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THE NONCONFORMING VIRTUAL ELEMENT METHOD FOR EIGENVALUE
PROBLEMS

FRANCESCA GARDINI'™*, GIANMARCO MANZINI?> AND GIUSEPPE VACCA?

Abstract. We analyse the nonconforming Virtual Element Method (VEM) for the approximation of
elliptic eigenvalue problems. The nonconforming VEM allows to treat in the same formulation the two-
and three-dimensional case. We present two possible formulations of the discrete problem, derived re-
spectively by the nonstabilized and stabilized approximation of the L?-inner product, and we study the
convergence properties of the corresponding discrete eigenvalue problem. The proposed schemes provide
a correct approximation of the spectrum, in particular we prove optimal-order error estimates for the
eigenfunctions and the usual double order of convergence of the eigenvalues. Finally we show a large
set of numerical tests supporting the theoretical results, including a comparison with the conforming
Virtual Element choice.
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1. INTRODUCTION

The Virtual Element Method (in short, VEM) was introduced in [9] as a generalization of the finite element
method to arbitrary polygonal and polyhedral meshes and as a variational reformulation of the Mimetic Finite
Difference (MFD) method [10, 24]. The main idea behind VEM is that the approximation spaces consist of
the usual polynomials and additional nonpolynomial functions that locally solve suitable differential problems.
Consequently, the virtual functions are not explicitly known pointwisely (hence the name virtual), but only a
limited set of information about them are at disposal. Nevertheless, the available information is sufficient to
construct the discrete operators and the right-hand side. Indeed, the VEM does not require the evaluation of test
and trial functions at the integration points, but uses suitable projections onto the space of piecewise polynomials
that are exactly computable from the degrees of freedom. Therefore, the approximated discrete bilinear forms
require only integration of polynomials on each polytopal element in order to be computed, without the need
to integrate complex non-polynomial functions on the elements and without any loss of accuracy. Moreover
the VEM can be easily applied to three dimensional problems and can handle non-convex (even non simply
connected) elements [3,15]. VEMs have been developed successfully for a large range of mathematical and
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engineering problems [6,11,17,19, 30,33,51-53]. Finally, high-order and higher-order continuity schemes have
been presented in [4,18,25,32], respectively.

The present paper focuses on the nonconforming VEM for the approximation of the second-order elliptic
eigenvalue problem. The nonconforming VEM introduced in [7] shows a comparable accuracy with respect to
the “standard” conforming VEM, as shown by the error plots versus the mesh size and the number of degrees
of freedom reported in the final section on numerical experiments. Nonetheless, it offers several undisputed
advantages with respect to the conforming VEM formulation and the classical nonconfoming finite element
method. Indeed, it covers “in one shot”, i.e., using the same formulation, the two- and three-dimensional case;
hence, no recursive construction from the low dimensional faces is needed. This feature makes the nonconforming
VEM particularly appealing for applications that are inherently multidimensional as the Schrodinger equation.
This will be the topic of future works. Moreover, the formulation of the nonconforming method works on
polygonal and polyhedral elements with very general shapes. A unique analysis is possible for all the cases
mentioned above.

We recall that for the nonconforming methods, the approximating space is not a subspace of the solution
space. In particular, for second-order elliptic problems we do not require the H'-regularity of the global discrete
space as for the conforming schemes, but we just impose that the moments, up to a certain order, of the jumps
of the discrete space functions across all mesh interfaces are zero.

The nonconforming VEM has been applied successfully to the general second-order elliptic problem [31], the
Stokes equation [29], the biharmonic problem [5], and the nonconforming approach has been recently extended
to the h- and p-version of the harmonic VEM [46]. As first observed in [7] and recently investigated in [38], the
nonconforming VEM coincides with the high-order MFD method proposed in [45].

In the present paper, we study the nonconforming VEM for the approximation of the Laplace eigenvalue
problem. Using the nonconforming virtual space introduced in [7], we introduce two approximated bilinear
forms, one stands for the discrete grad-grad form and the other one stands for the discrete version of the L2-
inner product. In particular, for the L?-inner product, we consider both a nonstabilized form and a stabilized
one, and we study the convergence properties of the corresponding discrete formulations. The convergence
analysis is carried out in the framework of Babuska-Osborne theory for the spectral approximation for compact
operators [8]. The uniform convergence of the discrete solution operators to the continuous one follows from the
a priori error estimates for the source problem [7]. We show that the nonconforming VEM provides optimal
convergence rates both in the approximations of the eigenfunctions and eigenvalues. These results hold under
minimal regularity assumption, i.e., for eigenfunctions that are in H't" with r > %, thus, without requiring
a convex-shaped domain. To this end, we generalize the a priori estimates of [7], which were proved assuming
H?-regularity.

We remark that the conforming VEM formulation has been proposed for the approximation of the Steklov
eigenvalue problem [47,48], the Laplace eigenvalue problem [42], the acoustic vibration problem [12], and the
vibration problem of Kirchhoff plates [49], whereas [27] deals with the Mimetic Finite Difference approximation
of the eigenvalue problem in mixed form. In the context of Hybrid High-Order (HHO) methods [37,40], the
spectral approximation analysis of elliptic operators has been recently presented in [26]. As shown in [35] the
HHO method and the nonconforming VEM are closely related. For both methods the analysis is carried out
in the framework of the abstract theory for the spectral approximation for compact operators. However, the
different mathematical structure of the two numerical formulations implies a different approach in the way
these theoretical tools are used in the analysis. Indeed, the HHO method is based on a “two-fields” formulation,
which uses distinct polynomial approximations inside the mesh cells and on the mesh faces. For this reason the
definition of the HHO discrete solution operator requires the elimination of the face unknowns, which is not an
issue in our case.

The outline of the paper is as follows. In Section 2 we formulate the model Laplace eigenvalue problem. In
Section 3 we introduce the broken Sobolev spaces (with respect to the polygonal decompositions) and we define
the conformity error. Moreover we recall the definition of the nonconforming Virtual Element Spaces and their
degrees of freedom. In Section 4 we construct the approximated bilinear forms and we state the nonconforming
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virtual problem. In Section 5 we recall some fundamental results for the spectral approximation of compact
operators. In Section 6 we show the optimal rate of convergence of the method by proving the a prior: error
estimates for the eigenvalues and eigenfunctions. Section 7 presents several numerical tests. Finally, in Section 8
we offer our final remarks and conclusions.

2. THE CONTINUOUS EIGENVALUE PROBLEM

In this section we describe the continuous eigenvalue problem and its associated source problem. Throughout
the paper, we use the notation of Sobolev spaces, norms and seminorms detailed in [1]. Hence, for an open
bounded domain w of R%, norm and seminorm in H*®(w) are denoted by || - ||sw, and | - |5, while (-, "), and
| llo.w denote L%-inner product and L?-norm, respectively. The subscript w may be omitted when w is the whole
computational domain.

Let Q ¢ R? for d = 2,3 be an open polytopal domain with Lipschitz boundary I, we are interested in the
following problem: find eigenvalue A and eigenfunction u with w # 0 such that

—Au= Au in Q
{u =0 on I (2.1)
The variational formulation of problem (2.1) reads as follows:
find (\, u) e RxV with ||u||, = 1 such that (2.2)
a(u,v) = Ab(u,v) forallveV ’
where V = H}(Q), the bilinear form a : V x V — R is given by
a(u,v) = / Vu - VudQ) for all u, v € V, (2.3)
Q
and the bilinear form b: V x V — R is the L2-inner product on £, i.e.,
b(u,v) = (u,v) for all u, v € V. (2.4)

The eigenvalues of problem (2.2) form a positive increasing divergent sequence and the corresponding eigen-
functions constitute an orthonormal basis of V' with respect both to the L?-inner product and the scalar product
associated with the bilinear form a(-, ). Moreover, each eigenspace has finite dimension [8,20].

In the spectral convergence analysis, we will need the approximation results of the source problem associated
with (2.2), which we state as follows:

{ﬁnd ut eV such that (2.5)

a(u®,v) = b(f,v) forallv eV

where we assume the forcing term f (at least) in L?(£2). Due to regularity results [2,43], there exists a constant
r > 1/2 that depends only on € such that the solution u* belongs to the space H'T"(Q). In particular, if Q is a
convex polytopal domain, then r > 1. Instead, r > m/w — ¢ for any € > 0 if Q is a two-dimensional non-convex
polygonal domain with maximum interior angle w < 2w. A similar result holds for non-convex polyhedra, w
being the maximum reentrant wedge angle. Eventually, there exists a positive constant C' such that

[u®14r < C|ffo- (2.6)
We will consider the virtual element discretization of source problem (2.5) in the form

find uj € V! such that
an(uj,vn) = b (f,vn) for all v, € V}



752 F. GARDINI ET AL.

where th is the nonconforming virtual element space, aj and by, suitable virtual element approximation of the
continuous bilinear form a and b. Similarly, we will seek for the virtual element discretization of the continuous
eigenvalue problem (2.2) in the form:

find (An, up) € R x V! with ||ug|l, = 1 such that
ap(up,vn) = Ap bp(un, vp) for all vy, € th.

The definition of V}* and possible constructions of aj, and by, in the nonconforming setting are the topic of the
next section.

3. THE NONCONFORMING VIRTUAL ELEMENT METHOD

In the present section we describe the regularity assumptions of the mesh decompositions of the domain and
we introduce the nonconforming functional spaces. Then we define the nonconforming virtual element space
[7,31] and related approximation properties that we need for the proper formulation of the virtual element
method.

3.1. Mesh definition and regularity assumptions

Let 7 = {Q}1, be a family of decompositions of €2 into nonoverlapping polytopal elements P with noninter-
secting boundary 9P, d-dimensional measure |P|, and diameter hp The subindex h that labels each mesh 2, is
the maximum of the diameters hp of the elements of that mesh. The boundary of P is formed by straight edges
when d = 2 and flat faces when d = 3. We may refer to the geometric objects forming the elemental boundary
OP by the term side instead of edge/face (for the two- and three-dimensional case respectively) and adopt a
unified notation by using the symbol o regardless of the number of spatial dimensions. Accordingly, h,, and |o|
denote the diameter and measure of side o.

We denote the unit normal vector to the elemental boundary 0P by np, and the unit normal vector to side
o by n,. Each vector np points out of P and the orientation of n, is fixed once and for all in every mesh
Qp. Finally, &, Fr, and S, denote the set of edges, faces, and sides of the skeleton of €2;,. We may distinguish
between internal and boundary sides by using the superscript 0 and 9. Therefore, S is the set of the internal
sides, S,‘? the set of the boundary sides.

Now, we state the mesh regularity assumptions that are required for the convergence analysis. We suppose
that for all h, each element P in €, fulfils the following assumptions [9,15]:

(A03) Mesh regularity assumptions three-dimensional case

— P is star-shaped with respect to a ball with radius > php;
— every face f € P is star-shaped with respect to a disk with radius > ohy;
— for every edge e € Of of every face f € OP it holds that he > ohy > 0?hp.

(A0%) Mesh regularity assumptions two-dimensional case

— P is star-shaped with respect to a disk with radius > ohp;
— for every edge e € OP it holds that h. > ohp,

where ¢ is a uniform positive constant called mesh regularity constant. In the following we may refer to the
two- and three-dimensional assumptions using the same label (AO).

Remark 3.1. The star-shapedness property implies that elements and faces are simply connected subsets of
R? and R%!, respectively. The scaling assumption implies that the number of edges and faces in each elemental
boundary is uniformly bounded over the whole mesh family 7.

In the following C' will denote a generic positive constant independent of the mesh diameter h (possibly
dependent on p) and that may change at each occurrence, and < will denote a bound up to C.
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3.2. Basic setting

Throughout the paper, Py(w) denotes the space of polynomials of degree up to ¢ for any integer number ¢ > 0
on the bounded connected subset w of R” with v = 1,2,3. The polynomial space Py(w) is finite dimensional
and we denote its dimension by m . It holds that

(+1)(0+2 (+1)(0+2)(0+3

We also conventionally take P_;(w) = {0} and 7_;,, = 0. We denote by IT)"" : L2(P) — P(P) for £ >0
the L2-orthogonal projection onto the polynomial space Py(P) and by TI)7 : L*(g) — Py(o) for £ > 0 the
L2-orthogonal projection onto the polynomial space IP;(c). We now introduce the broken Sobolev space for any
s>0

me1=4+1, Te2 =

H () = [] H(P)={veL*Q): vpecH(P)}
PeQy,

and define the broken H®-norm

[z =D loll2p  forallve HY (), (32)
PeQy,

and for s = 1 the broken H!-seminorm

Wi = > IIVollp  forallve H*(Q). (3.3)
PeQy

Let o C 9P, N AP, be the internal side shared by elements P and P, , and v a function that belongs to
H'(€,). We denote the traces of v on ¢ from the interior of elements P by v¥, and the unit normal vectors to
o pointing from PF to P by ni. Then, we introduce the jump operator [v] = vy n} + v, n; at each internal
side 0 € SY and [v] = v,n, at each boundary side o € S?.

Let k > 1 the polynomial degree of accuracy of the method. The nonconforming space H'"¢(Qy,;k) is the
subspace of the broken Sobolev space H!(Q},) defined as

HY Q0 k) = {UEHl(Qh) : /[[v]]~nqua=O Vq € Pg_1(0), VJESh}. (3.4)

Since [v] = 0 on any internal mesh side whenever v belongs to H!(Q), it is clear that H}(Q) C H™(Qy; k).
Hereafter, we consider the extension of the bilinear form a(,-) in (2.3) to the space H'(€2),), which is given
by splitting it as sum of local terms:

a: HY(Q,) x H'(Q,) - R with a(u,v) = Z a’ (u,v) := Z / Vu-VodP for all u,v € H' ().
PeQy, pPeq, ' P
(3.5)

From the Poincaré-Friedrichs inequality (see for instance [21]), it is straightforward to check that |- |15 is
actually a norm on H"¢(Q; k), although it is only a seminorm for the discontinuous functions of H' ().
Moreover, according to [7], let u € V be the solution to problem (2.5) and v € H»"¢(Qy,; k) then it holds that

Np(u,v) := a(u,v) — b(g,v) = Z Vu- [v]do. (3.6)

aeSL V7

The quantity A, (u,v) is called the conformity error. We now consider the following estimate for the term
measuring the nonconformity. This Lemma generalises the result of Lemma 4.1 from [7] since its proof does not
require any H?2-regularity assumption.
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Lemma 3.2. Under the assumption (A0), let u € H'"(Q) with r > 1 be the solution to Problem (2.5). Let
v € HY(Qu; k) as defined in (3.4). Then, there exists a constant C > 0 depending only on the polynomial
degree k and the mesh reqularity constant o such that

IV (u, v)| < Chulygplvlin (3.7)
where t = min{k,r} and Nj,(u,v) is defined in (3.6).

Proof. The proof of this Lemma follows the same lines as that in Lemma 4.1 of [7], except for the last step of
the inequality chain (4.4) where we apply the trace inequality that we will state later in (3.17). |

3.3. Local and global nonconforming virtual element space

We construct the local nonconforming virtual element space by resorting to the so-called enhancement strategy
originally devised in [3] for the conforming VEM and later extended to the nonconforming VEM in [31]. To this
end, on every polytopal cell P € Q; we first define the finite dimensional functional space

VIP) = {vh € H'(P) : g € Pr-1(0) Vo COP, Av, € Py(P) } : (3.8)

We notice that the space ‘N/kh (P) clearly contains the polynomials of degree k. We consider the set of linear
operators from V;*(P) to R that for every virtual function vy, of V}*( P) provide:

(D1) the moments of v, of order up to k — 1 on each (d — 1)-dimensional side o € JP:
1
ol / vp Pr—1 do for all px_1 € Pr_1(c) and for all o € IP; (3.9)
g o
(D2) the moments of vy, of order up to k — 2 on P:
1
—/ vp P AP for all py, € Py (P). (3.10)
Pl Jp
Finally, we introduce the elliptic projection operator HZ’P : XN/kh(P) — Py (P) defined for all v, € th (P) by
/ VI Puy, - Vgp dP = / Vo - Ve dP  for all g € P(P),
P P
/ (HZ’th —wvp)do =0.
oP

As proved in [31], the polynomial projection HZ’th is exactly computable using only the values from the
linear operators (D1) and (D2). Furthermore, HkV’P is a polynomial-preserving operator, i.e., HZ’qu = qy, for
every qi € Pp(P).

We are now ready to introduce the local nonconforming virtual element space of order k on the polytopal
element P, which is the subspace of ‘N/kh (P) defined as follow:

VIHP) = {v e V(P) such that (v, — T} v, Gu)p =0 Vg € Pi(P)\ Py_o(P) } (3.11)

where P (P)\IP;_2(P) denotes the polynomials in P4, (P) that are L2-orthogonal to all polynomials of IP;,_o(P).
The space V{*(P) has the two important properties that we outline below [7,31]:

— it still contains the space of polynomials of degree at most k;
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— the dimension of V}*(P) is
dim(vkﬁ(P)) =Tk—2,d + No,P Tk—1,d (3.12)

where n, p is the number of sides of P;
— the linear operators (D1) and (D2) constitute a set of degrees of freedom (DoFs) for V*(P);
— the DoF's (D1) and (D2) allow us to compute exactly

7 VI (P) — Py(P),  TOT: VI(P) — Py(P)

in the sense that, given any v, € th(P), we are able to compute the polynomials Hkv’th and Hg’th only
using, as unique information, the degree of freedom values (D1) and (D2) of vp,.

The global nonconforming virtual element space th of order k > 1 subordinate to the mesh €, is obtained
by gluing together the elemental spaces th(P). The formal definition reads as:

V= {vh € H'™ (s k) : vpyp € VIH(P) VP €y } (3.13)

A set of degrees of freedom for V)" is given by collecting the local DoFs (D1) and (D2) for all the mesh
elements. The dimension of V}* is

dlm(th) = Np Mgp—2.d + N, Tk—1,d (314)
where Np are N, are respectively the number of elements and internal sides in the decomposition €.

Remark 3.3. The H'-conforming virtual element counterpart th’conf(P) of space V}*(P) has dimension
[3,9,31]

Tk—2,2 + Ne, P T—2,1 T Ny P for d = 2,

dim(Ve"(P)) = { (3.15)

Tk—23 +NfpTh22+NepTp_1,1+ Ny, P for d = 3,
where ny p (resp., ne,p and n, p ) denotes the number of faces (resp., edges and vertexes) in P.

For the two-dimensional case, a careful inspection of (3.1), (3.12) and (3.15) shows that the conforming and
nonconforming local spaces have the same dimension. Concerning the comparison between the global spaces

th»conf and V}, recalling the Euler formula

N, —N.+Np=1

where Np (resp., N, and N, ) is the number of elements (resp., internal edges and vertexes) in the decomposition
Qp, it holds that
dim (V") = dim(V}") — Np + 1.

For the three-dimensional case the analysis is more involved. At practical level the comparison depends on
the geometry of the element: if P has a large number of edges, the conforming approximation yields a greater
number of DoF's.

However we recall that a possible recipe to reduce the number of DoFs for conforming VEM is shown in
[13,14], where the serendipity approach is exploited.

3.4. Approximation properties

Both for completeness of exposition and future reference in the paper, we briefly summarize the local
approximation properties by polynomial functions and functions in the virtual nonconforming space. We
omit here any details about the derivation of these estimates and refer the interested readers to Refer-
ences [3,7,9,16,22, 23,28, 34, 39).
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Local polynomial approzimations. On a given element P € Qy,, let v € H*(P) with 1 < s < k 4 1. Under mesh
assumptions (AO0), there exists a piecewise polynomial approximation v, that is of degree k on each element,
such that

||U—’U7r||0’P+hp|’U—U7T|1,pSChfg"ULg’p, (316)

for some constant C' > 0 that depends only on the polynomial degree k and the mesh regularity constant g.
An instance of such a local polynomial approximation is provided by the L?-projection H%Pv onto the local
polynomial space Py (P), which satisfies the (optimal) error bound (3.16) (see also [39], Lem. 1.58).

Trace inequality. Under the assumption (AO0), consider the internal side o € S and let P; be the two elements
sharing o, so that 0 C P, N AP, . Let Q, = P U P, . Then, the following trace inequality (see [39], Lem.
1.49 for the case of H!-regularity, and [41], Lem. 7.2 for the minimal regularity case H™ with m > %) holds
for every v € H™(Q,), m > %

1 m—1
[vllo.c < Cho *lvllo.0, + Che  *[vlmq, (3.17)

where the constant C' depends only on the mesh regularity constant g.
Moreover, for every v € H*(Q;,) with % < 8 < k + 1, combining the L?-projection approximation property
with (3.17) the following useful error estimate holds (see [39], Lem. 1.59)

s—1
v—TY]gs < Chy 2|v|sq. . 3.18
k s Wio

The same estimate holds also for the boundary sides o € Sg by taking 2, = P, the element to which o
belongs.
Interpolation error. Under mesh regularity assumptions (A0), we can define an interpolation operator in V;*
having optimal approximation properties (see [28], Thm. 11). Therefore, for every v € H*(Q) with 1 < s < k+1,
there exists v! € th such that

llv = v!|o + hlv — vl < Ch®|v]s, (3.19)
where C' > 0 depends only on the polynomial degree k and the mesh regularity constant g.

4. THE VIRTUAL ELEMENT DISCRETIZATION

This section briefly reviews the nonconforming virtual element discretization of the source problem and its
extension to the eigenvalue problem.

4.1. The virtual element discretization of the source problem

The goal of the present section is to introduce the virtual element discretization of the source problem (2.5).
According to [7,42], we define a suitable discrete bilinear form ap(-,-) approximating the continuous gradient-
gradient form a(-,-), whereas for what concerns the bilinear form b(-,-) we propose two possible discretizations,
hereafter denoted by by, (-,-) and by (-, ).

The discrete bilinear form ap(-, ) is the sum of elemental contributions

ap(un,vp) = Z ar (un,vp), (4.1)
PeQy,

where

al (un,vn) = o (Y g, Y Pop,) + ST ((I — 10 Y, (I — Hkv’P)vh) for all v, € V{*(P) (4.2)
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and S?(-,-) denotes any symmetric positive definite bilinear form on the element P for which there exist two
positive uniform constants ¢, and ¢* such that

cxal (vn, o) < ST (v, vn) < ¢*a® (v, vy)  for all vy, € VH(P) N ker(Hkv’P). (4.3)

This requirement implies that S7(-,-) scales like a”(-,-), namely S7(-,-) ~ h% 2.
The choice of the discrete form ay(+, -) is driven by the need to satisfy the following properties:

— k-consistency: for all v, € V*(P) and for all ¢ € Pj(P) it holds
af, (vn,q) = a” (vp, q); (4.4)
— stability: there exists two positive constants a., o*, independent of h and of P, such that
aza (v, vp) < al (v, v0) < a*al (vg,v3)  for all vy, € VA(P). (4.5)

In particular, the first term in (4.2) ensures the k-consistency of the method and the second one its stability,
cf. [7].

For what concerns the right hand side b(-,-), following the setting in [42], we introduce two possible
approximated bilinear forms.

Non-stabilized bilinear form. In the first choice, we consider the bilinear form by, (-,-), which satisfies the k-
consistency property but not the stability property (extending to by (-, -) the definitions in (4.4) and (4.5)). Let
us split the right-hand side b (-, -) with the sum of local contributions:

n(foon) = > b (f,vm)- (4.6)
PeQy,
Then, we define
bE (f,on) = bP (I fLun)  for all v, € V(P). (4.7)

We observe that each local term is fully computable for any functions f € L2(Q) and vy, in V}* since

n(fson) = Z/HOP fondP = Z/fﬂk n)

PeQy, PeQy,

and H%th is computable (exactly) from the DoFs (D) of vy (c¢f. Property (i) ). Moreover, by definition of
L2-projection H%P, it is straightforward to check that

b (f,on) = bF (TF £,110Fwy,)  for all vy, € V(P). (4.8)

We estimate the approximation error of the right-hand side by using the Cauchy-Schwarz inequality twice and
estimate (3.16), after noting that vy p € H'(P) and Hg’th is orthogonal to f — H%Pf:

(£, 0n) = bu (o) < > [PP(F =TT fon)| = Y [pP (T =T £, (1 = 1107 o)

Peqy, Peqy,

0,P 0,P

< 3 I =10) fllo,pll (1 - 1I5")
PeQy, (49)

1/2
S >0 hell(T=T07) fllo,plonla,p S h ( ST =1 £ p) |vnl1h-

PeQy, PeQy,
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In the light of (4.1) and (4.6), the virtual element discretization of source problem (2.5) reads as

{ﬁnd uj € th such that

ah(ufl, Uh) = bh(f, ’Uh) for all v, € th. (4.10)

Stabilized bilinear form. The second approximation of the bilinear form in (2.4) is inspired by the definition of
the virtual bilinear form ay,. In order to distinguish the two formulations, we denote the stabilized bilinear form
by by (-, ). As usual, we first decompose by, (-, -) into the sum of local contributions:

Eh(favh) = Z Ef(favh)a (411)
PeQy,
and, then, we define
oF (foon) = 0P (YT £,10) P wp) + ST ((1 — 10V f, (- H%P)vh) for all v € V{(P), (4.12)

where ST is any positive definite bilinear form on the element P such that there exist two uniform positive
constants (3, and 0* such that

B.bF (v,v) < ST (v,v) < B*b(v,v) for all v € VH(P)N ker(H%P). (4.13)
We notice that the bilinear form Zf defined above satisfies both the k-consistency and the stability property.

Remark 4.1. In analogy with the condition on the form S¥(-,-), we require that the form §P(~7 -) scales like
bP(-,-), that is ST(-,-) ~ hd.

By definition (4.12) and from inequalities in (4.13), using similar computations as in (4.9), for all f € L?(Q)
and for all v, € V*(P) it holds that

b o) = Bn(fo)l < D2 (BP0 =7 fon)| + 87 (=107 £, (1 =107 ) )

PeQy,
< >0 (P =) p (= 1P|+ B = T flloll (1 = T Ywnllo)
PEQ}L
. 4.14
< 37 @ AT = TP) Fllo.p Il — TS oo, (4.14)
PeQy,
1/2
S Y hell = IR fllo.plonle S b (Z ||<IH2’P>f||3,P> [on ] n-
PeQy, PeQy,
From (4.1) and (4.11), the second formulation reads as:
find uj € Vi such that (4.15)
ap(ui,vp) = bp(f,vn) for all v, € th. '

The well-posedness of the discrete source problems (4.10) and (4.15) stem from the the coercivity and the
continuity of the bilinear form ap(-,-) (¢f. (4.5)), and from the continuity of the discrete forms by(-,-) and
b ().

Following the same arguments as in [7] but with H%P f for k& > 1 instead of Hg‘g f, we derive the error
estimates in the H'-norm and L2-norm that we summarize in the following theorem for next reference in the
paper.

We can state the following optimal error estimates between the solution to the continuous and discrete source
problems (4.10) and (4.15).
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Theorem 4.2. Under the assumptions (A0), let u* € H' ™ (Q) with regularity index r > 1 be the solution to
(2.5) with f € L*(Q).

Let uj and uj, € th be respectively the solutions to the nonconforming virtual element method (4.10) and
(4.15). Let v, € {uj, uj}, then we have the following error estimates

— H'l-error estimate:

1/2
[ = vnlin S B + ( > - HZ,P)ﬂ'%’P)

Peqy,

— L2-error estimate (for a convex Q):

1/2
lu® = vnllo S A F u®l1gr + 12 < > |(I—H2’P)f||c2>,p>
PeQy,

with t = min(k,r).

The proofs of these estimates are omitted as they are almost identical to those of Theorems 4.3 and 4.5
from [7]. The only difference is that here the forcing term f is approximated in each element by the orthogonal
projection onto polynomials of degree k instead of k = max(k — 2,0) (see estimates (4.9) and (4.14)). Note,
indeed, that in the L?-estimate of Theorem 4.5 from [7], the term that depends on the approximation of f is
given by

(hp + hp I —T17)

{(h% +hp)|(I =T fllo.p for k= 1,2,
WL =T57) flo,p for k > 3.

The difference in the coefficients is a consequence of the orthogonality of (I — H%P) f to the polynomials of
degree k instead of k.

Remark 4.3. We observe that if the load term f is an eigenfunction of problem (2.2), then f solves the
continuous source problem (2.5) with datum Af and thus, thanks to the regularity result (2.6), it belongs to
H'(Q) and | |14+ < C||fllo- Then, the a priori error estimates in Theorem 4.2 reduce to

— H'l-error estimate:

1/2

s s P s

u® —vplin S B Ui + R ( >y )f|37p> S S A fllo S B
PeQy,

— L2-error estimate:

1/2
lu* = vallo S B ut g + B2 ( 3 -1 f||op> SRy S B Fllo S B,
PeQy,

since
P in{k+1,1
I =T127) Fllo,p S BB £l e S B Flo,

Remark 4.4. In [7] it is proved that the discrete problem (4.10) is well-posed by taking, in the definition of
the discrete bilinear form by (-, -), instead of H%P 7, Hg’g f for k > 2 and a first-order approximation of Hg’P f
for k = 1. However, in the definition of the discrete bilinear forms by, (-, -) and E;L(-, -), we project onto the space
Py (P). This choice does not provide a better convergence rate, due to the k-consistency property, but it has
been numerically observed that it gives more accurate results.
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4.2. The virtual element discretization of the eigenvalue problem.

In the light of the nonconforming virtual element method (4.10) and (4.15) introduced in the previous section,
following [42], we consider two different discretizations of the eigenvalue problem (2.2). The first formulation in
inspired to the source problem (4.10), and uses definition (4.6). We formulate the virtual element approximation
of (2.2) as:

{ﬁnd (A, up) € R x V2 with ||ug||, = 1 such that (4.16)
ap(up,vn) = Ap by (un, vn) for all vy, € th. '

The second formulation is inspired to the virtual source problem (4.15) and uses definition (4.11). We formu-
late the second approximation of problem (2.2) as:

find (An, un) € R x vk with ||up||, = 1 such that (4.17)
ap(up,vp) = Ap b (up, vp) for all vy, € V}. ’

5. SPECTRAL APPROXIMATION FOR COMPACT OPERATORS

In this section, we briefly recall some spectral approximation results that can be deduced from [8, 20, 44].
For more general results, we refer to the original papers. Before stating the spectral approximation results, we
introduce a natural compact operator associated with problem (2.2) and its discrete counterpart, and we recall
their connection with the eigenmode convergence.

We associate problem (2.2) with its solution operator T' € £(L?(f2)), which is the bounded linear operator
T : L?(2) — L?(Q) mapping the forcing term f to u® =: T'f:

TfeV such that
a(Tf,v) =b(f,v) forallve V.

Operator T is self-adjoint and positive definite with respect to the inner products a(-,-) and b(+,-) on V', and
compact due to the compact embedding of H' () in L?().

Similarly, we associate problem (4.10) with its solution operator T;, € £L(L?(£2)) and problem (4.15) with its
solution operator T, € L(L?(Q)). The former is the bounded linear operator mapping the forcing term f to
uj =: T}, f and satisfies:

{ Tnf €V such that
ah(Thf, ’Uh) = bh(f, Uh) for all v, € th.

The latter is the bounded linear operator mapping the forcing term f to uj, =: fh f and satisfies:

{ Th fe th N such that
ah(Thf, Uh) = bh(f, ’Uh) for all v, € Vk{l.

Both operators T}, and th are self-adjoint and positive definite with respect to the inner products a(-,-),
bu(-,-) and an(-,-), bp(-,-). They are also compact since their ranges are finite dimensional.

The eigensolutions of the continuous problem (2.2) and the discrete problems (4.16) and (4.17) are re-
spectively related to the eigenmodes of the operators T', T}, and Tp. In particular, (A, u) is an eigenpair of
problem (2.2) if and only if Tu = (1/A\)u, i.e. (%,u) is an eigenpair for the operator T, and analogously for
problems (4.16) and (4.17) and operators T}, and T n. By virtue of this correspondence, the convergence analysis
can be derived from the spectral approximation theory for compact operators. In the rest of this section we
refer only to operators T" and Th. Identical considerations hold for operators T' and T} and we omit them for
brevity.
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A sufficient condition for the correct spectral approximation of a compact operator 7' is the uniform conver-
gence to T' of the family of discrete operators {T},};, (see [20], Prop. 7.4, ¢f. also [8]):

||T — ThHE(L?(Q)) — 0, ash—0, (5.1)

or, equivalently, B
(T =Tw)fllo < CoM)Ifllo Vf € L*(), (5.2)

with p(h) tending to zero as h goes to zero. Condition(5.2) usually follows from a priori estimates with no
additional regularity assumption on f. Besides the convergence of the eigenmodes, condition (5.1), or the
equivalent condition (5.2), implies that no spurious eigenvalues may pollute the spectrum. In fact,

(i) each continuous eigenvalue is approximated by a number of discrete eigenvalues (counted with their multi-
plicity) that corresponds exactly to its multiplicity;
(ii) each discrete eigenvalue approximates a continuous eigenvalue.

Condition (5.1) does not provide any indication on the approximation rate. It is common to split the conver-
gence analysis for eigenvalue problems into two steps: first, the convergence and the absence of spurious modes
is studied; then, suitable convergence rates are proved. We now report the main results about the spectral
approximation for compact operators. (¢f. [8], Thms. 7.1-7.4; see also [20], Thms. 9.3-9.7), which deal with the
order of convergence of eigenvalues and eigenfunctions.

Theorem 5.1. Let the uniform convergence (5.1) hold true. Let p be an eigenvalue of T, with multiplicity m,

and denote the corresponding eigenspace by E,. Then, exactly m discrete eigenvalues i1 p, . .., fm,n (Tepeated
according to their respective multiplicities) converges to p. Moreover, let E,, 1, be the direct sum of the eigenspaces
corresponding to the discrete eigenvalues i1, -+ , fm,n converging to u. Then

(B, Epn) < CI(T = Th) s, ez (5.3)
with

5(Em Eu,h) = max(g(Eu, Eu,h)» 5(Eu,ha Eu))

where, in general,

S(U, W)= sup inf |lu—w|lo

weU,[|ully=1 WEW

denotes the gap between U, W C L?().
Concerning the eigenvalue approximation error, we recall the following result.

Theorem 5.2. Let the uniform convergence (5.1) hold true. Let ¢1,. .., ¢m be a basis of the eigenspace E,, of

T corresponding to the eigenvalue p. Then, fori=1,...,m
I — fiin] < C( Z b((T" = Th)Pr, 95) + (T = Th) s, QL(Lz(Q)))v (5.4)
Jik=1
where i1 h, ..., lm,n are the m discrete eigenvalues converging to p repeated according to their multiplicities.

6. CONVERGENCE ANALYSIS AND ERROR ESTIMATES

In this section we study the convergence of the discrete eigenmodes provided by the VEM approximation
to the continuous ones. We will consider the stabilized discrete formulation (4.17). The analysis can be easily
applied to the non—stabilized one (4.16).
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6.1. Convergence analysis for the stabilized formulation

In the case of the first VEM approximation of problem (2.2), which uses the stabilized form by,(-,-), the

uniform convergence of the sequence of operators T}, to T directly stems from the L?-a priori error estimate of
Theorem 4.2.

Theorem 6.1. The family of operators T}, associated with problem (4.15) converges uniformly to the operator
T associated with problem (2.5), that is,

||T_Th||L(L2(Q))_>0 fOT h — 0. (6.1)

Proof. Let v® and uj be the solutions to the continuous and the discrete source problems (2.5) and (4.15),
respectively. The L?-estimate of Theorem 4.2 with f € L*(Q) and the stability condition (2.6) imply that

[u® =@ llo S R™EEED £l

with ¢ = min(k,7), k > 1 being the order of the method and r at least in (1/2, 1] being the regularity index of
the solution u® € H*7 () to the continuous source problem in equation (2.6). From this inequality it follows
that

N Tf -7 s |
IT - Billezray = sup 1L =Tl I = Fillo < pmince+1.2)
rerzi)  lIfllo rerz@ £l
|
Remark 6.2. We observe that if f € £, then, thanks to the L2-a priori error estimate in Remark (4.3), it
holds
= ITf = Thtllo [ = @illo _ oy ess
(T = Th) gl cz2 ) = sup —————— = sup ———"— < Ch*".
S A T reg, 1Tl

Putting together Theorem 5.1 ,Theorem 6.1, and Remark 6.2, we can state the following result.

Theorem 6.3. Let p be an eigenvalue of T, with multiplicity m, and denote the corresponding eigenspace by
E,. Then, exactly m discrete eigenvalues i1 p, ..., Lm,n (repeated according to their respective multiplicities)

converge to . Moreover, let Emh be the direct sum of the eigenspaces corresponding to the discrete eigenvalues
ks fhm,n cOnverging to p. Then
6(EM7E,M,}L) < Oht+1~ (62)

A direct consequence of the previous result (cf. [8,20]) is the following one.

Theorem 6.4. Let u be a unit eigenfunction associated with the eigenvalue X of multiplicity m and let
ﬁ,(:), . ,@;:n) denote linearly independent eigenfunctions associated with the m discrete eigenvalues converging

to \. Then there exists uy, € span{ﬁél), e ,{E,(lm)} such that
lu — @nllo < CA,
where t = min{k,r}, being k the order of the method and r the regularity index of u.

Using Theorem 4.2 we can obtain an estimate of the conformity error (3.6) better than the one in Lemma 3.2
when its arguments are the solution to the continuous problem (2.5) and the discrete problem (4.15). It is worth
noting that the solution to the discrete problem does not need to be an approximation of the solution to the
continuous problem, cf. [20].
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Lemma 6.5. Consider u € H'*7(Q), v € L*(Q) and let Tu,Tv € H'*"(Q) with r > 1/2 be, respectively, the
solutions to problem, (2.5) with load term w and v. Assume that (AQ) is satisfied and let Tyu € Vi HYme(Qps k)
for some integer k > 1 be the virtual element approximation of Tu that solves problem (4.15). Then, there exists
a constant C > 0, independent of h, such that

N (T, Thu)| < Ch? |To|y 1y |Tul14r (6.3)
where t = min{k,r} and Ny, (u,v) is the conformity error defined in (3.6).

Proof. We start the following chain of developments from the definition of the conformity error given in (3.6),

note that [Tu] = 0 on every mesh side and that the moments up to order k — 1 of [Tpu] across all mesh
interfaces are zero, and apply the Cauchy-Schwarz inequality in the last two steps:

Ni(Tv, Thu) = Z VT - [Thu]do

geSp g
=Y [ (-1 VT (I-17)[Thu] do

ceSR Y7
_ Z/ =107 VTo- (1= 1§7)[Thu]) - (1 - 197)[Tu]) do

oceSy,
=> [ (I-1m7)VTo- (I -T1°)[(Th, — T)u] do

oSy g
< NI =17 VTw - ngllo.0 [[(T =TIy 7)[(Th = T)u] - ngllo,0

gES)

; 3
< lz I( =117, ) VT nalloq] > -1 (ThT)U}]ﬂaIS,a]
eS8y, oSy,

:N1 XNQ.

Trace inequality (3.18) yields

t— 1
(I — H%fl)VTU ‘N lloo S he 2|T0]14r0,,

and summing over all the mesh sides, noting that h, < h, the number of sides per element is uniformly bounded
due to (A0) and using definition (3.3) yield

WP = Z (I = T027,) VT - no||00~(ht_7 Z Tol? 0, S ht_7 Z T3, ps

oeSy o€Sh PeQy,

and finally
N S B [Tl
Similarly, trace inequality (3.18) and the jump definition yield
~ 1~
(I =T ) [(Th = T)u] - mollo.0 S BEN(Th — T)ulr o,

and using the same arguments as above we have that

N2 = D I =T [(Th = Tu] .3, ShY (T =Tl o, Sh Y (T —Tulf p

oeSy og€Sh PeQy,

S hl(Th = Tyulf -
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Using this relation and the a priori error estimate in the energy norm of Remark 4.3 finally yield:

Na| S T Tl
The assertion of the lemma follows by collecting the above estimates together. (]
We now prove the usual double order convergence of the eigenvalues.

Theorem 6.6. Let A be an eigenvalue of problem (2.2) with multiplicity m, and denote by XLh, e ,vah the
m discrete eigenvalues converging towards \. Then the following optimal double order convergence holds:

A= Xinl <CR? Vi=1,...,m, (6.4)

with t = min{k, r}, being k the order of the method and r the reqularity index of the eigenfunction corresponding
to \.

Proof. We use the result stated in Theorem 5.2. It is clear that the second term in the estimate of Theorem 5.2 is
of double order compared to the H'-rate of convergence. Hence, we analyse in detail the term b ((T — fh)dy, gzﬁk) .
Let v and v be two eigenfunctions associated with the eigenvalue A. Then, we note that (T —T,)u € HY"¢(Qy; k)
and begin the chain of developments that follows from the definition of the conformity error in (3.6):
b ((T —T)u, v) = a(Tw, (T — Tp)u) — No(Tv, (T — Tp,)u) [note that Ny, (Tv, Tu) = 0]
= a(Tw, (T — Tp)u) + N (Tv, Thu) [add and subtract Thv in the first term)]
= a((T = Tp)v, (T — Tp)u) + a(Tpo, (T — Tp)w) + N (Tv, Thu) [split the middle term and use (3.6)]

= a((T — T)v, (T — T)u) + b(Thv, u) + Ny (T, Tho)
— a(Thv, Thu) + Ni (T, Thu) [add both sides of (4.15) |
2 (

a((T - Th)v, (T — Tp)u) + [b(u, Thv) — bh(u Thv)]+
[ah(Thv,Thu) (Th’U Thu)] [Nh(Tu Thv) +Nh(T’L) Thu)]

= Z?:l Ri.

Term R is clearly of order h?!, being u and v eigenfunctions (see Rem. (4.3)):

[R1| = 1a((T = Ti)o, (T = Tu)u)| < (T = Tu)olun (T = Tu)ulis S 17

To bound term R, using the same computations in (4.14) and triangular inequality, we get

Rol D @ =T Yullo,p |I(1 = T 7Y Thollo,p
PeQy, (6 5)
< 3=l (17 =TT = Thyollo.p + I =57 Twllo.rp)
PeQy,
Now, note that
=T Pullo,p < AT D ],y g Bl p. (6.6)

By the continuity of L2-projection with respect the L?-norm we get

11 = TP)T = Ti)ollo.p < 1T — Tiello.p- (6.7)
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Moreover polynomial approximation estimate (3.16) yields
P
(7 =117 (6.8)

Hence collecting (6.6), (6.7), (6.8) in (6.5), and using the L?-a priori error estimate in Remark (4.3) and the
stability estimate (2.6), we obtain

[Ra| £ B2 ul st [T0]ra S B*F2[fullo [lv]lo < 2.

To estimate term Rg3, we first consider the developments:
aP(T;Lu, T;Lv) — af(fhu, T;Lv) = ap(fhu — (Tu), Ty — (Tv),) + af(fhu — (Tu)r, (TV)r — fhv),

where we make use of the consistency condition (4.4) to introduce (Tu), and (Tv),, the elemental polynomial
approximations of Tw and Tw that exist in accordance with (3.16). The terms on the right-hand side of the
previous equation are similar and we can estimate both as follows:

la” (T = (Tw), Tyw = (To)2)| < (1T = Tyuly,p + | Tu = (Tw)el,p ) (1T, = Tyolp + |To = (To)hp),

and, using the a priori error estimate in the broken H'-norm in Remark (4.3), the local approximation properties
of the VEM space by polynomials (3.16), and the stability estimate (2.6), it holds

|R3| < Z ‘ Thu Thv) —ay, (Thu Thv)‘
PeQy,

< (1@ = Tyl + 17w = (@w)eln ) (1T = Tyl + 170 = (To)al1,n

N h2t|Tu|1+T|T”|1+T S h2.

Finally, for term R4 we apply the triangle inequality, Lemma 6.5, and the stability estimate (2.6) to obtain:
|R4| < |./\fh(Tu,fhv)| + |Nh(Tv,fhu)| < h2t|TU|1+T|TU‘1+T < B2,
The assertion of the theorem follows from the above estimates. O

The proof of the optimal error estimate for the eigenfunctions in the discrete energy norm follows along the
same line as the one for the nonconforming finite element method. We briefly report it here for the sake of
completeness.

Theorem 6.7. With the same notation as in Theorem 6.4, we have
lu —1p |1, < ChY,
where t = min(k,r), k being the order of the method and r the regularity index of u.

Proof. o _ B B o
u — ’U,h =\Tu — )\hThﬂh = ()\ — /\h)T'LL + )\h(T — Th)u + )\hTh(’U, — ﬂh)7
then
|u — ah|1,h S |)\ — >\h| ‘TU|17}1 + )\h|(T — Th)uhﬁ + XMT}L(U — ah)|l,h-

The first term at the right-hand side of the previous equation is of order h?* while the second one is of order
ht. Finally, for the last term, using (4.5), the continuity of the operator T}, and Theorem 6.4, we obtain

IN

iah(’fh(u — ah)» Th(u - ah))

*

T (u — )3,

1~ -~ - -
o bi(u — Up, Th(u —Up)) S llu— iy S R*H2.
*
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Mesh 2 Mesh 3 Mesh 4

FIGURE 1. Base meshes (top row) and first refined meshes (bottom row) of the following mesh
families from left to right: mainly hexagonal mesh; nonconvex octagonal mesh; randomized
quadrilateral mesh; voronoi mesh.
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FIGURE 2. Test Case 1: Convergence plots for the approximation of the first six eigenvalues
A = 72X\ using the mainly hexagonal mesh and the nonconforming spaces: V" (left panel);
V¥ (mid panel); V{§* (right panel). The generalized eigenvalue problem uses the nonstabilized
bilinear form by(-,-).
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FIGURE 3. Test Case 1: Convergence plots for the approximation of the first six eigenvalues
A = w2\ using the nonconvex octagon mesh and the nonconforming spaces: V{* (left panel);
V¥ (mid panel); V{§* (right panel). The generalized eigenvalue problem uses the nonstabilized
bilinear form by(-, ).
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FIGURE 4. Test Case 1: Convergence plots for the approximation of the first six eigenvalues A =
72\ using the randomized quadrilateral mesh and the nonconforming spaces: V" (left panel);
V3 (mid panel); VI (right panel). The generalized eigenvalue problem uses the nonstabilized
bilinear form by(-, ).

7. NUMERICAL EXPERIMENTS

In this section, we aim to confirm the optimal convergence rate of the numerical approximation of the eigen-
value problem (2.2) predicted by Theorems 6.6 for the nonconforming virtual element method. In particular,
we present the performance of the nonconforming VEM applied to the eigenvalue problem on a two-dimensional
square domain (Test Case 1) and on the L-shaped domain (Test Case 2). The convergence of the numerical
eigenvalues is shown through the relative error quantity

_ A=l

error(\) : P
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FIGURE 5. Test Case 1: Convergence plots for the approximation of the first six eigenvalues
A = 72\ using the Voronoi mesh and the nonconforming spaces: V;* (left panel); Vi (mid
panel); Vgh (right panel). The generalized eigenvalue problem uses the nonstabilized bilinear
form by (-, ).

where )\ denotes an eigenvalue of the continuous problem and Aj its virtual element approximation. For Test
Case 1, we also compare the error curves for the nonconforming and the conforming VEM of Reference [42]. For
both test cases, we use the scalar stabilization for the bilinear form af (-,-) and b¥'(-,-), which reads as follows:

SP(vh,wh) = Jpvfwh,

SP(vh,wh) = Tph2V£Wh.

where vj,, wj, denote the vectors containing the values of the local DoF's associated to v, wy € th(P) and
the stability parameters op and 7p are two positive constants independent of h. In the numerical tests, when
k = 1, constant op is the mean value of the eigenvalues of the matrix stemming from the consistency part
of the local bilinear form a”, i.e., aP(Hlv’P-,Hlv’P-). For k = 2,3, we set op to the maximum eigenvalue of
aP(HkV’P-, Hkv’P~). Likewise, when k = 1, constant 7p is set to the mean value of the eigenvalues of the matrix
stemming from the consistency part of the local bilinear form %bP(, ), i.e., %bP(H?’P~,H?’P~). For k = 2,3,
we set 7p to the maximum eigenvalue of %bP(H%P~, H%P-).

7.1. Test 1

In this test case, we numerically solve the standard eigenvalue problem with homogeneous Dirichlet boundary
conditions on the square domain € =]0,1[x]0, 1[. In this case, the eigenvalues of the problem are known and
are given by:

A=7m%(n*+m?) n,meN, with n,m # 0.

On this domain, we consider four different mesh partitionings, denoted by:

— Mesh 1, mainly hexagonal mesh with continuously distorted cells;
— Mesh 2, nonconvex octagonal mesh;

— Mesh 3, randomized quadrilateral mesh;
— Mesh 4, central Voronoi tessellation.

The base mesh and the first refined mesh of each mesh sequence is shown in Figure 1. These mesh sequences
have been widely used in the mimetic finite difference and virtual element literature, and a detailed description
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FIGURE 6. Test Case 1: Eigenvalue curves versus the stability parameter 7 using the virtual
element space V/* on the first four meshes of the mainly hexagonal mesh family.

of their construction can be found, for example, in [10]. We just mention that the last mesh sequence of central
Voronoi tessellation is generated by the code PolyMesher [50].

The convergence curves for the four mesh sequences above are reported in Figures 2-5.

The expected rate of convergence is shown in each panel by the triangle close to the error curve and indicated
by an explicit label. For these calculations, we used the VEM approximation based on the nonconforming
space V', k = 1,2, 3, and the VEM formulation (4.16) using the nonstabilized bilinear form by, (-, ). As already
observed in [42] for the conforming VEM approximation, the same computations using formulation (4.17) and
the stabilized bilinear form Eh(~, -) produce almost identical results, which, for this reason, are not shown here.
These plots confirm that the nonconforming VEM formulations proposed in this work provide a numerical
approximation with optimal convergence rate on a set of representative mesh sequences, including deformed
and nonconvex cells.

In the four plots of Figure 6 we show the dependence on the stabilization parameter 7 of the value of the first
four eigenvalues \; /72 = 2, A\o/m? =5, A\3/m? =5, A\y/n? = 8. From these plots, it is clear that the eigenvalue
approximation is stable in a reasonable range of values of the parameter 7p, and that the curves of the numerical
eigenvalue converge to the corresponding eigenvalue.
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FIGURE 7. Test Case 1: Comparison versus h between the approximation of the first eigenvalue
using the conforming and nonconforming VEM spaces th, k =1,2,3, and the mainly hexag-
onal mesh (top-left panel); the nonconvex octagonal mesh (top-right panel); the randomized
quadrilateral mesh (bottom-left panel); the Voronoi mesh (bottom-right panel).

In Figures 7 and 8 we compare the approximation of the first eigenvalue using the conforming and noncon-
forming VEM on the four mesh sequences Mesh 1—Mesh 4. The error curves are plotted versus the mesh size h
in Figure 7 and the number of degrees of freedom in Figure 8.

For all these meshes, we see that the two approximations are very close.

7.2. Test 2

In this test case, we solve the eigenvalue problem with Neumann boundary conditions on the nonconvex
L-shaped domain 2 = Q4\Qp, where 1 =] — 1,1[x] — 1,1, and g =]0,1[x] — 1,0[. This test problem is
taken from the benchmark suite of Reference [36]. For these calculations we use the Voronoi decompositions of
Figure 9.

The convergence results relative to the first and third eigenvalue are shown in Figure 10. For the first
eigenvalue, we observe a lower rate of convergence that is related to the fact the corresponding eigenfunction
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FIGURE 9. Test Case 2: Mesh sequence used in the L-shaped domain test.
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FIGURE 10. Test Case 2: convergence curves of the first eigenvalue (left panel) and the third
eigenvalue (right panel) using the nonconforming VEM space th, k=1,2,3.

belongs to H'"(Q), with r = 2/3 — ¢ for any € > 0 (see [36]). Instead, the third eigenvalue is analytical and the
optimal order of convergence is obtained, which can be seen by comparing the slopes of the error curves and
the corresponding theoretical slopes reported on the plot. These results confirm the convergence analysis of the
previous section and the optimality of the method also on nonconvex domains using polygonal meshes.

8. CONCLUSIONS

We analysed the nonconforming VEM for the approximation of elliptic eigenvalue problems. The noncon-
forming scheme, contrary to the conforming one, allows to use the same formulation both for the two- and
the three-dimensional case. We proposed two different discrete formulations, which differ for the discrete form
approximating the L2-inner product. In particular, we considered both a nonstabilized form and a stabilized
one. We showed that both formulations provide a correct approximation of the spectrum and we proved optimal
a priori error estimates for the approximations of eigenfunctions both in the L?-norm and the discrete energy
norm, and the usual double order of convergence of the eigenvalues. Eventually, we presented a wide set of
numerical tests which confirm the theoretical results.
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