We prove in this paper that there exists some infinitary rational relations which are analytic but non Borel sets, giving an answer to a question of Simonnet [20].
Keywords: infinitary rational relations, topological properties, Borel and analytic sets
@article{ITA_2003__37_2_105_0,
author = {Finkel, Olivier},
title = {On the topological complexity of infinitary rational relations},
journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications},
pages = {105--113},
year = {2003},
publisher = {EDP Sciences},
volume = {37},
number = {2},
doi = {10.1051/ita:2003016},
mrnumber = {2015686},
zbl = {1112.03313},
language = {en},
url = {https://www.numdam.org/articles/10.1051/ita:2003016/}
}
TY - JOUR AU - Finkel, Olivier TI - On the topological complexity of infinitary rational relations JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications PY - 2003 SP - 105 EP - 113 VL - 37 IS - 2 PB - EDP Sciences UR - https://www.numdam.org/articles/10.1051/ita:2003016/ DO - 10.1051/ita:2003016 LA - en ID - ITA_2003__37_2_105_0 ER -
%0 Journal Article %A Finkel, Olivier %T On the topological complexity of infinitary rational relations %J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications %D 2003 %P 105-113 %V 37 %N 2 %I EDP Sciences %U https://www.numdam.org/articles/10.1051/ita:2003016/ %R 10.1051/ita:2003016 %G en %F ITA_2003__37_2_105_0
Finkel, Olivier. On the topological complexity of infinitary rational relations. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 37 (2003) no. 2, pp. 105-113. doi: 10.1051/ita:2003016
[1] and, Determinization of Transducers over Infinite Words, in ICALP'2000, edited by U. Montanari et al. Springer, Lect. Notes Comput. Sci. 1853 (2000) 561-570. | Zbl
[2] , Transductions and Context Free Languages. Teubner Verlag (1979). | Zbl | MR
[3] , On a Decision Method in Restricted Second Order Arithmetic, Logic Methodology and Philosophy of Science, in Proc. 1960 Int. Congr. Stanford University Press (1962) 1-11. | Zbl | MR
[4] , Une Caractérisation des Fonctions Séquentielles et des Fonctions Sous-Séquentielles en tant que Relations Rationnelles. Theoret. Comput. Sci. 5 (1977) 325-338. | Zbl | MR
[5] and, Uniformization of Rational Relations, Jewels are Forever, edited by J. Karhumäki, H. Maurer, G. Paun and G. Rozenberg. Springer (1999) 59-71. | Zbl | MR
[6] , and, Computer Science and the Fine Structure of Borel Sets. Theoret. Comput. Sci. 257 (2001) 85-105. | Zbl | MR
[7] and, X-Automata on -Words. Theoret. Comput. Sci. 110 (1993) 1-51. | Zbl | MR
[8] , Relations Rationnelles Infinitaires, Thèse de troisième cycle, Université Paris-7, France (1981).
[9] , Une Extension aux Mots Infinis de la Notion de Transduction Rationnelle, in 6th GI Conf. Springer, Lect. Notes Comput. Sci. 145 (1983) 123-139. | Zbl
[10] and, Relations Rationnelles Infinitaires. Calcolo XXI (1984) 91-125. | Zbl | MR
[11] , Classical Descriptive Set Theory. Springer-Verlag (1995). | Zbl | MR
[12] , Topology. Academic Press, New York (1966). | Zbl | MR
[13] , Decision Problems for -Automata. Math. Syst. Theory 3 (1969) 376-384. | Zbl | MR
[14] and, Logical Specifications of Infinite Computations, in A Decade of Concurrency, edited by J.W. de Bakker et al. Springer, Lect. Notes Comput. Sci. 803 (1994) 583-621. | MR
[15] , Descriptive Set Theory. North-Holland, Amsterdam (1980). | Zbl | MR
[16] , An Example of Non Borel Set of Infinite Trees Recognizable by a Rabin Automaton, in Polish, Manuscript. University of Warsaw (1985).
[17] and, Infinite Words, Book in preparation, available from http://www.liafa.jussieu.fr/jep/InfiniteWords.html
[18] , Logic, Semigroups and Automata on Words. Ann. Math. Artificial Intelligence 16 (1996) 343-384. | Zbl | MR
[19] , Fonctions Rationnelles de Mots Infinis et Continuité, Thèse de Doctorat, Université Paris-7, France (2000).
[20] , Automates et Théorie Descriptive, Ph.D. thesis, Université Paris-7, France (1992). | JFM
[21] , Automate d'Arbres Infinis et Choix Borélien. C. R. Acad. Sci. Paris Sér. I Math. 316 (1993) 97-100. | Zbl
[22] , Hierarchies of Recursive -Languages. J. Inform. Process. Cybernetics EIK 22 (1986) 219-241. | Zbl | MR
[23] , -Languages, Handbook of Formal languages, Vol. 3, edited by G. Rozenberg and A. Salomaa. Springer-Verlag, Berlin (1997). | Zbl | MR
[24] , Automata on Infinite Objects, edited by J. Van Leeuwen. Elsevier, Amsterdam, Handb. Theoret. Comput. Sci. B (1990) 133-191. | Zbl | MR
Cité par Sources :






