We prove a posteriori error estimates of optimal order for linear Schrödinger-type equations in the L∞(L2)- and the L∞(H1)-norm. We discretize only in time by the Crank-Nicolson method. The direct use of the reconstruction technique, as it has been proposed by Akrivis et al. in [Math. Comput. 75 (2006) 511-531], leads to a posteriori upper bounds that are of optimal order in the L∞(L2)-norm, but of suboptimal order in the L∞(H1)-norm. The optimality in the case of L∞(H1)-norm is recovered by using an auxiliary initial- and boundary-value problem.
Keywords: linear Schrödinger equation, Crank-Nicolson method, crank-nicolson reconstruction, a posteriori error analysis, energy techniques, L∞(L2)- and L∞(H1)-norm
@article{M2AN_2011__45_4_761_0,
author = {Kyza, Irene},
title = {\protect\emph{A posteriori} error analysis for the {Crank-Nicolson} method for linear {Schr\"odinger} equations},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
pages = {761--778},
year = {2011},
publisher = {EDP Sciences},
volume = {45},
number = {4},
doi = {10.1051/m2an/2010101},
zbl = {1269.65088},
language = {en},
url = {https://www.numdam.org/articles/10.1051/m2an/2010101/}
}
TY - JOUR AU - Kyza, Irene TI - A posteriori error analysis for the Crank-Nicolson method for linear Schrödinger equations JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2011 SP - 761 EP - 778 VL - 45 IS - 4 PB - EDP Sciences UR - https://www.numdam.org/articles/10.1051/m2an/2010101/ DO - 10.1051/m2an/2010101 LA - en ID - M2AN_2011__45_4_761_0 ER -
%0 Journal Article %A Kyza, Irene %T A posteriori error analysis for the Crank-Nicolson method for linear Schrödinger equations %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2011 %P 761-778 %V 45 %N 4 %I EDP Sciences %U https://www.numdam.org/articles/10.1051/m2an/2010101/ %R 10.1051/m2an/2010101 %G en %F M2AN_2011__45_4_761_0
Kyza, Irene. A posteriori error analysis for the Crank-Nicolson method for linear Schrödinger equations. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 45 (2011) no. 4, pp. 761-778. doi: 10.1051/m2an/2010101
[1] and , On a class of conservative, highly accurate Galerkin methods for the Schrödinger equation. RAIRO Modél. Math. Anal. Numér. 25 (1991) 643-670. | Zbl | MR | Numdam
[2] , and , A posteriori error estimates for the Crank-Nicolson method for parabolic equations. Math. Comput. 75 (2006) 511-531. | Zbl | MR
[3] , and , Optimal order a posteriori error estimates for a class of Runge-Kutta and Galerkin methods. Numer. Math. 114 (2009) 133-160. | Zbl | MR
[4] , Strichartz inequalities for Lipschitz metrics on manifolds and nonlinear Schrödinger equation on domains. Bull. Soc. Math. France 136 (2008) 27-65. | Zbl | MR | Numdam
[5] , Quantum Theory. Dover Publications, New York (1979).
[6] , Galerkin methods for approximation of solutions of second order partial differential equations of Schrödinger type. Ph.D. thesis, University of Göteborg (1980).
[7] and , Mathematical Analysis and Numerical Methods for Science and Technology 5, Evolution Problems I. Second edition, Springer-Verlag, Berlin (2000). | Zbl | MR
[8] , A time-and space-adaptive algorithm for the linear time-dependent Schrödinger equation. Numer. Math. 73 (1996) 419-448. | Zbl | MR
[9] , Partial Differential Equations. Second edition, American Mathematical Society, Providence (2002). | MR
[10] , Convergence of logarithmic quantum mechanics to the linear one. Lett. Math. Phys. 81 (2007) 253-264. | Zbl | MR
[11] and , A posteriori error estimates in the L∞(L2)-norm for Crank-Nicolson fully discrete approximations for linear Schrödinger equations. Preprint.
[12] and , A space-time finite element method for the nonlinear Schrodinger equation: the discontinuous Galerkin method. Math. Comput. 67 (1998) 479-499. | Zbl | MR
[13] and , A space-time finite element method for the nonlinear Schrodinger equation: the continuous Galerkin method. SIAM J. Numer. Anal. 36 (1999) 1779-1807. | Zbl | MR
[14] , A posteriori error estimates for approximations of semilinear parabolic and Schrödinger-type equations. Ph.D. thesis, University of Crete (2009).
[15] and , Problèmes aux limites non homogènes et applications 2. Dunod, Paris (1968). | Zbl | MR
[16] , and , An anisotropic error estimator for the Crank-Nicolson method: Application to a parabolic problem. SIAM J. Sci. Comput. 31 (2009) 2757-2783. | Zbl | MR
[17] , Space and time reconstructions in a posteriori analysis of evolution problems. ESAIM: Proc. 21 (2007) 31-44. | Zbl | MR
[18] and , Quantum Optics. Cambridge University Press (2002).
[19] , Galerkin Finite Element Methods for Parabolic Problems. Second edition, Springer-Verlag, Berlin (2006). | Zbl
[20] , A posteriori error estimates for finite element discretizations of the heat equation. Calcolo 40 (2003) 195-212. | Zbl | MR
Cité par Sources :





