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NUMERICAL APPROXIMATIONS FOR A FULLY FRACTIONAL ALLEN-CAHN
EQUATION

GABRIEL ACOSTA AND FrANCISCO M. BERSETCHE*

Abstract. A finite element scheme for an entirely fractional Allen—Cahn equation with non-smooth
initial data is introduced and analyzed. In the proposed nonlocal model, the Caputo fractional in-time
derivative and the fractional Laplacian replace the standard local operators. Piecewise linear finite
elements and convolution quadratures are the basic tools involved in the presented numerical method.
Error analysis and implementation issues are addressed together with the needed results of regularity for
the continuous model. Also, the asymptotic behavior of solutions, for a vanishing fractional parameter
and usual derivative in time, is discussed within the framework of the I'-convergence theory.
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1. INTRODUCTION

Several physical and social phenomena have shown to be efficiently described by means of nonlocal models.
From anomalous diffusion to peridynamics and from image processing to finance, a rich collection of applications
pervades the recent scientific literature, showing the relevance and versatility of this kind of models. In particular,
many classical problems have been extended from the local to the nonlocal context in order to capture behaviors
that are beyond the modeling capabilities of differential operators. A fact that, in turn, have nurtured the interest
in their mathematical foundations as well the corresponding development of numerical methods. Basic examples
of this kind of models can be elaborated by considering the fractional Laplace operator,

(=A)*u(z) = C(n, s) P.V./ Mdy, (1.1)

R |z —y[nt2s
2s n
where 0 < s < 1 and C(n,s) = %
(=A)* corresponds with the infinitesimal generator of a stable Lévy process and can be shown, by means of the
Fourier transform [15], that the standard Laplacian and the identity operator can be recovered when s — 1~ or
s — 0T, respectively. Thanks to this, the fractional Laplacian can be used to model a wide range of anomalous
diffusion processes, where particles are allowed to perform arbitrarily long jumps.

is a normalization constant. From the probabilistic point of view,
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On the other hand, even though (1.1) makes perfect sense for n = 1, lateral versions are necessary for
dealing with the time variable. In such a case, the so-called Caputo and Riemman—Liouville derivatives of order
0 < a < 1, given respectively by

1 t 1 du .
Catau(x,t) —J I'(l—-o) fO (t—r)> or (z,r)dr if 0<a<l, (1.2)
Py (z,t) if a=1,
and
1 9 t__1 ;
RL oy (1) = 4 T 0F IN = u(z,r)dr if 0<a<l,
uy(z,t) if a=1,
are widely used in applications.
Our aim, in this paper, is to extended the classical Allen—Cahn equation
Ou—e?Au= f(u) in Qx(0,T), (1.3)

where f(u) = u—u® and Q C R" is a domain with smooth enough boundary, to the nonlocal setting. Originally
introduced to model the motion of phase boundaries in crystalline solids [8], the unknown function u represents
the density of the components, describing full concentration of one of them where © = 1 (or —1). Remark-
ably, the original formulation of the phase-field models [13] contemplates nonlocal interactions, and have been
subsequently simplified and approximated by local models.

In this way, we focus on the following problem,

Coru+e2(=A)u = f(u) in Qx(0,T),
u(0) = in Q, (1.4)
u =0 in Q°x[0,7],

where v belongs to a suitable fractional Sobolev space. Our model (1.4) is based on the Caputo’s version, due
to its compliance with standard formulations based on initial conditions [16].

Several numerical techniques have been recently developed for space and time non-local versions of equa-
tion (1.3), most of them based on finite differences or spectral methods [7,21, 22,27, 28, 35]. Also, numerical
methods have been studied for nonlocal versions of related phase separation models, like the Cahn-Hilliard
equation [5,6]. In [19], a rigorous analysis of a general form of problem (1.4) is presented, providing existence
and regularity results for a large class of operators, including the fractional Laplacian (1.1) considered here. A
similar analysis is also presented in [14].

The article has been organized in the following way. In Section 2, a theoretical treatment of a modified
version of problem (1.4) with non-smooth initial datum, including existence, uniqueness and regularity results,
is presented. We focus on certain specific kind of regularity results that are tailored to suit the analysis of our
numerical method. In Section 3 the numerical scheme, based on Finite Elements for the spatial discretization and
convolution quadrature rules for the time variable is presented and the error estimation is treated in Section 4.
Some arguments, developed in Section 5, show that our analysis can be extended to the model problem (1.4).
A complementary result, inspired by the behavior of solutions obtained in our numerical simulations, is given
in Section 6 where we study the asymptotic behavior of solutions of (1.4), with « = 1, when the fractional
parameter s — 0. Strange behaviors, as the displacement of the equilibrium states, are analyzed by means of
the Gamma-convergence theory applied to the associated non-local Ginzburg-Landau energy functional. Finally,
numerical experiments are shown in Section 7.
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2. A FRACTIONAL SEMILINEAR EQUATION
In order to study (1.4), we temporally focus first on a “restricted” problem,
Coru+e2(=A)u=g(u) in Qx(0,7T),
u(0) =v in €, (2.1)
u =0 in Q¢ x [0,7],
where g verifies the following conditions (H1) and (H2),
(1) geC(R), (2.2)
(H2) |g],19'|,19"| < B for some B > 0. (2.3)
Clearly, the function f of problem (1.4) does not comply with (H2). The goal is to apply later our results
to a problem of the form (2.1) with a source term that, in addition to (H1) and (H2), agrees with f in some
interval [-1 — R, 1+ R], for an arbitrary R > 0. In this case, the condition [|v||p (o) < 1 implies ||u||pe) <1
which in turn allows to remove (H2) in this context. Therefore, for such initial condition, (2.1) and (1.4) are

equivalents. This L bound is obtained indirectly through the analysis of the semi-discrete in time scheme
deferred to Section 5.1.

2.1. Weak formulation

For any s € (0,1), we consider an open set 2 C R™. We define the fractional Sobolev space H*({2) as

HS(Q)z{veﬁ( ) ol = ([ B dxdy)ém}.

This set, together with the norm || - ||zs) = || - |z2() + | - |#+(q), becomes a Hilbert space.
Another important space of interest for the problem under consideration is that of functions in H 5(R™)
supported inside €2,

H*(Q) = {ve H*(R"): supp v C Q}.

The bilinear form

() 1oy = C1,5) / / e (ulz) = ul)ola) = vly)) 4, g, (2.4)

|z —y["+2e

constitutes an inner product on H 5(€2). The norm induced by the bilinear form, which is just a multiple of the
H?*(R™)-seminorm, is equivalent to the full H*(R™)-norm on this space, due to the fact that a Poincaré-type
inequality holds in it. See, for example, [1] for details.

We call u a weak solution of (2.1), if u € WL1((0,T), L2(€2)) N C((0,T], H*(2)) and

{ (Coru, ) +2* (w0 oy = (9(w) ) Vo € H(), 25)
u(0) =0 in Q,

almost everywhere in (0,T").
Let us note that, defining the operator A : H*(Q2) C H*(Q) — H~*(Q),

(Au, ) = (U, 9) ey Vo € H*(9), (2.6)
the first identity of (2.5) can be rewritten as
Cocu+ &2 Au = g(u), (2.7)
a.e. in (0,7).
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2.2. Solution representation

For the fractional eigenvalue problem,

{2 0 Re 28)

it is well-known that there exists a family of eigenpairs {(¢x, Ax)}r, such that
O< M <X<..., AN—oooask— oo,

with the eigenfunctions’s set {¢y},-; constituting an orthonormal basis of L?(£2).

Remark 2.1. Unlike eigenfunctions of the classical Laplacian, solutions of (2.8) are in general non-smooth.
Indeed, considering a smooth function d that behaves like §(x) = dist(z,dQ) near to 9, all eigenfunctions
ér belong to the space d*C?*(=2)(Q) (the ¢ is active only if s = 1/2) and % does not vanish near 92 [20, 33].
Moreover, the best Sobolev regularity guaranteed for solutions of (2.8) is ¢, € H*+/27¢(R") for € > 0 (see [10]).

With {(¢x, Ak)}re;, solutions of (2.8), and the Mittag-Leffler functions E, ,: C — C, given by

o0 k
z
E, =N _- 2.9
for each @ > 0 and p € R, we define the operators
E*(t)v =Y Ean(—=\et")ok(v, 61) 120, (2.10)
k
and
Fe(t)v = Zta_lEa,a(_)\kta)¢k(vv 1) L2 (), (2.11)
k

for every v € L%(f2). Following the theory for the linear case (see for instance [3]), the solution of (2.1) should,
at least formally, satisfy the integral equation

u(t) = E* (%) v —|—/ F (2(t—s)) g(u(s)) ds. (2.12)

0
We say that w is a mild solution of problem (1.4), if u is a solution of equation (2.12) and in this case, we use
the notation u(t) =: M(v, g).
For technical purposes we define the interpolated norm

1

2

[wllo,s := (Z)\z(wa¢k)%2(g)> . (2.13)
k

It can be easily verified that |[wlo,s = ||w][z2(q), |wll1,s = [w|gs®n), and [[w]|2,s = ||(=A)*w]|12(q). Additionally,
we denote H?(Q) € H=5(2), § > —1, the space induced by the norm (2.13).
The following two lemmas provide helpful estimates for the operators (2.10) and (2.11).

Lemma 2.2. Consider t > 0, then we have

|E*(£)v]|p,s < Ct=P=D/2|j0|| if 0<p—g<2, (2.14)
IE* ()vllp,s < CtHHCH@DRy) o if 0<p—g<d. (2.15)
Proof. The proof is analogous of that of Lemma 2.2 from [23] (see also [9], Lem. 2.0.2). O

Lemma 2.3. Ifve H?, g ¢ [0,2], then form > 1
107" B (8)v ]| 12 () < O3 [u]lg,s.
Proof. The proof can be carried out as in Theorem A.2 of [24] (see also [9], Lem. 2.0.3). O
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2.3. Existence and uniqueness

For the sake of simplicity we are going to consider €2 = 1 along this section.

To obtain an existence and uniqueness result for the integral equation (2.12), we use standard fixed point
arguments adapted to the present context. Our approach follows [14,26]. For ¢ € (0,1] and 7 > 0, we introduce
the space,

Ve = {w e C([0, 7], L*(2)) N C*((0,7], L*(Q)) such that ||w|[ys < co}

where ||w||ye is defined as

lwllvs := sup [[w(t)llz2@) + sup 1D |w(t)|gen) + sup 7920w (t)] L2()-
tel0,7] te[0,7] tel0,7]

The inclusion V? C Vgl, for ¢’ < g, follows immediately from the definition, while the fact that V¢ is a Banach
space can be proved by means of standard arguments. In the sequel, the parameter ¢ plays a role in connection
with the regularity of the initial datum v. In particular, if ||v||4,s < co for some positive ¢, we show below that
dyu € L* ((0,T), L*(£2)). This condition on dyu is important for the analytical treatment of the numerical error
and a fundamental assumption for a right definition of the Caputo operator (1.2).

Remark 2.4. It is important to observe that we necessarily need v € H 1(Q)) for some positive ¢q. Otherwise, the
fractional derivative in time could not be well defined for solutions of problem (1.4). In fact, even considering
a simpler problem, taking f = 0 in (1.4), it is possible to construct a function v € L%() in such a way
that v ¢ H9(Q) for all ¢ > 0 and, for that initial datum, the solution u ¢ W' ((0,T), L2(Q2)). We refer to
Remark 2.1.5 of [9] for details.

The following is a local existence result.

Theorem 2.5. Suppose that ||v||4,s < Ro for some Ry > 0 and g € (0,1]. Then, there exist 7 > 0 small enough,
such that equation (2.12) has a unique solution u € VI.

Proof. First, we define the operator S(u)

S(u)(t) := E*(t)v + /0 Fe(t — s)g(u(s))ds, (2.16)

and Br = {w € VZ such that |w|ys < R, and w(0) = v}. It can be easily verified that Bg C VZ is a closed
set. Our goal is to show that there are parameters 7 > 0 and R > 0, in such a way that we can apply Banach’s
fixed point theorem. That is, we look for 7 and R, such that S maps Bpg into itself, and results in a contraction
over Bg.

Indeed, observing first that S(u)(0) = v for all u € V2, then the condition u(0) = v is satisfied for every output
of S. Furthermore, by means of Lemma A.1, it can be seen that S(u)(t) € C ([0, 7], L*(Q2)) N C* ((0,7], L*(2)).
Suppose now u € Bg, from (2.16), Lemma 2.2 and the definition of g, we have

t(l_q)o‘/Q\S(u)(t)\Hs(Rn) < t(l—q)a/2|Ea(t)U|Hs(Rn)
t
+ t(l—q)a/2/ ‘Fa(t — s)g(’LL(S))|HS(R") ds < CHUH%S
0
t
+ Ct“"’)a/?/ (t =) g(u(s)) 2 ds,
0

using the boundedness of ¢ and computing the resulting integral, together with the fact ¢ < 7, we get

tI=D/2S () ()| e (rmy < CRo + CT. (2.17)
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With the same idea we can obtain
IS (w) ()] z2() < CRo + CT. (2.18)

On the other hand, by means of Lemma A.1, we have

o ([ Fa -t as) = o ([ o igtute - )as) (219)

t
= F(0g(0) + | F(s)g'(ut — s)dra(t — 5)ds,
0
and we can write
179210, 8 (w) () || 2y < 12 OE* (t)v|| L2y + 2| F*(£)g(v)| 2 (0)

t
4 imao/2 / I P (s)g' (ult — $))Opult — s) |2 ds
0
t
< CRy + CRt'~10/? / st — 5)1/% 1 ds
0

where we have applied Lemmas 2.3 and 2.2, the fact that t179%2||0u(t)|r2() < |lullys < R, and
tl’qa/QHFO‘(t)g(v)HLz(Q) < 7(1’4/2)a||v||L2(Q). The integral in the second term can be estimated in terms of
the beta function B(«, ga/2). Indeed, making the change of variables s/t = r, we obtain

179210, S () ()| £2(02) < CRo + CRt™ / 1 reT (1 — )2/ 2 gy (2.20)
< CRy + CRB(ao, qo/2)T.
Combining (2.17), (2.18) and (2.20), we have
|S(u)llve < CRo + CRT,

where C' = C(a). Then, fixing R = 2CRy, we can choose 7 > 0 small enough to satisfy the inequality ||S(u)||y: <
R. Hence, for this 7, S maps Bp into itself.

Now we want to see that S is a contraction over Bg. Indeed, let u and w € Bg, using |¢'| < B and Lemma 2.2,
we have

t
=0 (w)(0) = S W)y < CO0 [ 0= 92 g ul) — gDl ds (221)
0
t
<Cpr 002 [ ()2 uls) — () ds
0

< [lu— wllya OB/ /t(t — g)e/2-1 g
< Ot D u —wlys < 07(')“‘||u — wllys.
With similar arguments it can be seen that
1S(u)(#) = S(w) (D)l L2(0) < CT%Ju = wllyse. (2.22)
Recalling the equality (2.19), we have that
74210 (S (u) (1) = S(w) (1)) |2y < 792 F* () (w(0) — w(0)) | 120

¢
+ tl_qa/20/ s g (u(t — 8))0pu(t — s) — g’ (w(t — 5))Ow(t — )|l L2(0) ds.
0
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Using the identity
9 (Wdhu — g'(w)dyw = g'(u)(Oru — Oyw) = (¢ (u) — g'(w)) Dy,
and the fact that u(0) = w(0) = v, t'79/2|| 0w (t)||20) < R, |¢'|, |¢"| < B, we can write

120, (S()0) - S0 o) < #2CB [0 (ult — ) <t = 5) 52y s (2.23)

t
+ CBRtl—qW/ @t — )™ Ut — 5) — w(t — 8)|| 2y ds
0

t

< C(1+ R)|ju — wlyat'—1%/? / st — 5)19/2 1 ds
0

< OB(a, qa/2)7"[|u — wllys,

where the integrals in the last inequality have been estimated in terms of the beta function, as in (2.20), and
C = C(R).
Finally, combining (2.21)—(2.23), we can conclude that

[8(u)(t) = S(w)(B)llve < CT[lu —wllvy,

with C = C(a, R), and it is clear that we can choose 7 small enough, such that S results in a contraction over
Bpg. Hence, for that 7, a unique solution for problem (1.4) in the interval [0, 7]. O

Now we need to derive an a priori estimate for the time derivative of the solution. To this end, we first recall
the following Gronwall type inequality.

Lemma 2.6. Let the function p(t) > 0 be continuous for 0 <t <T. Then, if
t
o(t) < At~ ¢ B/ (t—s) " Pp(s)ds 0<t<T
0

for some constants A, B> 0 and «, 8 > 0, there exists a constant C = C(B, T, «, 3) such that
o(t) < CAL e, (2.24)
Proof. See for instance Lemma 6.3 of [17]. O
Now, we are ready to state the following result.

Lemma 2.7. Let u(t) = M(v,g)(t) with v € HY(Q) and t € [0,T), there exists a constant C = C(a,T) such
that
10cu(t)|| 20y < Ct/271. (2.25)

Proof. For h > 0 we can write

t+h t
u(t+h) —u(t) = (E*(t+h) —Ea(t))U—F/O Fo‘(t—l—h—s)g(u(s))ds—/o F(t —s)g(u(s))ds  (2.26)

t+h

= (E®(t+h) — E“(t))v +/

F*(s)g(u(t+h—s))ds — / F*(s)g(u(t — s))ds
0

0

t+h
= (E“(t+h) fEa(t))er/t Fe(s)g(u(t+h—s))ds

T / Fo(s) (glult + h - 8)) — glu(t — 5))) ds
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t+h
= (E“(t+h) —Ea(t))v—i—/ F(s)g(u(t+h —s))ds
t

+ / Fo(t — 5) (g(u(s + 1) — g(u(s))) ds.
0

Now, considering h small enough, and taking norms at both sides of the equality; using Lemma 2.3 in the
first term on the left side; estimation (2.15), and estimation |g| < B in the second term and the same idea in
the last one, we obtain

t+h ¢
lu(t +h) —u(t)| 2@ < C (htqa/Q_l —I—/ Sa_lds—i—/ (t = s)* Hu(s + h) — u(s)| z2(0) ds)
¢ 0

¢
<C(T) <htqa/21 + / (t =) Huls + h) — u(s)| L2 d5> . (2.27)
0
Finally, applying Lemma 2.6 we derive (2.25). d

Combining the former results, we are now able to prove the global existence of the solution.

Theorem 2.8. Under the hypotheses of Theorem 2.5, let u be the solution of (2.16) defined in [0, 7] and consider
fized numbers T and 19, such that T > 7 > tg. Then, there exists a constant C = C(T,19) > 0 such that if
0< 6 <C,u can be extended to [0, + d] as a solution of (2.16).

Proof. We are going to consider the space VEM’ for some 0 < § < 1, and Bgr C VZ+57 defined as Bgr :=

{w € VI s such that w(t) = u(t) vVt € [0, 7], and ||wHV3+6 < R}, where u is the solution of (2.16) over [0,7].

Observe that, with this definition, Bp is a closed subset of Vg+5' Our goal is, as in the proof of Theorem 2.5,
to apply Banach’s fixed point Theorem, showing that there exist § > 0 and R, such that S is a contraction over
Bpg, and maps Bp into itself.

Suppose @ € Bp, proceeding similarly as in (2.17), using the boundedness of g, we can obtain

t D28 (@) ) < CRo + C(7 +6)” < O(Ro + 7% + %) (2.28)
< C(Ry, T) + 6.

With the same idea we obtain
[S@)[|z20) < C(Ro, T) + 0. (2.29)

Also, applying the same arguments used to arrive to (2.20), along with the fact that u(s) = w(s) for all
s € [0, 7] together with the fact that ¢t > 7, we get

t
t1792)10,8 (@) || L2 () = t' I E* (B + F(t)g(v) + / F(s)g(u(t — 8))0pu(t — s) ds||r2(a) (2.30)
0
t
< C(T)Ro + t1799/2|| / Fo(t — 5)g(ii(s))dii(s) ds|| 12
0
t

< C(T)Ro + 1972 / " Fo(t— $)g(u(s))dyuls) ds + / Fo(t — 5)g(@(s))0yii(s) sl 2

T t
< C(T)Ry + CBtl—qa/Q/ (t —s)* 1s9%/271 45 4 CBRtl_qa/Q/ (t —s)* 1s99/271 45
0 T

= C(Ro, T) + (i) + (i1),
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where in the last inequality we have used (2.25). Now, making the change of variables s/t = r, we have

T/t 1
(o [ a-nr et <o) [ 1l
0 0
< 7%+ 087 < O(T) + C6°,

and

1 1

(1- r)“_qua/2_1 dr < C’Rt“(7/t)qa/2_1/ (1—r)*tdr
T/t

(i) < CRt® /

T/t
< CRt™(1/t)1/* (1 — 7/t)* < CR(t — 7)* < CR6%,

where we have estimated (7/t)7%/2=1 < (1) using the fact that ¢t > 7 > 74 > 0.
Applying this estimation to (2.30), we obtain

t1799/2(10,S(W)[| 2 () < C(Ro, T) + CRS*, (2.31)
and combining (2.31) with (2.28) and (2.29), we obtain
[S@)llvs, , < C(Ro,T) 4+ CR5®.

If we choose R = 2C(Ry,T), taking 6* < 1/2C we have ||5(77)HV‘1+5 <R.
Finally, we only need to show that S is a contraction on Bg. Consider % and w € VI_ ;. proceeding as
in (2.21), and taking advantage of the fact that u(s) = w(s) = u(s) for all s € [0, 7], we can estimate

t

t1=D2S (@) (1) — S(w)(t)| s () < Ct“’q)““/ (t = 5)*"* Hlg(a(s)) — g(w(s))ll2(@) ds

r
t

< CBt“—q)a/?/ (t —5)**7H[u(s) — w(s)| 2y ds

1
< OBl - wHVth@*q)a/?/ (1= r)2/2=1 4y
T T/t
< Clu— w||vg+5t—qa/2ta/2(1 —7/t)? < O ||u — wlye,, (2:32)

where in the last step we use the bound t~9%/2 < C(7y), with 7 > 75 > 0.
Also, arguing as in (2.23), we have
t
t17972)8, (S(@)(t) — S(w) (1)) [lL2(@) < tlfqa/QCB/ (t =)0 (a(s) — w(s)) llz2(0) ds

r
t

+ CBR -0/ / (£ — 5)* 15997271 7(s) — w(s)] (e s
t

<C(R+ 1)||177w||w+5t1*q°‘/2/ (t—s)*ts1/27 45

1
< C(R+ Dffii —wlys 1 // (1 = p)o-Lpaa/2-1 g, (2.33)
T/t
with the same arguments used to bound (ii) we arrive to
< C(R+1)6%|u — w||V3+5.

Then, we can assert that ||S(u) — S(w)||Vq+5 < Cé*(R+1)||u— w||w+67 and we can choose § such that S
results in a contraction. Since R depends on T and Ry, the statement of the theorem follows. (I
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Notice, in previous theorem, that § does not depend on 7. As a consequence, we have proved that equa-
tion (2.12) has a unique solution in V.. Moreover, in view of the regularity of functions belonging to the space
V%, we can assert that a mild solution is also a weak solution.

3. NUMERICAL SCHEME

3.1. Semi-discrete scheme

Let 75, be a shape regular and quasi-uniform admissible triangulation of 2. With X, C H* (©) we denote the
continuous piecewise linear finite element space associated with 7, that is,

X = {uh € H ()N CY(Q): up|, € P* VT € Th} .
Then, semi-discrete problem formulation reads: find wy: [0,7] — X}, such that
(Copun, w) + (un, ) gy = (Flun),w), Vw € X, 51)
up(0) = vp.

Here, v, = P,v, and P, denotes the L?(Q) projection on Xj. Also, defining the discrete fractional Laplacian
Ay ¢ X — Xj as the unique operator that satisfies (Apw,v) = <w,v>HS(Rn), for all w,v € X}, we may
rewrite (3.1) as

uh(O) = Vp.

We also define the discrete versions of E* and F'®. In order to do this, consider an orthonormal basis of X},
{bn1,--,¢nn} C Xp, and define

{Caf‘uh + e Apup, = Py f(un), (3.2)

N
Ep(t)v = ZEa,l(_/\h,kta)ﬁbh,k(vv Bn,k) L2 ()5 (3.3)
k=1
and
N
Fp(tyo :=> t* " Eoa(=Anst®)ni (v, k)20 (3.4)
k=1

3.2. Discretizing the Caputo derivative

In order to set a fully discrete scheme, we need to discretize the Caputo operator. This can be done by means
of the well known relation between the Caputo derivative “9¢, and the Riemann-Liouville operator RF92, that

reads
Copu(t) = "o (u(t) — u(0)), (3.5)

for 0 < o < 1 (see for instance [16], Thm. 3.1) that holds for a smooth enough function w. Applying (3.5) to
problem (3.2), we can reformulate it in terms of the Riemann-Liouville operator as follow,

(3.6)

{RLﬁf‘uh + 2 Apup = RL@?Uh + Pp f(un),
uh(O) = Up-

The advantage here is that the R-L derivative can be approximated by means of a convolution quadrature
rule. That is, dividing the interval [0, T] uniformly with time step 7 = T/N, and letting ¢, = nt, a discrete
estimation 9, of *F9® can be defined as

D uty) = iju(tn —J7). (3.7)
§=0
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o .
Here, the weights {w;} .\ are obtained as the coefficients of the power series expansion (17;5) = E?io w;&7.
Fast Fourier Transform can be used for an efficient computation of {w;},cy, (see [32], Sect. 7.5). Alternatively,
a useful recursive expression is also given in [32],

1
WQ:Tia, wj = (].—a;_ >wj1, V]>0 (38)

It is not our intention to give an exhaustive description of this method and we refer the reader to [3,24]
(see also [29,30] for further details). An advantage of convolution quadratures is that error estimates can be
delivered without the assumption of excessively restrictive regularity properties on the solution. This is a fact
of paramount importance as one can learn from [36].

The following result ([29], Thm. 5.2) will play a central role in the error estimation below.

Lemma 3.1. Let K be a complex valued or operator valued function which is analytic in a sector g :=
{z € C : |argz| <0}, with 0 € (7/2,7), and bounded by || K(z)|| < M|z|* Vz € g, for some u, M € R. Then

for g(t) = CtBP~1, the operator O, satisfies

— l‘_l 6
(K (9-) = K(9-))g(t)]| < {gil#z;, %;f.g -

Finally, another useful property of the operator 9, is the associativity. That is, let K, Ky be operators as in
Lemma 3.1, and k an analytic function, we have

K1(0,)K2(0;) = (K1K2)(0,) and Ki(0,)(k*g) = (K(0,)k) * g. (3.9

3.3. Fully discrete scheme

Replacing the Riemann-Liouville derivative by its discrete version given by (3.7), we can formulate the fully
discrete problem as: find U}’ € Xj,, with n = {1,..., N}, such that

3.10
U}? = Up.- ( )

{an,;L + AU =3 v + Pug (UD)
For the sake of the reader’s convenience, we include a vectorial form of the fully discrete scheme. Let
{¢i}iz1, a be the Lagrange nodal basis that generates Xj. Let U" € RV, n = 0,...,N be such that

up = Zfil Ulp;, where U]’ denotes the solution of the fully discrete problem. Then, we may formulate (3.10)
in the following vectorial non-linear equation:

M~ (woM +K)-U" = (Y w; | U= w;Uu"7 +g (U™,
j=0 Jj=1

where M and K are the mass and stiffness matrices respectively. That is, M;,; = (v, ¢;) and K;; =
<SD’L'7 (pj>Hs(]Rn)'

The computation and assembly of the stiffness matrix in dimension greater than one is not a trivial task.
Nevertheless, this problem for two-dimensional domains is treated in [2], where the authors provide a short
MATLAB implementation to this end. Also we can mention [4,25] where some clever ways to reduce the
complexity of the assembling process are analyzed.

Since (3.10) is not a linear equation, it is not clear a priori that there exist a solution. In that way, next
result gives us existence and uniqueness for problem (3.10).
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Theorem 3.2. There exist T small enough, such that problem (3.10) has a unique solution U]’ € X}, for all
ne{l,...,n}.

Proof. Recalling that wg = 7%, dividing equation (3.10) by wg on both sides, we obtain
(T+7mAn)Ur = [ D @ | UL = &Up ™ + mPag (UF). (3.11)
§=0 j=1
Observe that, since (Apw,w) > 0 for all w € X}, it is true that
H(I + TaAh)_l HLZ(Q) <1,

for all 7 > 0. Now, suppose by induction, that we have a solution U;" € X} for all m < n, and define
T: X, — X, as

T(w)=(T+7r4) 7" | [ D& | UR =D &Up 7+ Pug(w) | - (3.12)
j=0

j=1

Applying a fixed point argument, if T is a contraction over X}, then problem (3.10) will have a unique solution.
To this end, suppose that we have u and w € X},. Then, using |¢’'| < B we have

1T (w) = T(w)l| L2y = (T +7*An) ™" (7*Pulg(u) — g(w))) |2 ()
< 1¥g(u) — g(w)|[r2() < BT||u — w||L2(0).

Taking 7 < B~%, we have that T is a contraction, and problem (3.10) has a unique solution. O

4. ERROR ESTIMATION

For the sake of simplicity we are going to consider €2 = 1 through this section.

4.1. Error estimates for the semidiscrete scheme

For the following linear problem

(CatOtuﬂD) + &2 <ua(p>Hs(R“) = (f7 90) Vo € ﬁs(Q)7 (41)
u(0) =v in Q

3

where f: [0,T] — L*(Q) and the corresponding semi-discrete approximation

(Caguhvw) + <uh7w>HS(]R") = (faw) ’ Yw € th (42)
uh(O) = Vh,

with vy, = Pyv, we have the following two results [3].

Theorem 4.1. Let u and uy, be solutions of (4.1) and (4.2) respectively with v € HY(Q), q € [0,2], and right
hand side f = 0. Then it holds,

||u — ’LLh”LZ(Q) + h7|u — uh|H5(Rn) < ChQ’ytia(%q)HU”Lz(Q).

where C = C(s,n) and v = min{s,1/2 — e}, with € > 0 arbitrary small.
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Theorem 4.2. Let u and uy, be as in Theorem 4.1 withf € L°([0,T]; L*(Q)) and initial datum equal to zero.
Then, there exists a positive constant C = C(s,n) such that

lu = unl 220y < Ch*'|log h?|[ fll Lo~ (o, 71;22 (02
with v as in Theorem 4.1.
From this, we can estimate the error for the semi-discrete scheme (3.1).

Theorem 4.3. Let u and uy, be the the exact and the semi-discrete solution of (2.5) and (3.1) respectively. And
let v e H1(Q) with ¢ € [0,2] and vy, = Pyv with ||v]|q.s < R. Then there exist a positive constant C = C(R,T)
such that

lult) = un(®) |20y < CR2(*CF) + loghf?), ¢ € (0,7 (43)
With ~ as in Theorem 4.1.

Proof. We can write the solution and its semi-discrete approximation as u = E(t)v + f(f Fo(t — s)g(u(s))ds,
and up, = Ef (t)vy, + fg F{(t — s)g(un(s)) ds, respectively. Then, defining e = u — uy, we have

e(t) = (E® — Ep Py) (t)v +/O EFp(t —s)Pr (g(u(s)) — g(un(s))) ds
+ / (F* — F'Py) (t — s)g(u(s)) ds.
0

Using Theorem 4.1 in the first term; |g|,|¢'| < B, and (2.15) in the second term; Theorem 4.2 with f = g(u)
and |g| < B in the last term, we have

2—q

t
le(®) e < CRECEIR2 0B / (t — )2 [le(s)l| 2 ds + Ch? | log h.
0

Then, applying Lemma 2.6 we derive (4.3). |

4.2. Error estimation for the fully discrete scheme

Consider the discrete problem of find V;* € X5, n € {1,..., N}, V2 = 0 such that
S w Vit = — AV + f (4.9)
§=0

with f € Xj, for all n € {1,...,N}. Recalling that wy = 77%, and defining £ = (I + 7%A4;)"!, we can
rewrite (4.4) as

Vi=FE Z —7%W; thfj +TYf . (4.5)

j=1

If we define {w,,}, oy as the coefficients of the series expansion of (1 — &£)®, from the definition of {wy}, .y We
have &, = 7%, for all n € N. And we can write V" as a function of f} in a recursive expression

Vit => Enjfl, n>0, (4.6)

j=1
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with E, recursively defined as
n—1
Eo=71"E, E,=EFE Z ~n_E; | . (4.7)
§=0
As we have observed in the proof of Theorem 3.2, we have

IEllL2@) = 1T +7An) "2 < 1.

Then, from (4.7), and recalling that —w; > 0 for j > 1, we have

n—1
1Boll2@) < 7% 1Enllz@) <D —@njll Bl 2 ()- (4.8)
j=0
Defining the sequence
n—1
Co = 1, Cp = Z —CNL)n_jCj, (49)
j=0
it is possible to check that
| Enllr2) < 7%n. (4.10)

In order to bound the error, it will be useful to know about the asymptotic behavior of {¢,} This is

analyzed in the next lemma proved in Appendix A.

neN"

Lemma 4.4. Let {w,}, oy, be the coefficients of the power series expansion of (1 — &), with a € (0,1), and
{en}nen, the sequence recursively defined in (4.9). Then, ¢, € O(no=1).

Theorem 4.5. Let u and Ul = Uy (t,) be the solution of (1.4) and (3.10) respectively Consider v € HI(Q) for
some q € (0,2] and vy, = Ppv with ||[v]|q,s < R. Then, if T < 19, for a sufficiently small 7 there exist a positive
constant C = C(R, T, a, q) such that

[ u(tn) = Un(tn)|l12() < Ch®Y (tn“( =), | log h|2> rort, T 4, € (0,T). (4.11)

With v as in Theorem 4.1.

Proof. In view of Theorem 4.3, we only need to estimate |jup(t,) — Up(tn)|l12(q), with up the semi-discrete
solution. Considering the sector Xy := {z € C such that z # 0, |arg(z)| < 0}, it can be seen that the function
G(z) := (21 +Ap)~ ! is analytic in Xy with 6 € (7/2, 7). Then, from the semi-discrete and fully discrete scheme,
we have

Up = G (at) 8?Uh + G (at) Phg(uh)a

and . o
U, =G (87) 0r vp +G (&r) Prg (Uh) .

Subtracting both expressions we obtain an equation for ey := up — Up,
en = (G () 0% — G (37) ai“Ph) v+ G (8)) Pag(un) — G (37) Pug (Un) (4.12)

= (G @) 07 G (@) T"F) o + (G () — G (37)) Puglun) + G (37) P (g(wn) — g (Un)
= (i) + (ii) + (iii).
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The norm of the first term (i) can be estimated arguing as in Theorem 5.3 of [3] (see also [9], Thm. 4.2.8).
Since v € HY(§2) we obtain

. —1+ai —1+ai
IOlle2@) < Cta™ 7 llonllga) < Cta™ "2,
with C' = C(R). For the second term, using property (3.9), we can split (ii) as follow

(i) = (G (9) = G (0r)) (Prg(un(0)) + (1% PrOrg(un(tn)))
_ (@)~ G @) Prguwn(0)) + (€ () — G (37)) 1) # Prdeg(un(ta)
=I+1IL
Using Lemma 3.1 with u = «, 8 = 1, along with the fact that |g| < B, we can estimate
12 < Cto~'r.

On the other hand, noticing that Lemma 2.7 can be easily extended to dyup, in order to get ||Qyunl/r2(0) <
Ct*/?=1; using again Lemma 3.1, the fact that |¢’| < B, and writing d;g(up(t)) = ¢ (un(t))dsup, we have

M0 < [ 16100 = G (@) 1) (b = 5)g (n(5)) 00 () 120

tn tn
< CT/ (tn — 3)a71||atuh($)||L2(Q) ds < C’T’/ (tn — s)o‘*lso‘/z*1 ds
0 0

3
sa—1

< CTtt3 ,

where in the last inequality we have estimated the integral in terms of the beta function B(a/2,«), as in
Theorem 2.5.

Now, we observe that the last term (iii) is a solution for (4.4), with f* = P}, (g(up) — g(Up,)). Then, in view
of (4.6) and (4.10), and using again that |¢’| < B, we have

n

G| z2() < 7Y enjllen(ti)z2 ()

j=1
where {c,}, oy is the sequence defined in (4.9).
— q 33— — q
Using that Ct (tn 4oz +t2” ! —&—tﬁ’l) < CTttp, 1+a27 with C = C(T), and the fact that 7%, ~ 7%(n +
et = th:;} (given by Lem. 4.4), we can derive the following

n

1+o¢ _
len(tn) L2y < Crtn 2+ CT Y t071 [len(t) o)
i=1
n—1

,1+ai _ o
=Crtn "2+ C7Y 71 llen(t) 2@ + CTllen(tn) 2o
j=1

Taking 7y in such a way that 1 — 7§C' > 0 and 7 < 79, we can subtract the last term on the right from both
sides an obtain

C 1+a
len(tn)llL2(0) < T=oC Ttn QCT Z “inllen(t)lzz )
Finally, applying Lemma A.2 (a discrete analog of Lem. 2.6), we have

1+4al
llen(tn)llz2 ) < Ortn 12, (4.13)

for some C' = C(R, T, a,q).
From this, (4.13) and (4.3), we can derive (4.11). O
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5. ANALYSIS OF THE FRACTIONAL ALLEN—CAHN EQUATION

5.1. L° bounds

At this point we need to recall some results that play an important role in our analysis. The following two
theorems summarize classical global and interior regularity of solutions for the following problem,

—A)Su = in Q
{( )uzg in R™\ Q. (5.1)

We refer to [18] for further details about (5.1).

Theorem 5.1. Let Q C R” be any bounded C** domain, s € (0,1), and u be the solution of (5.1). If f €
L>(Q); then u € C*(R™). Moreover, ||ul|cs@n)y < C||f|lL~ (), where the constant C depends only on Q and s.

Theorem 5.2. Let § be a bounded domain of R™, and let u be a solution for (5.1). If §(z) = dist(z,00), for
each p > 0 define Q, :={x € Q:6(x) > p}. Then, if §+ 2s is not an integer, for every 0 < p’ < p we have

[ullco+zs(,) < Cllfllesa,) (5.2)
with C = C(n,s,Q,8,p,p).

We devote the remaining sections to problem (1.4). In order to exploit the results obtained for (2.1) we
need to work with a truncated version of f. In this way, along this section we assume that our source term g
verifies (2.2), (2.3) and agrees with f in an interval [-1 — R, 1 4 R], for some R > 0. In order to prove that, in
this case, the solution remains bounded between 1 and —1 for any v such that ||v]|e < 1, we are going to define

first a discrete in time problem. That is, find U™ € H* (Q), with n € {1,..., N}, such that

(5.3)

9, U™ + AU™ = 0; v + g (U™)
U% = .

The proof of the existence and uniqueness of solutions for this problem is similar to the one given for the
fully discrete case. For the solution of this problem, we have the following result.
Theorem 5.3. Consider the semi-discrete in time scheme (5.3) with U € L>(Q), then there exist 19 > 0 in
such a way that if T < 79 (5.3) has a solution U™, n € {0,..., N}, with U™ € C*(R™) for all n > 0. Moreover
if [U%(z)] <1 for all x € Q, then |U™(z)| <1 forallz € Q andn € {1,...,N}.

Proof. Suppose we have a solution with the desire properties for all m < n. From (5.3) we have the identity
Ur=I+7A)7" [ D@ | U= sur 479U |, (5.4)
j=0 j=1

where @; 1= 7%w;.
First we want to show that there exists U™ € L*(Q) that satisfies equation (5.4). In order to do that, we
define the map T : L?(2) — L?(Q)

T(w) = (T+7"A) 7" [ | D w | U= wU" 7 +7%(u)
j=0

Jj=1
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We want to verify that 7' is a contraction in L?(£2). From the fact that A is a maximal monotone operator
(see [12]), we know that ||(1 +7*A)|2(0) < 1. Let v and v € L*(), we can estimate

IT(u) = T(v)ll L2 = I +7%4) "7 (9(u) = 9(v)) | L2(0)
<71 g(u) = g()llL2@) < T*Bllu —v||L2q)-

Then, for a small 7 we have that T is a contraction. Hence, there exists a unique solution U™ € L?(Q) for (5.4),
and the identity

AU = | Y w; | U= wUm T 4 g (U™) (5.5)
j=0 j=1

is satisfied. Since the right hand side belongs to L°°(2), applying the Theorem 5.1, we can conclude that
Um e C*(R™) N C%(R,) for all 0 < p < po.

Now, we want to see that if the initial data is regular enough, then the solution remains bounded between 1
and —1. Indeed, suppose we have U™ € C%(Q)NC*(R") and |[U™(z)| < 1 for all z € Q, for all m < n. If we take
a fixed p’ > 0 with p = 2p’ in Theorem 5.2, and use the the fact that U, € C?*(Q,), then g (U,) € C**(9,)
and we can conclude that U,, € C2s+25(9p1). A repeated application of this argument, along with the fact that
g € C?*(R), implies that U™ € C*"2% (€y,,) for some k € N, only depending on s. Since py can be arbitrary
small, we can assert that U™ € C?(Q), and then, U™ € C?(Q) N C*(R"™).

On the other hand, the semi-discrete in time scheme gives us the relation

iijnfj - iw]’ UO = *AUn + g (Un)a

=0 =0

which can be rewritten as
1

a; (U7 —U" 771 =—-AU" +g(U"),

n

<
Il
o

with a, = Z;‘L:O wj. Suppose that there exist some xg such that U™ achieves its maximum on that point,
and U"(zg) > 1. Recall that [[U™| Loy < 1 for all m < n. From the regularity of U", it can be shown that
AU™(zg) = (=A)* U™(xg) > 0 (see [18], Lem. 3.9). Then, from the fact that U™ (zg) > 1, we have g (U™ (z)) < 0,
which implies

z_: a; (Unij(l‘o) - Unijil(xo)) < 0.
=0

Observing the fact that {a,} is a positive and strictly decreasing sequence, it is possible to show that there
exist mg < n, such that U™ (zg) > U™ (o) (see [9], Lem. 5.2.4), and then 1 > U™ (xg) > U™ (xg) > 1. The
contradiction came from the assumption that U™ (zg) > 1.

Now we want to see that the same bound holds for less regular initial data. To this end, applying a density
argument, suppose U™ is a solution for (5.3) with U® € L (), [|U°|| ;=) < 1. Consider {U} C C (),
with [|[Up|| (o) < 1 for all k, and Uy — U° in L?(Q).

Let U} be the solution of (5.3) with initial data Uy. Calling e} = U™ — U}, we have the equation

Fren

n (e} -1 ~ ~ n—j « n n
b=+ AT | X8 | el =D G+ (9 (U) — 9g(U) |
j=0 j=1
and taking norms we obtain

lerllacoy < llebllzz) + Y —@5ller 2 ) + 7 Bllep |l L2oy- (5.6)
j=1
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Choosing 79 such that 75*B < 1, recalling that 0 < —w; < —w, and applying a discrete Gronwall type inequality
we have

0 nwi/1-7§'B 0
lexllzz) < llexllrz)———a7— = Cllerllr2(),
(9 (O B (9)
with C' = C(79, o, B,n), and then, [le}||2(q) — 0 with k& — ooc.
Since ||UP|| () < 1, then U} || () < 1 for all k, and for all n € {1,..., N}. Hence, for a fixed n, we can
construct a sub-sequence {U,?J} , such that U,?j — U™ a.e. and conclude that U™ () < 1. O
JjEN

Finally, proceeding analogously as in Theorem 4.5, we can derive the following error estimation.

Theorem 5.4. Let u and U™ = U(t,) be the solution of (1.4) and (5.3) respectively, with v € HY(Q), ||v]g.s <
R with q € (0,2]. Then, if T < 19, for a sufficiently small 79 > 0 exists a positive constant C = C(R, T, «,q)
such that .
lu(ts) = Ulta)|lz2) < Cta' 27, t, € [0,T). (5.7)
Now, consider [|v|| ) < 1. Given a fixed ¢ € (0,T] we can construct a family of nested partitions of [0,T]
with 7 = T/Ng, k € N, and N — oo if k — oo, in such a way that ¢ belongs to all the partitions. Let Uy be the
solution of (5.3), and u the solution of (2.5), using Theorem 5.4 we have that Uy (t) — u(t) in L?(2). So, we
can extract a subsequence {U, (t)}jeN such that Uy, (t) — u(t) a.e. Using 5.3, we know that ||U ()| @) < 1,

and then, [[u(t)| 1) < 1. We can summarize this observation in the following result.
Theorem 5.5. Let u a solution of (2.7) with ||v|[p~q) < 1. Then |[u(t)| ) <1 for allt € (0,T].

This theorem implies that all the analysis displayed up to here remains valid replacing g by f and therefore
to the Allen—Cahn equation (1.4).

6. DISCUSSION ABOUT THE ASYMPTOTIC BEHAVIOR WITH s — 0

Considering now the usual derivative in time (a = 1), the Allen—Cahn equation can be understood as a
gradient flow in L2, minimizing the free energy functional

62
Fu(w) = Sl + [ W), (6.1)

with W (u) = # (see e.g. [5]). It is well known that the size of € affects the interface width of the minimizers
of Fy. That is, interface width tends to zero with e — 0. This fact can be easily derived from expression (6.1),
observing that the right term, which penalizes the variation of u, tends to lose relevance as € goes to zero, forcing
the minimizer u to take values into the set of minimizers of W, that is values belonging to {1, —1}. However,
since € > 0, the right term promote the minimization of the interface length (for n > 2), which implies that the
limit behavior cannot be understood as the minimization of Fy with e = 0. In [34], Savin and Valdinoci show,
by means of I'-convergence theory, that the limit behavior of the problem of minimizing F tends to a minimal
surface problem if s € [1/2,1), and to a non-local version of the minimal surface problem for s € (0,1/2).

In our case, numerical experiments (see Fig. 2) show that the interface width tends to become thinner when
the parameter s goes to zero, suggesting that (as in the case ¢ — 0) a minimizer of Fy should approximate
a binary function when s — 0. This behavior was also observed in [6], where authors derive the scaling law
T= 0(51/ 2s), with 7 denoting the interface width. On the other hand, a displacement of the equilibrium states
have been observed in our numerical experiments for small values of the fractional parameter s (see Fig. 1).

Motivated by the previous observation, the aim of this section is to analyze the asymptotic behavior of the
minimizers of Fs with s tending to zero. To this end, we are going to follow the ideas displayed in [34], and study
the I'-convergence of a suitable modification of the functional Fs. By means of this framework, it is possible to
conclude that the minimizers of (6.1) approach binary functions, and the equilibrium states should be placed
near /(1 —e2) and —y/(1 — £2) for small values of the fractional parameter s.
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6.1. I'-convergence when s — 0

Since I'-convergence may not be a usual concept in numerical analysis, we start this section by giving its
definition and basic properties, and we refer to [11] for further details.

Let X be a topological space, and {F,}.y, I : X — [~00,+00], a sequence of functionals. Then, we say
that F,, T-converge to F': X — [—o00, +00], if the following conditions holds:

— For every sequence {x,}, .y C X such that x,, — x, then

F(z) < liminf F, (x,).

n—oo

— For every x € X, there exist a sequence x,, converging to x such that

F(z) > limsup F,(x,).
n—oo
Also, we define a complementary concept. We say that the family {F,} has the equi-coerciveness property if
for all ¢ € R exists a compact set K. in such a way that {F,, < ¢} C K, for all n € N.
These two concept allow us to say something about the limiting behavior of the minimizers of F,, in terms
of the minimizers of F. That is, if 2,, is a minimizer of F,, then every cluster point of {x,}, y (if exist) is a
minimizer of F. This can be summarized as follow

Equi-coerciveness + I'-convergence = Convergence of minimizers.
In order to study the I'-convergence of Fs, we must set an appropriate domain X for Fj,
X ={u € L*®(R") with |u| <1, and u =0 in Q°}.

And we are going to consider this space furnished with the norm || - ||z1(q). Note that if u € X but u ¢ H* (%),
then we can define Fy(u) = 4o0.
From the definition of F,, and supposing €2 < 1, we have

g2 g2 5 g2 5
Fy(u) E|U|HS(R") - EHUHL%Q) + EHU’HLZ(Q) + o W (u)

£ 2 2 e
5 (el = lllfaey) + | (W) + 507

and, denoting F[u](§) as the Fourier transform of u, we know from [15] and Plancharel’s identity that |ul3,. ®n) =
JETIER 120y = fan PRI dE, and [Jul2a ) = i F2[u] (€) €. Then we have

M%M—M%@=/ﬂwtﬂﬂwwﬁ,

Rn

so we can rewrite F as

52

o OWtUﬂM@%+LWw,

2 Jgn

with W(s) =Wi(s) + %5
Since we have £2 < 1, W (s) is a double-well type potential with minimizers ++v/1 — £2.
Noticing that W (:l:\/l — 52) = k. > 0, we define a new auxiliary functional Fj

ﬁszl(Fs_/ks)a
2s 0
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and, for the sake of simplicity, we redefine W as W(s) =Wi(s)+ %s — k., so now 1174 (i\/ 1— 52) = 0. Fixing s
and ¢, it is easy to check that v € X is a minimizer of Fj if and only if u is a minimizer of F,. So we focus our
study on the asymptotic behavior of Fj.

Defining the functional

Fo(u) = {fR" In |¢|F2[u](€)d¢, if u=+v1—e2(Ig — Ip:) (6.2)

+o00, in other case,
with E C Q, we have the following theorem.

Theorem 6.1. Let ﬁs and Fy defined as before, then ﬁs LR Fy.

Proof. Let us — u with s — 0 in X, and suppose w.l.o.g, that s takes values in a discrete set. First, we want

to see _
lim iglf Fs(us) > Fo(u). (6.3)

Indeed, suppose that [ = liminf,_.q ﬁs(us) < 400, in other case there is nothing to prove. If we choose a suitable
sub-sequence of ug such that us — u a.e. and Fs(us) — [, then

~ 25 _1 1 —~
l= lil;Il_}(l;lf Fis(us) > ligrl_jélf/n ‘QT}'Q [us](€) A€ + lign_}(l)lf % /Q W (us). (6.4)
We first analyze the left term of the right hand side of (6.4). In this case we have
.. €% -1, . €% —1
L2 > L

imipt [ =20 (¢) de > timipt e Pl

- €2 -1, o
+ lim inf = F[us](€) d€ = (i) + (ii).

=0 Jig< 28

From the fact that us — u in L' (R™) norm, we have F|u,] — F[u] point-wise, and we also have (|£]?*—1)/2s —
In|¢|. Then, using Fatou’s Lemma, we get the estimation

(i) > /£>11n|s|f [ (€) dé > 0.

On the other hand, since |Flus|(§)] < |lus|lz1() <[], we can estimate the second term as follow

.. . 1—[¢* 2

i) = —limsu ———F*uy dé > — —In [£|F*[u d

(i) pf T Pl©d 2~ [ migre dg
:/|£|<1ln|£.7:2[u](§)d§>—oo, (6.5)

where in the last inequality we have use the reverse Fatous’s lemma.
Hence, the first term on the right hand side of (6.4) must be a finite number. This implies that 0 <

liminf, o 2= [, W (us) < 400, and thus, Jo W(us) — 0 with s — 0.
Since we have chosen us in such a way that us — u a.e. we have that W(u) = 0 a.e. then v must have the
form u = 1 —e2(Ig — Ig.). Now, we can estimate

- 2s __ 1
liminf Fs(us) = liminf [ =1
s—0 s—0 Rn 28

Polu€)de + 5 [ Wiw)

> [ el ul(e) dé = Fofu),
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and (6.3) follow.
Finally we only need the to verify that if « € X, then

Fo(u) > limsup Fs(u). (6.6)

s—0

To this end, suppose u = v/1 — e2(Ig — Igc), otherwise there is nothing to prove. In this case we have Fy(u) =

Jan Kl;%]ﬂ [u](€) d€. The fact that (|¢]2 — 1)/2s \, In|¢| with s — 0, implies that F,(u) is decreasing in s.
Then

lim sup Fj(u) = hm Fy(u) = lim \§|237—1]__ 2[u] (&) dé¢

s—0 s—0

e e 1
B l—>0 (/g|<1 /§>1> 2s [ 1) dc.

Then, using Monotone Convergence Theorem on the integral over || > 1, and Dominated Convergence Theorem
over [£| <1, we have limsup,_,, Fs(u) = Fy(u), which proves (6.6). O

6.2. Equi-coerciveness of F,

To complete the analysis we prove the equi-coerciveness of {ﬁs} .
S

Theorem 6.2. Suppose s, — 0, and {u,}, oy C X, such that F,, (u,) < C for all n € N. Then there exist

u € X and a subsequence {unj }jeN’ such that up; — w in X.

Proof. First we observe that, as before, we have

ﬁsn(un):/nmzs"_lf( dg+—/Wun

25p 28y,

Since (|¢[%* —1)/2s \, In|¢| and Fj, (u,) < C for all n € N, we can assert that

/ In [€|F2(u,)[€]dE < C, Vn €N. (6.7)

The fact that u, € X, implies ||u,|[z1(q) < Co for all n € N, and then

/ In )7 (un)[€] dé > C3 / lnfé|de > €. (6.8)
[€1<1

l€1<1

Now we want to show that (6.7) implies that functions in the set {F Q(U")}n keep a substantial part of their
mass uniformly bounded. Namely, given 1 > 0, there exist R > 0 such that

/ F2(up)[€]dé <n, VneN. (6.9)
l€I>R

By contradiction suppose that there exist g > 0 such that for every R > 0 there is a number m = m(R,n9) € N,
in such a way that

/ F2 () (€] dE > o,
[EI>R
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Choosing R > 0 such that 7o In(R) + C; > C, with C the constant in (6.7), and C the one in (6.8), we have

[ wlePwaiga> [

I€1>R
> In(R)no+ C1 > C,

In €] () €] dé + / I €17 (€] dE

l€1<1

which, in view of (6.7) results in a contradiction. Hence, assertion (6.9) holds.

On the other hand, the fact that {u,},.y C X, implies that this sequence is uniformly bounded in L2(Q),
and then, we can extract a weakly convergent subsequence {unj }j N Let u € L*() such that Up; — U, Our
goal now is to show that u,, — u strongly in L?(Q2), which implies strong convergence in L'(€) since Q2] < co.

To this end, we only need to verify that ||un,|r2@) — |lullr2) or, equivalently, ||F(un,)|r2@mn) —
| F ()| 2gny. From (6.9), and the fact that u € L?(), we can take R large enough, in such a way that
f|£\>R‘7:2(u"j)[§] d¢<n, VjeN and [, pF 2(u)[£] d¢€ < n. Then we have

F2(un, )[€] d€ — F2(u)lg] dg

§ISR €<k

+ 2. (6.10)

W7 My = W @) cam < |

Since uy,; is supported in €2, for all j € N, weak convergence implies F (uy,)[{] — F(u)[¢] for all £ € R™. And,
as we have observed before, since |up, ||11(0) < Cp for all j € N, F2(u,,)[¢] < CF for all £ € R™. Hence, we can
apply Dominated Convergence Theorem in (6.10) and say that there exists jo in such a way that if j > jo then

1F (un M Z2my = IF @ Z2 g | < 30 (6.11)

Since 7 can be arbitrary small, we have |uy;||z2) — [|u||L2(q), and the statement of the theorem follows. [

7. NUMERICAL EXPERIMENTS

In this section, three numerical examples are presented in order to explore the behavior of the solution under
fractional parameters s and «.

For the first example, we have used € = [—1, 1], a uniform mesh consisting of 3000 nodes, s = 0.005, o = 1,
€2 = 0.5, and the function v = —0.51(_1,0)+0.51p 1) as initial data. Here, the aim is to obtain some experimental
support for the ideas displayed in Section 6, that is, the behavior with a small parameter s. Numerical results are
summarized in Figure 1, and equilibrium values far from 1 and —1 can be observed. Furthermore, equilibrium
values seem to be placed near the values predicted in Section 6 or, in other words, the solution seems to
approximate a minimizer of (6.2).

Examples 2 and 3 (spinodal decomposition) are shown in Figures 2 and 3 respectively. Here we have used
Q as the unitary ball, a uniform triangulation consisting of 16554 triangles, €2 = 0.02, and random noise as
initial data. In example 2 (Fig. 2), the parameter « is fixed in 1, and results for several values of s are shown.
Can be observed the fact that, as we have mentioned in Section 6, the smaller the parameter s, the thinner the
interface. Finally, example 3 (Fig. 3) shows the behavior for fractional values of the parameter «, with s = 1.

APPENDIX A. AUXILIARY RESULTS

Lemma A.1. Let f € C([0,T],L*()), with f differentiable in (0,T) in such a way that ||f'(t)|| 12 < Ct™7
with v € (0,1) for allt € (0,T). Then we have

/Oftfs )—f(0)+/0t3tf(ts)ds vVt € (0,T). (A1)
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FIGURE 1. In red the solution of example 1 at ¢ = 50, in black-dashed the values ++/1 — 2. It
can be seen that the equilibrium states remain far from 1 and —1, unlike the behavior in the
classic AC equation, and approach the values predicted in Section 6 (see (6.2)).

o dm, |

22\

s=1,t=25 s=1,t=5

s=0.85,¢=10

s=0.7,t=10

FIGURE 2. In this example we set @ = B(0,1), @ = 1, and random noise as initial condition.
The evolution in time is displayed for several values of s.

Proof. We write

t+h t t t+h
/ f(t+h—s)ds—/f(t—s)ds:/f(t+h—s)—f(t—s)ds+/ ft+h—s)ds.
0 0 0 t
From the mean value inequality in Banach spaces (see for instance [31], Appendix B) we can estimate

[f(t+h=s) = f(t=5)lr2@) < hIF (r = 9)llz2(e)
< Ch(r—s)"" <Ch(t—s)"7, Vse]0,1).

25
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,
,z‘ J ‘ ;
o'q
oz—l t—125

”o. )
-"\
a—07 t—125 a=071t=325| a=0.7,t=10
) g .
",1

a—04 t—125 a—04 t—325 a=04,t=10

FIGURE 3. In this example we set Q@ = B(0,1), s = 1, and random noise as initial condition.
The evolution in time is displayed for several values of «.

This, along with the fact that f’ exists in (0,7, allows us to use the Dominated Convergence Theorem (see [31],

Appendix B) and get
ft+h—s)— /
hHO/ o fi(t—s) (A.3)

On the other hand, from the fact that f(¢) is a continuous function in ¢ = 0, we have

t+h 0 h
%/ﬁ f(t+h—s)ds:%/h —f(r)drz%/o F(r)dr —— £(0), (A4)

h—0

where the convergence is in L?({2) sense.
Finally, combining (A.2)—(A.4), we obtain (A.1). O

Lemma A.2. For T > 0 consider t, =nt withn=1,...,N and T = Nt. If

n—1
on < At L BrY 400 (A.5)
j=1

foralln=1,..., N, with some constants A, B > 0, and «, 3 > 0, then there exist a constant C = C(B, T, «, )
such that

on < CAt T n=1,... N. (A.6)
Proof. First, we observe the following relation. For «, § > 0 we have

n—1

-1 J“ 14y 146
TZ e J'YtJJri" <Z/ g1t ds (A.7)

J=0

tn
< / (tn — )77 0 ds = B(y, )t T,
0
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where B denotes the beta function.
Now, if we choose the smallest k¥ = k(8) € N such that —1 4+ kG > 0 and iterate (A.5) k — 1 times, using
relation (A.6) we obtain

n—1 n—1
©n S DlAt_l-HX + DQT Z t;i;kﬁ(pj S DlAt_l-HX + DQT_l—HcﬁT Z Pjy (AS)
j=1 J=1

with Dy = D1(Cs, T, 3) and Dy = D3(Cs, 5). If —1+a > 0 we can derive (A.6) by means of a standard discrete
Gronwall type inequality. Otherwise, we take 1, = t1=%¢,, and using (A.8) we obtain

n—1
Un < Dy A+ DT ROy " gtreq,
j=1

and deduce t1=%p,, < D3A, again by means of a standard Gronwall type inequality. O

Proof of Lemma 4.4. From the definition of {&”}RENO’ we know that (1 - > = Z;io @;&7. Then, deﬁning
9(&) =1 — (1 —¢)*, and recalling that wo = 1, we have g(¢§) = >°72, —@;&7. Now, defining f(£) = 3272, ¢;¢7,
from the definition of {c, } and using the Cauchy product for power series, the following equality can be

easily checked,
90 SO -
¢ ¢ (A.9)

Recalling that ¢g = 1, and —@; = «, from (A.9) we can obtain an explicit expression for f, f(£) = (1 — &)™
It is well known that series expansion of f is f(£) = > oo (—1)j(_ja)§j. Then ¢, = (—1)"(7%), where (7%) =

=0
I'(l—a) .
I'(l14n)I'(1—n—«)

Finally, by means of basic Gamma function properties, we can verify that (:la) e 0 (n“‘l), and hence,
{entnen, €0 (n*71). 0

neNp?
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