A position p in a word w is critical if the minimal local period at p is equal to the global period of w. According to the Critical Factorisation Theorem all words of length at least two have a critical point. We study the number η(w) of critical points of square-free ternary words w, i.e., words over a three letter alphabet. We show that the sufficiently long square-free words w satisfy η(w) ≤|w|− 5 where |w| denotes the length of w. Moreover, the bound |w|− 5 is reached by infinitely many words. On the other hand, every square-free word w has at least |w|∕4 critical points, and there is a sequence of these words closing to this bound.
Accepté le :
Première publication :
Publié le :
DOI : 10.1051/ita/2022003
Keywords: Critical point, critical factorisation theorem, ternary words, square-free words
@article{ITA_2022__56_1_A3_0,
author = {Harju, Tero},
title = {Critical {Factorisation} in {Square-Free} {Words}},
journal = {RAIRO. Theoretical Informatics and Applications},
year = {2022},
publisher = {EDP-Sciences},
volume = {56},
doi = {10.1051/ita/2022003},
mrnumber = {4379607},
zbl = {1493.68282},
language = {en},
url = {https://www.numdam.org/articles/10.1051/ita/2022003/}
}
Harju, Tero. Critical Factorisation in Square-Free Words. RAIRO. Theoretical Informatics and Applications, Tome 56 (2022), article no. 3. doi: 10.1051/ita/2022003
[1] , , and , Abelian complexity of fixed point of morphism 0↦ 012, 1↦ 02, 2↦1. Integers 14 (2014) a11. | MR | Zbl
[2] and , Une caractérisation des mots périodiques. C. R. Acad. Sci. Paris 286(A) (1978) 1175–1177. | MR | Zbl
[3] and , Two-way string-matching. J. Assoc. Comput. Mach. 38 (1991) 651–675. | MR | Zbl | DOI
[4] , Périodes et répétitions des mots du monoïde libre. Theoret. Comput. Sci. 9 (1979) 17–26. | MR | Zbl | DOI
[5] and , Density of critical factorizations. Theor. Inform. Appl. 36 (2002) 315–327. | MR | Zbl | Numdam | DOI
[6] , Combinatorics on words. Vol. 17 of Encyclopedia of Mathematics. Addison-Wesley, Reading, Massachusetts (1983). | MR | Zbl
[7] , Algebraic Combinatorics on Words. Cambridge University Press, Cambridge, United Kingdom (2002). | Zbl | MR | DOI
[8] , Über die gegenseitige Lage gleicher Teile gewisser Zeichenreihen. Norske Vid. Selsk. Skr., I Mat.-nat. Kl. Christiania 1 (1912) 1–67. | JFM
Cité par Sources :





