In this paper, we study the optimal error estimates of the classical discontinuous Galerkin method for time-dependent 2-D hyperbolic equations using P$$ elements on uniform Cartesian meshes, and prove that the error in the L2 norm achieves optimal (k + 1)th order convergence when upwind fluxes are used. For the linear constant coefficient case, the results hold true for arbitrary piecewise polynomials of degree k ≥ 0. For variable coefficient and nonlinear cases, we give the proof for piecewise polynomials of degree k = 0, 1, 2, 3 and k = 2, 3, respectively, under the condition that the wind direction does not change. The theoretical results are verified by numerical examples.
Keywords: Optimal error estimate, discontinuous Galerkin method, upwind fluxes
@article{M2AN_2020__54_2_705_0,
author = {Liu, Yong and Shu, Chi-Wang and Zhang, Mengping},
title = {Optimal error estimates of the semidiscrete discontinuous {Galerkin} methods for two dimensional hyperbolic equations on {Cartesian} meshes using $P^k$ elements},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
pages = {705--726},
year = {2020},
publisher = {EDP Sciences},
volume = {54},
number = {2},
doi = {10.1051/m2an/2019080},
mrnumber = {4076058},
zbl = {1439.65115},
language = {en},
url = {https://www.numdam.org/articles/10.1051/m2an/2019080/}
}
TY - JOUR AU - Liu, Yong AU - Shu, Chi-Wang AU - Zhang, Mengping TI - Optimal error estimates of the semidiscrete discontinuous Galerkin methods for two dimensional hyperbolic equations on Cartesian meshes using $P^k$ elements JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2020 SP - 705 EP - 726 VL - 54 IS - 2 PB - EDP Sciences UR - https://www.numdam.org/articles/10.1051/m2an/2019080/ DO - 10.1051/m2an/2019080 LA - en ID - M2AN_2020__54_2_705_0 ER -
%0 Journal Article %A Liu, Yong %A Shu, Chi-Wang %A Zhang, Mengping %T Optimal error estimates of the semidiscrete discontinuous Galerkin methods for two dimensional hyperbolic equations on Cartesian meshes using $P^k$ elements %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2020 %P 705-726 %V 54 %N 2 %I EDP Sciences %U https://www.numdam.org/articles/10.1051/m2an/2019080/ %R 10.1051/m2an/2019080 %G en %F M2AN_2020__54_2_705_0
Liu, Yong; Shu, Chi-Wang; Zhang, Mengping. Optimal error estimates of the semidiscrete discontinuous Galerkin methods for two dimensional hyperbolic equations on Cartesian meshes using $P^k$ elements. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 54 (2020) no. 2, pp. 705-726. doi: 10.1051/m2an/2019080
, , and , Superconvergence of discontinuous Galerkin method for scalar nonlinear hyperbolic equations. SIAM J. Numer. Anal. 56 (2018) 732–765. | MR | Zbl | DOI
, The Finite Element Method for Elliptic Problems, North Holland, Amsterdam, New York (1978). | MR | Zbl
and , TVB Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws II: general framework. Math. Comput. 52 (1989) 411–435. | MR | Zbl
and , The local discontinuous Galerkin method for time-dependent convection-diffusion systems. SIAM J. Numer. Anal. 35 (1998) 2440–2465. | MR | Zbl | DOI
and , The Runge–Kutta discontinuous Galerkin method for conservation laws V: multidimensional systems. J. Comput. Phys. 141 (1998) 199–224. | MR | Zbl | DOI
, and , TVB Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws III: one-dimensional systems. J. Comput. Phys. 84 (1989) 90–113. | MR | Zbl | DOI
, and , The Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws. IV. The multidimensional case. Math. Comput. 54 (1990) 545–581. | MR | Zbl
, and , Optimal convergence of the original DG method for the transport-reaction equation on special meshes. SIAM J. Numer. Anal. 46 (2008) 1250–1265. | MR | Zbl | DOI
, and , Strong stability-preserving high-order time discretization methods. SIAM Rev. 43 (2001) 89–112. | MR | Zbl | DOI
, and , Optimal error estimates of the semidiscrete central discontinuous Galerkin methods for linear hyperbolic equations. SIAM J. Numer. Anal. 56 (2018) 520–541. | MR | Zbl | DOI
, and , Optimal error estimates for discontinuous Galerkin methods based on upwind-biased fluxes for linear hyperbolic equations. Math. Comput. 85 (2016) 1225–1261. | MR | Zbl | DOI
, Riemann solvers, the entropy conditions, and difference. SIAM J. Numer. Anal. 21 (1984) 217–235. | MR | Zbl | DOI
and , Triangular Mesh Methods for the Neutron Transport Equation. Los Alamos Scientific Laboratory report LA-UR-74-479, Los Alamos, NM (1973).
, An optimal-order error estimate for the discontinuous Galerkin method. Math. Comput. 50 (1988) 75–88. | MR | Zbl | DOI
and , Optimal error estimates of the semidiscrete local discontinuous galerkin methods for high order wave equations. SIAM J. Numer. Anal. 50 (2012) 79–104. | MR | Zbl | DOI
and , Error estimates to smooth solutions of Runge–Kutta discontinuous Galerkin methods for scalar conservation laws. SIAM J. Numer. Anal. 42 (2004) 641–666. | MR | Zbl | DOI
Cité par Sources :





