In this paper, we study the continuity of rational functions realized by Büchi finite state transducers. It has been shown by Prieur that it can be decided whether such a function is continuous. We prove here that surprisingly, it cannot be decided whether such a function has at least one point of continuity and that its continuity set cannot be computed. In the case of a synchronous rational function, we show that its continuity set is rational and that it can be computed. Furthermore we prove that any rational -subset of for some alphabet is the continuity set of an -rational synchronous function defined on .
Keywords: infinitary rational relations, omega rational functions, topology, points of continuity, decision problems, omega rational languages, omega context-free languages
@article{ITA_2008__42_1_183_0,
author = {Carton, Olivier and Finkel, Olivier and Simonnet, Pierre},
title = {On the continuity set of an {Omega} rational function},
journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications},
pages = {183--196},
year = {2008},
publisher = {EDP Sciences},
volume = {42},
number = {1},
doi = {10.1051/ita:2007050},
mrnumber = {2382551},
zbl = {1149.03028},
language = {en},
url = {https://www.numdam.org/articles/10.1051/ita:2007050/}
}
TY - JOUR AU - Carton, Olivier AU - Finkel, Olivier AU - Simonnet, Pierre TI - On the continuity set of an Omega rational function JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications PY - 2008 SP - 183 EP - 196 VL - 42 IS - 1 PB - EDP Sciences UR - https://www.numdam.org/articles/10.1051/ita:2007050/ DO - 10.1051/ita:2007050 LA - en ID - ITA_2008__42_1_183_0 ER -
%0 Journal Article %A Carton, Olivier %A Finkel, Olivier %A Simonnet, Pierre %T On the continuity set of an Omega rational function %J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications %D 2008 %P 183-196 %V 42 %N 1 %I EDP Sciences %U https://www.numdam.org/articles/10.1051/ita:2007050/ %R 10.1051/ita:2007050 %G en %F ITA_2008__42_1_183_0
Carton, Olivier; Finkel, Olivier; Simonnet, Pierre. On the continuity set of an Omega rational function. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 42 (2008) no. 1, pp. 183-196. doi: 10.1051/ita:2007050
[1] and , Finite Automata, Behaviour and Synthesis. Nauka, Moscow (1970) (English translation, North Holland, Amsterdam, 1973). | Zbl | MR
[2] and , Determinization of transducers over infinite words, in Proceedings of the International Conference ICALP 2000, edited by U. Montanari et al. Lect. Notes Comput. Sci. 1853 (2000) 561-570. | Zbl | MR
[3] , , and , Squaring transducers: an efficient procedure for deciding functionality and sequentiality. Theor. Comput. Sci. 292 (2003) 45-63. | Zbl | MR
[4] , Transductions and Context Free Languages. Teubner Verlag (1979). | Zbl | MR
[5] , On a decision method in restricted second order arithmetic, Logic Methodology and Philosophy of Science, Proc. 1960 Int. Congr. Stanford University Press (1962) 1-11. | Zbl | MR
[6] , Une caractérisation des fonctions séquentielles et des fonctions sous-séquentielles en tant que relations rationnelles. Theor. Comput. Sci. 5 (1977) 325-338. | Zbl | MR
[7] and , Uniformization of rational relations, Jewels are Forever, edited by J. Karhumäki, H. Maurer, G. Paun and G. Rozenberg. Springer (1999) 59-71. | Zbl | MR
[8] and , X-automata on -Words. Theor. Comput. Sci. 110 (1993) 1-51. | Zbl | MR
[9] , On the topological complexity of infinitary rational relations. RAIRO-Theor. Inf. Appl. 37 (2003) 105-113. | Zbl | MR | Numdam
[10] , Undecidability of topological and arithmetical properties of infinitary rational relations. RAIRO-Theor. Inf. Appl. 37 (2003) 115-126. | Zbl | MR | Numdam
[11] , On Infinitary rational relations and Borel sets, in Proceedings of the Fourth International Conference on Discrete Mathematics and Theoretical Computer Science DMTCS'03, 7-12 July 2003, Dijon, France. Lect. Notes Comput. Sci. 2731 (2003) 155-167. | Zbl | MR
[12] , On the accepting power of 2-Tape Büchi automata, in Proceedings of the 23rd International Symposium on Theoretical Aspects of Computer Science, STACS (2006), Marseille, France. Lect. Notes Comput. Sci. (2006) 3884 301-312. | Zbl
[13] , Borel ranks and Wadge degrees of omega context free languages. Math. Structures Comput. Sci. 16 (2006) 813-840. | Zbl | MR
[14] and , Synchronized rational relations of finite and infinite words. Theor. Comput. Sci. 108 (1993) 45-82. | Zbl | MR
[15] , Relations rationnelles infinitaires. PhD thesis, Université Paris 7 (1981).
[16] , Une extension aux mots infinis de la notion de transduction rationnelle, 6th GI Conf. Lect. Notes Comput. Sci. 145 (1983) 123-139. | Zbl
[17] and , Relations rationnelles infinitaires. Calcolo XXI (1984) 91-125. | Zbl | MR
[18] , Classical Descriptive Set Theory. Springer-Verlag (1995). | Zbl | MR
[19] , and , Borel sets. J. Symbolic Logic 54 (1989) 915-920. | Zbl | MR
[20] , Topology. Academic Press, New York (1966). | Zbl | MR
[21] , Decision problems for -automata. Math. Syst. Theory 3 (1969) 376-384. | Zbl | MR
[22] and , Logical specifications of infinite computations, in A Decade of Concurrency, edited by J.W. de Bakker et al. Lect. Notes Comput. Sci. 803 (1994) 583-621. | MR
[23] and , Algebraische Codierungstheorie - Theorie der Sequentiellen Codierungen. Akademie-Verlag, Berlin (1977). | Zbl | MR
[24] , Descriptive Set Theory. North-Holland, Amsterdam (1980). | Zbl | MR
[25] and , Infinite words, automata, semigroups, logic and games. Pure Appl. Math. 141 (2004). | Zbl
[26] , Logic, semigroups and automata on words. Ann. Math. Artif. Intell. 16 (1996) 343-384. | Zbl | MR
[27] , Fonctions rationnelles de mots infinis et continuité. PhD thesis, Université Paris 7 (2000).
[28] , How to decide continuity of rational functions on infinite words. Theor. Comput. Sci. 250 (2001) 71-82. | Zbl | MR
[29] , Automates et théorie descriptive. PhD thesis, Université Paris 7, (1992). | JFM
[30] , Hierarchies of recursive -languages. J. Inform. Process. Cybernetics EIK 22 (1986) 219-241. | Zbl | MR
[31] , -Languages, in Handbook of Formal languages, Volume 3, edited by G. Rozenberg and A. Salomaa. Springer-Verlag, Berlin. | Zbl | MR
[32] and , Rekursive Folgenmengen I. Z. Math Logik Grundlag. Math. 24 (1978) 523-538. | Zbl | MR
[33] , Automata and quantifier hierarchies, in Formal Properties of Finite automata and Applications, Ramatuelle (1988). Lect. Notes Comput. Sci. 386 (1989) 104-119. | MR
[34] , Automata on infinite objects, in Handbook of Theoretical Computer Science, Volume B, edited by J. Van Leeuwen. Elsevier, Amsterdam (1990) 133-191. | Zbl | MR
Cité par Sources :






