We analyse the nonconforming Virtual Element Method (VEM) for the approximation of elliptic eigenvalue problems. The nonconforming VEM allows to treat in the same formulation the two- and three-dimensional case. We present two possible formulations of the discrete problem, derived respectively by the nonstabilized and stabilized approximation of the L2-inner product, and we study the convergence properties of the corresponding discrete eigenvalue problem. The proposed schemes provide a correct approximation of the spectrum, in particular we prove optimal-order error estimates for the eigenfunctions and the usual double order of convergence of the eigenvalues. Finally we show a large set of numerical tests supporting the theoretical results, including a comparison with the conforming Virtual Element choice.
Keywords: Nonconforming virtual element, eigenvalue problem, polygonal meshes
Gardini, Francesca 1 ; Manzini, Gianmarco 1 ; Vacca, Giuseppe 1
@article{M2AN_2019__53_3_749_0,
author = {Gardini, Francesca and Manzini, Gianmarco and Vacca, Giuseppe},
title = {The nonconforming {Virtual} {Element} {Method} for eigenvalue problems},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
pages = {749--774},
year = {2019},
publisher = {EDP Sciences},
volume = {53},
number = {3},
doi = {10.1051/m2an/2018074},
mrnumber = {3959470},
zbl = {1431.65214},
language = {en},
url = {https://www.numdam.org/articles/10.1051/m2an/2018074/}
}
TY - JOUR AU - Gardini, Francesca AU - Manzini, Gianmarco AU - Vacca, Giuseppe TI - The nonconforming Virtual Element Method for eigenvalue problems JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2019 SP - 749 EP - 774 VL - 53 IS - 3 PB - EDP Sciences UR - https://www.numdam.org/articles/10.1051/m2an/2018074/ DO - 10.1051/m2an/2018074 LA - en ID - M2AN_2019__53_3_749_0 ER -
%0 Journal Article %A Gardini, Francesca %A Manzini, Gianmarco %A Vacca, Giuseppe %T The nonconforming Virtual Element Method for eigenvalue problems %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2019 %P 749-774 %V 53 %N 3 %I EDP Sciences %U https://www.numdam.org/articles/10.1051/m2an/2018074/ %R 10.1051/m2an/2018074 %G en %F M2AN_2019__53_3_749_0
Gardini, Francesca; Manzini, Gianmarco; Vacca, Giuseppe. The nonconforming Virtual Element Method for eigenvalue problems. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 53 (2019) no. 3, pp. 749-774. doi: 10.1051/m2an/2018074
[1] , Sobolev spaces. In Vol. 65 of Pure and Applied Mathematics. Academic Press, New York-London (1975). | MR | Zbl
[2] , Lectures on elliptic boundary value problems. In Vol. 2 of Van Nostrand Mathematical Studies. D. Van Nostrand Co., Inc., Princeton, NJ-Toronto-London (1965). | MR | Zbl
[3] , , , and , Equivalent projectors for virtual element methods. Comput. Math. Appl. 66 (2013) 376–391. | MR | Zbl | DOI
[4] , , and , A C1 virtual element method for the Cahn-Hilliard equation with polygonal meshes. SIAM J. Numer. Anal. 54 (2016) 34–56. | MR | Zbl | DOI
[5] , and , The fully nonconforming virtual element method for biharmonic problems. Math. Models Methods Appl. Sci. 28 (2018) 387–407. | MR | Zbl | DOI
[6] , , and , A stress/displacement virtual element method for plane elasticity problems. Comput. Meth. Appl. Mech. Eng. 325 (2017) 155–174. | MR | Zbl | DOI
[7] , and , The nonconforming virtual element method. ESAIM: M2AN 50 (2016) 879–904. | MR | Zbl | Numdam | DOI
[8] and , Eigenvalue problems. In: Handbook of Numerical Analysis. Handb. Numer. Anal. II. North-Holland, Amsterdam (1991) 641–787. | Zbl | MR
[9] , , , , and , Basic principles of virtual element methods. Math. Models Methods Appl. Sci. 23 (2013) 199–214. | Zbl | MR | DOI
[10] , and , Arbitrary-order nodal mimetic discretizations of elliptic problems on polygonal meshes. SIAM J. Numer. Anal. 49 (2011) 1737–1760. | Zbl | MR | DOI
[11] and , Residual a posteriori error estimation for the virtual element method for elliptic problems. ESAIM: M2AN 49 (2015) 577–599. | Zbl | Numdam | MR | DOI
[12] , , and , A virtual element method for the acoustic vibration problem, Numer. Math. 136 (2017) 725–763. | Zbl | MR | DOI
[13] , , , and , Serendipity virtual elements for general elliptic equations in three dimensions. Chin. Ann. Math. Ser. B 39 (2018) 315–334. | Zbl | MR | DOI
[14] , , and , Serendipity nodal vem spaces. Comput. Fluids 141 (2016) 2–12. | Zbl | MR | DOI
[15] , and , High-order virtual element method on polyhedral meshes. Comput. Math. Appl. 74 (2017) 1110–1122. | Zbl | MR | DOI
[16] , and , Stability analysis for the virtual element method. Math. Models Methods Appl. Sci. 27 (2017) 2557–2594. | Zbl | MR | DOI
[17] , and , Divergence free virtual elements for the Stokes problem on polygonal meshes. ESAIM: M2AN 51 (2017) 509–535. | MR | Zbl | Numdam | DOI
[18] and , A virtual element method with arbitrary regularity. IMA J. Numer. Anal. 34 (2013) 759–781. | Zbl | MR | DOI
[19] , , , and , A hybrid mortar virtual element method for discrete fracture network simulations. J. Comput. Phys. 306 (2016) 148–166. | Zbl | MR | DOI
[20] , Finite element approximation of eigenvalue problems. Acta Numer. 19 (2010) 1–120. | Zbl | MR | DOI
[21] , Poincaré-Friedrichs inequalities for piecewise functions. SIAM J. Numer. Anal. 41 (2003) 306–324. | Zbl | MR | DOI
[22] , and , Some estimates for virtual element methods. Comput. Methods Appl. Math. 17 (2017) 553–574. | Zbl | MR | DOI
[23] and , The mathematical theory of finite element methods, 3rd edition. In Vol. 15 of Texts in Applied Mathematics. Springer, New York, NY (2008). | Zbl | MR
[24] , and , Mimetic finite differences for elliptic problems. ESAIM: M2AN 43 (2009) 277–295. | Zbl | Numdam | MR | DOI
[25] and , Virtual element methods for plate bending problems. Comput. Methods Appl. Mech. Eng. 253 (2013) 455–462. | Zbl | MR | DOI
[26] , , and , Spectral approximation of elliptic operators by the Hybrid High-Order Method. J. Math. Comp. 88 (2019) 1559–1586. | Zbl | MR | DOI
[27] , and , Convergence of the mimetic finite difference method for eigenvalue problems in mixed form. Comput. Methods Appl. Mech. Eng. 200 (2011) 1150–1160. | Zbl | MR | DOI
[28] , , and , A posteriori error estimates for the virtual element method. Numer. Math. 137 (2017) 857–893. | Zbl | MR | DOI
[29] , and , The nonconforming virtual element method for the Stokes equations. SIAM J. Numer. Anal. 54 (2016) 3411–3435. | Zbl | MR | DOI
[30] , , and , Hourglass stabilization and the virtual element method. Int. J. Numer. Meth. Eng. 102 (2015) 404–436. | Zbl | MR | DOI
[31] , and , Conforming and nonconforming virtual element methods for elliptic problems. IMA J. Numer. Anal. 37 (2017) 1317–1354. | Zbl | MR
[32] , , and , Basic principles of virtual elements on quasiuniform meshes. Math. Models Methods Appl. Sci. 26 (2016) 1567–1598. | Zbl | MR | DOI
[33] , and , Some basic formulations of the virtual element method (VEM) for finite deformations. Comput. Methods Appl. Mech. Eng. 318 (2017) 148–192. | Zbl | MR | DOI
[34] , Basic error estimates for elliptic problems. In: Finite Element Methods (Part 1). In Vol. 2 of Handbook of Numerical Analysis. Elsevier (1991) 17–351. | Zbl | MR | DOI
[35] , and , Bridging the hybrid high-order and hybridizable discontinuous Galerkin methods. ESAIM: M2AN 50 (2016) 635–650. | Zbl | Numdam | MR | DOI
[36] , Benchmark computations for Maxwell equations for the approximation of highly singular solutions. Available at: http://perso.univ-rennes1.fr/monique.dauge/benchmax.html (2004).
[37] , and , An arbitrary-order and compact-stencil discretization of diffusion on general meshes based on local reconstruction operators. Comput. Methods Appl. Math. 14 (2014) 461–472. | Zbl | MR | DOI
[38] , and , Discontinuous skeletal gradient discretisation methods on polytopal meshes. J. Comput. Phys. 355 (2018) 397–425. | Zbl | MR | DOI
[39] and , Mathematical aspects of discontinuous Galerkin methods. In Vol. 69 of Mathématiques & Applications (Berlin) [Mathematics & Applications]. Springer, Heidelberg (2012). | Zbl | MR | DOI
[40] and , Hybrid high-order methods for variable-diffusion problems on general meshes. C. R. Math. Acad. Sci. Paris 353 (2015) 31–34. | Zbl | MR
[41] and , Finite element quasi-interpolation and best approximation. ESAIM: M2AN 51 (2017) 1367–1385. | Zbl | Numdam | MR | DOI
[42] and , Virtual element method for second order elliptic eigenvalue problems. IMA J. Numer. Anal. 38 (2018) 2026–2054. | Zbl | MR | DOI
[43] , Singularities in boundary value problems and exact controllability of hyperbolic systems. In: Optimization, Optimal Control and Partial Differential Equations (Iaşi, 1992). In Vol. 107 of Internat. Ser. Numer. Math. Birkhäuser, Basel (1992) 77–84. | Zbl | MR | DOI
[44] , Perturbation Theory for Linear Operators. 2nd edition. Springer-Verlag, Berlin (1976). | Zbl | MR
[45] and , High-order mimetic method for unstructured polyhedral meshes. J. Comput. Phys. 272 (2014) 360–385. | Zbl | MR | DOI
[46] , and , Non-conforming harmonic virtual element method: -and -versions. J. Sci. Comput. 77 (2018) 1874–1908. | Zbl | MR | DOI
[47] , and , A virtual element method for the Steklov eigenvalue problem. Math. Models Methods Appl. Sci. 25 (2015) 1421–1445. | Zbl | MR | DOI
[48] , and , A posteriori error estimates for a virtual element method for the Steklov eigenvalue problem. Comput. Math. Appl. 74 (2017) 2172–2190. | Zbl | MR | DOI
[49] , and , A virtual element method for the vibration problem of kirchhoff plates. ESAIM: M2AN 52 (2018) 1437–1456. | Zbl | Numdam | MR | DOI
[50] , , and , PolyMesher: a general-purpose mesh generator for polygonal elements written in Matlab. Struct. Multidiscip. Optim. 45 (2012) 309–328. | Zbl | MR | DOI
[51] , Virtual element methods for hyperbolic problems on polygonal meshes. Comput. Math. Appl. 74 (2017) 882–898. | Zbl | MR | DOI
[52] , An H1-conforming virtual element for darcy and brinkman equations. Math. Models Methods Appl. Sci. 28 (2018) 159–194. | Zbl | MR | DOI
[53] , and , A virtual element method for contact. Comput. Mech. 58 (2016) 1039–1050. | Zbl | MR | DOI
Cité par Sources :





