This note is about functions whose graph is recognized by a Büchi finite automaton on the product alphabet . These functions are Baire class 2 in the Baire hierarchy of Borel functions and it is decidable whether such function are continuous or not. In 1920 W. Sierpinski showed that a function is Baire class 1 if and only if both the overgraph and the undergraph of are . We show that such characterization is also true for functions on infinite words if we replace the real ordering by the lexicographical ordering on . From this we deduce that it is decidable whether such function are of Baire class 1 or not. We extend this result to real functions definable by automata in Pisot base.
Keywords: Borel set, Borel function, automata, sequential machine
@article{ITA_2007__41_1_27_0,
author = {Cagnard, Benoit and Simonnet, Pierre},
title = {Automata, {Borel} functions and real numbers in {Pisot} base},
journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications},
pages = {27--44},
year = {2007},
publisher = {EDP Sciences},
volume = {41},
number = {1},
doi = {10.1051/ita:2007007},
mrnumber = {2330041},
zbl = {1156.03036},
language = {en},
url = {https://www.numdam.org/articles/10.1051/ita:2007007/}
}
TY - JOUR AU - Cagnard, Benoit AU - Simonnet, Pierre TI - Automata, Borel functions and real numbers in Pisot base JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications PY - 2007 SP - 27 EP - 44 VL - 41 IS - 1 PB - EDP Sciences UR - https://www.numdam.org/articles/10.1051/ita:2007007/ DO - 10.1051/ita:2007007 LA - en ID - ITA_2007__41_1_27_0 ER -
%0 Journal Article %A Cagnard, Benoit %A Simonnet, Pierre %T Automata, Borel functions and real numbers in Pisot base %J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications %D 2007 %P 27-44 %V 41 %N 1 %I EDP Sciences %U https://www.numdam.org/articles/10.1051/ita:2007007/ %R 10.1051/ita:2007007 %G en %F ITA_2007__41_1_27_0
Cagnard, Benoit; Simonnet, Pierre. Automata, Borel functions and real numbers in Pisot base. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 41 (2007) no. 1, pp. 27-44. doi: 10.1051/ita:2007007
[1] , Signed-digit number representation for fast parallel aritmetic. IRE Trans. Electronic Comput. 10 (1961) 389-400.
[2] , On a decision method in restricted second order arithmetic, in Methodology and Philosophy of Science. Stanford Univ. Press, Calif. (1962) 1-11.
[3] , and, Decision issues on functions realized by finite automata. J. Automata Languages Combin. 4 (1999) 171-182. | Zbl
[4] , Classics On Fractals. Studies in non linearity. Westview Press (2004). | Zbl
[5] , Automata, Languages and Machines, Vol. A. Academic Press, New York London (1974). | Zbl | MR
[6] and, On-the-fly convertion of redundant into conventional representations. IEEE Trans. Comput. 36 (1987) 895-897.
[7] , On the topological complexity of infinitary rational relations. Theor. Inform. Appl. 37 (2003) 105-113. | Zbl | Numdam
[8] , Undecidability of topological and arithmetical properties of infinitary rational relations. Theor. Inform. Appl. 37 (2003) 115-126. | Zbl | Numdam
[9] , Topologie, Analyse. Vuibert (1976).
[10] and J . Sakarovitch, Synchronized relations of finite and infinite words. Theoret. Comput. Sci. (1993) 45-82. | Zbl
[11] and, On representation of integers in linear numeration systems1996) 345-368. | Zbl
[12] , On-the-fly algorithms and sequential machines. IEEE Trans. Comput. 49 (2000) 859-863.
[13] , Numeration Systems. Chapter 7 of M. Lothaire, Algebraic Combinatorics on Words. Cambridge University Press (2002).
[14] , Two decidability problems for infinite words. Inform. Proc. Lett. 22 (1986) 135-140. | Zbl
[15] , Classical Descriptive Set Theory. Springer-Verlag (1995). | Zbl | MR
[16] , Digit-set convertions: Generalizations and applications. IEEE Trans. Comput. 43 (1994) 622-629.
[17] , Decision problem for -automata. Math. Systems. Theory 3 (1969) 376-384. | Zbl
[18] and, Ludwig Scheeffer et les extensions du Théorème des Accroissements Finis, in Séminaire du Luxembourg, Travaux mathématiques, fascicule XIII (2002) 1-60. | Zbl
[19] , Arithmétique des ordinateurs. Masson, Paris (1989).
[20] and, Infinite words, Automata, Semigroups, Logic and Games. Pure Appl. Mathematics Series 141, Academic Press, Elsevier (2004). | Zbl
[21] , How to decide continuity of rationnal functions on infinite words. Theoret. Comput. Sci. 250 (2001) 71-82. | Zbl
[22] , How to decide continuity of rationnal functions on infinite words (Errata). Theoret. Comput. Sci. 276 (2002) 445-447. | Zbl
[23] , Fonctions boréliennes sur un quotient. Bull. Soc. Math. France 100 (1976) 141-147. | Zbl
[24] , Éléments de théorie des automates. Vuibert informatique (2003). | Zbl
[25] , Sur les fonctions de première classe. C. R. Acad. Sci. Paris 170 (1920) 919-922. | JFM
Cité par Sources :






