A shuffle ideal is a language which is a finite union of languages of the form where is a finite alphabet and the ’s are letters. We show how to represent shuffle ideals by special automata and how to compute these representations. We also give a temporal logic characterization of shuffle ideals and we study its expressive power over infinite words. We characterize the complexity of deciding whether a language is a shuffle ideal and we give a new quadratic algorithm for this problem. Finally we also present a characterization by subwords of the minimal automaton of a shuffle ideal and study the complexity of basic operations on shuffle ideals.
@article{ITA_2002__36_4_359_0,
author = {H\'eam, Pierre-Cyrille},
title = {On shuffle ideals},
journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications},
pages = {359--384},
publisher = {EDP Sciences},
volume = {36},
number = {4},
year = {2002},
doi = {10.1051/ita:2003002},
mrnumber = {1965422},
zbl = {1034.68056},
language = {en},
url = {https://www.numdam.org/articles/10.1051/ita:2003002/}
}
TY - JOUR AU - Héam, Pierre-Cyrille TI - On shuffle ideals JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications PY - 2002 SP - 359 EP - 384 VL - 36 IS - 4 PB - EDP Sciences UR - https://www.numdam.org/articles/10.1051/ita:2003002/ DO - 10.1051/ita:2003002 LA - en ID - ITA_2002__36_4_359_0 ER -
%0 Journal Article %A Héam, Pierre-Cyrille %T On shuffle ideals %J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications %D 2002 %P 359-384 %V 36 %N 4 %I EDP Sciences %U https://www.numdam.org/articles/10.1051/ita:2003002/ %R 10.1051/ita:2003002 %G en %F ITA_2002__36_4_359_0
Héam, Pierre-Cyrille. On shuffle ideals. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Volume 36 (2002) no. 4, pp. 359-384. doi: 10.1051/ita:2003002
[1] , and, The design and analysis of computer algorithms. Addison-Wesley (1974) 395-400. | Zbl | MR
[2] , Implicit operations on finite -trivial semigroups and a conjecture of I. Simon. J. Pure Appl. Algebra 69 (1990) 205-218. | Zbl | MR
[3] , Opération polynomiales et hiérarchies de concaténation. Theoret. Comput. Sci. 91 (1991) 71-84. | Zbl | MR
[4] and, Shuffle factorization is unique, Technical Report. LIAFA, Université Paris 7 (1999). | Zbl
[5] , Transductions and context-free languages. Teubner (1979) Verlag. | Zbl | MR
[6] , and, On the expressive power of temporal logic for finite words. J. Comput. System Sci. 46 (1993) 271-294. | Zbl | MR
[7] , Automata, Languages and Machines, Vol. A. Academic Press (1974). | Zbl | MR
[8] ,, and, On the temporal analysis of fairness, in 12th ACM Symp. on Principles of Programming Languages (1980) 163-180.
[9] and, Level 5/2 of the straubing-thérien hierarchy for two-letter alphabets, in Conference on Developments in Language Theory (DLT). Vienna (2001). | Zbl
[10] , Some complexity results for polynomial rational expressions. Theoret. Comput. Sci. (to appear). | Zbl | MR
[11] , Ordering by divisibility in abstract algebras, in Proc. of the London Mathematical Society, Vol. 2 (1952) 326-336. | Zbl | MR
[12] and, Computing -free nfa from regular expressions in time. RAIRO: Theoret. Informatics Appl. 34 (2000) 257-277. | Zbl | MR | Numdam
[13] and, Introduction to automata theory, languages, and computation. Addison-Wesley (1980). | Zbl | MR
[14] , Tense logic and the theory of linear order, Ph.D. Thesis. University of California, Los Angeles (1968).
[15] , Completeness and the expressive power of next time temporal logical system by semantic tableau method, Technical Report RR-0109. Inria, Institut National de Recherche en Informatique et en Automatique (1981).
[16] , Representation of events in nerve nets and finite automata. Princeton University Press, Automata Studies (1956) 3-42. | MR
[17] , Combinatorics on words. Cambridge Mathematical Library (1983). | Zbl | MR
[18] ,,, and, Efficient parallel shuffle recognition. Parallel Process. Lett. 4 (1994) 455-463.
[19] , Computational complexity. Addison Wesley (1994). | Zbl | MR
[20] , Automates, réseaux, formules, in Actes des journées “Informatiques et Mathématiques”. Luminy (1984). | Zbl
[21] , and, A constant time string shuffle algorithm on reconfigurable meshes. Int. J. Comput. Math. 68 (1998) 251-259. | Zbl | MR
[22] , The temporal logic of programs, in 18th FOCS (1977) 46-57. | MR
[23] and, Polynomial closure and unambiguous product. Theory Comput. Systems 30 (1997) 1-39. | Zbl | MR
[24] , A natural ring basis for shuffle algebra and an application to group schemes. J. Algebra 58 (1979) 432-454. | Zbl | MR
[25] , Piecewise testable events, in GI Conf. Springer-Verlag, Lecture Notes in Comput. Sci. 33 (1975) 214-222. | Zbl | MR
[26] , Le calcul rapide des mélanges de deux mots. Theoret. Comput. Sci. 47 (1986) 181-203. | Zbl | MR
[27] and, Partially ordered finite monoids and a theorem of I. Simon. J. Algebra 119 (1985) 161-183. | Zbl | MR
[28] , Characterization of some classes of regular events. Theoret. Comput. Sci. 35 (1985) 17-42. | Zbl | MR
[29] , Finite semigroups varieties of the form VD. J. Pure Appl. Algebra 36 (1985) 53-94. | Zbl | MR
[30] , Classification of finite monoids: The language approach. Theoret. Comput. Sci. 14 (1981) 195-208. | Zbl | MR
[31] , Classifying regular events in symbolic logic. J. Comput. System Sci. 25 360-375. | Zbl | MR
[32] and, Temporal logic and semidirect products: An effective characterization of the until hierarchy, in Proc. of the 37th Annual Symposium on Foundations of Computer Science. IEEE (1996) 256-263. | Zbl | MR
[33] , Classifying discrete temporal properties, in STACS'99. Springer-Verlag, Lecture Notes in Comput. Sci. 1563 (1999) 32-46. | Zbl
[34] , State complexity of regular languages, in Proc. of the International Workshop on Descriptional Complexity of Automata, Grammars and Related Structures (1999) 77-88.
Cited by Sources:






