to prove the global existence of the solution.

Theorem 2.8. Under the hypotheses of Theorem 2.5, let 𝑢 be the solution of (2.16) defined in [0, 𝜏 ] and consider
fixed numbers 𝑇 and 𝜏0, such that 𝑇 > 𝜏 > 𝑡0. Then, there exists a constant 𝐶 = 𝐶(𝑇, 𝜏0) > 0 such that if
0 < 𝛿 ≤ 𝐶, 𝑢 can be extended to [0, 𝜏 + 𝛿] as a solution of (2.16).

Proof. We are going to consider the space V𝑞
𝜏+𝛿, for some 0 < 𝛿 < 1, and 𝐵𝑅 ⊂ V𝑞

𝜏+𝛿, defined as 𝐵𝑅 :={︁
𝑤 ∈ V𝑞

𝜏+𝛿 such that 𝑤(𝑡) ≡ 𝑢(𝑡)∀𝑡 ∈ [0, 𝜏 ], and ‖𝑤‖V𝑞
𝜏+𝛿

≤ 𝑅
}︁

, where 𝑢 is the solution of (2.16) over [0, 𝜏 ].

Observe that, with this definition, 𝐵𝑅 is a closed subset of V𝑞
𝜏+𝛿. Our goal is, as in the proof of Theorem 2.5,

to apply Banach’s fixed point Theorem, showing that there exist 𝛿 > 0 and 𝑅, such that 𝒮 is a contraction over
𝐵𝑅, and maps 𝐵𝑅 into itself.

Suppose 𝑢̃ ∈ 𝐵𝑅, proceeding similarly as in (2.17), using the boundedness of 𝑔, we can obtain

𝑡(1−𝑞)𝛼/2|𝒮(̃︀𝑢)|𝐻𝑠(R𝑛) ≤ 𝐶𝑅0 + 𝐶(𝜏 + 𝛿)𝛼 ≤ 𝐶(𝑅0 + 𝜏𝛼 + 𝛿𝛼) (2.28)
≤ 𝐶(𝑅0, 𝑇 ) + 𝛿𝛼.

With the same idea we obtain
‖𝒮(̃︀𝑢)‖𝐿2(Ω) ≤ 𝐶(𝑅0, 𝑇 ) + 𝛿𝛼. (2.29)

Also, applying the same arguments used to arrive to (2.20), along with the fact that ̃︀𝑢(𝑠) = 𝑢(𝑠) for all
𝑠 ∈ [0, 𝜏 ] together with the fact that 𝑡 > 𝜏 , we get

𝑡1−𝑞𝛼/2‖𝜕𝑡𝒮(̃︀𝑢)‖𝐿2(Ω) = 𝑡1−𝑞𝛼/2‖𝜕𝑡𝐸
𝛼(𝑡)𝑣 + 𝐹𝛼(𝑡)𝑔(𝑣) +

∫︁ 𝑡

0

𝐹𝛼(𝑠)𝑔(̃︀𝑢(𝑡− 𝑠))𝜕𝑡̃︀𝑢(𝑡− 𝑠) d𝑠‖𝐿2(Ω) (2.30)

≤ 𝐶(𝑇 )𝑅0 + 𝑡1−𝑞𝛼/2‖
∫︁ 𝑡

0

𝐹𝛼(𝑡− 𝑠)𝑔(̃︀𝑢(𝑠))𝜕𝑡̃︀𝑢(𝑠) d𝑠‖𝐿2(Ω)

≤ 𝐶(𝑇 )𝑅0 + 𝑡1−𝑞𝛼/2‖
∫︁ 𝜏

0

𝐹𝛼(𝑡− 𝑠)𝑔(𝑢(𝑠))𝜕𝑡𝑢(𝑠) d𝑠+
∫︁ 𝑡

𝜏

𝐹𝛼(𝑡− 𝑠)𝑔(̃︀𝑢(𝑠))𝜕𝑡̃︀𝑢(𝑠) d𝑠‖𝐿2(Ω)

≤ 𝐶(𝑇 )𝑅0 + 𝐶𝐵𝑡1−𝑞𝛼/2

∫︁ 𝜏

0

(𝑡− 𝑠)𝛼−1𝑠𝑞𝛼/2−1 d𝑠+ 𝐶𝐵𝑅𝑡1−𝑞𝛼/2

∫︁ 𝑡

𝜏

(𝑡− 𝑠)𝛼−1𝑠𝑞𝛼/2−1 d𝑠

= 𝐶(𝑅0, 𝑇 ) + (i) + (ii),
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where in the last inequality we have used (2.25). Now, making the change of variables 𝑠/𝑡 = 𝑟, we have

(i) ≤ 𝐶𝑡𝛼
∫︁ 𝜏/𝑡

0

(1− 𝑟)𝛼−1𝑟𝑞𝛼/2−1 d𝑟 ≤ 𝐶(𝜏 + 𝛿)𝛼

∫︁ 1

0

(1− 𝑟)𝛼−1𝑟𝑞𝛼/2−1 d𝑟

≤ 𝐶𝜏𝛼 + 𝐶𝛿𝛼 ≤ 𝐶(𝑇 ) + 𝐶𝛿𝛼,

and

(ii) ≤ 𝐶𝑅𝑡𝛼
∫︁ 1

𝜏/𝑡

(1− 𝑟)𝛼−1𝑟𝑞𝛼/2−1 d𝑟 ≤ 𝐶𝑅𝑡𝛼(𝜏/𝑡)𝑞𝛼/2−1

∫︁ 1

𝜏/𝑡

(1− 𝑟)𝛼−1 d𝑟

≤ 𝐶𝑅𝑡𝛼(𝜏/𝑡)𝑞𝛼/2−1(1− 𝜏/𝑡)𝛼 ≤ 𝐶𝑅(𝑡− 𝜏)𝛼 ≤ 𝐶𝑅𝛿𝛼,

where we have estimated (𝜏/𝑡)𝑞𝛼/2−1 < 𝐶(𝜏0) using the fact that 𝑡 ≥ 𝜏 > 𝜏0 > 0.
Applying this estimation to (2.30), we obtain

𝑡1−𝑞𝛼/2‖𝜕𝑡𝒮(̃︀𝑢)‖𝐿2(Ω) ≤ 𝐶(𝑅0, 𝑇 ) + 𝐶𝑅𝛿𝛼, (2.31)

and combining (2.31) with (2.28) and (2.29), we obtain

‖𝒮(̃︀𝑢)‖V𝑞
𝜏+𝛿

≤ 𝐶(𝑅0, 𝑇 ) + 𝐶𝑅𝛿𝛼.

If we choose 𝑅 = 2𝐶(𝑅0, 𝑇 ), taking 𝛿𝛼 ≤ 1/2𝐶 we have ‖𝒮(̃︀𝑢)‖V𝑞
𝜏+𝛿

≤ 𝑅.
Finally, we only need to show that 𝒮 is a contraction on 𝐵𝑅. Consider ̃︀𝑢 and 𝑤 ∈ V𝑞

𝜏+𝛿, proceeding as
in (2.21), and taking advantage of the fact that ̃︀𝑢(𝑠) = 𝑤(𝑠) = 𝑢(𝑠) for all 𝑠 ∈ [0, 𝜏 ], we can estimate

𝑡(1−𝑞)𝛼/2|𝒮(̃︀𝑢)(𝑡)− 𝒮(𝑤)(𝑡)|𝐻𝑠(R𝑛) ≤ 𝐶𝑡(1−𝑞)𝛼/2

∫︁ 𝑡

𝜏

(𝑡− 𝑠)𝛼/2−1‖𝑔(̃︀𝑢(𝑠))− 𝑔(𝑤(𝑠))‖𝐿2(Ω) d𝑠

≤ 𝐶𝐵𝑡(1−𝑞)𝛼/2

∫︁ 𝑡

𝜏

(𝑡− 𝑠)𝛼/2−1‖̃︀𝑢(𝑠)− 𝑤(𝑠)‖𝐿2(Ω) d𝑠

≤ 𝐶𝐵‖̃︀𝑢− 𝑤‖V𝑞
𝜏+𝛿

𝑡(2−𝑞)𝛼/2

∫︁ 1

𝜏/𝑡

(1− 𝑟)𝛼/2−1 d𝑟

≤ 𝐶‖̃︀𝑢− 𝑤‖V𝑞
𝜏+𝛿

𝑡−𝑞𝛼/2𝑡𝛼/2(1− 𝜏/𝑡)𝛼/2 ≤ 𝐶𝛿𝛼/2‖̃︀𝑢− 𝑤‖V𝑞
𝜏+𝛿

, (2.32)

where in the last step we use the bound 𝑡−𝑞𝛼/2 ≤ 𝐶(𝜏0), with 𝜏 > 𝜏0 > 0.
Also, arguing as in (2.23), we have

𝑡1−𝑞𝛼/2‖𝜕𝑡 (𝒮(̃︀𝑢)(𝑡)− 𝒮(𝑤)(𝑡)) ‖𝐿2(Ω) ≤ 𝑡1−𝑞𝛼/2𝐶𝐵

∫︁ 𝑡

𝜏

(𝑡− 𝑠)𝛼−1‖𝜕𝑡 (̃︀𝑢(𝑠)− 𝑤(𝑠)) ‖𝐿2(Ω) d𝑠

+ 𝐶𝐵𝑅𝑡1−𝑞𝛼/2

∫︁ 𝑡

𝜏

(𝑡− 𝑠)𝛼−1𝑠𝑞𝛼/2−1‖̃︀𝑢(𝑠)− 𝑤(𝑠)‖𝐿2(Ω) d𝑠

≤ 𝐶(𝑅+ 1)‖̃︀𝑢− 𝑤‖V𝑞
𝜏+𝛿

𝑡1−𝑞𝛼/2

∫︁ 𝑡

𝜏

(𝑡− 𝑠)𝛼−1𝑠𝑞𝛼/2−1 d𝑠

≤ 𝐶(𝑅+ 1)‖̃︀𝑢− 𝑤‖V𝑞
𝜏+𝛿

𝑡𝛼
∫︁ 1

𝜏/𝑡

(1− 𝑟)𝛼−1𝑟𝑞𝛼/2−1 d𝑟 (2.33)

with the same arguments used to bound (ii) we arrive to

≤ 𝐶(𝑅+ 1)𝛿𝛼‖̃︀𝑢− 𝑤‖V𝑞
𝜏+𝛿

.

Then, we can assert that ‖𝒮(̃︀𝑢) − 𝒮(𝑤)‖V𝑞
𝜏+𝛿

≤ 𝐶𝛿𝛼(𝑅 + 1)‖̃︀𝑢 − 𝑤‖V𝑞
𝜏+𝛿

, and we can choose 𝛿 such that 𝒮
results in a contraction. Since 𝑅 depends on 𝑇 and 𝑅0, the statement of the theorem follows. �
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Notice, in previous theorem, that 𝛿 does not depend on 𝜏 . As a consequence, we have proved that equa-
tion (2.12) has a unique solution in V𝑞

𝑇 . Moreover, in view of the regularity of functions belonging to the space
V𝑞

𝑇 , we can assert that a mild solution is also a weak solution.

3. Numerical scheme

3.1. Semi-discrete scheme

Let 𝒯ℎ be a shape regular and quasi-uniform admissible triangulation of Ω. With 𝑋ℎ ⊂ ̃︀𝐻𝑠(Ω) we denote the
continuous piecewise linear finite element space associated with 𝒯ℎ, that is,

𝑋ℎ :=
{︁
𝑢ℎ ∈ ̃︀𝐻𝑠(Ω) ∩ 𝐶0(Ω̄) : 𝑢ℎ

⃒⃒
𝑇
∈ 𝒫1 ∀𝑇 ∈ 𝒯ℎ

}︁
.

Then, semi-discrete problem formulation reads: find 𝑢ℎ : [0, 𝑇 ] → 𝑋ℎ such that{︃(︁
C𝜕𝛼

𝑡 𝑢ℎ, 𝑤
)︁

+ ⟨𝑢ℎ, 𝑤⟩𝐻𝑠(R𝑛) = (𝑓(𝑢ℎ), 𝑤) , ∀𝑤 ∈ 𝑋ℎ,

𝑢ℎ(0) = 𝑣ℎ.
(3.1)

Here, 𝑣ℎ = 𝑃ℎ𝑣, and 𝑃ℎ denotes the 𝐿2(Ω) projection on 𝑋ℎ. Also, defining the discrete fractional Laplacian
𝐴ℎ : 𝑋ℎ → 𝑋ℎ as the unique operator that satisfies (𝐴ℎ𝑤, 𝑣) = ⟨𝑤, 𝑣⟩𝐻𝑠(R𝑛) , for all 𝑤, 𝑣 ∈ 𝑋ℎ, we may
rewrite (3.1) as {︂

C𝜕𝛼
𝑡 𝑢ℎ + 𝜀2𝐴ℎ𝑢ℎ = 𝑃ℎ𝑓(𝑢ℎ),

𝑢ℎ(0) = 𝑣ℎ.
(3.2)

We also define the discrete versions of 𝐸𝛼 and 𝐹𝛼. In order to do this, consider an orthonormal basis of 𝑋ℎ,
{𝜑ℎ,1, . . . , 𝜑ℎ,𝑁} ⊂ 𝑋ℎ and define

𝐸𝛼
ℎ (𝑡)𝑣 :=

𝑁∑︁
𝑘=1

𝐸𝛼,1(−𝜆ℎ,𝑘𝑡
𝛼)𝜑ℎ,𝑘(𝑣, 𝜑ℎ,𝑘)𝐿2(Ω), (3.3)

and

𝐹𝛼
ℎ (𝑡)𝑣 :=

𝑁∑︁
𝑘=1

𝑡𝛼−1𝐸𝛼,𝛼(−𝜆ℎ,𝑘𝑡
𝛼)𝜑ℎ,𝑘(𝑣, 𝜑ℎ,𝑘)𝐿2(Ω). (3.4)

3.2. Discretizing the Caputo derivative

In order to set a fully discrete scheme, we need to discretize the Caputo operator. This can be done by means
of the well known relation between the Caputo derivative C𝜕𝛼

𝑡 , and the Riemann–Liouville operator RL𝜕𝛼
𝑡 , that

reads
C𝜕𝛼

𝑡 𝑢(𝑡) = RL𝜕𝛼
𝑡 (𝑢(𝑡)− 𝑢(0)) , (3.5)

for 0 < 𝛼 < 1 (see for instance [16], Thm. 3.1) that holds for a smooth enough function 𝑢. Applying (3.5) to
problem (3.2), we can reformulate it in terms of the Riemann–Liouville operator as follow,{︂

RL𝜕𝛼
𝑡 𝑢ℎ + 𝜀2𝐴ℎ𝑢ℎ = RL𝜕𝛼

𝑡 𝑣ℎ + 𝑃ℎ𝑓(𝑢ℎ),
𝑢ℎ(0) = 𝑣ℎ.

(3.6)

The advantage here is that the R–L derivative can be approximated by means of a convolution quadrature
rule. That is, dividing the interval [0, 𝑇 ] uniformly with time step 𝜏 = 𝑇/𝑁 , and letting 𝑡𝑛 = 𝑛𝜏 , a discrete
estimation 𝜕

𝛼

𝜏 of RL𝜕𝛼
𝑡 can be defined as

𝜕
𝛼

𝜏 𝑢(𝑡𝑛) =
𝑛∑︁

𝑗=0

𝜔𝑗𝑢(𝑡𝑛 − 𝑗𝜏). (3.7)
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Here, the weights {𝜔𝑗}𝑗∈N are obtained as the coefficients of the power series expansion
(︁

1−𝜉
𝜏

)︁𝛼

=
∑︀∞

𝑗=0 𝜔𝑗𝜉
𝑗 .

Fast Fourier Transform can be used for an efficient computation of {𝜔𝑗}𝑗∈N0
(see [32], Sect. 7.5). Alternatively,

a useful recursive expression is also given in [32],

𝜔0 = 𝜏−𝛼, 𝜔𝑗 =
(︂

1− 𝛼+ 1
𝑗

)︂
𝜔𝑗−1, ∀𝑗 > 0. (3.8)

It is not our intention to give an exhaustive description of this method and we refer the reader to [3, 24]
(see also [29, 30] for further details). An advantage of convolution quadratures is that error estimates can be
delivered without the assumption of excessively restrictive regularity properties on the solution. This is a fact
of paramount importance as one can learn from [36].

The following result ([29], Thm. 5.2) will play a central role in the error estimation below.

Lemma 3.1. Let 𝐾 be a complex valued or operator valued function which is analytic in a sector Σ𝜃 :=
{𝑧 ∈ C : | arg 𝑧| ≤ 𝜃}, with 𝜃 ∈ (𝜋/2, 𝜋), and bounded by ‖𝐾(𝑧)‖ ≤𝑀 |𝑧|−𝜇 ∀𝑧 ∈ Σ𝜃, for some 𝜇,𝑀 ∈ R. Then
for 𝑔(𝑡) = 𝐶𝑡𝛽−1, the operator 𝜕𝜏 satisfies

‖(𝐾(𝜕𝜏 )−𝐾(𝜕𝜏 ))𝑔(𝑡)‖ ≤
{︂
𝐶𝑡𝜇−1𝜏𝛽 , 0 < 𝛽 ≤ 1,
𝐶𝑡𝜇+𝛽−2𝜏, 𝛽 ≥ 1.

Finally, another useful property of the operator 𝜕𝜏 is the associativity. That is, let 𝐾1,𝐾2 be operators as in
Lemma 3.1, and 𝑘 an analytic function, we have

𝐾1(𝜕𝜏 )𝐾2(𝜕𝜏 ) = (𝐾1𝐾2)(𝜕𝜏 ) and 𝐾1(𝜕𝜏 )(𝑘 * 𝑔) = (𝐾1(𝜕𝜏 )𝑘) * 𝑔. (3.9)

3.3. Fully discrete scheme

Replacing the Riemann–Liouville derivative by its discrete version given by (3.7), we can formulate the fully
discrete problem as: find 𝑈𝑛

ℎ ∈ 𝑋ℎ, with 𝑛 = {1, . . . , 𝑁}, such that{︃
𝜕𝜏

𝛼
𝑈𝑛

ℎ +𝐴ℎ𝑈
𝑛
ℎ = 𝜕𝜏

𝛼
𝑣ℎ + 𝑃ℎ𝑔 (𝑈𝑛

ℎ )

𝑈0
ℎ = 𝑣ℎ.

(3.10)

For the sake of the reader’s convenience, we include a vectorial form of the fully discrete scheme. Let
{𝜙𝑖}𝑖=1,...,𝒩 be the Lagrange nodal basis that generates 𝑋ℎ. Let 𝑈𝑛 ∈ R𝒩 , 𝑛 = 0, . . . , 𝑁 be such that
𝑈𝑛

ℎ =
∑︀𝒩

𝑖=1 𝑈
𝑛
𝑖 𝜙𝑖, where 𝑈𝑛

ℎ denotes the solution of the fully discrete problem. Then, we may formulate (3.10)
in the following vectorial non-linear equation:

𝑀−1 · (𝜔0𝑀 +𝐾) · 𝑈𝑛 =

⎛⎝ 𝑛∑︁
𝑗=0

𝜔𝑗

⎞⎠𝑈0 −
𝑛∑︁

𝑗=1

𝜔𝑗𝑈
𝑛−𝑗 + 𝑔 (𝑈𝑛) ,

where 𝑀 and 𝐾 are the mass and stiffness matrices respectively. That is, 𝑀𝑖,𝑗 = (𝜙𝑖, 𝜙𝑗) and 𝐾𝑖,𝑗 =
⟨𝜙𝑖, 𝜙𝑗⟩𝐻𝑠(R𝑛).

The computation and assembly of the stiffness matrix in dimension greater than one is not a trivial task.
Nevertheless, this problem for two-dimensional domains is treated in [2], where the authors provide a short
MATLAB implementation to this end. Also we can mention [4, 25] where some clever ways to reduce the
complexity of the assembling process are analyzed.

Since (3.10) is not a linear equation, it is not clear a priori that there exist a solution. In that way, next
result gives us existence and uniqueness for problem (3.10).
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Theorem 3.2. There exist 𝜏 small enough, such that problem (3.10) has a unique solution 𝑈𝑛
ℎ ∈ 𝑋ℎ for all

𝑛 ∈ {1, . . . , 𝑛}.

Proof. Recalling that 𝜔0 = 𝜏−𝛼, dividing equation (3.10) by 𝜔0 on both sides, we obtain

(𝐼 + 𝜏𝛼𝐴ℎ)𝑈𝑛
ℎ =

⎛⎝ 𝑛∑︁
𝑗=0

̃︀𝜔𝑗

⎞⎠𝑈0
ℎ −

𝑛∑︁
𝑗=1

̃︀𝜔𝑗𝑈
𝑛−𝑗
ℎ + 𝜏𝛼𝑃ℎ𝑔 (𝑈𝑛

ℎ ) . (3.11)

Observe that, since (𝐴ℎ𝑤,𝑤) > 0 for all 𝑤 ∈ 𝑋ℎ, it is true that

‖(𝐼 + 𝜏𝛼𝐴ℎ)−1‖𝐿2(Ω) ≤ 1,

for all 𝜏 > 0. Now, suppose by induction, that we have a solution 𝑈𝑚
ℎ ∈ 𝑋ℎ for all 𝑚 < 𝑛, and define

𝑇 : 𝑋ℎ → 𝑋ℎ as

𝑇 (𝑤) = (𝐼 + 𝜏𝛼𝐴ℎ)−1

⎛⎝⎛⎝ 𝑛∑︁
𝑗=0

̃︀𝜔𝑗

⎞⎠𝑈0
ℎ −

𝑛∑︁
𝑗=1

̃︀𝜔𝑗𝑈
𝑛−𝑗
ℎ + 𝜏𝛼𝑃ℎ𝑔(𝑤)

⎞⎠ . (3.12)

Applying a fixed point argument, if 𝑇 is a contraction over 𝑋ℎ, then problem (3.10) will have a unique solution.
To this end, suppose that we have 𝑢 and 𝑤 ∈ 𝑋ℎ. Then, using |𝑔′| < 𝐵 we have

‖𝑇 (𝑢)− 𝑇 (𝑤)‖𝐿2(Ω) = ‖(𝐼 + 𝜏𝛼𝐴ℎ)−1 (𝜏𝛼𝑃ℎ(𝑔(𝑢)− 𝑔(𝑤))) ‖𝐿2(Ω)

≤ 𝜏𝛼‖𝑔(𝑢)− 𝑔(𝑤)‖𝐿2(Ω) ≤ 𝐵𝜏𝛼‖𝑢− 𝑤‖𝐿2(Ω).

Taking 𝜏 < 𝐵−𝛼, we have that 𝑇 is a contraction, and problem (3.10) has a unique solution. �

4. Error estimation

For the sake of simplicity we are going to consider 𝜀2 = 1 through this section.

4.1. Error estimates for the semidiscrete scheme

For the following linear problem{︃(︁
C𝜕𝛼

𝑡 𝑢, 𝜙
)︁

+ 𝜀2 ⟨𝑢, 𝜙⟩𝐻𝑠(R𝑛) = (𝑓, 𝜙) ∀𝜙 ∈ ̃︀𝐻𝑠(Ω),
𝑢(0) = 𝑣 in Ω,

(4.1)

where 𝑓 : [0, 𝑇 ] → 𝐿2(Ω) and the corresponding semi-discrete approximation{︃(︁
C𝜕𝛼

𝑡 𝑢ℎ, 𝑤
)︁

+ ⟨𝑢ℎ, 𝑤⟩𝐻𝑠(R𝑛) = (𝑓, 𝑤) , ∀𝑤 ∈ 𝑋ℎ,

𝑢ℎ(0) = 𝑣ℎ,
(4.2)

with 𝑣ℎ = 𝑃ℎ𝑣, we have the following two results [3].

Theorem 4.1. Let 𝑢 and 𝑢ℎ be solutions of (4.1) and (4.2) respectively with 𝑣 ∈ 𝐻̇𝑞(Ω), 𝑞 ∈ [0, 2], and right
hand side 𝑓 ≡ 0. Then it holds,

‖𝑢− 𝑢ℎ‖𝐿2(Ω) + ℎ𝛾 |𝑢− 𝑢ℎ|𝐻𝑠(R𝑛) ≤ 𝐶ℎ2𝛾𝑡−𝛼( 2−𝑞
2 )‖𝑣‖𝐿2(Ω).

where 𝐶 = 𝐶(𝑠, 𝑛) and 𝛾 = min {𝑠, 1/2− 𝜀}, with 𝜀 > 0 arbitrary small.
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Theorem 4.2. Let 𝑢 and 𝑢ℎ be as in Theorem 4.1 with𝑓 ∈ 𝐿∞([0, 𝑇 ];𝐿2(Ω)) and initial datum equal to zero.
Then, there exists a positive constant 𝐶 = 𝐶(𝑠, 𝑛) such that

‖𝑢− 𝑢ℎ‖𝐿2(Ω) ≤ 𝐶ℎ2𝛾 | log ℎ|2‖𝑓‖𝐿∞([0,𝑇 ];𝐿2(Ω)),

with 𝛾 as in Theorem 4.1.

From this, we can estimate the error for the semi-discrete scheme (3.1).

Theorem 4.3. Let 𝑢 and 𝑢ℎ be the the exact and the semi-discrete solution of (2.5) and (3.1) respectively. And
let 𝑣 ∈ 𝐻̇𝑞(Ω) with 𝑞 ∈ [0, 2] and 𝑣ℎ = 𝑃ℎ𝑣 with ‖𝑣‖𝑞,𝑠 ≤ 𝑅. Then there exist a positive constant 𝐶 = 𝐶(𝑅, 𝑇 )
such that

‖𝑢(𝑡)− 𝑢ℎ(𝑡)‖𝐿2(Ω) ≤ 𝐶ℎ2𝛾(𝑡−𝛼( 2−𝑞
2 ) + | log ℎ|2), 𝑡 ∈ (0, 𝑇 ]. (4.3)

With 𝛾 as in Theorem 4.1.

Proof. We can write the solution and its semi-discrete approximation as 𝑢 = 𝐸𝛼(𝑡)𝑣 +
∫︀ 𝑡

0
𝐹𝛼(𝑡 − 𝑠)𝑔(𝑢(𝑠)) d𝑠,

and 𝑢ℎ = 𝐸𝛼
ℎ (𝑡)𝑣ℎ +

∫︀ 𝑡

0
𝐹𝛼

ℎ (𝑡− 𝑠)𝑔(𝑢ℎ(𝑠)) d𝑠, respectively. Then, defining 𝑒 = 𝑢− 𝑢ℎ, we have

𝑒(𝑡) = (𝐸𝛼 − 𝐸𝛼
ℎ𝑃ℎ) (𝑡)𝑣 +

∫︁ 𝑡

0

𝐹𝛼
ℎ (𝑡− 𝑠)𝑃ℎ ( 𝑔(𝑢(𝑠))− 𝑔(𝑢ℎ(𝑠)) ) d𝑠

+
∫︁ 𝑡

0

(𝐹𝛼 − 𝐹𝛼
ℎ 𝑃ℎ) (𝑡− 𝑠)𝑔(𝑢(𝑠)) d𝑠.

Using Theorem 4.1 in the first term; |𝑔|, |𝑔′| ≤ 𝐵, and (2.15) in the second term; Theorem 4.2 with 𝑓 = 𝑔(𝑢)
and |𝑔| < 𝐵 in the last term, we have

‖𝑒(𝑡)‖𝐿2(Ω) ≤ 𝐶𝑅𝑡−𝛼( 2−𝑞
2 )ℎ2𝛾 + 𝐶𝐵

∫︁ 𝑡

0

(𝑡− 𝑠)𝛼−1‖𝑒(𝑠)‖𝐿2(Ω) d𝑠+ 𝐶ℎ2𝛾 | log ℎ|2.

Then, applying Lemma 2.6 we derive (4.3). �

4.2. Error estimation for the fully discrete scheme

Consider the discrete problem of find 𝑉 𝑛
ℎ ∈ 𝑋ℎ, 𝑛 ∈ {1, . . . , 𝑁}, 𝑉 0

ℎ = 0 such that

𝑛∑︁
𝑗=0

𝜔𝑗𝑉
𝑛−𝑗
ℎ = −𝐴ℎ𝑉

𝑛
ℎ + 𝑓𝑛

ℎ , (4.4)

with 𝑓𝑛
ℎ ∈ 𝑋ℎ, for all 𝑛 ∈ {1, . . . , 𝑁}. Recalling that 𝜔0 = 𝜏−𝛼, and defining 𝐸 = (𝐼 + 𝜏𝛼𝐴ℎ)−1, we can

rewrite (4.4) as

𝑉 𝑛
ℎ = 𝐸

⎛⎝ 𝑛∑︁
𝑗=1

−𝜏𝛼𝜔𝑗𝑉
𝑛−𝑗
ℎ + 𝜏𝛼𝑓𝑛

ℎ

⎞⎠ . (4.5)

If we define {̃︀𝜔𝑛}𝑛∈N as the coefficients of the series expansion of (1 − 𝜉)𝛼, from the definition of {𝜔𝑛}𝑛∈N we
have ̃︀𝜔𝑛 = 𝜏𝛼𝜔𝑛 for all 𝑛 ∈ N. And we can write 𝑉 𝑛

ℎ as a function of 𝑓𝑛
ℎ in a recursive expression

𝑉 𝑛
ℎ =

𝑛∑︁
𝑗=1

𝐸𝑛−𝑗𝑓
𝑗
ℎ, 𝑛 > 0, (4.6)
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with 𝐸𝑛 recursively defined as

𝐸0 = 𝜏𝛼𝐸, 𝐸𝑛 = 𝐸

⎛⎝𝑛−1∑︁
𝑗=0

−̃︀𝜔𝑛−𝑗𝐸𝑗

⎞⎠ . (4.7)

As we have observed in the proof of Theorem 3.2, we have

‖𝐸‖𝐿2(Ω) = ‖(𝐼 + 𝜏𝛼𝐴ℎ)−1‖𝐿2(Ω) < 1.

Then, from (4.7), and recalling that −̃︀𝜔𝑗 > 0 for 𝑗 ≥ 1, we have

‖𝐸0‖𝐿2(Ω) ≤ 𝜏𝛼, ‖𝐸𝑛‖𝐿2(Ω) ≤
𝑛−1∑︁
𝑗=0

−̃︀𝜔𝑛−𝑗‖𝐸𝑗‖𝐿2(Ω). (4.8)

Defining the sequence

𝑐0 = 1, 𝑐𝑛 =
𝑛−1∑︁
𝑗=0

−̃︀𝜔𝑛−𝑗𝑐𝑗 , (4.9)

it is possible to check that
‖𝐸𝑛‖𝐿2(Ω) ≤ 𝜏𝛼𝑐𝑛. (4.10)

In order to bound the error, it will be useful to know about the asymptotic behavior of {𝑐𝑛}𝑛∈N. This is
analyzed in the next lemma proved in Appendix A.

Lemma 4.4. Let {̃︀𝜔𝑛}𝑛∈N0
be the coefficients of the power series expansion of (1 − 𝜉)𝛼, with 𝛼 ∈ (0, 1), and

{𝑐𝑛}𝑛∈N0
the sequence recursively defined in (4.9). Then, 𝑐𝑛 ∈ 𝑂(𝑛𝛼−1).

Theorem 4.5. Let 𝑢 and 𝑈𝑛
ℎ = 𝑈ℎ(𝑡𝑛) be the solution of (1.4) and (3.10) respectively Consider 𝑣 ∈ 𝐻̇𝑞(Ω) for

some 𝑞 ∈ (0, 2] and 𝑣ℎ = 𝑃ℎ𝑣 with ‖𝑣‖𝑞,𝑠 ≤ 𝑅. Then, if 𝜏 < 𝜏0, for a sufficiently small 𝜏0 there exist a positive
constant 𝐶 = 𝐶(𝑅, 𝑇, 𝛼, 𝑞) such that

‖𝑢(𝑡𝑛)− 𝑈ℎ(𝑡𝑛)‖𝐿2(Ω) ≤ 𝐶ℎ2𝛾

(︂
𝑡
−𝛼( 2−𝑞

2 )
𝑛 + | log ℎ|2

)︂
+ 𝐶𝜏𝑡

−1+𝛼 𝑞
2

𝑛 , 𝑡𝑛 ∈ (0, 𝑇 ]. (4.11)

With 𝛾 as in Theorem 4.1.

Proof. In view of Theorem 4.3, we only need to estimate ‖𝑢ℎ(𝑡𝑛) − 𝑈ℎ(𝑡𝑛)‖𝐿2(Ω), with 𝑢ℎ the semi-discrete
solution. Considering the sector Σ𝜃 := {𝑧 ∈ C such that 𝑧 ̸= 0, |𝑎𝑟𝑔(𝑧)| ≤ 𝜃}, it can be seen that the function
𝐺(𝑧) := (𝑧𝛼𝐼+𝐴ℎ)−1 is analytic in Σ𝜃 with 𝜃 ∈ (𝜋/2, 𝜋). Then, from the semi-discrete and fully discrete scheme,
we have

𝑢ℎ = 𝐺 (𝜕𝑡) 𝜕𝛼
𝑡 𝑣ℎ +𝐺 (𝜕𝑡)𝑃ℎ𝑔(𝑢ℎ),

and
𝑈ℎ = 𝐺

(︀
𝜕𝜏

)︀
𝜕𝜏

𝛼
𝑣ℎ +𝐺

(︀
𝜕𝜏

)︀
𝑃ℎ𝑔 (𝑈ℎ) .

Subtracting both expressions we obtain an equation for 𝑒ℎ := 𝑢ℎ − 𝑈ℎ,

𝑒ℎ =
(︁
𝐺 (𝜕𝑡) 𝜕𝛼

𝑡 −𝐺
(︀
𝜕𝜏

)︀
𝜕𝜏

𝛼
𝑃ℎ

)︁
𝑣 +𝐺 (𝜕𝑡)𝑃ℎ𝑔(𝑢ℎ)−𝐺

(︀
𝜕𝜏

)︀
𝑃ℎ𝑔 (𝑈ℎ) (4.12)

=
(︁
𝐺 (𝜕𝑡) 𝜕𝛼

𝑡 −𝐺
(︀
𝜕𝜏

)︀
𝜕𝜏

𝛼
𝑃ℎ

)︁
𝑣ℎ +

(︀
𝐺 (𝜕𝑡)−𝐺

(︀
𝜕𝜏

)︀)︀
𝑃ℎ𝑔(𝑢ℎ) +𝐺

(︀
𝜕𝜏

)︀
𝑃ℎ (𝑔(𝑢ℎ)− 𝑔 (𝑈ℎ))

= (i) + (ii) + (iii).
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The norm of the first term (i) can be estimated arguing as in Theorem 5.3 of [3] (see also [9], Thm. 4.2.8).
Since 𝑣 ∈ 𝐻̇𝑞(Ω) we obtain

‖(i)‖𝐿2(Ω) ≤ 𝐶𝑡
−1+𝛼 𝑞

2
𝑛 𝜏‖𝑣ℎ‖𝐻𝑞(Ω) ≤ 𝐶𝑡

−1+𝛼 𝑞
2

𝑛 𝜏,

with 𝐶 = 𝐶(𝑅). For the second term, using property (3.9), we can split (ii) as follow

(ii) =
(︀
𝐺 (𝜕𝑡)−𝐺

(︀
𝜕𝜏

)︀)︀
(𝑃ℎ𝑔(𝑢ℎ(0)) + (1 * 𝑃ℎ𝜕𝑡𝑔(𝑢ℎ(𝑡𝑛)) )

=
(︀
𝐺 (𝜕𝑡)−𝐺

(︀
𝜕𝜏

)︀)︀
𝑃ℎ𝑔(𝑢ℎ(0)) +

(︀(︀
𝐺 (𝜕𝑡)−𝐺

(︀
𝜕𝜏

)︀)︀
1
)︀
* 𝑃ℎ𝜕𝑡𝑔(𝑢ℎ(𝑡𝑛))

= I + II.

Using Lemma 3.1 with 𝜇 = 𝛼, 𝛽 = 1, along with the fact that |𝑔| < 𝐵, we can estimate

‖𝐼‖𝐿2(Ω) ≤ 𝐶𝑡𝛼−1
𝑛 𝜏.

On the other hand, noticing that Lemma 2.7 can be easily extended to 𝜕𝑡𝑢ℎ, in order to get ‖𝜕𝑡𝑢ℎ‖𝐿2(Ω) ≤
𝐶𝑡𝛼/2−1; using again Lemma 3.1, the fact that |𝑔′| < 𝐵, and writing 𝜕𝑡𝑔(𝑢ℎ(𝑡)) = 𝑔′(𝑢ℎ(𝑡))𝜕𝑡𝑢ℎ, we have

‖II‖𝐿2(Ω) ≤
∫︁ 𝑡𝑛

0

‖
(︀(︀
𝐺 (𝜕𝑡)−𝐺

(︀
𝜕𝜏

)︀)︀
1
)︀

(𝑡𝑛 − 𝑠)𝑔′(𝑢ℎ(𝑠))𝜕𝑡𝑢ℎ(𝑠)‖𝐿2(Ω) d𝑠

≤ 𝐶𝜏

∫︁ 𝑡𝑛

0

(𝑡𝑛 − 𝑠)𝛼−1‖𝜕𝑡𝑢ℎ(𝑠)‖𝐿2(Ω) d𝑠 ≤ 𝐶𝜏

∫︁ 𝑡𝑛

0

(𝑡𝑛 − 𝑠)𝛼−1𝑠𝛼/2−1 d𝑠

≤ 𝐶𝜏𝑡
3
2 𝛼−1
𝑛 ,

where in the last inequality we have estimated the integral in terms of the beta function 𝐵(𝛼/2, 𝛼), as in
Theorem 2.5.

Now, we observe that the last term (iii) is a solution for (4.4), with 𝑓𝑛
ℎ = 𝑃ℎ (𝑔(𝑢ℎ)− 𝑔(𝑈ℎ)). Then, in view

of (4.6) and (4.10), and using again that |𝑔′| < 𝐵, we have

‖(iii)‖𝐿2(Ω) ≤ 𝜏𝛼
𝑛∑︁

𝑗=1

𝑐𝑛−𝑗‖𝑒ℎ(𝑡𝑗)‖𝐿2(Ω),

where {𝑐𝑛}𝑛∈N is the sequence defined in (4.9).

Using that 𝐶𝜏
(︁
𝑡
−1+𝛼 𝑞

2
𝑛 + 𝑡

3
2 𝛼−1
𝑛 + 𝑡𝛼−1

𝑛

)︁
≤ 𝐶𝜏𝑡

−1+𝛼 𝑞
2

𝑛 , with 𝐶 = 𝐶(𝑇 ), and the fact that 𝜏𝛼𝑐𝑛 ∼ 𝜏𝛼(𝑛 +

1)𝛼−1 = 𝜏𝑡𝛼−1
𝑛+1 (given by Lem. 4.4), we can derive the following

‖𝑒ℎ(𝑡𝑛)‖𝐿2(Ω) ≤ 𝐶𝜏𝑡
−1+𝛼 𝑞

2
𝑛 + 𝐶𝜏

𝑛∑︁
𝑗=1

𝑡𝛼−1
𝑛−𝑗+1‖𝑒ℎ(𝑡𝑗)‖𝐿2(Ω)

= 𝐶𝜏𝑡
−1+𝛼 𝑞

2
𝑛 + 𝐶𝜏

𝑛−1∑︁
𝑗=1

𝑡𝛼−1
𝑛−𝑗+1‖𝑒ℎ(𝑡𝑗)‖𝐿2(Ω) + 𝐶𝜏𝛼‖𝑒ℎ(𝑡𝑛)‖𝐿2(Ω).

Taking 𝜏0 in such a way that 1 − 𝜏𝛼
0 𝐶 > 0 and 𝜏 < 𝜏0, we can subtract the last term on the right from both

sides an obtain

‖𝑒ℎ(𝑡𝑛)‖𝐿2(Ω) ≤
𝐶

1− 𝜏𝛼
0 𝐶

𝜏𝑡
−1+𝛼 𝑞

2
𝑛 +

𝐶

1− 𝜏𝛼
0 𝐶

𝜏

𝑛−1∑︁
𝑗=1

𝑡𝛼−1
𝑛−𝑗+1‖𝑒ℎ(𝑡𝑗)‖𝐿2(Ω).

Finally, applying Lemma A.2 (a discrete analog of Lem. 2.6), we have

‖𝑒ℎ(𝑡𝑛)‖𝐿2(Ω) ≤ 𝐶𝜏𝑡
−1+𝛼 𝑞

2
𝑛 , (4.13)

for some 𝐶 = 𝐶(𝑅, 𝑇, 𝛼, 𝑞).
From this, (4.13) and (4.3), we can derive (4.11). �
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5. Analysis of the fractional Allen–Cahn equation

5.1. 𝐿∞ bounds

At this point we need to recall some results that play an important role in our analysis. The following two
theorems summarize classical global and interior regularity of solutions for the following problem,{︂

(−∆)𝑠𝑢 = 𝑓 in Ω
𝑢 = 0 in R𝑛 ∖ Ω. (5.1)

We refer to [18] for further details about (5.1).

Theorem 5.1. Let Ω ⊂ R𝑛 be any bounded 𝐶1,1 domain, 𝑠 ∈ (0, 1), and 𝑢 be the solution of (5.1). If 𝑓 ∈
𝐿∞(Ω); then 𝑢 ∈ 𝐶𝑠(R𝑛). Moreover, ‖𝑢‖𝐶𝑠(R𝑛) ≤ 𝐶‖𝑓‖𝐿∞(Ω), where the constant 𝐶 depends only on Ω and 𝑠.

Theorem 5.2. Let Ω be a bounded domain of R𝑛, and let 𝑢 be a solution for (5.1). If 𝛿(𝑥) = 𝑑𝑖𝑠𝑡(𝑥, 𝜕Ω), for
each 𝜌 > 0 define Ω𝜌 := {𝑥 ∈ Ω : 𝛿(𝑥) > 𝜌}. Then, if 𝛽 + 2𝑠 is not an integer, for every 0 < 𝜌′ < 𝜌 we have

‖𝑢‖𝐶𝛽+2𝑠(Ω𝜌) ≤ 𝐶‖𝑓‖𝐶𝛽(Ω𝜌′ )
, (5.2)

with 𝐶 = 𝐶(𝑛, 𝑠,Ω, 𝛽, 𝜌, 𝜌′).

We devote the remaining sections to problem (1.4). In order to exploit the results obtained for (2.1) we
need to work with a truncated version of 𝑓 . In this way, along this section we assume that our source term 𝑔
verifies (2.2), (2.3) and agrees with 𝑓 in an interval [−1−𝑅, 1 +𝑅], for some 𝑅 > 0. In order to prove that, in
this case, the solution remains bounded between 1 and −1 for any 𝑣 such that ‖𝑣‖∞ ≤ 1, we are going to define
first a discrete in time problem. That is, find 𝑈𝑛 ∈ ̃︀𝐻𝑠(Ω), with 𝑛 ∈ {1, . . . , 𝑁}, such that{︂

𝜕𝜏
𝛼
𝑈𝑛 +𝐴𝑈𝑛 = 𝜕𝜏

𝛼
𝑣 + 𝑔 (𝑈𝑛)

𝑈0 = 𝑣.
(5.3)

The proof of the existence and uniqueness of solutions for this problem is similar to the one given for the
fully discrete case. For the solution of this problem, we have the following result.

Theorem 5.3. Consider the semi-discrete in time scheme (5.3) with 𝑈0 ∈ 𝐿∞(Ω), then there exist 𝜏0 > 0 in
such a way that if 𝜏 < 𝜏0 (5.3) has a solution 𝑈𝑛, 𝑛 ∈ {0, . . . , 𝑁}, with 𝑈𝑛 ∈ 𝐶𝑠(R𝑛) for all 𝑛 > 0. Moreover
if |𝑈0(𝑥)| ≤ 1 for all 𝑥 ∈ Ω, then |𝑈𝑛(𝑥)| ≤ 1 for all 𝑥 ∈ Ω and 𝑛 ∈ {1, . . . , 𝑁}.

Proof. Suppose we have a solution with the desire properties for all 𝑚 < 𝑛. From (5.3) we have the identity

𝑈𝑛 = (𝐼 + 𝜏𝛼𝐴)−1

⎛⎝⎛⎝ 𝑛∑︁
𝑗=0

̃︀𝜔𝑗

⎞⎠𝑈0 −
𝑛∑︁

𝑗=1

̃︀𝜔𝑗𝑈
𝑛−𝑗 + 𝜏𝛼𝑔 (𝑈𝑛)

⎞⎠ , (5.4)

where ̃︀𝜔𝑗 := 𝜏𝛼𝜔𝑗 .
First we want to show that there exists 𝑈𝑛 ∈ 𝐿2(Ω) that satisfies equation (5.4). In order to do that, we

define the map 𝑇 : 𝐿2(Ω) → 𝐿2(Ω)

𝑇 (𝑢) := (𝐼 + 𝜏𝛼𝐴)−1

⎛⎝⎛⎝ 𝑛∑︁
𝑗=0

𝜔𝑗

⎞⎠𝑈0 −
𝑛∑︁

𝑗=1

𝜔𝑗𝑈
𝑛−𝑗 + 𝜏𝛼𝑔(𝑢)

⎞⎠ .
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We want to verify that 𝑇 is a contraction in 𝐿2(Ω). From the fact that 𝐴 is a maximal monotone operator
(see [12]), we know that ‖(𝐼 + 𝜏𝛼𝐴)‖𝐿2(Ω) ≤ 1. Let 𝑢 and 𝑣 ∈ 𝐿2(Ω), we can estimate

‖𝑇 (𝑢)− 𝑇 (𝑣)‖𝐿2(Ω) = ‖(𝐼 + 𝜏𝛼𝐴)−1𝜏𝛼 (𝑔(𝑢)− 𝑔(𝑣)) ‖𝐿2(Ω)

≤ 𝜏𝛼‖𝑔(𝑢)− 𝑔(𝑣)‖𝐿2(Ω) ≤ 𝜏𝛼𝐵‖𝑢− 𝑣‖𝐿2(Ω).

Then, for a small 𝜏 we have that 𝑇 is a contraction. Hence, there exists a unique solution 𝑈𝑛 ∈ 𝐿2(Ω) for (5.4),
and the identity

𝐴𝑈𝑛 =

⎛⎝ 𝑛∑︁
𝑗=0

𝜔𝑗

⎞⎠𝑈0 −
𝑛∑︁

𝑗=1

𝜔𝑗𝑈
𝑛−𝑗 + 𝑔 (𝑈𝑛) (5.5)

is satisfied. Since the right hand side belongs to 𝐿∞(Ω), applying the Theorem 5.1, we can conclude that
𝑈𝑛 ∈ 𝐶𝑠(R𝑛) ∩ 𝐶2𝑠(Ω𝜌) for all 0 < 𝜌 < 𝜌0.

Now, we want to see that if the initial data is regular enough, then the solution remains bounded between 1
and −1. Indeed, suppose we have 𝑈𝑚 ∈ 𝐶2(Ω)∩𝐶𝑠(R𝑛) and |𝑈𝑚(𝑥)| ≤ 1 for all 𝑥 ∈ Ω, for all 𝑚 < 𝑛. If we take
a fixed 𝜌′ > 0 with 𝜌 = 2𝜌′ in Theorem 5.2, and use the the fact that 𝑈𝑛 ∈ 𝐶2𝑠 (Ω𝜌), then 𝑔 (𝑈𝑛) ∈ 𝐶2𝑠 (Ω𝜌)
and we can conclude that 𝑈𝑛 ∈ 𝐶2𝑠+2𝑠(Ω𝜌′). A repeated application of this argument, along with the fact that
𝑔 ∈ 𝐶2(R), implies that 𝑈𝑛 ∈ 𝐶2+2𝑠 (Ω𝑘𝜌0) for some 𝑘 ∈ N, only depending on 𝑠. Since 𝜌0 can be arbitrary
small, we can assert that 𝑈𝑛 ∈ 𝐶2(Ω), and then, 𝑈𝑛 ∈ 𝐶2(Ω) ∩ 𝐶𝑠(R𝑛).

On the other hand, the semi-discrete in time scheme gives us the relation

𝑛∑︁
𝑗=0

𝜔𝑗𝑈
𝑛−𝑗 −

⎛⎝ 𝑛∑︁
𝑗=0

𝜔𝑗

⎞⎠𝑈0 = −𝐴𝑈𝑛 + 𝑔 (𝑈𝑛) ,

which can be rewritten as
𝑛−1∑︁
𝑗=0

𝑎𝑗

(︀
𝑈𝑛−𝑗 − 𝑈𝑛−𝑗−1

)︀
= −𝐴𝑈𝑛 + 𝑔 (𝑈𝑛) ,

with 𝑎𝑛 =
∑︀𝑛

𝑗=0 𝜔𝑗 . Suppose that there exist some 𝑥0 such that 𝑈𝑛 achieves its maximum on that point,
and 𝑈𝑛(𝑥0) > 1. Recall that ‖𝑈𝑚‖𝐿∞(Ω) ≤ 1 for all 𝑚 < 𝑛. From the regularity of 𝑈𝑛, it can be shown that
𝐴𝑈𝑛(𝑥0) = (−∆)𝑠

𝑈𝑛(𝑥0) ≥ 0 (see [18], Lem. 3.9). Then, from the fact that 𝑈𝑛(𝑥0) > 1, we have 𝑔 (𝑈𝑛(𝑥0)) < 0,
which implies

𝑛−1∑︁
𝑗=0

𝑎𝑗

(︀
𝑈𝑛−𝑗(𝑥0)− 𝑈𝑛−𝑗−1(𝑥0)

)︀
< 0.

Observing the fact that {𝑎𝑛} is a positive and strictly decreasing sequence, it is possible to show that there
exist 𝑚0 < 𝑛, such that 𝑈𝑚0(𝑥0) > 𝑈𝑛(𝑥0) (see [9], Lem. 5.2.4), and then 1 ≥ 𝑈𝑚0(𝑥0) > 𝑈𝑛(𝑥0) > 1. The
contradiction came from the assumption that 𝑈𝑛(𝑥0) > 1.

Now we want to see that the same bound holds for less regular initial data. To this end, applying a density
argument, suppose 𝑈𝑛 is a solution for (5.3) with 𝑈0 ∈ 𝐿∞(Ω), ‖𝑈0‖𝐿∞(Ω) ≤ 1. Consider

{︀
𝑈0

𝑘

}︀
𝑘∈N ⊂ 𝐶∞𝑐 (Ω),

with ‖𝑈0
𝑘‖𝐿∞(Ω) ≤ 1 for all 𝑘, and 𝑈0

𝑘 → 𝑈0 in 𝐿2(Ω).
Let 𝑈𝑛

𝑘 be the solution of (5.3) with initial data 𝑈0
𝑘 . Calling 𝑒𝑛

𝑘 = 𝑈𝑛 − 𝑈𝑛
𝑘 , we have the equation

𝑒𝑛
𝑘 = (𝐼 + 𝜏𝛼𝐴)−1

⎛⎝⎛⎝ 𝑛∑︁
𝑗=0

̃︀𝜔𝑗

⎞⎠ 𝑒0𝑘 −
𝑛∑︁

𝑗=1

̃︀𝜔𝑗𝑒
𝑛−𝑗
𝑘 + 𝜏𝛼 (𝑔 (𝑈𝑛)− 𝑔(𝑈𝑛

𝑘 ))

⎞⎠ ,

and taking norms we obtain

‖𝑒𝑛
𝑘‖𝐿2(Ω) ≤ ‖𝑒0𝑘‖𝐿2(Ω) +

𝑛∑︁
𝑗=1

−̃︀𝜔𝑗‖𝑒𝑛−𝑗
𝑘 ‖𝐿2(Ω) + 𝜏𝛼𝐵‖𝑒𝑛

𝑘‖𝐿2(Ω). (5.6)
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Choosing 𝜏0 such that 𝜏𝛼
0 𝐵 < 1, recalling that 0 < −̃︀𝜔𝑗 ≤ −̃︀𝜔1, and applying a discrete Gronwall type inequality

we have

‖𝑒𝑛
𝑘‖𝐿2(Ω) ≤ ‖𝑒0𝑘‖𝐿2(Ω)

𝑒𝑛̃︀𝜔1/1−𝜏𝛼
0 𝐵

1− 𝜏𝛼
0 𝐵

= 𝐶‖𝑒0𝑘‖𝐿2(Ω),

with 𝐶 = 𝐶(𝜏0, 𝛼,𝐵, 𝑛), and then, ‖𝑒𝑛
𝑘‖𝐿2(Ω) → 0 with 𝑘 →∞.

Since ‖𝑈0
𝑘‖𝐿∞(Ω) ≤ 1, then ‖𝑈𝑛

𝑘 ‖𝐿∞(Ω) ≤ 1 for all 𝑘, and for all 𝑛 ∈ {1, . . . , 𝑁}. Hence, for a fixed 𝑛, we can

construct a sub-sequence
{︁
𝑈𝑛

𝑘𝑗

}︁
𝑗∈N

, such that 𝑈𝑛
𝑘𝑗
→ 𝑈𝑛 a.e. and conclude that ‖𝑈𝑛‖𝐿∞(Ω) ≤ 1. �

Finally, proceeding analogously as in Theorem 4.5, we can derive the following error estimation.

Theorem 5.4. Let 𝑢 and 𝑈𝑛 = 𝑈(𝑡𝑛) be the solution of (1.4) and (5.3) respectively, with 𝑣 ∈ 𝐻̇𝑞(Ω), ‖𝑣‖𝑞,𝑠 ≤
𝑅 with 𝑞 ∈ (0, 2]. Then, if 𝜏 < 𝜏0, for a sufficiently small 𝜏0 > 0 exists a positive constant 𝐶 = 𝐶(𝑅, 𝑇, 𝛼, 𝑞)
such that

‖𝑢(𝑡𝑛)− 𝑈(𝑡𝑛)‖𝐿2(Ω) ≤ 𝐶𝑡
−1+𝛼 𝑞

2
𝑛 𝜏, 𝑡𝑛 ∈ [0, 𝑇 ]. (5.7)

Now, consider ‖𝑣‖𝐿∞(Ω) ≤ 1. Given a fixed 𝑡 ∈ (0, 𝑇 ] we can construct a family of nested partitions of [0,T]
with 𝜏 = 𝑇/𝑁𝑘, 𝑘 ∈ N, and 𝑁𝑘 →∞ if 𝑘 →∞, in such a way that 𝑡 belongs to all the partitions. Let 𝑈𝑘 be the
solution of (5.3), and 𝑢 the solution of (2.5), using Theorem 5.4 we have that 𝑈𝑘(𝑡) → 𝑢(𝑡) in 𝐿2(Ω). So, we
can extract a subsequence

{︀
𝑈𝑘𝑗 (𝑡)

}︀
𝑗∈N such that 𝑈𝑘𝑗 (𝑡) → 𝑢(𝑡) a.e. Using 5.3, we know that ‖𝑈𝑘(𝑡)‖𝐿∞(Ω) ≤ 1,

and then, ‖𝑢(𝑡)‖𝐿∞(Ω) ≤ 1. We can summarize this observation in the following result.

Theorem 5.5. Let 𝑢 a solution of (2.7) with ‖𝑣‖𝐿∞(Ω) ≤ 1. Then ‖𝑢(𝑡)‖𝐿∞(Ω) ≤ 1 for all 𝑡 ∈ (0, 𝑇 ].

This theorem implies that all the analysis displayed up to here remains valid replacing 𝑔 by 𝑓 and therefore
to the Allen–Cahn equation (1.4).

6. Discussion about the asymptotic behavior with 𝑠 → 0

Considering now the usual derivative in time (𝛼 = 1), the Allen–Cahn equation can be understood as a
gradient flow in 𝐿2, minimizing the free energy functional

𝐹𝑠(𝑢) =
𝜀2

2
|𝑢|2𝐻𝑠(R𝑛) +

∫︁
Ω

𝑊 (𝑢), (6.1)

with 𝑊 (𝑢) = (𝑢2−1)2

4 (see e.g. [5]). It is well known that the size of 𝜀 affects the interface width of the minimizers
of 𝐹𝑠. That is, interface width tends to zero with 𝜀→ 0. This fact can be easily derived from expression (6.1),
observing that the right term, which penalizes the variation of 𝑢, tends to lose relevance as 𝜀 goes to zero, forcing
the minimizer 𝑢 to take values into the set of minimizers of 𝑊 , that is values belonging to {1,−1}. However,
since 𝜀 > 0, the right term promote the minimization of the interface length (for 𝑛 ≥ 2), which implies that the
limit behavior cannot be understood as the minimization of 𝐹𝑠 with 𝜀 = 0. In [34], Savin and Valdinoci show,
by means of Γ-convergence theory, that the limit behavior of the problem of minimizing 𝐹𝑠 tends to a minimal
surface problem if 𝑠 ∈ [1/2, 1), and to a non-local version of the minimal surface problem for 𝑠 ∈ (0, 1/2).

In our case, numerical experiments (see Fig. 2) show that the interface width tends to become thinner when
the parameter 𝑠 goes to zero, suggesting that (as in the case 𝜀 → 0) a minimizer of 𝐹𝑠 should approximate
a binary function when 𝑠 → 0. This behavior was also observed in [6], where authors derive the scaling law
𝜏 = 𝑂(𝜀1/2𝑠), with 𝜏 denoting the interface width. On the other hand, a displacement of the equilibrium states
have been observed in our numerical experiments for small values of the fractional parameter 𝑠 (see Fig. 1).

Motivated by the previous observation, the aim of this section is to analyze the asymptotic behavior of the
minimizers of 𝐹𝑠 with 𝑠 tending to zero. To this end, we are going to follow the ideas displayed in [34], and study
the Γ-convergence of a suitable modification of the functional 𝐹𝑠. By means of this framework, it is possible to
conclude that the minimizers of (6.1) approach binary functions, and the equilibrium states should be placed
near

√︀
(1− 𝜀2) and −

√︀
(1− 𝜀2) for small values of the fractional parameter 𝑠.
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6.1. Γ-convergence when 𝑠 → 0

Since Γ-convergence may not be a usual concept in numerical analysis, we start this section by giving its
definition and basic properties, and we refer to [11] for further details.

Let 𝑋 be a topological space, and {𝐹𝑛}∈N, 𝐹𝑛 : 𝑋 → [−∞,+∞], a sequence of functionals. Then, we say
that 𝐹𝑛 Γ-converge to 𝐹 : 𝑋 → [−∞,+∞], if the following conditions holds:

– For every sequence {𝑥𝑛}𝑛∈N ⊂ 𝑋 such that 𝑥𝑛 → 𝑥, then

𝐹 (𝑥) ≤ lim inf
𝑛→∞

𝐹𝑛(𝑥𝑛).

– For every 𝑥 ∈ 𝑋, there exist a sequence 𝑥𝑛 converging to 𝑥 such that

𝐹 (𝑥) ≥ lim sup
𝑛→∞

𝐹𝑛(𝑥𝑛).

Also, we define a complementary concept. We say that the family {𝐹𝑛} has the equi-coerciveness property if
for all 𝑐 ∈ R exists a compact set 𝐾𝑐 in such a way that {𝐹𝑛 < 𝑐} ⊂ 𝐾𝑐 for all 𝑛 ∈ N.

These two concept allow us to say something about the limiting behavior of the minimizers of 𝐹𝑛 in terms
of the minimizers of 𝐹 . That is, if 𝑥𝑛 is a minimizer of 𝐹𝑛, then every cluster point of {𝑥𝑛}𝑛∈N (if exist) is a
minimizer of 𝐹 . This can be summarized as follow

Equi-coerciveness + Γ-convergence ⇒ Convergence of minimizers.

In order to study the Γ-convergence of 𝐹𝑠, we must set an appropriate domain 𝑋 for 𝐹𝑠,

𝑋 = {𝑢 ∈ 𝐿∞(R𝑛) with |𝑢| ≤ 1, and 𝑢 ≡ 0 in Ω𝑐} .

And we are going to consider this space furnished with the norm ‖ · ‖𝐿1(Ω). Note that if 𝑢 ∈ 𝑋 but 𝑢 ̸∈ ̃︀𝐻𝑠(Ω),
then we can define 𝐹𝑠(𝑢) = +∞.

From the definition of 𝐹𝑠, and supposing 𝜀2 < 1, we have

𝐹𝑠(𝑢) =
𝜀2

2
|𝑢|2𝐻𝑠(R𝑛) −

𝜀2

2
‖𝑢‖2𝐿2(Ω) +

𝜀2

2
‖𝑢‖2𝐿2(Ω) +

∫︁
Ω

𝑊 (𝑢)

=
𝜀2

2

(︁
|𝑢|2𝐻𝑠(R𝑛) − ‖𝑢‖

2
𝐿2(Ω)

)︁
+
∫︁

Ω

(︂
𝑊 (𝑢) +

𝜀2

2
𝑢2

)︂
,

and, denoting ℱ [𝑢](𝜉) as the Fourier transform of 𝑢, we know from [15] and Plancharel’s identity that |𝑢|2𝐻𝑠(R𝑛) =
‖ℱ [𝑢]|𝜉|𝑠‖2𝐿2(R𝑛) =

∫︀
R𝑛 ℱ2[𝑢](𝜉)|𝜉|2𝑠 d𝜉, and ‖𝑢‖2𝐿2(Ω) =

∫︀
R𝑛 ℱ2[𝑢](𝜉) d𝜉. Then we have

|𝑢|2𝐻𝑠(R𝑛) − ‖𝑢‖
2
𝐿2(Ω) =

∫︁
R𝑛

(︀
|𝜉|2𝑠 − 1

)︀
ℱ2[𝑢](𝜉) d𝜉,

so we can rewrite 𝐹𝑠 as

𝐹𝑠 =
𝜀2

2

∫︁
R𝑛

(︀
|𝜉|2𝑠 − 1

)︀
ℱ2[𝑢](𝜉) d𝜉 +

∫︁
Ω

̃︁𝑊 (𝑢),

with ̃︁𝑊 (𝑠) = 𝑊 (𝑠) + 𝜀2

2 𝑠.
Since we have 𝜀2 < 1, ̃︁𝑊 (𝑠) is a double-well type potential with minimizers ±

√
1− 𝜀2.

Noticing that ̃︁𝑊 (︀
±
√

1− 𝜀2
)︀

= 𝑘𝜀 > 0 , we define a new auxiliary functional ̃︀𝐹𝑠

̃︀𝐹𝑠 =
1
2𝑠

(︂
𝐹𝑠 −

∫︁
Ω

𝑘𝜀

)︂
,
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and, for the sake of simplicity, we redefine ̃︁𝑊 as ̃︁𝑊 (𝑠) = 𝑊 (𝑠) + 𝜀2

2 𝑠− 𝑘𝜀, so now ̃︁𝑊 (︀
±
√

1− 𝜀2
)︀

= 0. Fixing 𝑠
and 𝜀, it is easy to check that 𝑢 ∈ 𝑋 is a minimizer of 𝐹𝑠 if and only if 𝑢 is a minimizer of ̃︀𝐹𝑠. So we focus our
study on the asymptotic behavior of ̃︀𝐹𝑠.

Defining the functional

𝐹0(𝑢) =
{︂∫︀

R𝑛 ln |𝜉|ℱ2[𝑢](𝜉) d𝜉, if 𝑢 ≡
√

1− 𝜀2 (𝐼𝐸 − 𝐼𝐸𝑐)
+∞, in other case, (6.2)

with 𝐸 ⊂ Ω, we have the following theorem.

Theorem 6.1. Let ̃︀𝐹𝑠 and 𝐹0 defined as before, then ̃︀𝐹𝑠
Γ−→ 𝐹0.

Proof. Let 𝑢𝑠 −→ 𝑢 with 𝑠 → 0 in 𝑋, and suppose w.l.o.g, that 𝑠 takes values in a discrete set. First, we want
to see

lim inf
𝑠→0

̃︀𝐹𝑠(𝑢𝑠) ≥ 𝐹0(𝑢). (6.3)

Indeed, suppose that 𝑙 = lim inf𝑠→0
̃︀𝐹𝑠(𝑢𝑠) ≤ +∞, in other case there is nothing to prove. If we choose a suitable

sub-sequence of 𝑢𝑠 such that 𝑢𝑠 → 𝑢 a.e. and ̃︀𝐹𝑠(𝑢𝑠) → 𝑙, then

𝑙 = lim inf
𝑠→0

̃︀𝐹𝑠(𝑢𝑠) ≥ lim inf
𝑠→0

∫︁
R𝑛

|𝜉|2𝑠 − 1
2𝑠

ℱ2[𝑢𝑠](𝜉) d𝜉 + lim inf
𝑠→0

1
2𝑠

∫︁
Ω

̃︁𝑊 (𝑢𝑠). (6.4)

We first analyze the left term of the right hand side of (6.4). In this case we have

lim inf
𝑠→0

∫︁
R𝑛

|𝜉|2𝑠 − 1
2𝑠

ℱ2[𝑢𝑠](𝜉) d𝜉 ≥ lim inf
𝑠→0

∫︁
|𝜉|>1

|𝜉|2𝑠 − 1
2𝑠

ℱ2[𝑢𝑠](𝜉) d𝜉

+ lim inf
𝑠→0

∫︁
|𝜉|≤1

|𝜉|2𝑠 − 1
2𝑠

ℱ2[𝑢𝑠](𝜉) d𝜉 = (i) + (ii).

From the fact that 𝑢𝑠 → 𝑢 in 𝐿1(R𝑛) norm, we have ℱ [𝑢𝑠] → ℱ [𝑢] point-wise, and we also have (|𝜉|2𝑠−1)/2𝑠→
ln |𝜉|. Then, using Fatou’s Lemma, we get the estimation

(i) ≥
∫︁
|𝜉|>1

ln |𝜉|ℱ2[𝑢](𝜉) d𝜉 > 0.

On the other hand, since |ℱ [𝑢𝑠](𝜉)| ≤ ‖𝑢𝑠‖𝐿1(Ω) ≤ |Ω|, we can estimate the second term as follow

(ii) = − lim sup
∫︁
|𝜉|≤1

1− |𝜉|2𝑠

2𝑠
ℱ2[𝑢𝑠](𝜉) d𝜉 ≥ −

∫︁
|𝜉|≤1

− ln |𝜉|ℱ2[𝑢](𝜉) d𝜉

=
∫︁
|𝜉|≤1

ln |𝜉|ℱ2[𝑢](𝜉) d𝜉 > −∞, (6.5)

where in the last inequality we have use the reverse Fatous’s lemma.
Hence, the first term on the right hand side of (6.4) must be a finite number. This implies that 0 ≤

lim inf𝑠→0
1
2𝑠

∫︀
Ω
̃︁𝑊 (𝑢𝑠) < +∞, and thus,

∫︀
Ω
̃︁𝑊 (𝑢𝑠) → 0 with 𝑠→ 0.

Since we have chosen 𝑢𝑠 in such a way that 𝑢𝑠 → 𝑢 a.e. we have that ̃︁𝑊 (𝑢) = 0 a.e. then 𝑢 must have the
form 𝑢 =

√
1− 𝜀2(𝐼𝐸 − 𝐼𝐸𝑐). Now, we can estimate

lim inf
𝑠→0

̃︀𝐹𝑠(𝑢𝑠) = lim inf
𝑠→0

∫︁
R𝑛

|𝜉|2𝑠 − 1
2𝑠

ℱ2[𝑢𝑠](𝜉) d𝜉 +
1
2𝑠

∫︁
Ω

̃︁𝑊 (𝑢𝑠)

≥
∫︁

R𝑛

ln |𝜉|ℱ2[𝑢](𝜉) d𝜉 = 𝐹0(𝑢),
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and (6.3) follow.
Finally we only need the to verify that if 𝑢 ∈ 𝑋, then

𝐹0(𝑢) ≥ lim sup
𝑠→0

𝐹𝑠(𝑢). (6.6)

To this end, suppose 𝑢 =
√

1− 𝜀2(𝐼𝐸 − 𝐼𝐸𝑐), otherwise there is nothing to prove. In this case we have 𝐹𝑠(𝑢) =∫︀
R𝑛

|𝜉|2𝑠−1
2𝑠 ℱ2[𝑢](𝜉) d𝜉. The fact that (|𝜉|2𝑠 − 1)/2𝑠 ↘ ln |𝜉| with 𝑠 → 0, implies that ̃︀𝐹𝑠(𝑢) is decreasing in 𝑠.

Then

lim sup
𝑠→0

̃︀𝐹𝑠(𝑢) = lim
𝑠→0

̃︀𝐹𝑠(𝑢) = lim
𝑠→0

∫︁
R𝑛

|𝜉|2𝑠 − 1
2𝑠

ℱ2[𝑢](𝜉) d𝜉

= lim
𝑠→0

(︃∫︁
|𝜉|≤1

+
∫︁
|𝜉|>1

)︃
|𝜉|2𝑠 − 1

2𝑠
ℱ2[𝑢](𝜉) d𝜉.

Then, using Monotone Convergence Theorem on the integral over |𝜉| > 1, and Dominated Convergence Theorem
over |𝜉| ≤ 1, we have lim sup𝑠→0

̃︀𝐹𝑠(𝑢) = 𝐹0(𝑢), which proves (6.6). �

6.2. Equi-coerciveness of ̃︀𝐹𝑠
To complete the analysis we prove the equi-coerciveness of

{︁ ̃︀𝐹𝑠

}︁
𝑠
.

Theorem 6.2. Suppose 𝑠𝑛 → 0, and {𝑢𝑛}𝑛∈N ⊂ 𝑋, such that ̃︀𝐹𝑠𝑛
(𝑢𝑛) ≤ 𝐶 for all 𝑛 ∈ N. Then there exist

𝑢 ∈ 𝑋 and a subsequence
{︀
𝑢𝑛𝑗

}︀
𝑗∈N, such that 𝑢𝑛𝑗

→ 𝑢 in 𝑋.

Proof. First we observe that, as before, we have

̃︀𝐹𝑠𝑛
(𝑢𝑛) =

∫︁
R𝑛

|𝜉|2𝑠𝑛 − 1
2𝑠𝑛

ℱ2(𝑢𝑛)[𝜉] d𝜉 +
1

2𝑠𝑛

∫︁
Ω

̃︁𝑊 (𝑢𝑛) d𝑥.

Since (|𝜉|2𝑠 − 1)/2𝑠↘ ln |𝜉| and ̃︀𝐹𝑠𝑛
(𝑢𝑛) ≤ 𝐶 for all 𝑛 ∈ N, we can assert that∫︁

R𝑛

ln |𝜉|ℱ2(𝑢𝑛)[𝜉] d𝜉 ≤ 𝐶, ∀𝑛 ∈ N. (6.7)

The fact that 𝑢𝑛 ∈ 𝑋, implies ‖𝑢𝑛‖𝐿1(Ω) ≤ 𝐶0 for all 𝑛 ∈ N, and then∫︁
|𝜉|≤1

ln |𝜉|ℱ2(𝑢𝑛)[𝜉] d𝜉 ≥ 𝐶2
0

∫︁
|𝜉|≤1

ln |𝜉|d𝜉 ≥ 𝐶1. (6.8)

Now we want to show that (6.7) implies that functions in the set
{︀
ℱ2(𝑢𝑛)

}︀
𝑛

keep a substantial part of their
mass uniformly bounded. Namely, given 𝜂 > 0, there exist 𝑅 > 0 such that∫︁

|𝜉|>𝑅

ℱ2(𝑢𝑛)[𝜉] d𝜉 ≤ 𝜂, ∀𝑛 ∈ N. (6.9)

By contradiction suppose that there exist 𝜂0 > 0 such that for every 𝑅 > 0 there is a number 𝑚 = 𝑚(𝑅, 𝜂0) ∈ N,
in such a way that ∫︁

|𝜉|>𝑅

ℱ2(𝑢𝑚)[𝜉] d𝜉 > 𝜂0.
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Choosing 𝑅 > 0 such that 𝜂0 ln(𝑅) + 𝐶1 > 𝐶, with 𝐶 the constant in (6.7), and 𝐶1 the one in (6.8), we have∫︁
R𝑛

ln |𝜉|ℱ2(𝑢𝑚)[𝜉] d𝜉 >
∫︁
|𝜉|>𝑅

ln |𝜉|ℱ2(𝑢𝑚)[𝜉] d𝜉 +
∫︁
|𝜉|≤1

ln |𝜉|ℱ2(𝑢𝑚)[𝜉] d𝜉

> ln(𝑅)𝜂0 + 𝐶1 > 𝐶,

which, in view of (6.7) results in a contradiction. Hence, assertion (6.9) holds.
On the other hand, the fact that {𝑢𝑛}𝑛∈N ⊂ 𝑋, implies that this sequence is uniformly bounded in 𝐿2(Ω),

and then, we can extract a weakly convergent subsequence
{︀
𝑢𝑛𝑗

}︀
𝑗∈N. Let 𝑢 ∈ 𝐿2(Ω) such that 𝑢𝑛𝑗

⇀ 𝑢, our
goal now is to show that 𝑢𝑛𝑗

→ 𝑢 strongly in 𝐿2(Ω), which implies strong convergence in 𝐿1(Ω) since |Ω| <∞.
To this end, we only need to verify that ‖𝑢𝑛𝑗

‖𝐿2(Ω) → ‖𝑢‖𝐿2(Ω) or, equivalently, ‖ℱ(𝑢𝑛𝑗
)‖𝐿2(R𝑛) →

‖ℱ(𝑢)‖𝐿2(R𝑛). From (6.9), and the fact that 𝑢 ∈ 𝐿2(Ω), we can take 𝑅 large enough, in such a way that∫︀
|𝜉|>𝑅

ℱ2(𝑢𝑛𝑗
)[𝜉] d𝜉 < 𝜂, ∀𝑗 ∈ N, and

∫︀
|𝜉|>𝑅

ℱ2(𝑢)[𝜉] d𝜉 < 𝜂. Then we have

⃒⃒⃒
‖ℱ(𝑢𝑛𝑗

)‖2𝐿2(R𝑛) − ‖ℱ(𝑢)‖2𝐿2(R𝑛)

⃒⃒⃒
≤

⃒⃒⃒⃒
⃒
∫︁
|𝜉|≤𝑅

ℱ2(𝑢𝑛𝑗
)[𝜉] d𝜉 −

∫︁
|𝜉|≤𝑅

ℱ2(𝑢)[𝜉] d𝜉

⃒⃒⃒⃒
⃒+ 2𝜂. (6.10)

Since 𝑢𝑛𝑗
is supported in Ω, for all 𝑗 ∈ N, weak convergence implies ℱ(𝑢𝑛𝑗

)[𝜉] → ℱ(𝑢)[𝜉] for all 𝜉 ∈ R𝑛. And,
as we have observed before, since ‖𝑢𝑛𝑗‖𝐿1(Ω) ≤ 𝐶0 for all 𝑗 ∈ N, ℱ2(𝑢𝑛𝑗 )[𝜉] ≤ 𝐶2

0 for all 𝜉 ∈ R𝑛. Hence, we can
apply Dominated Convergence Theorem in (6.10) and say that there exists 𝑗0 in such a way that if 𝑗 > 𝑗0 then⃒⃒⃒

‖ℱ(𝑢𝑛𝑗
)‖2𝐿2(R𝑛) − ‖ℱ(𝑢)‖2𝐿2(R𝑛)

⃒⃒⃒
≤ 3𝜂. (6.11)

Since 𝜂 can be arbitrary small, we have ‖𝑢𝑛𝑗‖𝐿2(Ω) → ‖𝑢‖𝐿2(Ω), and the statement of the theorem follows. �

7. Numerical experiments

In this section, three numerical examples are presented in order to explore the behavior of the solution under
fractional parameters 𝑠 and 𝛼.

For the first example, we have used Ω = [−1, 1], a uniform mesh consisting of 3000 nodes, 𝑠 = 0.005, 𝛼 = 1,
𝜀2 = 0.5, and the function 𝑣 = −0.5𝐼(−1,0)+0.5𝐼[0,1) as initial data. Here, the aim is to obtain some experimental
support for the ideas displayed in Section 6, that is, the behavior with a small parameter 𝑠. Numerical results are
summarized in Figure 1, and equilibrium values far from 1 and −1 can be observed. Furthermore, equilibrium
values seem to be placed near the values predicted in Section 6 or, in other words, the solution seems to
approximate a minimizer of (6.2).

Examples 2 and 3 (spinodal decomposition) are shown in Figures 2 and 3 respectively. Here we have used
Ω as the unitary ball, a uniform triangulation consisting of 16 554 triangles, 𝜀2 = 0.02, and random noise as
initial data. In example 2 (Fig. 2), the parameter 𝛼 is fixed in 1, and results for several values of 𝑠 are shown.
Can be observed the fact that, as we have mentioned in Section 6, the smaller the parameter 𝑠, the thinner the
interface. Finally, example 3 (Fig. 3) shows the behavior for fractional values of the parameter 𝛼, with 𝑠 = 1.

Appendix A. Auxiliary results

Lemma A.1. Let 𝑓 ∈ 𝐶
(︀
[0, 𝑇 ], 𝐿2(Ω)

)︀
, with 𝑓 differentiable in (0, 𝑇 ) in such a way that ‖𝑓 ′(𝑡)‖𝐿2(Ω) ≤ 𝐶𝑡−𝛾

with 𝛾 ∈ (0, 1) for all 𝑡 ∈ (0, 𝑇 ). Then we have

𝜕𝑡

(︂∫︁ 𝑡

0

𝑓(𝑡− 𝑠) d𝑠
)︂

= 𝑓(0) +
∫︁ 𝑡

0

𝜕𝑡𝑓(𝑡− 𝑠) d𝑠 ∀𝑡 ∈ (0, 𝑇 ). (A.1)
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Figure 1. In red the solution of example 1 at 𝑡 = 50, in black-dashed the values ±
√

1− 𝜀2. It
can be seen that the equilibrium states remain far from 1 and −1, unlike the behavior in the
classic AC equation, and approach the values predicted in Section 6 (see (6.2)).

Figure 2. In this example we set Ω = 𝐵(0, 1), 𝛼 = 1, and random noise as initial condition.
The evolution in time is displayed for several values of 𝑠.

Proof. We write∫︁ 𝑡+ℎ

0

𝑓(𝑡+ ℎ− 𝑠) d𝑠−
∫︁ 𝑡

0

𝑓(𝑡− 𝑠) d𝑠 =
∫︁ 𝑡

0

𝑓(𝑡+ ℎ− 𝑠)− 𝑓(𝑡− 𝑠) d𝑠+
∫︁ 𝑡+ℎ

𝑡

𝑓(𝑡+ ℎ− 𝑠) d𝑠. (A.2)

From the mean value inequality in Banach spaces (see for instance [31], Appendix B) we can estimate

‖𝑓(𝑡+ ℎ− 𝑠)− 𝑓(𝑡− 𝑠)‖𝐿2(Ω) ≤ ℎ‖𝑓 ′(𝑟 − 𝑠)‖𝐿2(Ω)

≤ 𝐶ℎ(𝑟 − 𝑠)−𝛾 ≤ 𝐶ℎ(𝑡− 𝑠)−𝛾 , ∀𝑠 ∈ [0, 𝑡).
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Figure 3. In this example we set Ω = 𝐵(0, 1), 𝑠 = 1, and random noise as initial condition.
The evolution in time is displayed for several values of 𝛼.

This, along with the fact that 𝑓 ′ exists in (0, 𝑇 ), allows us to use the Dominated Convergence Theorem (see [31],
Appendix B) and get

lim
ℎ→0

∫︁ 𝑡

0

𝑓(𝑡+ ℎ− 𝑠)− 𝑓(𝑡− 𝑠)
ℎ

d𝑠 =
∫︁ 𝑡

0

𝑓 ′(𝑡− 𝑠) d𝑠. (A.3)

On the other hand, from the fact that 𝑓(𝑡) is a continuous function in 𝑡 = 0, we have

1
ℎ

∫︁ 𝑡+ℎ

𝑡

𝑓(𝑡+ ℎ− 𝑠) d𝑠 =
1
ℎ

∫︁ 0

ℎ

−𝑓(𝑟) d𝑟 =
1
ℎ

∫︁ ℎ

0

𝑓(𝑟) d𝑟 −−−→
ℎ→0

𝑓(0), (A.4)

where the convergence is in 𝐿2(Ω) sense.
Finally, combining (A.2)–(A.4), we obtain (A.1). �

Lemma A.2. For 𝜏 > 0 consider 𝑡𝑛 = 𝑛𝜏 with 𝑛 = 1, . . . , 𝑁 and 𝑇 = 𝑁𝜏 . If

𝜙𝑛 ≤ 𝐴𝑡−1+𝛼
𝑛 +𝐵𝜏

𝑛−1∑︁
𝑗=1

𝑡−1+𝛽
𝑛−𝑗 𝜙𝑗 , (A.5)

for all 𝑛 = 1, . . . , 𝑁 , with some constants 𝐴, 𝐵 ≥ 0, and 𝛼, 𝛽 > 0, then there exist a constant 𝐶 = 𝐶(𝐵, 𝑇, 𝛼, 𝛽)
such that

𝜙𝑛 ≤ 𝐶𝐴𝑡−1+𝛼
𝑛 , 𝑛 = 1, . . . , 𝑁. (A.6)

Proof. First, we observe the following relation. For 𝛾, 𝛿 > 0 we have

𝜏

𝑛−1∑︁
𝑗=0

𝑡−1+𝛾
𝑛−𝑗 𝑡−1+𝛿

𝑗+1 ≤
𝑛−1∑︁
𝑗=0

∫︁ 𝑡𝑗+1

𝑡𝑗

(𝑡𝑛 − 𝑠)−1+𝛾𝑠−1+𝛿 d𝑠 (A.7)

≤
∫︁ 𝑡𝑛

0

(𝑡𝑛 − 𝑠)−1+𝛾𝑠−1+𝛿 d𝑠 = 𝐵(𝛾, 𝛿)𝑡−1+𝛾+𝛿
𝑛 ,
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where 𝐵 denotes the beta function.
Now, if we choose the smallest 𝑘 = 𝑘(𝛽) ∈ N such that −1 + 𝑘𝛽 > 0 and iterate (A.5) 𝑘 − 1 times, using

relation (A.6) we obtain

𝜙𝑛 ≤ 𝐷1𝐴𝑡
−1+𝛼 +𝐷2𝜏

𝑛−1∑︁
𝑗=1

𝑡−1+𝑘𝛽
𝑛−𝑗 𝜙𝑗 ≤ 𝐷1𝐴𝑡

−1+𝛼 +𝐷2𝑇
−1+𝑘𝛽𝜏

𝑛−1∑︁
𝑗=1

𝜙𝑗 , (A.8)

with 𝐷1 = 𝐷1(𝐶2, 𝑇, 𝛽) and 𝐷2 = 𝐷2(𝐶2, 𝛽). If −1+𝛼 ≥ 0 we can derive (A.6) by means of a standard discrete
Gronwall type inequality. Otherwise, we take 𝜓𝑛 = 𝑡1−𝛼

𝑛 𝜙𝑛 and using (A.8) we obtain

𝜓𝑛 ≤ 𝐷1𝐴+𝐷2𝑇
−1+𝑘𝛽𝜏

𝑛−1∑︁
𝑗=1

𝑡−1+𝛼
𝑗 𝜓𝑗 ,

and deduce 𝑡1−𝛼
𝑛 𝜙𝑛 ≤ 𝐷3𝐴, again by means of a standard Gronwall type inequality. �

Proof of Lemma 4.4. From the definition of {̃︀𝜔𝑛}𝑛∈N0
, we know that (1 − 𝜉)𝛼 =

∑︀∞
𝑗=0 ̃︀𝜔𝑗𝜉

𝑗 . Then, defining
𝑔(𝜉) = 1 − (1 − 𝜉)𝛼, and recalling that 𝑤0 = 1, we have 𝑔(𝜉) =

∑︀∞
𝑗=1−̃︀𝜔𝑗𝜉

𝑗 . Now, defining 𝑓(𝜉) =
∑︀∞

𝑗=0 𝑐𝑗𝜉
𝑗 ,

from the definition of {𝑐𝑛}𝑛∈N0
, and using the Cauchy product for power series, the following equality can be

easily checked,

𝑓(𝜉)
𝑔(𝜉)
𝜉

=
𝑓(𝜉)− 𝑐0

𝜉
· (A.9)

Recalling that 𝑐0 = 1, and −̃︀𝜔1 = 𝛼, from (A.9) we can obtain an explicit expression for 𝑓 , 𝑓(𝜉) = (1 − 𝜉)−𝛼.
It is well known that series expansion of 𝑓 is 𝑓(𝜉) =

∑︀∞
𝑗=0(−1)𝑗

(︀−𝛼
𝑗

)︀
𝜉𝑗 . Then 𝑐𝑛 = (−1)𝑛

(︀−𝛼
𝑛

)︀
, where

(︀−𝛼
𝑛

)︀
=

Γ(1−𝛼)
Γ(1+𝑛)Γ(1−𝑛−𝛼) ·

Finally, by means of basic Gamma function properties, we can verify that
(︀−𝛼

𝑛

)︀
∈ 𝑂

(︀
𝑛𝛼−1

)︀
, and hence,

{𝑐𝑛}𝑛∈N0
∈ 𝑂

(︀
𝑛𝛼−1

)︀
. �

Acknowledgements. The authors thank Prof. Julián Fernández Bonder and Prof. Ciprian Gal for their valuable comments
which helped to improve the manuscript.

References

[1] G. Acosta and J.P. Borthagaray, A fractional Laplace equation: regularity of solutions and finite element approximations.
SIAM J. Numer. Anal. 55 (2017) 472–495.

[2] G. Acosta, F. Bersetche and J.P. Borthagaray, A short FEM implementation for a 2d homogeneous Dirichlet problem of a
fractional Laplacian. Comput. Math. App. 74 (2017) 784–816.

[3] G. Acosta, F.M. Bersetche and J.P. Borthagaray, Finite element approximations for fractional evolution problems. Fract. Calc.
Appl. Anal. 22 (2019) 767–794.

[4] M. Ainsworth and C. Glusa, Aspects of an adaptive finite element method for the fractional Laplacian: a priori and a posteriori
error estimates, efficient implementation and multigrid solver. Comput. Methods Appl. Mech. Eng. 327 (2017) 4–35.

[5] M. Ainsworth and Z. Mao, Analysis and approximation of a fractional Cahn–Hilliard equation. SIAM J. Numer. Anal. 55
(2017) 1689–1718.

[6] M. Ainsworth and Z. Mao, Well-posedness of the Cahn–Hilliard equation with fractional free energy and its Fourier Galerkin
approximation. Chaos, Solitons Fractals 102 (2017) 264–273.

[7] G. Akagi, G. Schimperna and A. Segatti, Fractional Cahn–Hilliard, Allen–Cahn and porous medium equations. J. Differ. Equ.
261 (2016) 2935–2985.

[8] S.M. Allen and J.W. Cahn, A microscopic theory for antiphase boundary motion and its application to antiphase domain
coarsening. Acta Metall. 27 (1979) 1085–1095.

[9] F.M. Bersetche, Numerical methods for non-local evolution problems. Ph.D. thesis, Universidad de Buenos Aires (2019).

[10] J.P. Borthagaray, L.M. Del Pezzo and S. Mart́ınez, Finite element approximation for the fractional eigenvalue problem. J. Sci.
Comput. 77 (2018) 308–329.

[11] A. Braides, Gamma-Convergence for Beginners. Clarendon Press 22 (2002).



28 G. ACOSTA AND F.M. BERSETCHE

[12] H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations. Universitext, Springer, New York (2011).

[13] J.W. Cahn and J.E. Hilliard, Free energy of a nonuniform system. I. Interfacial free energy. J. Chem. Phys. 28 (1958) 258–267.

[14] P.M. de Carvalho Neto. Fractional differential equations: a novel study of local and global solutions in Banach spaces. Ph.D.
thesis, ICMC-USP (2013).

[15] E. Di Nezza, G. Palatucci and E. Valdinoci, Hitchhiker’s guide to the fractional Sobolev spaces. Bull. Sci. Math. 136 (2012)
521–573.

[16] K. Diethelm, The Analysis of Fractional Differential Equations: An Application-Oriented Exposition Using Differential Oper-
ators of Caputo Type. In: Vol. 2004 of Lecture Notes in Mathematics. Springer-Verlag, Berlin (2010).

[17] C.M. Elliott and S. Larsson, Error estimates with smooth and nonsmooth data for a finite element method for the Cahn–Hilliard
equation. Math. Comput. 58 (1992) 603–630.

[18] X. Fernández-Real and X. Ros-Oton, Boundary regularity for the fractional heat equation. Rev. R. Acad. Cienc. Exactas Fis.
Nat. Ser. A Mat. 110 (2016) 49–64.

[19] C. Gal and M. Warma, Fractional in time semilinear parabolic equations and applications. In Vol. 84 of Mathématiques et
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