This paper deals with an existence theorem for a model describing an elasto-viscoplastic evolution of a 2D material with linear kinematic hardening and fracture where the Griffith fracture energy is regularized using a -Laplacian.
DOI : 10.1051/m2an/2015053
Keywords: Fracture, plasticity, kinematic hardening
Jakabčin, Lukáš 1
@article{M2AN_2016__50_2_455_0,
author = {Jakab\v{c}in, Luk\'a\v{s}},
title = {Existence of solutions to an elasto-viscoplastic model with kinematic hardening and $r${-Laplacian} fracture approximation},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
pages = {455--473},
year = {2016},
publisher = {EDP Sciences},
volume = {50},
number = {2},
doi = {10.1051/m2an/2015053},
mrnumber = {3482551},
zbl = {1338.74096},
language = {en},
url = {https://www.numdam.org/articles/10.1051/m2an/2015053/}
}
TY - JOUR AU - Jakabčin, Lukáš TI - Existence of solutions to an elasto-viscoplastic model with kinematic hardening and $r$-Laplacian fracture approximation JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2016 SP - 455 EP - 473 VL - 50 IS - 2 PB - EDP Sciences UR - https://www.numdam.org/articles/10.1051/m2an/2015053/ DO - 10.1051/m2an/2015053 LA - en ID - M2AN_2016__50_2_455_0 ER -
%0 Journal Article %A Jakabčin, Lukáš %T Existence of solutions to an elasto-viscoplastic model with kinematic hardening and $r$-Laplacian fracture approximation %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2016 %P 455-473 %V 50 %N 2 %I EDP Sciences %U https://www.numdam.org/articles/10.1051/m2an/2015053/ %R 10.1051/m2an/2015053 %G en %F M2AN_2016__50_2_455_0
Jakabčin, Lukáš. Existence of solutions to an elasto-viscoplastic model with kinematic hardening and $r$-Laplacian fracture approximation. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 50 (2016) no. 2, pp. 455-473. doi: 10.1051/m2an/2015053
, and ,Quasistatic evolution in non-associative plasticity – the cap model. SIAM J. Math. Anal. 44 (2012) 245–292. | MR | Zbl | DOI
and , Unilateral gradient flow of the Ambosio-Tortorelli functional by minimizing movements. Ann. Inst. Henri Poincaré (C) Anal. Non Lin. 31 (2014) 779–822. | MR | Zbl | Numdam | DOI
, , and , Numerical simulation of a class of models that combine several mechanisms of dissipation: fracture, plasticity, viscous dissipation. J. Comput. Phys. 271 (2014) 397–414. | MR | Zbl | DOI
B. Bourdin, Une formulation variationnelle en mécanique de la rupture, théorie et mise en oeuvre numérique. Ph.D. thesis, Université Paris Nord (1998).
, Numerical implementation of the variational formulation of brittle fracture. Interfaces Free Bound. 9 (2007) 411–430. | MR | Zbl | DOI
, and , Numerical experiments in revisited brittle fracture. J. Mech. Phys. Solids 48 (2000) 797–826. | MR | Zbl | DOI
, and , The variational approach to fracture. J. Elasticity 91 (2008) 1–148. | MR | Zbl | DOI
V. Chrismale, Globally stable quasistatic evolution for a coupled elasto-plastic damage model. Preprint CVGMT (2015). | MR
and , Quasistatic crack growth in elasto-plastic materials: the two-dimensional case. Arch. Ration. Mech. Anal. 196 (2010) 867–906. | MR | Zbl | DOI
and , Quasistatic evolution in perfect plasticity as limit of dynamic processes. J. Dyn. Differ. Equations 26 (2014) 915–954. | MR | Zbl | DOI
, , and , A vanishing viscosity approach to quasistatic evolution in plasticity with softening. Arch. Ration. Mech. Anal. 189 (2008) 469–544. | MR | Zbl | DOI
L.C. Evans, Partial Differential Equations. Grad. Stud. Math. AMS, Rhode Island (1998).
, On the variational approximation of free discontinuity problems in the vectorial case. Math. Models Methods Appl. Sci. 11 (2001) 663–684. | MR | Zbl | DOI
and , Revisiting brittle fracture as an energy minimization problem. J. Mech. Phys. Solids 46 (1998) 1319–1342. | MR | Zbl | DOI
, Ambrosio−Tortorelli approximation of quasi-static evolution of brittle fracture. Calc. Var. Partial Differ. Equations 22 129–172. | MR | Zbl | DOI
L. Jakabčin, Modélisation, analyse et simulation numérique de solides combinant plasticité, rupture et dissipation visqueuse. Ph.D. thesis, Université Grenoble-Alpes (2014).
, A visco-elasto-plastic model with regularized fracture. ESAIM: COCV 22 (2016) 148–168. | MR | Zbl | Numdam
, and , Existence of solutions to a regularized model of dynamic fracture. Math. Models Methods Appl. Sci. 20 (2010) 1021–1048. | MR | Zbl | DOI
, , Existence results for energetic models for rate-independent systems. Calc. Var. Partial Differ. Equations 22 (2005) 73–99. | MR | Zbl | DOI
and , Formation and evolution of strike-slip faults, rifts, and basins during the India-Asia collision: An experimental approach. J. Geophys. Res. 93 (1988) 15 085–15, 117.
, Sur les équations de la plasticité: existence et régularité des solutions. J. Mécanique 20 (1981) 3–39. | MR | Zbl
Cité par Sources :





