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OPTIMAL ERROR ESTIMATES OF THE SEMIDISCRETE DISCONTINUOUS
GALERKIN METHODS FOR TWO DIMENSIONAL HYPERBOLIC EQUATIONS

ON CARTESIAN MESHES USING 𝑃 𝑘 ELEMENTS

Yong Liu1, Chi-Wang Shu2,* and Mengping Zhang1

Abstract. In this paper, we study the optimal error estimates of the classical discontinuous Galerkin
method for time-dependent 2-D hyperbolic equations using 𝑃 𝑘 elements on uniform Cartesian meshes,
and prove that the error in the 𝐿2 norm achieves optimal (𝑘 + 1)th order convergence when upwind
fluxes are used. For the linear constant coefficient case, the results hold true for arbitrary piecewise
polynomials of degree 𝑘 ≥ 0. For variable coefficient and nonlinear cases, we give the proof for piecewise
polynomials of degree 𝑘 = 0, 1, 2, 3 and 𝑘 = 2, 3, respectively, under the condition that the wind direction
does not change. The theoretical results are verified by numerical examples.
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1. Introduction

In this paper, we study the semi-discrete discontinuous Galerkin (DG) method for solving 2-D hyperbolic
equations on Cartesian meshes. The optimal error estimates can be obtained based on tensor-product polyno-
mials for solving hyperbolic conservation laws in previous analysis [7]. We prove optimal error estimates of the
DG approximation based on 𝑃 𝑘, the piecewise polynomials of degree at most 𝑘 under suitable restrictions. We
consider the hyperbolic conservation laws{︂

𝑢𝑡 + 𝑓(𝑢)𝑥 + 𝑔(𝑢)𝑦 = 0, (𝑥, 𝑦) ∈ Ω, 𝑡 ≥ 0
𝑢(𝑥, 𝑦, 0) = 𝑢0(𝑥, 𝑦), (𝑥, 𝑦) ∈ Ω,

(1.1)

where Ω is a rectangular domain in R2 and periodic boundary condition or inflow-outflow boundary conditions.
The initial condition 𝑢0(𝑥, 𝑦) is a given smooth function. For simplicity, in the following we will only discuss the
case with periodic boundary condition, although this is not essential for the analysis; inflow-outflow boundary
conditions can also be considered along the same lines. We assume the exact solution of (1.1) is smooth, this is
true for all time 𝑡 for the linear case with smooth coefficients, and when 𝑡 is small for the nonlinear case, since
we assume the initial condition 𝑢0(𝑥, 𝑦) is smooth.
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The first version of the DG method was introduced in 1973 by Reed and Hill [13] in the framework of neutron
linear transport. It was later developed into the Runge–Kutta DG (RKDG) methods by Cockburn et al. [3,5–7].
For one-dimensional and some multidimensional cases, optimal a priori error estimates of order 𝑘 + 1 can be
obtained for the DG schemes when upwind fluxes are used [4, 8, 14, 16]. In [11], Meng et al. obtained similar
optimal a priori error estimates when upwind-biased fluxes are used. For higher order equations by utilizing
and fully making use of the so called Gauss–Radau projections, Xu and Shu [15] introduced a general approach
for proving optimal error estimates.

However, for multidimensional Cartesian meshes, the above optimal results are based on using 𝑄𝑘, the space
of tensor-product polynomials of degree at most 𝑘 in each variable. The numerical results show that the optimal
accuracy (𝑘 + 1)th convergence order holds true using the 𝑃 𝑘 space. The number of degrees of freedom of the
space 𝑃 𝑘 is (𝑘 + 1)(𝑘 + 2)/2, which is only about half of that for the space 𝑄𝑘 for large 𝑘. The most critical
point to obtain the optimal error estimates is to construct a suitable projection. The projection can help us
to deal with the troublesome terms in the analysis. However, since the number of degrees of freedom of 𝑃 𝑘 is
only about half of that for 𝑄𝑘, a suitable projection is elusive for this case. Recently, we have constructed a
special projection to obtain the optimal error estimate for the central DG scheme by using a shifting technique
[10]. We continue to use this technique to construct a special projection to obtain optimal error estimates for
the DG methods based on the 𝑃 𝑘 space over uniform Cartesian meshes. We separately give the analysis of
optimal error estimates in three cases, namely the case with linear constant coefficients, the case with linear
variable coefficients, and the nonlinear case. First, the optimal (𝑘 + 1)th order is proved for smooth solutions
of linear constant coefficient conservation laws when upwind numerical fluxes are used. This proof holds true
for uniform meshes and for polynomials of arbitrary degree 𝑘 ≥ 0. For linear variable coefficient and nonlinear
equations, we give the proof of optimal convergence results for 𝑘 = 0, 1, 2, 3 and 𝑘 = 2, 3, respectively, under
the condition that 𝑓 ′(𝑢), 𝑔′(𝑢) do not change sign. Let us emphasize that this restriction appears to be artificial
due to the limitation of our techniques in the proof; the optimal (𝑘 + 1)th order convergence appears to hold
true for nonlinear conservation laws with general flux functions; see our numerical results in Section 5. As far
as we know, this is the first optimal error estimate proof for DG methods applied to time-dependent nonlinear
hyperbolic equations using 𝑃 𝑘 elements on Cartesian meshes. To deal with the nonlinearity of the flux, Taylor
expansion and an a priori assumption about the numerical solution are used.

The remainder of the paper is organized as follows. In Section 2, we give the proof of the optimal error
estimates for the semi-discrete DG scheme solving linear constant coefficient hyperbolic equations. In Section 3,
we provide the proof of the uniform boundedness and superconvergence properties of a special projection and
the proof of the optimal error estimates for linear variable coefficients case. In Section 4, we analyze nonlinear
hyperbolic equations. Some numerical examples are provided in Section 5. Finally, we conclude and give a
few perspectives for future work in Section 6. Some technical proof of the error estimates is provided in the
Appendix.

2. Linear constant coefficients

In this section, we consider the two-dimensional scalar linear constant coefficient conservation law equation{︂
𝑢𝑡 + 𝑎𝑢𝑥 + 𝑏𝑢𝑦 = 0, (𝑥, 𝑦) ∈ Ω, 𝑡 ≥ 0
𝑢(𝑥, 𝑦, 0) = 𝑢0(𝑥, 𝑦), (𝑥, 𝑦) ∈ Ω,

(2.1)

with periodic boundary condition, where 𝑎 and 𝑏 are constants. Without loss of generality, we assume Ω = [0, 1]2

and 𝑎, 𝑏 > 0.
We recall the two-dimensional formulation of the DG scheme in [7]. Let {𝐾𝑖,𝑗 = [𝑥𝑖− 1

2
, 𝑥𝑖+ 1

2
]× [𝑦𝑗− 1

2
, 𝑦𝑗+ 1

2
]},

𝑖 = 1, . . . , 𝑁1, 𝑗 = 1, . . . , 𝑁2 be a partition of Ω into rectangular cells. Let 𝑉ℎ := {𝑣 ∈ 𝐿2(Ω) : 𝑣|𝐾𝑖,𝑗
∈

𝑃 𝑘(𝐾𝑖,𝑗) ∀𝑖, 𝑗}, where 𝑃 𝑘(𝐾𝑖,𝑗) denotes the space of polynomials of degrees at most 𝑘 defined on 𝐾𝑖,𝑗 ; no
continuity is assumed across cell boundaries. We denote ℎ𝑖

𝑥 = (𝑥𝑖+ 1
2
− 𝑥𝑖− 1

2
), ℎ𝑗

𝑦 = (𝑦𝑗+ 1
2
− 𝑦𝑗− 1

2
) and ℎ =

max(ℎ𝑖
𝑥, ℎ𝑗

𝑦). We also introduce some standard Sobolev spaces notations. For any integer 𝑚 > 0, let 𝑊𝑚,𝑝(𝐷) be
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the standard Sobolev spaces on sub-domain 𝐷 ⊂ Ω equipped with the norm ‖ · ‖𝑚,𝑝,𝐷 and semi-norm | · |𝑚,𝑝,𝐷.
When 𝐷 = Ω, we omit the index 𝐷; and if 𝑝 = 2, we set 𝑊𝑚,𝑝(𝐷) = 𝐻𝑚(𝐷), ‖ · ‖𝑚,𝑝,𝐷 = ‖ · ‖𝑚,𝐷, and
| · |𝑚,𝑝,𝐷 = | · |𝑚,𝐷.

The semidiscrete DG method with the upwind flux is described as follows: We seek an approximate solution
𝑢ℎ ∈ 𝑉ℎ such that for all admissible test function 𝑣 ∈ 𝑉ℎ and 𝐾𝑖,𝑗 ,

((𝑢ℎ)𝑡, 𝑣)𝐾𝑖,𝑗
− (𝑢ℎ, 𝑣𝛽)𝐾𝑖,𝑗

+
∫︁ 𝑦

𝑗+ 1
2

𝑦
𝑗− 1

2

𝑎
(︁
𝑢ℎ

(︁
𝑥−

𝑖+ 1
2
, 𝑦

)︁
𝑣

(︁
𝑥−

𝑖+ 1
2
, 𝑦

)︁
− 𝑢ℎ

(︁
𝑥−

𝑖− 1
2
, 𝑦

)︁
𝑣

(︁
𝑥+

𝑖− 1
2
, 𝑦

)︁)︁
d𝑦

+
∫︁ 𝑥

𝑖+ 1
2

𝑥
𝑖− 1

2

𝑏
(︁
𝑢ℎ

(︁
𝑥, 𝑦−

𝑗+ 1
2

)︁
𝑣

(︁
𝑥, 𝑦−

𝑗+ 1
2

)︁
− 𝑢ℎ

(︁
𝑥, 𝑦−

𝑗− 1
2

)︁
𝑣

(︁
𝑥, 𝑦+

𝑗− 1
2

)︁)︁
d𝑥 = 0, (2.2)

where (·, ·) denotes the 𝐿2(𝐾𝑖,𝑗)-inner product. Here we have used the notation 𝑣𝛽 for the (unnormalized)
directional derivative of 𝑣 with respect to 𝛽 = (𝑎, 𝑏), namely 𝑣𝛽 = 𝑎𝑣𝑥 + 𝑏𝑣𝑦, and,

𝑢ℎ

(︁
𝑥, 𝑦±

𝑗+ 1
2

)︁
= lim

𝜀→0+
𝑢ℎ

(︁
𝑥, 𝑦𝑗+ 1

2
± 𝜀

)︁
, ∀𝑥 ∈

(︁
𝑥𝑖− 1

2
, 𝑥𝑖+ 1

2

)︁
, (2.3)

𝑢ℎ

(︁
𝑥±

𝑖+ 1
2
, 𝑦

)︁
= lim

𝜀→0+
𝑢ℎ

(︁
𝑥𝑖+ 1

2
± 𝜀, 𝑦

)︁
, ∀𝑦 ∈

(︁
𝑦𝑗− 1

2
, 𝑦𝑗+ 1

2

)︁
. (2.4)

For the initial condition, we simply take 𝑢ℎ(0) = Pℎ𝑢0, where Pℎ is the 𝐿2 projection into 𝑉ℎ, and we have

‖𝑢0 − Pℎ𝑢0‖ ≤ 𝐶ℎ𝑘+1‖𝑢0‖𝑘+1, (2.5)

where the constant 𝐶 depends on 𝑘. Here and below, an unmarked norm ‖ · ‖ denotes the 𝐿2 norm.
The DG scheme using the upwind numerical fluxes for the two-dimensional linear conservation laws satisfies

the following 𝐿2-stability (e.g. [11]).

Proposition 2.1. The solution of the semidiscrete DG method defined by (2.2) satisfies

1
2

d
d𝑡
‖𝑢ℎ‖2 +

𝑎

2

𝑁2∑︁
𝑗=1

∫︁ 𝑦
𝑗+ 1

2

𝑦
𝑗− 1

2

𝑁1∑︁
𝑖=1

(︁
𝑢ℎ

(︁
𝑥+

𝑖+ 1
2
, 𝑦

)︁
− 𝑢ℎ

(︁
𝑥−

𝑖+ 1
2
, 𝑦

)︁)︁2

d𝑦

+
𝑏

2

𝑁1∑︁
𝑖=1

∫︁ 𝑥
𝑖+ 1

2

𝑥
𝑖− 1

2

𝑁2∑︁
𝑗=1

(︁
𝑢ℎ

(︁
𝑥, 𝑦+

𝑗+ 1
2

)︁
− 𝑢ℎ

(︁
𝑥, 𝑦−

𝑗+ 1
2

)︁)︁2

d𝑥 = 0. (2.6)

2.1. A priori error estimates

Now, we only consider uniform meshes, i.e. ℎ𝑥 = ℎ𝑖
𝑥 and ℎ𝑦 = ℎ𝑗

𝑦. Let us now state our main result as a
theorem, whose proof will be given in the next subsection.

Theorem 2.2. Suppose 𝑢ℎ is the approximate solution of the DG scheme (2.2) using uniform meshes for (2.1)
with a smooth initial condition 𝑢(·, 0) ∈ 𝐻𝑘+2 and 𝑢 is the exact solution of (2.1), then the scheme satisfies the
following 𝐿2 error estimate:

‖𝑢(·, 𝑇 )− 𝑢ℎ(·, 𝑇 )‖ ≤ 𝐶ℎ𝑘+1, (2.7)

where 𝑘 is the degree of the piecewise polynomials in the finite element spaces 𝑉ℎ, and the constant 𝐶 depends
on the (𝑘 + 2)th order Sobolev norm of the initial condition ‖𝑢(·, 0)‖𝑘+2 as well as on the final time 𝑇 but is
independent of the mesh size ℎ.
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Let us first introduce a few notations. We define

𝐵𝑖,𝑗(𝑢ℎ, 𝑣; 𝑎, 𝑏) = ((𝑢ℎ)𝑡, 𝑣)𝐾𝑖,𝑗 − (𝑢ℎ, 𝑣𝛽)𝐾𝑖,𝑗

+
∫︁ 𝑥

𝑖+ 1
2

𝑥
𝑖− 1

2

𝑏
(︁
𝑢ℎ

(︁
𝑥, 𝑦−

𝑗+ 1
2

)︁
𝑣

(︁
𝑥, 𝑦−

𝑗+ 1
2

)︁
− 𝑢ℎ

(︁
𝑥, 𝑦−

𝑗− 1
2

)︁
𝑣

(︁
𝑥, 𝑦+

𝑗− 1
2

)︁)︁
d𝑥

+
∫︁ 𝑦

𝑗+ 1
2

𝑦
𝑗− 1

2

𝑎
(︁
𝑢ℎ

(︁
𝑥−

𝑖+ 1
2
, 𝑦

)︁
𝑣

(︁
𝑥−

𝑖+ 1
2
, 𝑦

)︁
− 𝑢ℎ

(︁
𝑥−

𝑖− 1
2
, 𝑦

)︁
𝑣

(︁
𝑥+

𝑖− 1
2
, 𝑦

)︁)︁
d𝑦. (2.8)

We also define

𝐵̃𝑖,𝑗(𝑢ℎ, 𝑣; 𝑎, 𝑏) = −(𝑢ℎ, 𝑣𝛽)𝐾𝑖,𝑗

+
∫︁ 𝑥

𝑖+ 1
2

𝑥
𝑖− 1

2

𝑏
(︁
𝑢ℎ

(︁
𝑥, 𝑦−

𝑗+ 1
2

)︁
𝑣

(︁
𝑥, 𝑦−

𝑗+ 1
2

)︁
− 𝑢ℎ

(︁
𝑥, 𝑦−

𝑗− 1
2

)︁
𝑣

(︁
𝑥, 𝑦+

𝑗− 1
2

)︁)︁
d𝑥

+
∫︁ 𝑦

𝑗+ 1
2

𝑦
𝑗− 1

2

𝑎
(︁
𝑢ℎ

(︁
𝑥−

𝑖+ 1
2
, 𝑦

)︁
𝑣

(︁
𝑥−

𝑖+ 1
2
, 𝑦

)︁
− 𝑢ℎ

(︁
𝑥−

𝑖− 1
2
, 𝑦

)︁
𝑣

(︁
𝑥+

𝑖− 1
2
, 𝑦

)︁)︁
d𝑦. (2.9)

Clearly, we have:
𝐵𝑖,𝑗(𝑢ℎ, 𝑣; 𝑎, 𝑏) = 0, (2.10)

for all 𝑖, 𝑗 and all 𝑣 ∈ 𝑉ℎ. It is also clear that the exact solution 𝑢 of the PDE (2.1) satisfies

𝐵𝑖,𝑗(𝑢, 𝑣; 𝑎, 𝑏) = 0, (2.11)

for all 𝑖, 𝑗 and all 𝑣 ∈ 𝑉ℎ. Subtracting (2.10) from (2.11), we obtain the error equation

𝐵𝑖,𝑗(𝑢− 𝑢ℎ, 𝑣; 𝑎, 𝑏) = 0, (2.12)

for all 𝑖, 𝑗 and all 𝑣 ∈ 𝑉ℎ.

2.2. Proof of the error estimates

In this subsection, we divide it into several steps to prove Theorem 2.2. First, we construct the special local
projection P⋆ and prove the projection is well defined and has the optimal approximation properties. Next,
we prove a few propositions and superconvergence properties of the special projection. Finally, the proof of
Theorem 2.2 is completed in Section 2.2.3.

2.2.1. The special projection P⋆

We now define P⋆ as the following projection into 𝑉ℎ. For each 𝐾𝑖,𝑗 ,∫︁
𝐾𝑖,𝑗

P⋆𝜔(𝑥)d𝑥 =
∫︁

𝐾𝑖,𝑗

𝜔(𝑥)d𝑥, (2.13a)

̃︁𝑃ℎ(P⋆𝜔, 𝑣; 𝑎, 𝑏)𝑖,𝑗 = ̃︁𝑃ℎ(𝜔, 𝑣; 𝑎, 𝑏)𝑖,𝑗 ∀𝑣 ∈ 𝑃 𝑘(𝐾𝑖,𝑗), (2.13b)

where ̃︁𝑃ℎ(𝜔, 𝑣; 𝑎, 𝑏)𝑖,𝑗 is defined as follows

̃︁𝑃ℎ(𝜔, 𝑣; 𝑎, 𝑏)𝑖,𝑗 = −(𝜔, 𝑣𝛽)𝐾𝑖,𝑗
+

∫︁ 𝑥
𝑖+ 1

2

𝑥
𝑖− 1

2

𝑏𝜔
(︁
𝑥, 𝑦−

𝑗+ 1
2

)︁ (︁
𝑣

(︁
𝑥, 𝑦−

𝑗+ 1
2

)︁
− 𝑣

(︁
𝑥, 𝑦+

𝑗− 1
2

)︁)︁
d𝑥

+
∫︁ 𝑦

𝑗+ 1
2

𝑦
𝑗− 1

2

𝑎𝜔
(︁
𝑥−

𝑖+ 1
2
, 𝑦

)︁ (︁
𝑣

(︁
𝑥−

𝑖+ 1
2
, 𝑦

)︁
− 𝑣

(︁
𝑥+

𝑖− 1
2
, 𝑦

)︁)︁
d𝑦. (2.14)

Next, we prove the projection P⋆ is well defined. Note that P⋆ is a local projection, so we only consider the
projection defined on the reference cell [−1, 1]× [−1, 1].
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Remark 2.3. We could also similarly define the projection P⋆ for different signs of 𝑎, 𝑏, by simply changing
the definition of ̃︁𝑃ℎ(𝜔, 𝑣; 𝑎, 𝑏)𝑖,𝑗 . We list the other cases below for completeness:

̃︁𝑃ℎ(𝜔, 𝑣; 𝑎, 𝑏)𝑖,𝑗 = − (𝜔, 𝑣𝛽)𝐾𝑖,𝑗
+

∫︁ 𝑥
𝑖+ 1

2

𝑥
𝑖− 1

2

𝑏𝜔
(︁
𝑥, 𝑦−

𝑗+ 1
2

)︁ (︁
𝑣

(︁
𝑥, 𝑦−

𝑗+ 1
2

)︁
− 𝑣

(︁
𝑥, 𝑦+

𝑗− 1
2

)︁)︁
d𝑥

+
∫︁ 𝑦

𝑗+ 1
2

𝑦
𝑗− 1

2

𝑎𝜔
(︁
𝑥+

𝑖− 1
2
, 𝑦

)︁ (︁
𝑣

(︁
𝑥−

𝑖+ 1
2
, 𝑦

)︁
− 𝑣

(︁
𝑥+

𝑖− 1
2
, 𝑦

)︁)︁
d𝑦, if 𝑎 < 0 and 𝑏 > 0; (2.15)

̃︁𝑃ℎ(𝜔, 𝑣; 𝑎, 𝑏)𝑖,𝑗 = − (𝜔, 𝑣𝛽)𝐾𝑖,𝑗
+

∫︁ 𝑥
𝑖+ 1

2

𝑥
𝑖− 1

2

𝑏𝜔
(︁
𝑥, 𝑦+

𝑗− 1
2

)︁ (︁
𝑣

(︁
𝑥, 𝑦−

𝑗+ 1
2

)︁
− 𝑣

(︁
𝑥, 𝑦+

𝑗− 1
2

)︁)︁
d𝑥

+
∫︁ 𝑦

𝑗+ 1
2

𝑦
𝑗− 1

2

𝑎𝜔
(︁
𝑥−

𝑖+ 1
2
, 𝑦

)︁ (︁
𝑣

(︁
𝑥−

𝑖+ 1
2
, 𝑦

)︁
− 𝑣

(︁
𝑥+

𝑖− 1
2
, 𝑦

)︁)︁
d𝑦, if 𝑎 > 0 and 𝑏 < 0; (2.16)

̃︁𝑃ℎ(𝜔, 𝑣; 𝑎, 𝑏)𝑖,𝑗 = − (𝜔, 𝑣𝛽)𝐾𝑖,𝑗
+

∫︁ 𝑥
𝑖+ 1

2

𝑥
𝑖− 1

2

𝑏𝜔
(︁
𝑥, 𝑦+

𝑗− 1
2

)︁ (︁
𝑣

(︁
𝑥, 𝑦−

𝑗+ 1
2

)︁
− 𝑣

(︁
𝑥, 𝑦+

𝑗− 1
2

)︁)︁
d𝑥

+
∫︁ 𝑦

𝑗+ 1
2

𝑦
𝑗− 1

2

𝑎𝜔
(︁
𝑥+

𝑖− 1
2
, 𝑦

)︁ (︁
𝑣

(︁
𝑥−

𝑖+ 1
2
, 𝑦

)︁
− 𝑣

(︁
𝑥+

𝑖− 1
2
, 𝑦

)︁)︁
d𝑦, if 𝑎 < 0 and 𝑏 < 0. (2.17)

Lemma 2.4. The projection P⋆ defined by (2.13) on the cell [−1, 1]×[−1, 1] exists and is unique for any smooth
function 𝜔, and the projection is bounded in the 𝐿∞ norm, i.e.

‖P⋆𝜔‖∞ ≤ 𝐶(𝑘, 𝑎, 𝑏)‖𝜔‖∞, (2.18)

where C(k,a,b) is a constant that only depends on 𝑘, 𝑎, 𝑏 but is independent of 𝜔.

Proof. The proof of this lemma is provided in the appendix; see Section A.1. �

Since the projection is a 𝑘th degree polynomial preserving local projection, standard approximation theory
[2] implies, for a smooth function 𝜔,

‖𝜔 − P⋆𝜔‖𝐿2(𝐾𝑖,𝑗) ≤ 𝐶ℎ𝑘+1‖𝜔‖𝑘+1,𝐾𝑖,𝑗
, (2.19)

where 𝐶 = 𝐶(𝑘, 𝑎, 𝑏) is independent of the element 𝐾𝑖,𝑗 and the mesh size ℎ.
We also recall that [2], for any 𝜔ℎ ∈ 𝑉ℎ, there exists a positive constant 𝐶 independent of 𝜔ℎ and ℎ, such

that
‖𝜕𝑥𝜔ℎ‖ ≤ 𝐶ℎ−1‖𝜔ℎ‖, ‖𝜔ℎ‖𝐿2(𝜕𝐾𝑖,𝑗) ≤ 𝐶ℎ−1/2‖𝜔ℎ‖, ‖𝜔ℎ‖∞ ≤ 𝐶ℎ−1‖𝜔ℎ‖ (2.20)

where 𝜕𝐾𝑖,𝑗 is the boundary of cell 𝐾𝑖,𝑗 .

Remark 2.5. In fact, we can prove the bounding constant 𝐶 only depends on 𝑘 and is independent of 𝑎, 𝑏.
Hence the projection P⋆ is uniformly bounded for (𝑎, 𝑏). We give the proof of this property in Section 3 for
𝑘 = 0, 1, 2, 3.

2.2.2. Properties of the projection P⋆

To obtain the optimal 𝐿2 error estimate, we need the following lemmas.

Lemma 2.6. Assume that 𝑢 = 𝑥𝑘+1−𝑙𝑦𝑙, 𝑙 = 0, 1, . . . , 𝑘 + 1. Let 𝑢(𝑖,𝑗) = P⋆
𝐾𝑖,𝑗

𝑢. Then ∀(𝑥, 𝑦) ∈ 𝐾𝑖,𝑗 we have
following relationship:

𝑥𝑘+1−𝑙𝑦𝑙 − 𝑢(𝑖,𝑗)(𝑥, 𝑦) = (𝑥− ℎ𝑥)𝑘+1−𝑙𝑦𝑙 − 𝑢(𝑖−1,𝑗)(𝑥− ℎ𝑥, 𝑦)

= 𝑥𝑘+1−𝑙(𝑦 − ℎ𝑦)𝑙 − 𝑢(𝑖,𝑗−1)(𝑥, 𝑦 − ℎ𝑦), (2.21)
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where P⋆
𝐾𝑖,𝑗

𝑢 means that the projection of 𝑢 is defined on the element 𝐾𝑖,𝑗 and 𝑢(𝑖−1,𝑗)(𝑥 − ℎ𝑥, 𝑦), 𝑢(𝑖,𝑗−1)

(𝑥, 𝑦−ℎ𝑦) refer to the projection of 𝑢 on the element 𝐾𝑖−1,𝑗 and 𝐾𝑖,𝑗−1, respectively, since (𝑥, 𝑦) ∈ 𝐾𝑖,𝑗 implies
(𝑥− ℎ𝑥, 𝑦) ∈ 𝐾𝑖−1,𝑗 and (𝑥, 𝑦 − ℎ𝑦) ∈ 𝐾𝑖,𝑗−1.

Proof. The details of the proof for this lemma are provided in the appendix; see Section A.2. �

Besides the standard approximation results (2.19), we also can prove the following superconvergence result
of the special projection P⋆.

Proposition 2.7. Assume that 𝑢 is a (𝑘+1)th degree polynomial function in 𝑃 𝑘+1(Ω). For a uniform partition
on the domain Ω, we have

𝐵̃𝑖,𝑗(P⋆𝑢, 𝑣; 𝑎, 𝑏) = 𝐵̃𝑖,𝑗(𝑢, 𝑣; 𝑎, 𝑏) ∀𝑣 ∈ 𝑃 𝑘(𝐾𝑖,𝑗), (2.22)

where 𝐵̃ is defined by (2.9).

Proof. The proof of this proposition is provided in the appendix; see Section A.3. �

2.2.3. Proof of Theorem 2.2

We now take
𝜉 = P⋆𝑢− 𝑢ℎ; 𝜂 = P⋆𝑢− 𝑢. (2.23)

From the error equation (2.12), we have

𝐵𝑖,𝑗(𝜉, 𝑣; 𝑎, 𝑏) = 𝐵𝑖,𝑗(𝜂, 𝑣; 𝑎, 𝑏). (2.24)

For the left-hand side of (2.24), we can use the stability result (2.6) to obtain

∑︁
𝑖,𝑗

𝐵𝑖,𝑗(𝜉, 𝜉; 𝑎, 𝑏) =
1
2

d
d𝑡
‖𝜉‖2 +

𝑎

2

𝑁2∑︁
𝑗=1

∫︁ 𝑦
𝑗+ 1

2

𝑦
𝑗− 1

2

𝑁1∑︁
𝑖=1

(︁
𝜉
(︁
𝑥+

𝑖+ 1
2
, 𝑦

)︁
− 𝜉

(︁
𝑥−

𝑖+ 1
2
, 𝑦

)︁)︁2

d𝑦

+
𝑏

2

𝑁1∑︁
𝑖=1

∫︁ 𝑥
𝑖+ 1

2

𝑥
𝑖− 1

2

𝑁2∑︁
𝑗=1

(︁
𝜉
(︁
𝑥, 𝑦+

𝑗+ 1
2

)︁
− 𝜉

(︁
𝑥, 𝑦−

𝑗+ 1
2

)︁)︁2

d𝑥, (2.25)

here we have already taken the test function 𝑣 = 𝜉 ∈ 𝑉ℎ. From Proposition 2.7, we know that on an arbitrary
element 𝐾𝑖,𝑗 , we have the following results

𝐵̃𝑖,𝑗(P⋆𝑢, 𝑣; 𝑎, 𝑏) = 𝐵̃𝑖,𝑗(𝑢, 𝑣; 𝑎, 𝑏), ∀𝑢 ∈ 𝑃 𝑘+1(𝐾𝑖,𝑗 ∪𝐾𝑖−1,𝑗 ∪𝐾𝑖,𝑗−1). (2.26)

Next, on each element 𝐾𝑖,𝑗 , we consider the Taylor expansion of 𝑢 around (𝑥𝑖, 𝑦𝑗):

𝑢 = 𝑇𝑢 + 𝑅𝑢,

where

𝑇𝑢 =
𝑘+1∑︁
𝑙=0

𝑙∑︁
𝑚=0

1
(𝑙 −𝑚)!𝑚!

𝜕𝑙𝑢(𝑥𝑖, 𝑦𝑗)
𝜕𝑥𝑙−𝑚𝜕𝑦𝑚

(𝑥− 𝑥𝑖)𝑙−𝑚(𝑦 − 𝑦𝑗)𝑚,

𝑅𝑢 = (𝑘 + 2)
𝑘+2∑︁
𝑚=0

(𝑥− 𝑥𝑖)𝑘+2−𝑚(𝑦 − 𝑦𝑗)𝑚

(𝑘 + 2−𝑚)!𝑚!

∫︁ 1

0

(1− 𝑠)
𝜕𝑘+2𝑢(𝑥𝑠

𝑖 , 𝑦
𝑠
𝑗 )

𝜕𝑥𝑘+2−𝑚𝜕𝑦𝑚
d𝑠.

with 𝑥𝑠
𝑖 = 𝑥𝑖 +𝑠(𝑥−𝑥𝑖), 𝑦𝑠

𝑗 = 𝑦𝑗 +𝑠(𝑦−𝑦𝑗). Clearly, 𝑇𝑢 ∈ 𝑃 𝑘+1(𝐾𝑖,𝑗 ∪𝐾𝑖−1,𝑗 ∪𝐾𝑖,𝑗−1), Note that the operator
P⋆ is linear, and thus P⋆𝑢 = P⋆𝑇𝑢 + P⋆𝑅𝑢. From (2.26), we then get
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𝐵̃𝑖,𝑗(𝜂, 𝑣; 𝑎, 𝑏) = 𝐵̃𝑖,𝑗(P⋆𝑇𝑢− 𝑇𝑢, 𝑣; 𝑎, 𝑏) + 𝐵̃𝑖,𝑗(P⋆𝑅𝑢−𝑅𝑢, 𝑣; 𝑎, 𝑏)

= 𝐵̃𝑖,𝑗(P⋆𝑅𝑢−𝑅𝑢, 𝑣; 𝑎, 𝑏). (2.27)

Again recalling the Bramble–Hilbert lemma in [2], we have

‖𝑅𝑢‖𝐿∞(𝐾𝑖,𝑗) ≤ 𝐶ℎ𝑘+1|𝑢|𝐻𝑘+2(𝐾𝑖,𝑗). (2.28)

Next, using the simple inequality

𝜇𝜈 ≤ 1
2

(𝜇2 + 𝜈2), (2.29)

and standard approximate proposition of the projection (2.19), the property (2.28) for 𝑅𝑢, and the inequality
in (2.20) for 𝜉, we have ∑︁

𝑖,𝑗

𝐵𝑖,𝑗(𝜂, 𝜉; 𝑎, 𝑏) ≤ 𝐶ℎ2𝑘+2|𝑢|2𝐻𝑘+2 + 𝐶‖𝜉‖2. (2.30)

Combining (2.24), (2.25), and (2.30), we obtain

1
2

d
d𝑡
‖𝜉‖2 ≤ 𝐶‖𝜉‖2 + 𝐶ℎ2𝑘+2|𝑢|2𝐻𝑘+2 . (2.31)

An application Gronwall’s inequality together with the approximation result (2.19) give us the desired error
estimate (2.7).

3. Linear variable coefficients

In this section, we consider the two-dimensional scalar variable coefficient conservation law equation{︂
𝑢𝑡 + (𝑎(𝑥, 𝑦)𝑢)𝑥 + (𝑏(𝑥, 𝑦)𝑢)𝑦 = 0, (𝑥, 𝑦) ∈ Ω, 𝑡 ≥ 0
𝑢(𝑥, 𝑦, 0) = 𝑢0(𝑥, 𝑦), (𝑥, 𝑦) ∈ Ω (3.1)

with periodic boundary condition. The functions 𝑎(𝑥, 𝑦), 𝑏(𝑥, 𝑦) are smooth periodic functions in Ω. The semidis-
crete DG method with upwind flux is described as follows: We seek an approximate solution 𝑢ℎ ∈ 𝑉ℎ such that
for all admissible test functions 𝑣 ∈ 𝑉ℎ and 𝐾𝑖,𝑗 ,∫︁

𝐾𝑖,𝑗

(𝑢ℎ)𝑡𝑣 d𝑥 d𝑦 =
∫︁

𝐾𝑖,𝑗

𝑎(𝑥, 𝑦)𝑢ℎ𝑣𝑥 + 𝑏(𝑥, 𝑦)𝑢ℎ𝑣𝑦 d𝑥 d𝑦

−
∫︁ 𝑦

𝑗+ 1
2

𝑦
𝑗− 1

2

𝑎
(︁
𝑥𝑖+ 1

2
, 𝑦

)︁
𝑢ℎ

(︁
𝑥𝑖+ 1

2
, 𝑦

)︁
𝑣

(︁
𝑥−

𝑖+ 1
2
, 𝑦

)︁
− 𝑎

(︁
𝑥𝑖− 1

2
, 𝑦

)︁
𝑢ℎ

(︁
𝑥𝑖− 1

2
, 𝑦

)︁
𝑣

(︁
𝑥+

𝑖− 1
2
, 𝑦

)︁
d𝑦

−
∫︁ 𝑥

𝑖+ 1
2

𝑥
𝑖− 1

2

𝑏
(︁
𝑥, 𝑦𝑗+ 1

2

)︁
𝑢ℎ

(︁
𝑥, 𝑦𝑗+ 1

2

)︁
𝑣

(︁
𝑥, 𝑦−

𝑗+ 1
2

)︁
− 𝑏

(︁
𝑥, 𝑦𝑗− 1

2

)︁
𝑢ℎ

(︁
𝑥, 𝑦𝑗− 1

2

)︁
𝑣

(︁
𝑥, 𝑦+

𝑗− 1
2

)︁
d𝑥,

(3.2)

where the upwind fluxes 𝑢ℎ, 𝑢ℎ are defined as follows

𝑢ℎ(𝑥𝑖+ 1
2
, 𝑦) =

{︃
𝑢ℎ(𝑥−

𝑖+ 1
2
, 𝑦), if 𝑎(𝑥𝑖+ 1

2
, 𝑦) ≥ 0

𝑢ℎ(𝑥+
𝑖+ 1

2
, 𝑦), if 𝑎(𝑥𝑖+ 1

2
, 𝑦) < 0

(3.3)

𝑢ℎ(𝑥, 𝑦𝑗+ 1
2
) =

{︃
𝑢ℎ(𝑥, 𝑦−

𝑗+ 1
2
), if 𝑏(𝑥, 𝑦𝑗+ 1

2
) ≥ 0

𝑢ℎ(𝑥, 𝑦+
𝑗+ 1

2
), if 𝑏(𝑥, 𝑦𝑗+ 1

2
) < 0.

(3.4)

For the initial condition, we simply take the 𝐿2 projection into 𝑉ℎ, 𝑢ℎ(0) = Pℎ𝑢0, and we have

‖𝑢0 − Pℎ𝑢0‖ ≤ 𝐶ℎ𝑘+1‖𝑢0‖𝑘+1. (3.5)

The DG scheme satisfies the following 𝐿2-stability,
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Proposition 3.1. The solution of the semidiscrete DG method defined by (3.2) satisfies

1
2

d
d𝑡
‖𝑢ℎ‖2 ≤ 𝐶‖𝑢ℎ‖2, (3.6)

where the constant 𝐶 = max{‖𝑎𝑥‖∞, ‖𝑏𝑦‖∞}.

Proof. The proof is similar to that for the linear constant coefficient case (e.g. in [11]), by taking the test
function 𝑣 = 𝑢ℎ and applying integration by parts. �

3.1. A priori error estimates

Firstly, we state the a priori error estimates as a theorem whose proof will given in the next subsection. Here
we assume that 𝑎(𝑥, 𝑦) and 𝑏(𝑥, 𝑦) do not change sign. Without loss of generality, we assumed 𝑎(𝑥, 𝑦) ≥ 0 and
𝑏(𝑥, 𝑦) ≥ 0.

Theorem 3.2. The numerical solution 𝑢ℎ of the DG scheme (3.2)–(3.4) using uniform meshes for (3.1) with
a smooth exact condition 𝑢(·, 𝑡) ∈ 𝐻𝑘+2 satisfies the following 𝐿2 error estimate:

‖𝑢(·, 𝑇 )− 𝑢ℎ(·, 𝑇 )‖ ≤ 𝐶ℎ𝑘+1, (3.7)

where 𝑢 is the exact solution of (3.1), 𝑘 = 0, 1, 2, 3 is the degree of the piecewise polynomials in the finite element
spaces 𝑉ℎ, and the constant 𝐶 depends on the (𝑘 + 2)th order Sobolev norm of the solution ‖𝑢(·, 𝑡)‖𝑘+2, the 𝐻1

norm of the coefficients 𝑎, 𝑏 and the final time 𝑇 , but is in dependent of the mesh size ℎ.

3.2. Proof of the error estimates

To prove Theorem 3.2 for the 𝑘 = 0, 1, 2, 3 cases stated in the previous subsection, we proceed as follows.
First, in Section 3.2.1, we prove the uniform boundedness properties with respect to the coefficients 𝑎, 𝑏 of
the projection P⋆ which is defined in (2.13) and a superconvergence result of the special projection. Then, we
complete the proof of Theorem 3.2 in Section 3.2.2.

3.2.1. The special projection

Notice that the definition of the special projection P⋆ in (2.13) depends on the constants 𝑎, 𝑏. Thus, we use
the new notation P𝑎,𝑏

ℎ to denote this projection. To obtain the optimal 𝐿2 error estimate, we need the following
results.

Lemma 3.3. For 𝑘 = 0, 1, 2, 3, the projection P𝑎,𝑏
ℎ defined by (2.13) on the reference cell [−1, 1] × [−1, 1] is

uniformly bounded in the 𝐿∞ norm with respect to the coefficients 𝑎, 𝑏, i.e.

‖P𝑎,𝑏
ℎ 𝜔‖∞ ≤ 𝐶(𝑘)‖𝜔‖∞, (3.8)

where 𝐶(𝑘) is constant that only depends on 𝑘 and not on 𝑎, 𝑏.

Proof. The proof of this lemma is provided in the appendix; see Section A.4. �

From Lemma 3.3, we have the straightforward corollary as following.

Corollary 3.4. For 𝑘 = 0, 1, 2, 3, the projection P𝑎,𝑏
ℎ has the optimal approximation, for a smooth function 𝜔,

‖𝜔 − P𝑎,𝑏
ℎ 𝜔‖𝐿2(𝐾𝑖,𝑗) ≤ 𝐶(𝑘)ℎ𝑘+1‖𝜔‖𝑘+1,𝐾𝑖,𝑗

. (3.9)

Besides the standard approximation results (3.9), the special projection P𝑎,𝑏
ℎ also has the following supercon-

vergence result.

Proposition 3.5. For 𝑘 = 0, 1, 2, 3, if 𝑎1𝑎2 > 0, 𝑏1𝑏2 > 0 and |𝑎1 − 𝑎2|+ |𝑏1 − 𝑏2| ≤ 𝐶ℎ, then the projections
P𝑎𝑙,𝑏𝑙

ℎ , 𝑙 = 1, 2 defined by (2.13) on the rectangular cell 𝐾𝑖,𝑗 have
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max
𝑙

(|𝑎𝑙|, |𝑏𝑙|)‖P𝑎1,𝑏1
ℎ 𝜔 − P𝑎2,𝑏2

ℎ 𝜔‖𝐿∞(𝐾𝑖,𝑗) ≤ 𝐶ℎ𝑘+2|𝜔|𝐻𝑘+1(𝐾𝑖,𝑗). (3.10)

Proof. The proof of this proposition is provided in the appendix; see Section A.5. �

Remark 3.6. Lemma 3.3 shows that the projection is uniformly bounded with respect to 𝑎, 𝑏. Since P𝑎,𝑏
ℎ 𝜔 is a

polynomial of degree at most 𝑘, we only need to check that the coefficients for a particular set of basis functions,
such as the Legendre polynomials, are uniformly bounded by 𝜔. Also, the coefficients should be homogeneous
rational functions in 𝑎, 𝑏. Thus Proposition 3.5 can be viewed as a corollary of Lemma 3.3. We will give more
details in Section A.4.

Remark 3.7. Here, we only provide the proof of the uniform boundedness of the special projection for 𝑘 =
0, 1, 2, 3. In fact, it is straightforward to verify this property for any finite 𝑘. We have verified this until 𝑘 = 7,
without giving details here to save space. For a general proof for arbitrary 𝑘, it is challenging to find a unified
general formula of the coefficients for a particular set of basis functions.

3.2.2. Proof of Theorem 3.2

Now, we begin the proof of Theorem 3.2. Let us first introduce a few notations. We define

𝐴𝑖,𝑗(𝑢ℎ, 𝑣) =
∫︁

𝐾𝑖,𝑗

(𝑢ℎ)𝑡𝑣 d𝑥 d𝑦 −
∫︁

𝐾𝑖,𝑗

𝑎(𝑥, 𝑦)𝑢ℎ𝑣𝑥 + 𝑏(𝑥, 𝑦)𝑢ℎ𝑣𝑦 d𝑥 d𝑦

+
∫︁ 𝑦

𝑗+ 1
2

𝑦
𝑗− 1

2

𝑎
(︁
𝑥𝑖+ 1

2
, 𝑦

)︁
𝑢ℎ

(︁
𝑥−

𝑖+ 1
2
, 𝑦

)︁
𝑣

(︁
𝑥−

𝑖+ 1
2
, 𝑦

)︁
− 𝑎

(︁
𝑥𝑖− 1

2
, 𝑦

)︁
𝑢ℎ

(︁
𝑥−

𝑖− 1
2
, 𝑦

)︁
𝑣

(︁
𝑥+

𝑖− 1
2
, 𝑦

)︁
d𝑦

+
∫︁ 𝑥

𝑖+ 1
2

𝑥
𝑖− 1

2

𝑏
(︁
𝑥, 𝑦𝑗+ 1

2

)︁
𝑢ℎ

(︁
𝑥, 𝑦−

𝑗+ 1
2

)︁
𝑣

(︁
𝑥, 𝑦−

𝑗+ 1
2

)︁
− 𝑏

(︁
𝑥, 𝑦𝑗− 1

2

)︁
𝑢ℎ

(︁
𝑥, 𝑦−

𝑗− 1
2

)︁
𝑣

(︁
𝑥, 𝑦+

𝑗− 1
2

)︁
d𝑥.

We also define

𝐴𝑖,𝑗(𝑢ℎ, 𝑣) = −
∫︁

𝐾𝑖,𝑗

𝑎(𝑥, 𝑦)𝑢ℎ𝑣𝑥 + 𝑏(𝑥, 𝑦)𝑢ℎ𝑣𝑦 d𝑥 d𝑦

+
∫︁ 𝑦

𝑗+ 1
2

𝑦
𝑗− 1

2

𝑎
(︁
𝑥𝑖+ 1

2
, 𝑦

)︁
𝑢ℎ

(︁
𝑥−

𝑖+ 1
2
, 𝑦

)︁
𝑣

(︁
𝑥−

𝑖+ 1
2
, 𝑦

)︁
− 𝑎

(︁
𝑥𝑖− 1

2
, 𝑦

)︁
𝑢ℎ

(︁
𝑥−

𝑖− 1
2
, 𝑦

)︁
𝑣

(︁
𝑥+

𝑖− 1
2
, 𝑦

)︁
d𝑦

+
∫︁ 𝑥

𝑖+ 1
2

𝑥
𝑖− 1

2

𝑏
(︁
𝑥, 𝑦𝑗+ 1

2

)︁
𝑢ℎ

(︁
𝑥, 𝑦−

𝑗+ 1
2

)︁
𝑣

(︁
𝑥, 𝑦−

𝑗+ 1
2

)︁
− 𝑏

(︁
𝑥, 𝑦𝑗− 1

2

)︁
𝑢ℎ

(︁
𝑥, 𝑦−

𝑗− 1
2

)︁
𝑣

(︁
𝑥, 𝑦+

𝑗− 1
2

)︁
d𝑥.

Thus,

𝐴𝑖,𝑗(𝑢ℎ, 𝑣) =
∫︁

𝐾𝑖,𝑗

(𝑢ℎ)𝑡𝑣 d𝑥 d𝑦 + 𝐴𝑖,𝑗(𝑢ℎ, 𝑣). (3.11)

Clearly, we have
𝐴𝑖,𝑗(𝑢ℎ, 𝑣) = 0, (3.12)

for all 𝑖, 𝑗 and 𝑣 ∈ 𝑉ℎ. It is also clear that the exact solution 𝑢 of the PDE (3.1) satisfies

𝐴𝑖,𝑗(𝑢, 𝑣) = 0, (3.13)

for all 𝑖, 𝑗 and 𝑣 ∈ 𝑉ℎ. Subtracting (3.12) from (3.13), we obtain the error equation

𝐴𝑖,𝑗(𝑢− 𝑢ℎ, 𝑣) = 0, (3.14)

for all 𝑖, 𝑗 and 𝑣 ∈ 𝑉ℎ.
We now define P as the projection into 𝑉ℎ. We denote 𝑎𝑖𝑗 = 𝑎(𝑥𝑖, 𝑦𝑗), 𝑏𝑖𝑗 = 𝑏(𝑥𝑖, 𝑦𝑗), then, for cell 𝐾𝑖,𝑗

P𝑢|𝐾𝑖,𝑗 = P𝑎𝑖𝑗 ,𝑏𝑖𝑗

ℎ 𝑢. (3.15)
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Remark 3.8. Under our assumption, we have 𝑎𝑖𝑗 ≥ 0, 𝑏𝑖𝑗 ≥ 0. If 𝑎𝑖𝑗 or 𝑏𝑖𝑗 = 0, then ‖𝑎‖𝐿∞(𝐾𝑖,𝑗) = 𝑂(ℎ) or
‖𝑏‖𝐿∞(𝐾𝑖,𝑗) = 𝑂(ℎ). We can just set 𝑎𝑖𝑗 = ℎ or 𝑏𝑖𝑗 = ℎ to make sure that all 𝑎𝑖𝑗 and 𝑏𝑖𝑗 > 0 and then apply the
projection P𝑎𝑖𝑗 ,𝑏𝑖𝑗

ℎ .

We now take the test function 𝑣 = P𝑢− 𝑢ℎ in the error equation (3.14) and define

𝜂 = P𝑢− 𝑢 (3.16)

to obtain
𝐴𝑖,𝑗(𝑣, 𝑣) = 𝐴𝑖,𝑗(𝜂, 𝑣). (3.17)

For the left-hand side of (3.17), we use Proposition 3.1 to conclude

1
2

d
d𝑡
‖𝑣‖2 ≤ 𝐶‖𝑣‖2 +

⃒⃒⃒⃒
⃒⃒∑︁

𝑖,𝑗

𝐴𝑖,𝑗(𝜂, 𝑣)

⃒⃒⃒⃒
⃒⃒ . (3.18)

We then write the right-hand side of (3.17) as a sum of two terms

𝐴𝑖,𝑗(𝜂, 𝑣) = 𝐴1
𝑖,𝑗 + 𝐴2

𝑖,𝑗 , (3.19)

where

𝐴1
𝑖,𝑗 =

∫︁
𝐾𝑖,𝑗

(𝜂)𝑡𝑣 d𝑥 d𝑦,

𝐴2
𝑖,𝑗 = 𝐴𝑖,𝑗(𝜂, 𝑣),

and we will estimate each term separately.
By using the simple inequality (2.29) and the special projection properties (3.9) for 𝜕𝑡𝜂, we have∑︁

𝑖,𝑗

|𝐴1
𝑖,𝑗 | ≤

1
2
‖𝑣‖2 + 𝐶ℎ2𝑘+2. (3.20)

For 𝐴2
𝑖,𝑗 , from Taylor expansion,

‖𝑎(𝑥, 𝑦)− 𝑎𝑖𝑗‖𝐿∞(𝐾𝑖,𝑗) = 𝑂(ℎ), ‖𝑏(𝑥, 𝑦)− 𝑏𝑖𝑗‖𝐿∞(𝐾𝑖,𝑗) = 𝑂(ℎ), (3.21)

then

𝐴2
𝑖,𝑗 = −

∫︁
𝐾𝑖,𝑗

(𝑎(𝑥, 𝑦)− 𝑎𝑖𝑗)𝜂𝑣𝑥 + (𝑏(𝑥, 𝑦)− 𝑏𝑖𝑗)𝜂𝑣𝑦 d𝑥 d𝑦

+
∫︁ 𝑦

𝑗+ 1
2

𝑦
𝑗− 1

2

(︁
𝑎

(︁
𝑥𝑖+ 1

2
, 𝑦

)︁
− 𝑎𝑖𝑗

)︁
𝜂

(︁
𝑥−

𝑖+ 1
2
, 𝑦

)︁
𝑣

(︁
𝑥−

𝑖+ 1
2
, 𝑦

)︁
−

(︁
𝑎

(︁
𝑥𝑖− 1

2
, 𝑦

)︁
− 𝑎𝑖𝑗

)︁
𝜂

(︁
𝑥−

𝑖− 1
2
, 𝑦

)︁
𝑣

(︁
𝑥+

𝑖− 1
2
, 𝑦

)︁
d𝑦

+
∫︁ 𝑥

𝑖+ 1
2

𝑥
𝑖− 1

2

(︁
𝑏
(︁
𝑥, 𝑦𝑗+ 1

2

)︁
− 𝑏𝑖𝑗

)︁
𝜂

(︁
𝑥, 𝑦−

𝑗+ 1
2

)︁
𝑣

(︁
𝑥, 𝑦−

𝑗+ 1
2

)︁
−

(︁
𝑏(𝑥, 𝑦𝑗− 1

2
)− 𝑏𝑖𝑗

)︁
𝜂

(︁
𝑥, 𝑦−

𝑗− 1
2

)︁
𝑣

(︁
𝑥, 𝑦+

𝑗− 1
2

)︁
d𝑥

+ 𝐵̃𝑖,𝑗

(︁
𝑢− P𝑎𝑖𝑗 ,𝑏𝑖𝑗

ℎ 𝑢, 𝑣; 𝑎𝑖𝑗 , 𝑏𝑖𝑗

)︁
+

∫︁ 𝑦
𝑗+ 1

2

𝑦
𝑗− 1

2

𝑎𝑖𝑗

(︁
P𝑎𝑖−1𝑗 ,𝑏𝑖−1𝑗

ℎ 𝑢− P𝑎𝑖𝑗 ,𝑏𝑖𝑗

ℎ 𝑢
)︁ (︁

𝑥−
𝑖− 1

2
, 𝑦

)︁
𝑣

(︁
𝑥+

𝑖− 1
2
, 𝑦

)︁
d𝑦

+
∫︁ 𝑥

𝑖+ 1
2

𝑥
𝑖− 1

2

𝑏𝑖𝑗

(︁
P𝑎𝑖𝑗−1,𝑏𝑖𝑗−1

ℎ 𝑢− P𝑎𝑖𝑗 ,𝑏𝑖𝑗

ℎ 𝑢
)︁ (︁

𝑥, 𝑦−
𝑗− 1

2

)︁
𝑣

(︁
𝑥, 𝑦+

𝑗− 1
2

)︁
d𝑥

≤ 𝐶ℎ2𝑘+2‖𝑢‖2𝑘+2,𝐾𝑖,𝑗∪𝐾𝑖−1,𝑗∪𝐾𝑖,𝑗−1
+ ‖𝑣‖20,𝐾𝑖,𝑗

, (3.22)

where we have used the inequalities (2.29), (2.20) and (3.21) for the first three terms. For 𝐵̃𝑖,𝑗 , we have used
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the same argument as for the linear constant coefficient case. Finally, for the last two terms, we have used the
superconvergence result of the special projection (3.10). We now sum over all 𝑖, 𝑗 to obtain∑︁

𝑖,𝑗

|𝐴2
𝑖,𝑗 | ≤ 𝐶ℎ2𝑘+2 + ‖𝑣‖2. (3.23)

Combining (3.20), (3.23) with (3.18), we obtain

1
2

d
d𝑡
‖𝑣‖2 ≤ 𝐶‖𝑣‖2 + 𝐶ℎ2𝑘+2‖𝑢‖2𝑘+2,Ω. (3.24)

This together with the approximation results (3.5), implies the desired error estimate (3.7).

4. The nonlinear case

In this section, we consider the two-dimensional scalar nonlinear conservation law equation{︂
𝑢𝑡 + 𝑓(𝑢)𝑥 + 𝑔(𝑢)𝑦 = 0, (𝑥, 𝑦) ∈ Ω, 𝑡 ≥ 0
𝑢(𝑥, 𝑦, 0) = 𝑢0(𝑥, 𝑦), (𝑥, 𝑦) ∈ Ω (4.1)

The semidiscrete DG method with upwind fluxes is described as follows: We seek an approximate solution
𝑢ℎ ∈ 𝑉ℎ such that for all admissible test functions 𝑣 ∈ 𝑉ℎ and 𝐾𝑖,𝑗 :∫︁

𝐾𝑖,𝑗

(𝑢ℎ)𝑡𝑣 d𝑥 d𝑦 = ℋ𝑖,𝑗(𝑢ℎ, 𝑣), (4.2)

where

ℋ𝑖,𝑗(𝑢ℎ, 𝑣) =
∫︁

𝐾𝑖,𝑗

𝑓(𝑢ℎ)𝑣𝑥 + 𝑔(𝑢ℎ)𝑣𝑦 d𝑥 d𝑦

−
∫︁ 𝑦

𝑗+ 1
2

𝑦
𝑗− 1

2

𝑓(𝑢ℎ)
(︁
𝑥𝑖+ 1

2
, 𝑦

)︁
𝑣

(︁
𝑥−

𝑖+ 1
2
, 𝑦

)︁
− 𝑓(𝑢ℎ)

(︁
𝑥𝑖− 1

2
, 𝑦

)︁
𝑣

(︁
𝑥+

𝑖− 1
2
, 𝑦

)︁
d𝑦

−
∫︁ 𝑥

𝑖+ 1
2

𝑥
𝑖− 1

2

𝑔(𝑢ℎ)
(︁
𝑥, 𝑦𝑗+ 1

2

)︁
𝑣

(︁
𝑥, 𝑦−

𝑗+ 1
2

)︁
− 𝑔(𝑢ℎ)

(︁
𝑥, 𝑦𝑗− 1

2

)︁
𝑣

(︁
𝑥, 𝑦+

𝑗− 1
2

)︁
d𝑥, (4.3)

where

𝑓(𝑢ℎ)
(︁
𝑥𝑖+ 1

2
, 𝑦

)︁
≡ 𝑓

(︁
𝑢ℎ

(︁
𝑥−

𝑖+ 1
2
, 𝑦

)︁
, 𝑢ℎ

(︁
𝑥+

𝑖+ 1
2
, 𝑦

)︁)︁
, 𝑔(𝑢ℎ)

(︁
𝑥, 𝑦𝑗+ 1

2

)︁
≡ 𝑔

(︁
𝑢ℎ

(︁
𝑥, 𝑦−

𝑗+ 1
2

)︁
, 𝑢ℎ

(︁
𝑥, 𝑦+

𝑗+ 1
2

)︁)︁
are upwind monotone numerical fluxes that depend on the two values of the function 𝑢ℎ at the element interface
point. For more details, see, for example, [12].

4.1. A priori error estimates

Let us state the a priori error estimate for the two-dimensional nonlinear equations. Here we assume that
𝑓 ′(𝑢) and 𝑔′(𝑢) do not change sign. Without loss of generality, we assume 𝑓 ′(𝑢) ≥ 0 and 𝑔′(𝑢) ≥ 0. In this case,
all upwind monotone fluxes become 𝑓(𝑢−, 𝑢+) = 𝑓(𝑢−) and 𝑔(𝑢−, 𝑢+) = 𝑔(𝑢−). To deal with the nonlinearity
of the flux 𝑓(𝑢) and 𝑔(𝑢), we could adopt the a priori assumption that, for 𝑒 = 𝑢− 𝑢ℎ,

‖𝑒‖∞ ≤ ℎ, (4.4)

which holds for ℎ small enough. We will justify this assumption for piecewise polynomials of degree 𝑘 > 1. This
assumption is frequently used in the DG error analysis for nonlinear problems; see, e.g. [1, 11].
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Theorem 4.1. Let 𝑢(·, 𝑡) ∈ 𝐻𝑘+2 be the solution of (4.1) with the flux function 𝑓(𝑢) and 𝑔(𝑢) sufficiently
smooth such that |𝑓 (𝑚)(𝑢)| . 1, |𝑔(𝑚)(𝑢)|.1 (𝑚 = 1, 2) and |(ln(𝑓 ′(𝑢)))𝑡|.1, |(ln(𝑔′(𝑢)))𝑡|.1. Suppose 𝑢ℎ is the
numerical solution of the DG scheme (4.2) using uniform meshes satisfying the error assumption (4.4). If the
initial discretization satisfies (2.5) then

‖(𝑢− 𝑢ℎ)(·, 𝑇 )‖ ≤ 𝐶ℎ𝑘+1, (4.5)

where 𝑘 = 2, 3, and the constant 𝐶 depends on the exact solution 𝑢, the polynomial degree 𝑘, the final time 𝑇 ,
and the maximum of |𝑓 (𝑚)|, |𝑔(𝑚)| (𝑚 = 1, 2) and |(ln(𝑓 ′(𝑢)))𝑡|, |(ln(𝑔′(𝑢)))𝑡| but is independent of ℎ and the
approximate solution 𝑢ℎ.

Remark 4.2. We remark that the bounds we take for |𝑓 (𝑚)| and |𝑔(𝑚)| are over [𝑚−ℎ, 𝑀 + ℎ], 𝑚 and 𝑀 are
the minimum and maximum of the initial condition 𝑢0(𝑥, 𝑦) respectively.

4.2. Proof of the error estimates

As before, we have the error equation,∫︁
𝐾𝑖,𝑗

(𝑢− 𝑢ℎ)𝑡𝑣 d𝑥 d𝑦 = ℋ𝑖,𝑗(𝑢, 𝑣)−ℋ𝑖,𝑗(𝑢ℎ, 𝑣). (4.6)

We now define the projection P𝑢 into 𝑉ℎ. We denote 𝑢𝑖,𝑗 = 𝑢(𝑥𝑖, 𝑦𝑗 , 𝑡), then, for the element 𝐾𝑖,𝑗

P𝑢|𝐾𝑖,𝑗
= P𝑓 ′(𝑢𝑖,𝑗),𝑔

′(𝑢𝑖,𝑗)
ℎ 𝑢. (4.7)

Now, we take the test function 𝑣 = 𝑢ℎ − P𝑢 in the error equation (4.6) and denote 𝜂 = 𝑢− P𝑢. Then the error
𝑒 = 𝜂 − 𝑣. To deal with the nonlinearity of the flux functions 𝑓, 𝑔, we used the Taylor expansion for 𝑓(𝑢) and
𝑔(𝑢),

𝑓(𝑢) = 𝑓(𝑢ℎ) + 𝑓 ′(𝑢)(𝑢− 𝑢ℎ)− 𝑓 ′′𝑢
2

(𝑢− 𝑢ℎ)2,

𝑔(𝑢) = 𝑔(𝑢ℎ) + 𝑔′(𝑢)(𝑢− 𝑢ℎ)− 𝑔′′𝑢
2

(𝑢− 𝑢ℎ)2, (4.8)

where 𝑓 ′′𝑢 = 𝑓 ′′(𝜃1𝑢 + (1− 𝜃1)𝑢ℎ) and 𝑔′′𝑢 = 𝑔′′(𝜃2𝑢 + (1− 𝜃2)𝑢ℎ) with 0 ≤ 𝜃1, 𝜃2 ≤ 1. Then, we have

ℋ𝑖,𝑗(𝑢, 𝑣)−ℋ𝑖,𝑗(𝑢ℎ, 𝑣) = ℬ𝑖,𝑗(𝑒, 𝜂; 𝑣)− ℬ𝑖,𝑗(𝑒, 𝑣; 𝑣), (4.9)

where

ℬ𝑖,𝑗(𝑒, 𝜂; 𝑣) =
∫︁

𝐾𝑖,𝑗

(︂
𝑓 ′(𝑢)𝜂 − 𝑓 ′′𝑢

2
𝑒𝜂

)︂
𝑣𝑥 +

(︂
𝑔′(𝑢)𝜂 − 𝑔′′𝑢

2
𝑒𝜂

)︂
𝑣𝑦 d𝑥 d𝑦

−
∫︁ 𝑦

𝑗+ 1
2

𝑦
𝑗− 1

2

(︂
𝑓 ′(𝑢)𝜂 − 𝑓 ′′𝑢

2
𝑒𝜂

)︂ (︁
𝑥−

𝑖+ 1
2
, 𝑦

)︁
𝑣

(︁
𝑥−

𝑖+ 1
2
, 𝑦

)︁
−

(︂
𝑓 ′(𝑢)𝜂 − 𝑓 ′′𝑢

2
𝑒𝜂

)︂ (︁
𝑥−

𝑖− 1
2
, 𝑦

)︁
𝑣

(︁
𝑥+

𝑖− 1
2
, 𝑦

)︁
d𝑦

−
∫︁ 𝑥

𝑖+ 1
2

𝑥
𝑖− 1

2

(︂
𝑔′(𝑢)𝜂 − 𝑔′′𝑢

2
𝑒𝜂

)︂ (︁
𝑥, 𝑦−

𝑗+ 1
2

)︁
𝑣

(︁
𝑥, 𝑦−

𝑗+ 1
2

)︁
−

(︂
𝑔′(𝑢)𝜂 − 𝑔′′𝑢

2
𝑒𝜂

)︂ (︁
𝑥, 𝑦−

𝑗− 1
2

)︁
𝑣

(︁
𝑥, 𝑦+

𝑗− 1
2

)︁
d𝑥.

(4.10)

By the assumption (4.4) and ‖𝑓 ′(𝑢)− 𝑓 ′(𝑢𝑖,𝑗)‖ = 𝑂(ℎ), ‖𝑔′(𝑢)− 𝑔′(𝑢𝑖,𝑗)‖ = 𝑂(ℎ), we have

ℬ𝑖,𝑗(𝑒, 𝜂; 𝑣) ≤ 𝐶ℎ2𝑘+2‖𝑢‖2𝑘+1,𝐾𝑖,𝑗
+ ‖𝑣‖20,𝐾𝑖,𝑗

− 𝐵̃𝑖,𝑗(𝜂, 𝑣; 𝑓 ′(𝑢𝑖,𝑗), 𝑔′(𝑢𝑖,𝑗))
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≤ 𝐶ℎ2𝑘+2‖𝑢‖2𝑘+2,𝐾𝑖,𝑗
+ ‖𝑣‖20,𝐾𝑖,𝑗

, (4.11)

where for the last inequality we have used the same argument as that for the variable coefficient case (3.22).
For ℬ𝑖,𝑗(𝑒, 𝑣; 𝑣), we have the following estimate

−ℬ𝑖,𝑗(𝑒, 𝑣; 𝑣) ≤ 𝐶‖𝑣‖20,𝐾𝑖,𝑗
− 𝑓 ′(𝑢𝑖,𝑗)

⎛⎝∫︁ 𝑦
𝑗+ 1

2

𝑦
𝑗− 1

2

1
2
𝑣

(︁
𝑥−

𝑖+ 1
2
, 𝑦

)︁2

− 𝑣
(︁
𝑥−

𝑖− 1
2
, 𝑦

)︁
𝑣

(︁
𝑥+

𝑖− 1
2
, 𝑦

)︁
+

1
2
𝑣

(︁
𝑥+

𝑖− 1
2
, 𝑦

)︁2

d𝑦

⎞⎠
− 𝑔′(𝑢𝑖,𝑗)

⎛⎝∫︁ 𝑥
𝑖+ 1

2

𝑥
𝑖− 1

2

1
2
𝑣

(︁
𝑥, 𝑦−

𝑗+ 1
2

)︁2

− 𝑣
(︁
𝑥, 𝑦−

𝑗− 1
2

)︁
𝑣

(︁
𝑥, 𝑦+

𝑗− 1
2

)︁
+

1
2
𝑣

(︁
𝑥, 𝑦−

𝑗− 1
2

)︁2

d𝑥

⎞⎠ .

Summing over 𝑖, 𝑗 and using the periodic boundary condition,

∑︁
𝑖,𝑗

−ℬ𝑖,𝑗(𝑒, 𝑣; 𝑣) ≤ 𝐶‖𝑣‖2 −
∑︁
𝑖,𝑗

𝑓 ′(𝑢𝑖,𝑗)
2

∫︁ 𝑦
𝑗+ 1

2

𝑦
𝑗− 1

2

(︁
𝑣(𝑥−

𝑖− 1
2
, 𝑦)− 𝑣

(︁
𝑥+

𝑖− 1
2
, 𝑦

)︁)︁2

d𝑦

−
∑︁
𝑖,𝑗

𝑔′(𝑢𝑖,𝑗)
2

∫︁ 𝑥
𝑖+ 1

2

𝑥
𝑖− 1

2

(︁
𝑣

(︁
𝑥, 𝑦−

𝑗− 1
2

)︁
− 𝑣

(︁
𝑥, 𝑦+

𝑗− 1
2

)︁)︁2

d𝑥

≤ 𝐶‖𝑣‖2, (4.12)

where we have used the inverse inequality (2.20) and the fact |𝑓 ′(𝑢𝑖,𝑗) − 𝑓 ′(𝑢𝑖−1,𝑗)| = 𝑂(ℎ) and |𝑔′(𝑢𝑖,𝑗) −
𝑔′(𝑢𝑖,𝑗−1)| = 𝑂(ℎ). For the estimation of ‖𝜂𝑡‖, we denote 𝑎 = 𝑓 ′(𝑢𝑖,𝑗) and 𝑏 = 𝑔′(𝑢𝑖,𝑗) and take time derivative
on the both sides of (2.13) to obtain

̃︁𝑃ℎ((P𝑎,𝑏
ℎ 𝑢)𝑡, 𝑣; 𝑎, 𝑏)𝑖,𝑗 + ̃︁𝑃ℎ(P𝑎,𝑏

ℎ 𝑢, 𝑣; 𝑎𝑡, 𝑏𝑡)𝑖,𝑗 = ̃︁𝑃ℎ(𝑢𝑡, 𝑣; 𝑎, 𝑏)𝑖,𝑗 + ̃︁𝑃ℎ(𝑢, 𝑣; 𝑎𝑡, 𝑏𝑡)𝑖,𝑗

= ̃︁𝑃ℎ(P𝑎,𝑏
ℎ 𝑢𝑡, 𝑣; 𝑎, 𝑏)𝑖,𝑗 + ̃︁𝑃ℎ(𝑢, 𝑣; 𝑎𝑡, 𝑏𝑡)𝑖,𝑗 (4.13)

then ̃︁𝑃ℎ(P𝑎,𝑏
ℎ 𝑢𝑡 − (P𝑎,𝑏

ℎ 𝑢)𝑡, 𝑣; 𝑎, 𝑏)𝑖,𝑗 = ̃︁𝑃ℎ(P𝑎,𝑏
ℎ 𝑢− 𝑢, 𝑣; 𝑎𝑡, 𝑏𝑡)𝑖,𝑗 . (4.14)

From the proof of Lemma 3.3, there holds

‖P𝑎,𝑏
ℎ 𝑢𝑡 − (P𝑎,𝑏

ℎ 𝑢)𝑡‖ . ‖P𝑎,𝑏
ℎ 𝑢− 𝑢‖ . ℎ𝑘+1 (4.15)

if |𝑎𝑡

𝑎 | . 1 and | 𝑏𝑡

𝑏 | . 1. Thus

‖𝜂𝑡‖ ≤ ‖𝑢𝑡 − P𝑎,𝑏
ℎ 𝑢𝑡‖+ ‖P𝑎,𝑏

ℎ 𝑢𝑡 − (P𝑎,𝑏
ℎ 𝑢)𝑡‖ . ℎ𝑘+1. (4.16)

Combining (4.6), (4.11), (4.12) and (4.16), we obtain

1
2

d
d𝑡

∫︁
Ω

𝑣2 d𝑥 d𝑦 ≤ 𝐶‖𝑣‖2 + 𝐶ℎ2𝑘+2‖𝑢‖2𝑘+2,Ω. (4.17)

An application of Gronwall’s inequality together with the fact that ‖𝑣(·, 0)‖ ≤ 𝐶ℎ𝑘+1 give us,

‖𝑣(·, 𝑡)‖ ≤ 𝐶ℎ𝑘+1. (4.18)

This, together with the approximation results (3.9), implies the desired error estimate (4.5).
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Remark 4.3. Let us justify the a priori assumption (4.4) for 𝑘 > 1. Actually, we note that we only need to
justify that

‖P𝑢(𝑡)− 𝑢ℎ(𝑡)‖ ≤ ℎ
5
2 (4.19)

holds for 𝑡 ∈ [0, 𝑇 ]. If (4.19) holds for 𝑡 ∈ [0, 𝑇 ], then

‖𝑢(𝑡)− 𝑢ℎ(𝑡)‖∞ ≤ ‖𝑢(𝑡)− P𝑢(𝑡)‖∞ + ‖P𝑢(𝑡)− 𝑢ℎ(𝑡)‖∞
≤ ‖𝑢(𝑡)− P𝑢(𝑡)‖∞ + 𝐶1ℎ

−1‖P𝑢(𝑡)− 𝑢ℎ(𝑡)‖

≤ ‖𝑢(𝑡)− P𝑢(𝑡)‖∞ + 𝐶1ℎ
3
2

≤ 𝐶2ℎ
𝑘 + 𝐶1ℎ

3
2

≤ ℎ, (4.20)

when ℎ is small enough and 𝑘 > 1. Therefore, the assumption (4.4) holds for 𝑡 ∈ [0, 𝑇 ]. In the derivation above,
𝐶1 is the constant in the third inequality in (2.20) and 𝐶2 is the constant for the estimate of ‖𝑢(𝑡)− P𝑢(𝑡)‖∞,
which is obtained as follows

‖𝑢(𝑡)− P𝑢(𝑡)‖∞ ≤ ‖𝑢(𝑡)− 𝐼ℎ𝑢(𝑡)‖∞ + ‖P(𝑢(𝑡)− 𝐼ℎ𝑢(𝑡))‖∞
≤ ‖𝑢(𝑡)− 𝐼ℎ𝑢(𝑡)‖∞ + 𝐶‖𝑢(𝑡)− 𝐼ℎ𝑢(𝑡)‖∞ from (3.8)

≤ (1 + 𝐶)𝐶3ℎ
𝑘 (4.21)

where 𝐼ℎ𝑢 is the interpolation of 𝑢 and 𝐶3 is the constant for the interpolation error. Next we justify (4.19).
First, (4.19) is satisfied at 𝑡 = 0 since 𝑢ℎ(0) = Pℎ𝑢0,

‖P𝑢(0)− 𝑢ℎ(0)‖ = ‖P𝑢0 − Pℎ𝑢0‖ ≤ 𝐶ℎ𝑘+1 ≤ ℎ
5
2 (4.22)

when 𝑘 > 1 and ℎ is small enough. Define 𝑡⋆ = sup{𝑠 ≤ 𝑇 : ‖P𝑢(𝑡) − 𝑢ℎ(𝑡)‖ ≤ ℎ
5
2 for all 𝑡 ∈ [0, 𝑠]}, then we

have ‖P𝑢(𝑡⋆) − 𝑢ℎ(𝑡⋆)‖ = ℎ
5
2 by continuity if 𝑡⋆ < 𝑇 . Clearly, (4.18) holds for 𝑡 = 𝑡⋆. Since 𝑘 > 1, when ℎ is

small enough we have 𝐶ℎ𝑘+1 ≤ 1
2ℎ

5
2 , where 𝐶 is the constant in (4.18) determined by the time 𝑡⋆. Therefore,

‖P𝑢(𝑡⋆) − 𝑢ℎ(𝑡⋆)‖ ≤ 𝐶ℎ𝑘+1 ≤ 1
2ℎ

5
2 which is a contraction. Thus we have 𝑡⋆ = 𝑇 , and the a priori assumption

(4.4) is justified.

Remark 4.4. We should remark that the restriction, 𝑘 > 1, for the nonlinear case is artificial due to the
technique in the proof. In our numerical Example 5.3, we observe optimal convergence also for 𝑘 = 0 and 1.

5. Numerical examples

In this section, we present some numerical examples to verify our theoretical findings. In our numerical
experiments, we presents the 𝐸1, 𝐸2, and 𝐸∞ errors, respectively. They are defined by

𝐸1 =
∫︁

Ω

|(𝑢− 𝑢ℎ)(𝑥, 𝑦, 𝑇 )|d𝑥 d𝑦, (5.1)

𝐸2 =
(︂∫︁

Ω

|(𝑢− 𝑢ℎ)(𝑥, 𝑦, 𝑇 )|2 d𝑥 d𝑦

)︂ 1
2

, (5.2)

𝐸∞ = max
Ω
|(𝑢− 𝑢ℎ)(𝑥, 𝑦, 𝑇 )|. (5.3)

In our all experiments, we used the DG scheme (2.2) using 𝑃 𝑘 polynomials with 𝑘 = 0, 1, 2, 3 respectively. The
computational domain, [0, 2𝜋]×[0, 2𝜋], is equally divided into 𝑁×𝑁 rectangles with 𝑁 = 10, 20, 40, 80, 160 in our
experiments. To reduce the time discretization error, the seventh-order strong stability-preserving Runge–Kutta
method [9] with the time step 𝛥𝑡 = 0.05ℎ, ℎ = 2𝜋

𝑁 is used.
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Table 1. The errors and corresponding convergence rates for the cases 𝑘 = 0, 1, 2, 3.

𝑁 ×𝑁 𝐸1 Rate 𝐸2 Rate 𝐸∞ Rate

𝑘 = 0 10× 10 5.63E+00 – 2.09E+00 – 9.88E-01 –
20× 20 4.95E+00 0.19 1.83E+00 0.19 8.76E-01 0.17
40× 40 3.61E+00 0.46 1.34E+00 0.46 6.35E-01 0.46
80× 80 2.24E+00 0.69 8.29E-01 0.69 3.94E-01 0.69
160× 160 1.26E+00 0.83 4.65E-01 0.83 2.21E-01 0.84
320× 320 6.67E-01 0.91 2.47E-01 0.91 1.17E-01 0.92

𝑘 = 1 10× 10 8.28E-01 – 3.14E-01 – 1.67E-01 –
20× 20 1.28E-01 2.70 4.94E-02 2.67 2.87E-02 2.54
40× 40 2.07E-02 2.63 8.51E-03 2.54 5.80E-03 2.30
80× 80 3.94E-03 2.39 1.83E-03 2.22 1.79E-03 1.69
160× 160 9.51E-04 2.05 4.41E-04 2.05 4.91E-04 1.87
320× 320 2.34E-04 2.02 1.10E-04 2.00 1.28E-04 1.94

𝑘 = 2 10× 10 3.18E-02 – 1.31E-02 – 1.33E-02 –
20× 20 3.48E-03 3.19 1.57E-03 3.06 1.77E-03 2.91
40× 40 4.28E-04 3.02 1.96E-04 3.00 2.22E-04 2.99
80× 80 5.34E-05 3.00 2.45E-05 3.00 2.78E-05 3.00
160× 160 6.67E-06 3.00 3.07E-06 3.00 3.48E-06 3.00
320× 320 8.34E-07 3.00 3.83E-07 3.00 4.35E-07 3.00

𝑘 = 3 10× 10 1.52E-02 – 3.67E-03 – 3.38E-03 –
20× 20 9.66E-04 3.98 2.33E-04 3.98 2.23E-04 3.92
40× 40 6.06E-05 3.99 1.46E-05 3.99 1.40E-05 3.99
80× 80 3.79E-06 4.00 9.15E-07 4.00 8.78E-07 4.00
160× 160 2.37E-07 4.00 5.72E-08 4.00 5.49E-08 4.00
320× 320 1.48E-08 4.00 3.58E-09 4.00 3.43E-09 4.00

Notes. 𝑇 = 2𝜋 for Example 5.1.

Example 5.1. We firstly consider a linear constant coefficient equation with periodic boundary condition:⎧⎨⎩𝑢𝑡 + 𝑢𝑥 + 𝑢𝑦 = 0, (𝑥, 𝑦, 𝑡) ∈ [0, 2𝜋]× [0, 2𝜋]× (0, 2𝜋)
𝑢(𝑥, 𝑦, 0) = sin(𝑥 + 𝑦),
𝑢(0, 𝑦, 𝑡) = 𝑢(2𝜋, 𝑦, 𝑡), 𝑢(𝑥, 0, 𝑡) = 𝑢(𝑥, 2𝜋, 𝑡).

(5.4)

The exact solution to this problem is

𝑢(𝑥, 𝑦, 𝑡) = sin(𝑥 + 𝑦 − 2𝑡). (5.5)

Table 1 shows that the order of convergence of the error achieves the expected (𝑘 + 1)th order of accuracy.

Example 5.2. Next, we consider the linear variable coefficients equation with periodic boundary condition:⎧⎨⎩𝑢𝑡 + (𝑎(𝑥, 𝑦)𝑢)𝑥 + (𝑏(𝑥, 𝑦)𝑢)𝑦 = 𝑓, (𝑥, 𝑦, 𝑡) ∈ [0, 2𝜋]× [0, 2𝜋]× (0, 2𝜋)
𝑢(𝑥, 𝑦, 0) = sin(𝑥 + 𝑦),
𝑢(0, 𝑦, 𝑡) = 𝑢(2𝜋, 𝑦, 𝑡), 𝑢(𝑥, 0, 𝑡) = 𝑢(𝑥, 2𝜋, 𝑡).

(5.6)

where 𝑎(𝑥, 𝑦) = sin(𝑥 + 𝑦), 𝑏(𝑥, 𝑦) = cos(𝑥 + 𝑦) and 𝑓 = cos(𝑥 + 𝑦 − 𝑡)− 2 cos(𝑥 + 𝑦 − 2𝑡) + sin(2(𝑥 + 𝑦 − 𝑡)).

The exact solution to this problem is

𝑢(𝑥, 𝑦, 𝑡) = sin(𝑥 + 𝑦 − 2𝑡). (5.7)
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Table 2. The errors and corresponding convergence rates in cases 𝑘 = 0, 1, 2, 3.

𝑁 ×𝑁 𝐸1 Rate 𝐸2 Rate 𝐸∞ Rate

𝑘 = 0 10× 10 1.43E+01 – 2.25E+00 – 8.22E-01 –
20× 20 7.67E+00 0.90 1.23E+00 0.87 5.13E-01 0.68
40× 40 3.98E+00 0.95 6.44E-01 0.93 2.84E-01 0.85
80× 80 2.03E+00 0.97 3.31E-01 0.96 1.51E-01 0.92
160× 160 1.03E+00 0.98 1.68E-01 0.98 7.93E-02 0.93
320× 320 5.16E-01 0.99 8.46E-02 0.99 4.14E-02 0.94

𝑘 = 1 10× 10 1.97E+00 – 3.41E-01 – 2.00E-01 –
20× 20 4.92E-01 2.00 8.69E-02 1.97 5.04E-02 1.99
40× 40 1.20E-01 2.04 2.18E-02 2.00 1.34E-02 1.91
80× 80 2.95E-02 2.02 5.44E-03 2.00 3.37E-03 1.99
160× 160 7.34E-03 2.01 1.36E-03 2.00 8.36E-04 2.01
320× 320 1.84E-03 2.00 3.42E-04 2.00 2.08E-04 2.01

𝑘 = 2 10× 10 2.34E-01 – 4.13E-02 – 2.60E-02 –
20× 20 2.60E-02 3.17 4.93E-03 3.07 3.59E-03 2.86
40× 40 3.12E-03 3.06 6.05E-04 3.03 4.43E-04 3.02
80× 80 3.81E-04 3.03 7.51E-05 3.01 5.52E-05 3.00
160× 160 4.73E-05 3.01 9.37E-06 3.00 7.06E-06 2.97
320× 320 5.90E-06 3.00 1.17E-06 3.00 9.07E-07 2.96

𝑘 = 3 10× 10 2.08E-02 – 3.91E-03 – 3.39E-03 –
20× 20 1.12E-03 4.22 2.34E-04 4.06 2.32E-04 3.87
40× 40 6.57E-05 4.09 1.44E-05 4.02 1.44E-05 4.00
80× 80 4.06E-06 4.02 8.99E-07 4.00 9.02E-07 4.00
160× 160 2.53E-07 4.01 5.62E-08 4.00 5.57E-08 4.02
320× 320 1.58E-08 4.00 3.51E-09 4.00 3.45E-09 4.01

Notes. 𝑇 = 2𝜋 for Example 5.2.

The results in Table 2 show that the order of convergence of the error, ‖𝑢− 𝑢ℎ‖𝐿2(Ω), achieves the expected
(𝑘 + 1)th order of accuracy. We note that the coefficients 𝑎(𝑥, 𝑦) and 𝑏(𝑥, 𝑦) do change signs in this example,
thus this example is not covered by our analysis. This indicates that probably the restriction in our analysis is
artificial and due to the technique in our proof.

Example 5.3. Finally, we consider the following nonlinear equation with periodic boundary condition:⎧⎨⎩𝑢𝑡 + (𝑢3)𝑥 + (exp(𝑢))𝑦 = 𝑓, (𝑥, 𝑦, 𝑡) ∈ [0, 2𝜋]× [0, 2𝜋]× (0, 2𝜋)
𝑢(𝑥, 𝑦, 0) = sin(𝑥 + 𝑦),
𝑢(0, 𝑦, 𝑡) = 𝑢(2𝜋, 𝑦, 𝑡), 𝑢(𝑥, 0, 𝑡) = 𝑢(𝑥, 2𝜋, 𝑡).

(5.8)

where 𝑓 = cos(2𝑡− 𝑥− 𝑦)
(︀
−2 + exp(− sin(2𝑡− 𝑥− 𝑦)) + 3 sin(2𝑡− 𝑥− 𝑦)2

)︀
.

The exact solution to this problem is

𝑢(𝑥, 𝑦, 𝑡) = sin(𝑥 + 𝑦 − 2𝑡). (5.9)

The results in Table 3 also show the expected optimal order of convergence.
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Table 3. The errors and corresponding convergence rates in cases 𝑘 = 0, 1, 2, 3.

𝑁 ×𝑁 𝐸1 Rate 𝐸2 Rate 𝐸∞ Rate

𝑘 = 0 10× 10 1.30E+01 – 2.41E+00 – 8.59E-01 –
20× 20 7.22E+00 0.85 1.42E+00 0.77 6.18E-01 0.48
40× 40 3.79E+00 0.93 7.99E-01 0.83 4.30E-01 0.52
80× 80 1.96E+00 0.95 4.43E-01 0.85 2.78E-01 0.63
160× 160 1.02E+00 0.95 2.45E-01 0.86 1.76E-01 0.66
320× 320 5.33E-01 0.93 1.34E-01 0.86 1.10E-01 0.68

𝑘 = 1 10× 10 2.84E+00 – 4.54E-01 – 2.16E-01 –
20× 20 6.14E-01 2.21 1.02E-01 2.16 5.28E-02 2.03
40× 40 1.35E-01 2.18 2.34E-02 2.12 1.32E-02 2.00
80× 80 3.14E-02 2.11 5.62E-03 2.06 3.30E-03 2.00
160× 160 7.52E-03 2.06 1.38E-03 2.02 8.27E-04 2.00
320× 320 1.84E-03 2.03 3.44E-04 2.01 2.07E-04 2.00

𝑘 = 2 10× 10 2.34E-01 – 4.56E-02 – 3.70E-02 –
20× 20 2.78E-02 3.08 5.72E-03 3.00 5.18E-03 2.84
40× 40 3.39E-03 3.03 7.04E-04 3.02 6.24E-04 3.05
80× 80 4.19E-04 3.02 8.69E-05 3.02 7.58E-05 3.04
160× 160 5.21E-05 3.01 1.08E-05 3.01 9.17E-06 3.05
320× 320 6.51E-06 3.00 1.34E-06 3.01 1.12E-06 3.04

𝑘 = 3 10× 10 1.75E-02 – 4.15E-03 – 3.91E-03 –
20× 20 1.06E-03 4.04 2.43E-04 4.09 2.29E-04 4.10
40× 40 6.48E-05 4.04 1.49E-05 4.03 1.41E-05 4.02
80× 80 4.01E-06 4.01 9.23E-07 4.01 8.79E-07 4.01
160× 160 2.50E-07 4.01 5.76E-08 4.00 5.49E-08 4.00
320× 320 1.56E-08 4.00 3.60E-09 4.00 3.43E-09 4.00

Notes. 𝑇 = 1 for Example 5.3.

6. Concluding remarks

In this paper, optimal 𝐿2 error estimates to DG methods applied to 2D hyperbolic equations are proved.
Our analysis is carried out for both linear and nonlinear cases for uniform Cartesian meshes and piecewise
𝑃 𝑘 polynomial spaces. The result is valid for arbitrary polynomial degree 𝑘 ≥ 0 for linear constant coefficient
equations. For variable coefficients and nonlinear equations, it holds true for polynomial degree 𝑘 = 0, 1, 2, 3
and 𝑘 = 2, 3, respectively, under the condition that 𝑓 ′(𝑢), 𝑔′(𝑢) do not change sign. The main ingredients in the
proof are the construction and analysis of a special projection. The numerical examples also verify the results of
our theoretical analysis. Extension of this work to nonuniform meshes and to arbitrary polynomial degree 𝑘 for
the variable coefficient and nonlinear equations is interesting and challenging, and constitutes our future work.

Appendix A. Proof of a few technical lemmas and propositions

In this appendix, we collect the proof of some of the technical lemmas and propositions in the error estimates.

A.1. Proof of Lemma 2.4

Proof. Note that the procedure to find P⋆𝜔 ∈ 𝑃 𝑘([−1, 1]2) is to solve a linear system, so the existence and
uniqueness are equivalent. Thus, we only prove the uniqueness of the projection P⋆. We set 𝜔𝐼(𝑥) = P⋆𝜔(𝑥)
with 𝜔(𝑥) = 0, and would like to prove 𝜔𝐼(𝑥) = 0. By the definition of the projection P⋆, we have
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̃︁𝑃ℎ(𝜔𝐼 , 𝑣; 𝑎, 𝑏) = −
∫︁ 1

−1

∫︁ 1

−1

𝜔𝐼𝑣𝛽 d𝑥 d𝑦 +
∫︁ 1

−1

𝑏𝜔𝐼(𝑥, 1)(𝑣(𝑥, 1)− 𝑣(𝑥,−1)) d𝑥

+
∫︁ 1

−1

𝑎𝜔𝐼(1, 𝑦)(𝑣(1, 𝑦)− 𝑣(−1, 𝑦)) d𝑦 = 0, ∀𝑣 ∈ 𝑃 𝑘([−1, 1]2), (A.1)

and ∫︁ 1

−1

∫︁ 1

−1

𝜔𝐼(𝑥, 𝑦) d𝑥 d𝑦 = 0. (A.2)

Specially, we set 𝑣 = 𝜔𝐼 ∈ 𝑃 𝑘([−1, 1]2) to get

̃︁𝑃ℎ(𝜔𝐼 , 𝜔𝐼 ; 𝑎, 𝑏) =
𝑏

2

∫︁ 1

−1

(𝜔𝐼(𝑥, 1)− 𝜔𝐼(𝑥,−1))2 d𝑥 +
𝑎

2

∫︁ 1

−1

(𝜔𝐼(1, 𝑦)− 𝜔𝐼(−1, 𝑦))2 d𝑦 = 0. (A.3)

Thus

𝜔𝐼(𝑥, 1) = 𝜔𝐼(𝑥,−1), ∀𝑥 ∈ [−1, 1]; (A.4)
𝜔𝐼(1, 𝑦) = 𝜔𝐼(−1, 𝑦), ∀𝑦 ∈ [−1, 1]. (A.5)

Then, we set 𝑣 = (𝜔𝐼)𝛽 ∈ 𝑃 𝑘([−1, 1]2) and use (A.4) and (A.5) to obtain∫︁ 1

−1

∫︁ 1

−1

(𝜔𝐼)2𝛽 d𝑥 d𝑦 = 0. (A.6)

Therefore, we have:
(𝜔𝐼)𝛽 = 𝑎(𝜔𝐼)𝑥 + 𝑏(𝜔𝐼)𝑦 = 0. (A.7)

This, together with (A.4), (A.5) and 𝛽 ̸= (0, 1) or (1, 0), implies 𝜔𝐼(𝑥, 𝑦) ≡ 𝐶. Finally, (2.13a) implies 𝜔𝐼 ≡ 0.
We have now finished the proof of uniqueness.

We now move to the proof of the second part (2.18). We denote

P⋆𝜔(𝑥, 𝑦) = 𝜔𝐼(𝑥, 𝑦) =
𝑀∑︁
𝑖=1

𝑎𝑖𝑣𝑖(𝑥, 𝑦). (A.8)

where 𝑀 = (𝑘+1)(𝑘+2)
2 is the number of the basis functions of 𝑃 𝑘([−1, 1]2), {𝑣1, 𝑣2, . . . , 𝑣𝑀} =

{1, 𝑥, 𝑦, . . . , 𝑥𝑚𝑦𝑙−𝑚, . . . , 𝑦𝑘}, then we set the test function 𝑣 = 𝑣𝑖, 2 ≤ 𝑖 ≤ 𝑀 . Thus:

̃︁𝑃ℎ(𝜔𝐼 , 𝑣𝑖; 𝑎, 𝑏) =
𝑀∑︁
𝑙=1

𝛼𝑖𝑙𝑎𝑙, 2 ≤ 𝑖 ≤ 𝑀, (A.9)

∫︁ 1

−1

∫︁ 1

−1

𝜔𝐼(𝑥, 𝑦) d𝑥 d𝑦 =
𝑀∑︁
𝑙=1

𝛼1𝑙𝑎𝑙. (A.10)

It is easy to prove |̃︁𝑃ℎ(𝜔, 𝑣𝑖; 𝑎, 𝑏)| ≤ 𝐶‖𝜔‖∞, and the coefficients 𝛼𝑖𝑙, 1 ≤ 𝑖 ≤ 𝑀, 1 ≤ 𝑙 ≤ 𝑀 are independent
of 𝜔. We denote 𝜁 = (𝑎1, 𝑎2, . . . , 𝑎𝑀 )𝑇 , 𝐴𝑖𝑙 = 𝛼𝑖𝑙, and 𝑏1 =

∫︀ 1

−1

∫︀ 1

−1
𝜔(𝑥, 𝑦) d𝑥 d𝑦, 𝑏𝑙 = ̃︁𝑃ℎ(𝜔; 𝑣𝑙), 𝑙 = 2, . . . ,𝑀 ,

𝛾 = (𝑏1, 𝑏2, . . . , 𝑏𝑀 )𝑇 . We can solve the following linear system:

𝐴𝜁 = 𝛾 (A.11)

to get 𝜁 = 𝐴−1𝛾. Since each component of 𝛾 is bounded by ‖𝜔‖∞ and each component of 𝐴 is dependent
on the constants 𝑎, 𝑏, 𝑘, each component of 𝜁 is bounded by ‖𝜔‖∞, i.e. |𝑎𝑖| . ‖𝜔‖∞, 𝑖 = 1, 2, . . . ,𝑀 . Thus
‖P⋆

ℎ𝜔‖∞ ≤ 𝐶‖𝜔‖∞, where 𝐶 is dependent on 𝑎, 𝑏, 𝑘. �
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A.2. Proof of Lemma 2.6

Proof. We just need to prove 𝑥𝑘+1−𝑙𝑦𝑙 − 𝑢(𝑖,𝑗)(𝑥, 𝑦) = (𝑥− ℎ𝑥)𝑘+1−𝑙𝑦𝑙 − 𝑢(𝑖−1,𝑗)(𝑥− ℎ𝑥, 𝑦),∀(𝑥, 𝑦) ∈ 𝐾𝑖,𝑗 . We
set 𝑣(𝑥, 𝑦) = 𝑥𝑘+1−𝑙𝑦𝑙 − (𝑥− ℎ𝑥)𝑘+1−𝑙𝑦𝑙 + 𝑢(𝑖−1,𝑗)(𝑥− ℎ𝑥, 𝑦), then we just need to prove 𝑢(𝑖,𝑗)(𝑥, 𝑦) = 𝑣(𝑥, 𝑦).
By the uniqueness of the projection P⋆, we just need to check the following equations:∫︁

𝐾𝑖,𝑗

𝑣(𝑥, 𝑦) d𝑥 d𝑦 =
∫︁

𝐾𝑖,𝑗

𝑢(𝑥, 𝑦) d𝑥 d𝑦, (A.12)

̃︁𝑃ℎ(𝑣, 𝑣; 𝑎, 𝑏)𝑖,𝑗 = ̃︁𝑃ℎ(𝑢, 𝑣; 𝑎, 𝑏)𝑖,𝑗 ∀𝑣 ∈ 𝑃 𝑘(𝐾𝑖,𝑗). (A.13)

The first equation can be checked as follows∫︁ 𝑦
𝑗+ 1

2

𝑦
𝑗− 1

2

∫︁ 𝑥
𝑖+ 1

2

𝑥
𝑖− 1

2

𝑣(𝑥, 𝑦) d𝑥 d𝑦

=
∫︁ 𝑦

𝑗+ 1
2

𝑦
𝑗− 1

2

∫︁ 𝑥
𝑖+ 1

2

𝑥
𝑖− 1

2

𝑢(𝑖−1,𝑗)(𝑥− ℎ𝑥, 𝑦)− (𝑥− ℎ𝑥)𝑘+1−𝑙𝑦𝑙 + 𝑥𝑘+1−𝑙𝑦𝑙 d𝑥 d𝑦

=
∫︁ 𝑦

𝑗+ 1
2

𝑦
𝑗− 1

2

∫︁ 𝑥
𝑖− 1

2

𝑥
𝑖− 3

2

𝑢(𝑖−1,𝑗)(𝑥, 𝑦)− 𝑥𝑘+1−𝑙𝑦𝑙 + (𝑥 + ℎ𝑥)𝑘+1−𝑙𝑦𝑙 d𝑥 d𝑦

=
∫︁ 𝑦

𝑗+ 1
2

𝑦
𝑗− 1

2

∫︁ 𝑥
𝑖− 1

2

𝑥
𝑖− 3

2

𝑢(𝑖−1,𝑗)(𝑥, 𝑦)− 𝑥𝑘+1−𝑙𝑦𝑙 d𝑥 d𝑦 +
∫︁ 𝑦

𝑗+ 1
2

𝑦
𝑗− 1

2

∫︁ 𝑥
𝑖+ 1

2

𝑥
𝑖− 1

2

𝑥𝑘+1−𝑙𝑦𝑙 d𝑥 d𝑦

=
∫︁ 𝑦

𝑗+ 1
2

𝑦
𝑗− 1

2

∫︁ 𝑥
𝑖+ 1

2

𝑥
𝑖− 1

2

𝑥𝑘+1−𝑙𝑦𝑙 d𝑥 d𝑦,

where we have used the definition of projection P⋆ in (2.13a). The second equation can be checked as follows

̃︁𝑃ℎ(𝑣, 𝑣; 𝑎, 𝑏)𝑖,𝑗 = ̃︁𝑃ℎ(𝑢(𝑖−1,𝑗)(𝑥, 𝑦)− 𝑢(𝑥, 𝑦), 𝑣(𝑥 + ℎ𝑥, 𝑦); 𝑎, 𝑏)𝑖−1,𝑗 + ̃︁𝑃ℎ(𝑥𝑘+1−𝑙𝑦𝑙, 𝑣; 𝑎, 𝑏)𝑖,𝑗

= ̃︁𝑃ℎ(𝑥𝑘+1−𝑙𝑦𝑙, 𝑣; 𝑎, 𝑏)𝑖,𝑗 ∀𝑣 ∈ 𝑃 𝑘(𝐾𝑖,𝑗),

where we have used the fact 𝑣(𝑥 + ℎ𝑥, 𝑦) ∈ 𝑃 𝑘(𝐾𝑖−1,𝑗). Therefore the uniqueness of the projection P⋆ implies
that 𝑢𝑖,𝑗(𝑥, 𝑦) = 𝑣(𝑥, 𝑦). �

A.3. Proof of Proposition 2.7

Proof. We just prove one case 𝐵̃𝑖,𝑗(P⋆𝑢, 𝑣; 𝑎, 𝑏) = 𝐵̃𝑖,𝑗(𝑢, 𝑣; 𝑎, 𝑏), where 𝑢 = 𝑥𝑘+1−𝑙𝑦𝑙, as the other cases follow
the same lines. We use Lemma 2.6 to 𝐵̃𝑖,𝑗(P⋆𝑢, 𝑣; 𝑎, 𝑏):

𝐵̃𝑖,𝑗(P⋆𝑢, 𝑣; 𝑎, 𝑏) = −(P⋆𝑢, 𝑣𝛽)𝐾𝑖,𝑗

+
∫︁ 𝑥

𝑖+ 1
2

𝑥
𝑖− 1

2

𝑏
(︁
P⋆𝑢

(︁
𝑥, 𝑦−

𝑗+ 1
2

)︁
𝑣

(︁
𝑥, 𝑦−

𝑗+ 1
2

)︁
− P⋆𝑢

(︁
𝑥, 𝑦−

𝑗− 1
2

)︁
𝑣

(︁
𝑥, 𝑦+

𝑗− 1
2

)︁)︁
d𝑥

+
∫︁ 𝑦

𝑗+ 1
2

𝑦
𝑗− 1

2

𝑎
(︁
P⋆𝑢

(︁
𝑥−

𝑖+ 1
2
, 𝑦

)︁
𝑣

(︁
𝑥−

𝑖+ 1
2
, 𝑦

)︁
− P⋆𝑢

(︁
𝑥−

𝑖− 1
2
, 𝑦

)︁
𝑣

(︁
𝑥+

𝑖− 1
2
, 𝑦

)︁)︁
d𝑦

= ̃︁𝑃ℎ (P⋆𝑢− 𝑢, 𝑣; 𝑎, 𝑏)𝑖,𝑗 + 𝐵̃𝑖,𝑗 (𝑢, 𝑣; 𝑎, 𝑏)

= 𝐵̃𝑖,𝑗(𝑢, 𝑣; 𝑎, 𝑏) ∀𝑣 ∈ 𝑃 𝑘(𝐾𝑖,𝑗).

�
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A.4. Proof of Lemma 3.3

Proof. Without loss of generality, we assume 𝑎, 𝑏 > 0. Firstly, we denote {𝜙𝑙(𝑥, 𝑦)}10𝑙=1 as the standard orthogonal
basis functions on [−1, 1]2, which are defined as follows for 𝑃 3,

𝜙1(𝑥, 𝑦) =
1
2

; 𝜙2(𝑥, 𝑦) =
√

3
2

𝑥; 𝜙3(𝑥, 𝑦) =
√

3
2

𝑦; 𝜙4(𝑥, 𝑦) =
3
2
𝑥𝑦;

𝜙5(𝑥, 𝑦) =
√

5
4

(3𝑥2 − 1); 𝜙6(𝑥, 𝑦) =
√

5
4

(3𝑦2 − 1); 𝜙7(𝑥, 𝑦) =
√

7
4

(−3𝑥 + 5𝑥3);

𝜙8(𝑥, 𝑦) =
√

15
4

(−1 + 3𝑥2)𝑦; 𝜙9(𝑥, 𝑦) =
√

15
4

(−1 + 3𝑦2)𝑥; 𝜙10(𝑥, 𝑦) =
√

7
4

(︀
−3𝑦 + 5𝑦3

)︀
.

Since P𝑎,𝑏
ℎ 𝜔 ∈ 𝑃 𝑘, we have the following representation,

P𝑎,𝑏
ℎ 𝜔 =

(𝑘+1)(𝑘+2)
2∑︁

𝑖=1

𝛼𝑖𝜙𝑖(𝑥, 𝑦). (A.14)

It is easy to see that we just need to verify the coefficients are uniformly bounded by ‖𝜔‖∞ with a constant
which does not depend on 𝑎, 𝑏. Next, we give the coefficients for 𝑘 = 0, 1, 2, 3.

For 𝑘 = 0,

𝛼1 =
1
2

∫︁ 1

−1

∫︁ 1

−1

𝜔(𝑥, 𝑦) d𝑥 d𝑦. (A.15)

For 𝑘 = 1,

𝛼1 =

∫︀ 1

−1

∫︀ 1

−1
𝜔(𝑥, 𝑦) d𝑥 d𝑦

2
; 𝛼2 =

∫︀ 1

−1

√
3𝜔(1, 𝑦) d𝑦 − 1

2

√
3

∫︀ 1

−1

∫︀ 1

−1
𝜔(𝑥, 𝑦) d𝑦 d𝑥

3
;

𝛼3 =

∫︀ 1

−1

√
3𝜔(𝑥, 1) d𝑥− 1

2

√
3

∫︀ 1

−1

∫︀ 1

−1
𝜔(𝑥, 𝑦) d𝑦 d𝑥

3
· (A.16)

For 𝑘 = 2,

𝛼1 =

∫︀ 1

−1

∫︀ 1

−1
𝜔(𝑥, 𝑦) d𝑥 d𝑦

2
; 𝛼2 =

√
3

∫︀ 1

−1

∫︀ 1

−1
𝑥𝜔(𝑥, 𝑦) d𝑦 d𝑥

2
;

𝛼3 =

√
3

∫︀ 1

−1

∫︀ 1

−1
𝑦𝜔(𝑥, 𝑦) d𝑦 d𝑥

2
;

𝛼4 =

∫︀ 1

−1
3𝑎𝑦𝜔(1, 𝑦) d𝑦 +

∫︀ 1

−1
3𝑏𝑥𝜔(𝑥, 1) d𝑥− 3

2

∫︀ 1

−1

∫︀ 1

−1
(𝑏𝑥 + 𝑎𝑦)𝜔(𝑥, 𝑦) d𝑦 d𝑥

3(𝑎 + 𝑏)
;

𝛼5 =
2
√

3
∫︀ 1

−1

√
3𝜔(1, 𝑦) d𝑦 − 3

(︁∫︀ 1

−1

∫︀ 1

−1
𝜔(𝑥, 𝑦) d𝑦 d𝑥 + 3

∫︀ 1

−1

∫︀ 1

−1
𝑥𝜔(𝑥, 𝑦) d𝑦 d𝑥

)︁
6
√

5
;

𝛼6 =
2
√

3
∫︀ 1

−1

√
3𝜔(𝑥, 1) d𝑥− 3

(︁∫︀ 1

−1

∫︀ 1

−1
𝜔(𝑥, 𝑦) d𝑦 d𝑥 + 3

∫︀ 1

−1

∫︀ 1

−1
𝑦𝜔(𝑥, 𝑦) d𝑦 d𝑥

)︁
6
√

5
· (A.17)

Since 𝑎
𝑎+𝑏 ≤ 1 and 𝑏

𝑎+𝑏 ≤ 1, 𝛼4 is uniformly bounded by ‖𝜔‖∞.
For 𝑘 = 3,

𝛼1 =

∫︀ 1

−1

∫︀ 1

−1
𝜔(𝑥, 𝑦) d𝑥 d𝑦

2
; 𝛼2 =

√
3

∫︀ 1

−1

∫︀ 1

−1
𝑥𝜔(𝑥, 𝑦) d𝑦 d𝑥

2
;
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𝛼3 =

√
3

∫︀ 1

−1

∫︀ 1

−1
𝑦𝜔(𝑥, 𝑦) d𝑦 d𝑥

2
;

𝛼4 =
1

12 (5𝑎3 + 3𝑎2𝑏 + 3𝑎𝑏2 + 5𝑏3)

(︂
36𝑎2𝑏

∫︁ 1

−1

𝑦𝜔(1, 𝑦) d𝑦 − 30𝑎𝑏2

∫︁ 1

−1

(︀
−1 + 3𝑦2

)︀
𝜔(1, 𝑦) d𝑦

+ 36𝑎𝑏2

∫︁ 1

−1

𝑥𝜔(𝑥, 1) d𝑥− 30𝑎2𝑏

∫︁ 1

−1

(︀
−1 + 3𝑥2

)︀
𝜔(𝑥, 1) d𝑥

− 18𝑎𝑏

∫︁ 1

−1

∫︁ 1

−1

(𝑏𝑥 + 𝑎𝑦)𝜔(𝑥, 𝑦) d𝑦 d𝑥 + 15𝑎2

∫︁ 1

−1

∫︁ 1

−1

(︀
𝑏
(︀
−1 + 3𝑥2

)︀
+ 6𝑎𝑥𝑦

)︀
𝜔(𝑥, 𝑦) d𝑦 d𝑥

+ 15𝑏2

∫︁ 1

−1

∫︁ 1

−1

(︀
6𝑏𝑥𝑦 + 𝑎

(︀
−1 + 3𝑦2

)︀)︀
𝜔(𝑥, 𝑦) d𝑦 d𝑥

)︂
;

𝛼5 =
1

84
√

5

(︂
−42

∫︁ 1

−1

∫︁ 1

−1

𝜔(𝑥, 𝑦) d𝑦 d𝑥 + 63
∫︁ 1

−1

∫︁ 1

−1

(︀
−1 + 5𝑥2

)︀
𝜔(𝑥, 𝑦) d𝑦 d𝑥

)︂
;

𝛼6 =
1

84
√

5

(︂
−42

∫︁ 1

−1

∫︁ 1

−1

𝜔(𝑥, 𝑦) d𝑦 d𝑥 + 63
∫︁ 1

−1

∫︁ 1

−1

(︀
−1 + 5𝑦2

)︀
𝜔(𝑥, 𝑦) d𝑦 d𝑥

)︂
;

𝛼7 =

∫︀ 1

−1

√
7𝜔(1, 𝑦) d𝑦

7
− 3

4
√

7

(︂
2

∫︁ 1

−1

∫︁ 1

−1

𝑥𝜔(𝑥, 𝑦) d𝑦 d𝑥 +
∫︁ 1

−1

∫︁ 1

−1

(︀
−1 + 5𝑥2

)︀
𝜔(𝑥, 𝑦) d𝑦 d𝑥

)︂
;

𝛼8 =
1

12 (5𝑎3 + 3𝑎2𝑏 + 3𝑎𝑏2 + 5𝑏3)

(︂
12
√

15𝑎3

∫︁ 1

−1

𝑦𝜔(1, 𝑦) d𝑦 − 10
√

15𝑎2𝑏

∫︁ 1

−1

(︀
−1 + 3𝑦2

)︀
𝜔(1, 𝑦) d𝑦

+ 2
√

15𝑏
(︀
3𝑎2 + 3𝑎𝑏 + 5𝑏2

)︀ ∫︁ 1

−1

(︀
−1 + 3𝑥2

)︀
𝜔(𝑥, 1) d𝑥 +

√
15

(︂
12𝑎2𝑏

∫︁ 1

−1

𝑥𝜔(𝑥, 1) d𝑥

− 6𝑎2

∫︁ 1

−1

∫︁ 1

−1

(𝑏𝑥 + 𝑎𝑦)𝜔(𝑥, 𝑦) d𝑦 d𝑥−
(︀
3𝑎2 + 3𝑎𝑏 + 5𝑏2

)︀ ∫︁ 1

−1

∫︁ 1

−1

(︀
𝑏
(︀
−1 + 3𝑥2

)︀
+ 6𝑎𝑥𝑦

)︀
𝜔(𝑥, 𝑦) d𝑦 d𝑥

+ 5𝑎𝑏

∫︁ 1

−1

∫︁ 1

−1

(︀
6𝑏𝑥𝑦 + 𝑎

(︀
−1 + 3𝑦2

)︀)︀
𝜔(𝑥, 𝑦) d𝑦 d𝑥

)︂)︂
;

𝛼9 =
1

12 (5𝑎3 + 3𝑎2𝑏 + 3𝑎𝑏2 + 5𝑏3)

(︂
12
√

15𝑎𝑏2

∫︁ 1

−1

𝑦𝜔(1, 𝑦) d𝑦 − 10𝑎𝑏2

∫︁ 1

−1

(︀
−1 + 3𝑥2

)︀
𝜔(𝑥, 1) d𝑥

+ 2
√

15𝑎
(︀
5𝑎2 + 3𝑎𝑏 + 3𝑏2

)︀ ∫︁ 1

−1

(︀
−1 + 3𝑦2

)︀
𝜔(1, 𝑦) d𝑦 +

√
15

(︂
12𝑏3

∫︁ 1

−1

𝑥𝜔(𝑥, 1) d𝑥

− 6𝑏2

∫︁ 1

−1

∫︁ 1

−1

(𝑏𝑥 + 𝑎𝑦)𝜔(𝑥, 𝑦) d𝑦 d𝑥 + 5𝑎𝑏

∫︁ 1

−1

∫︁ 1

−1

(︀
𝑏
(︀
−1 + 3𝑥2

)︀
+ 6𝑎𝑥𝑦

)︀
𝜔(𝑥, 𝑦) d𝑦 d𝑥

−
(︀
5𝑎2 + 3𝑎𝑏 + 3𝑏2

)︀ ∫︁ 1

−1

∫︁ 1

−1

(︀
6𝑏𝑥𝑦 + 𝑎

(︀
−1 + 3𝑦2

)︀)︀
𝜔(𝑥, 𝑦) d𝑦 d𝑥

)︂)︂
;

𝛼10 =

∫︀ 1

−1

√
7𝜔(𝑥, 1) d𝑥

7
− 3

4
√

7

(︂
2

∫︁ 1

−1

∫︁ 1

−1

𝑦𝜔(𝑥, 𝑦) d𝑦 d𝑥 +
∫︁ 1

−1

∫︁ 1

−1

(︀
−1 + 5𝑦2

)︀
𝜔(𝑥, 𝑦) d𝑦 d𝑥

)︂
. (A.18)

We just need to check 𝛼4, 𝛼8, 𝛼9 which are homogeneous rational functions of 𝑎, 𝑏 > 0. Thus by the Young
inequality,

𝑎𝑙𝑏𝑘−𝑙 ≤ 𝑙

𝑘
𝑎𝑘 + (1− 𝑙

𝑘
)𝑏𝑘, 0 ≤ 𝑙 ≤ 𝑘, (A.19)

these coefficients are uniformly bounded by ‖𝜔‖∞. �
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A.5. Proof of Proposition 3.5

Proof. We consider the projection on the reference cell [−1, 1]2. From the proof of Lemma 3.3, we can see that
the coefficients are the homogeneous rational functions of 𝑎, 𝑏 > 0 and the denominators of the rational functions
are positive. By the Young inequality (A.19), we can prove⃒⃒⃒⃒

max(𝑎, 𝑏)
𝜕𝛼𝑖

𝜕𝑎

⃒⃒⃒⃒
≤ 𝐶,

⃒⃒⃒⃒
max(𝑎, 𝑏)

𝜕𝛼𝑖

𝜕𝑏

⃒⃒⃒⃒
≤ 𝐶, (A.20)

where 𝐶 is constant which depends on ‖𝜔‖∞. Thus, we have⃦⃦⃦⃦
max
𝑙=1,2

(𝑎𝑙, 𝑏𝑙)(P𝑎1,𝑏1
ℎ 𝜔 − P𝑎2,𝑏2

ℎ 𝜔)
⃦⃦⃦⃦
∞

=
⃦⃦⃦⃦

max
𝑙=1,2

(𝑎𝑙, 𝑏𝑙)(P𝑎1,𝑏1
ℎ (𝜔 − 𝐼𝜔)− P𝑎2,𝑏2

ℎ (𝜔 − 𝐼𝜔))
⃦⃦⃦⃦
∞

≤ 𝐶ℎ‖𝜔 − 𝐼𝜔‖∞, (A.21)

where 𝐼𝜔 ∈ 𝑃 𝑘 is the interpolation approximation of 𝜔. We finished the proof by the scaling argument. �
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