We study a model for visco-elasto-plastic deformation with fracture, in which fracture is approximated via a diffuse interface model. We show that a discretized (in time) quasistatic evolution, converges to a solution of the continuous (in time) evolution, proving existence of a solution to our model.
DOI : 10.1051/cocv/2015005
Keywords: Plasticity, regularized fracture, viscous dissipation
Jakabčin, Lukáš 1
@article{COCV_2016__22_1_148_0,
author = {Jakab\v{c}in, Luk\'a\v{s}},
title = {A visco-elasto-plastic evolution model with regularized fracture},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
pages = {148--168},
year = {2016},
publisher = {EDP Sciences},
volume = {22},
number = {1},
doi = {10.1051/cocv/2015005},
zbl = {1337.49017},
mrnumber = {3489380},
language = {en},
url = {https://www.numdam.org/articles/10.1051/cocv/2015005/}
}
TY - JOUR AU - Jakabčin, Lukáš TI - A visco-elasto-plastic evolution model with regularized fracture JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2016 SP - 148 EP - 168 VL - 22 IS - 1 PB - EDP Sciences UR - https://www.numdam.org/articles/10.1051/cocv/2015005/ DO - 10.1051/cocv/2015005 LA - en ID - COCV_2016__22_1_148_0 ER -
%0 Journal Article %A Jakabčin, Lukáš %T A visco-elasto-plastic evolution model with regularized fracture %J ESAIM: Control, Optimisation and Calculus of Variations %D 2016 %P 148-168 %V 22 %N 1 %I EDP Sciences %U https://www.numdam.org/articles/10.1051/cocv/2015005/ %R 10.1051/cocv/2015005 %G en %F COCV_2016__22_1_148_0
Jakabčin, Lukáš. A visco-elasto-plastic evolution model with regularized fracture. ESAIM: Control, Optimisation and Calculus of Variations, Tome 22 (2016) no. 1, pp. 148-168. doi: 10.1051/cocv/2015005
and , Approximation of functionals depending on jumps by elliptic functionals via -convergence. Comm. Pure Appl. Math. XLIII (1990) 999–1036. | Zbl | MR | DOI
and , Approximation of dynamic and quasi-static evolution problems in elasto-plasticity by cap models. Quart. Appl. Math. 73 (2015) 265–316. | Zbl | MR | DOI
, and , Quasistatic evolution in non-associative plasticity - the cap model. SIAM J. Math. Anal. 44 (2012) 245–292. | Zbl | MR | DOI
, , and , Numerical simulation of a class of models that combine several mechanisms of dissipation: fracture, plasticity, viscous dissipation. J. Comput. Phys. 271 (2014) 397–414. | Zbl | MR | DOI
B. Bourdin, Une formulation variationnelle en mécanique de la rupture, théorie et mise en oeuvre numérique. Th.D. thesis, Université Paris Nord, France (1998).
, Numerical implementation of the variational formulation of brittle fracture. Interfaces Free Bound 9 (2007) 411–430. | Zbl | MR | DOI
, and , Numerical experiments in revisited brittle fracture. J. Mech. Phys. Solids 48 (2000) 797–826. | Zbl | MR | DOI
, and , The variational approach to fracture. J. Elasticity 91 (2008) 1–148. | Zbl | MR | DOI
G. Dal Maso and , Quasistatic crack growth in elasto-plastic materials: the two-dimensional case. Arch. Ration. Mech. Anal. 196 (2010) 867–906. | Zbl | MR | DOI
N. Dunford and J.T. Schwartz, Linear operators. Part I. Wiley Classics Library. John Wiley and Sons Inc., New York (1988). | Zbl
L.C. Evans, Partial differential equations. Grad. Stud. Math. AMS, Rhode Island (1998).
and , Revisiting brittle fracture as an energy minimization problem. J. Mech. Phys. Solids 46 (1998) 1319–1342. | Zbl | DOI
, The phenomena of rupture and flow in solids. Philos. Trans. R. Soc. Lond. Ser. A 221 (1920) 133–178.
, A density result for GSBD and its application to the approximation of brittle fracture energies. Calc. Var. Partial Differ. Eqs. 51 (2014) 315–342. | Zbl | DOI
L. Jakabčin, Modélisation, analyse et simulation numérique de solides combinant plasticité, rupture et dissipation visqueuse. Th.D. thesis, Université de Grenoble, France (2014).
, and , Existence of solutions to a regularized model of dynamic fracture. M3AS 20 (2010) 1021–1048. | Zbl
and , Formation and evolution of strike-slip faults, rifts, and basins during the India-Asia collision: An experimental approach. J. Geophys. Res. 93 (1988) 15085–15117. | DOI
Cité par Sources :





