@article{M2AN_1991__25_6_643_0,
author = {Akrivis, G. D. and Dougalis, V. A.},
title = {On a class of conservative, highly accurate {Galerkin} methods for the {Schr\"odinger} equation},
journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique},
pages = {643--670},
year = {1991},
publisher = {AFCET - Gauthier-Villars},
address = {Paris},
volume = {25},
number = {6},
mrnumber = {1135988},
zbl = {0744.65085},
language = {en},
url = {https://www.numdam.org/item/M2AN_1991__25_6_643_0/}
}
TY - JOUR AU - Akrivis, G. D. AU - Dougalis, V. A. TI - On a class of conservative, highly accurate Galerkin methods for the Schrödinger equation JO - ESAIM: Modélisation mathématique et analyse numérique PY - 1991 SP - 643 EP - 670 VL - 25 IS - 6 PB - AFCET - Gauthier-Villars PP - Paris UR - https://www.numdam.org/item/M2AN_1991__25_6_643_0/ LA - en ID - M2AN_1991__25_6_643_0 ER -
%0 Journal Article %A Akrivis, G. D. %A Dougalis, V. A. %T On a class of conservative, highly accurate Galerkin methods for the Schrödinger equation %J ESAIM: Modélisation mathématique et analyse numérique %D 1991 %P 643-670 %V 25 %N 6 %I AFCET - Gauthier-Villars %C Paris %U https://www.numdam.org/item/M2AN_1991__25_6_643_0/ %G en %F M2AN_1991__25_6_643_0
Akrivis, G. D.; Dougalis, V. A. On a class of conservative, highly accurate Galerkin methods for the Schrödinger equation. ESAIM: Modélisation mathématique et analyse numérique, Tome 25 (1991) no. 6, pp. 643-670. https://www.numdam.org/item/M2AN_1991__25_6_643_0/
[1] and , « On a conservative, high-order accurate finite element scheme for the "parabolic" equation », in Computational Acoustics, D. Lee, A. Cakmak, R. Vichnevetsky eds., v. 1, 17-26, Elsevier-North Holland, Amsterdam, 1990. | MR
[2] , and , Single step Galerkin approximations for parabolic problems, Math. Comp. 31 (1977), 818-847. | Zbl | MR
[3] , , and , Conservative high order schemes for the generalized Korteweg-de Vries equation, to appear. | Zbl
[4] , Galerkin methods for approximation of solutions of second order partial differential equations of Schrödinger type, Ph. D. Thesis, University of Göteborg, 1980.
[5] , Implicit Runge-Kutta processes, Math. Comp. 18 (1964), 50-64. | Zbl | MR
[6] , The numerical analysis of ordinary differential equations ; Runge-Kutta methods and general linear methods, John Wiley, Chichester, 1987. | Zbl | MR
[7] , Sur la B-stabilité des méthodes de Runge-Kutta, Numer. Math. 32 (1979), 75-82. | Zbl | MR
[8] and , On the discretization in time of semilinear parabolic equations with nonsmooth initial data, Math. Comp. 49 (1987), 359-377. | Zbl | MR
[9] and , Stability of Runge-Kutta methods for stiff nonlinear differential equations, North Holland, Amsterdam, 1984. | Zbl | MR
[10] , An alternating direction method for Schrödinger's equation, SIAM J. Numer. Anal. 14 (1977), 1028-1032. | Zbl | MR
[11] and , On some high order accurate fully discrete Galerkin methods for the Korteweg-de Vries equation, Math. Comp. 45 (1985), 329-345. | Zbl | MR
[12] and , On optimal high order in time approximations for the Korteweg-de Vries equation, Math. Comp. 55 (1990), 473-496. | Zbl | MR
[13] and , Ocean acoustic propagation by finite difference methods, Comput. Math. Appl. 14 (1987) No. 5. | Zbl | MR
[14] , and eds., Computational acoustics : wave propagation, Proceedings of the 1st IMACS symposium on computational acoustics, New Haven, 6-8 August 1986, vols. 1, 2, North Holland, Amsterdam, 1988. | Zbl | MR
[15] and , Problèmes aux limites non homogènes et applications, vol. 2, Dunod, Paris, 1968. | Zbl | MR
[16] , Mixed approximations of evolution problems, Comput. Meths. Appl. Mech. Engrg. 24 (1980), 137-163. | Zbl | MR
[17] , Methods for the numerical solution of the nonlinear Schrödinger equation, Math. Comp. 43 (1984), 21-27. | Zbl | MR
[18] and , Conservative and nonconservative schemes for the solution of the nonlinear Schrödinger equation, IMA J. Num. Anal. 6 (1986), 25-42. | Zbl | MR
[19] and eds., Computational ocean acoustics, Invited lectures from the workshop held at Yale University, 1-3 August 1984, Comput. Math. Appl. 11 (1985) Nos 7-8. | MR
[20] , « The parabolic approximation method », in Wave propagation and underwater acoustics, J. B. Keller and J. S. Papadakis eds., 224-287, Lecture Notes in Physics v. 70, Springer-Verlag, Berlin-Heidelberg, 1977. | MR
[21] « Convergence estimates for semi-discrete Galerkin methods for initial-value problems », in Numerische, insbesondere approximations-theoretische Behandlung von Funktionalgleichungen, R. Ansorge and W. Törnig eds., 243-262, Lecture Notes in Mathematics v. 333, Springer-Verlag, Berlin-Heidelberg, 1973. | Zbl | MR
[22] , Galerkin finite element methods for parabolic problems, Lecture Notes in Mathematics v. 1054, Springer-Verlag, Berlin-Heidelberg, 1984. | Zbl | MR
[23] , « A dissipative Galerkin method for the numerical solution of first order hyperbolic equations », in Mathematical aspects of fînite elements in partial differential equations, C. de Boor ed., 147-169, Academic Press, New York, 1974. | Zbl | MR
[24] , and , On fully discrete Galerkin methods of second-order temporal accuracy for the Nonlinear Schrödinger Equation, to appear in Numer. Math. | Zbl | MR
[25] , and , On optimal-order error estimates for the Nonlinear Schrödinger Equation, to appear. | Zbl | MR





