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CRITICAL FACTORISATION IN SQUARE-FREE WORDS

Tero Harju*

Abstract. A position p in a word w is critical if the minimal local period at p is equal to the global
period of w. According to the Critical Factorisation Theorem all words of length at least two have
a critical point. We study the number η(w) of critical points of square-free ternary words w, i.e.,
words over a three letter alphabet. We show that the sufficiently long square-free words w satisfy
η(w) ≤ |w| − 5 where |w| denotes the length of w. Moreover, the bound |w| − 5 is reached by infinitely
many words. On the other hand, every square-free word w has at least |w|/4 critical points, and there
is a sequence of these words closing to this bound.
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1. Introduction

The Critical Factorisation Theorem [2, 4] is one of the gems in combinatorics on words. It states that each
word w with |w| ≥ 2 has a critical point, i.e., a position where the local period ∂(w, p) is equal to the global
period ∂(w) of the word. For a word w with a factorisation w = xy, ∂(w, |x|) denotes the length of the shortest
word u such that of u and x one is a suffix of the other, and of u and y one is a prefix of the other.

In the binary case, say w ∈ {0, 1}∗, it was shown in [5] that there are words having only one critical point;
e.g., the Fibonacci words of length at least five are such. Also, it was shown there that each binary word w of
length |w| ≥ 5 and period ∂(w) > |w|/2 has less than |w|/2 critical points.

We shall now study the number of critical points in ternary square-free words. We show that, each sufficiently
long square-free word w can have at most |w| − 5 critical points, and the bound |w| − 5 is obtained by infinitely
many square-free w. Also, we prove that a square-free word w has at least |w|/4 critical points, and that there
is a sequence of square-free words closing to this bound.

2. Preliminaries

For a more extensive introduction to combinatorics on words, including square-freeness and critical
factorisation, we refer to Lothaire [6].

For a finite alphabet Σ, let Σ∗ denote the monoid of all finite words over Σ under concatenation. The empty
word is denoted by ε. Let w ∈ Σ∗. The length |w| of w is the number of the occurrences of its letters. If
w = w1uw2 then u is a factor of w. It is a prefix if w1 = ε, and a suffix if w2 = ε. The word w is said to be
bordered if there exists a nonempty word v, with v 6= w, that is both a prefix and a suffix of w.
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Figure 1. A repetition word u of w = xy having left overflow at position p = |x|.

A word w ∈ Σ∗ is square-free if it has no factors of the form vv for nonempty words v. Axel Thue [8] showed
in 1912 that there are square-free words over a ternary alphabet Σ3 = {0, 1, 2}. One such word is obtained by
iterating the following morphism τ : Σ∗3 → Σ∗3 on the initial letter 0:

τ(0) = 012, τ(1) = 02, τ(2) = 1 .

The iteration ultimately gives an infinite square-free word

m = 012021012102012 · · ·

By the form of the morphism τ , the word m does not contain the short words 010, 212 and 01201 as its factors.
The infinite word m is sometimes called a variation of Thue-Morse word ; see [1].

Lemma 2.1. Let x be a nonempty factor of a square-free word w. Then “x does not overlap with itself in w”,
meaning that if w = ux1x2x3v where x = x1x2 = x2x3 and x2 6= ε then x1 = ε = x3.

Proof. Overlapping means, see e.g. [6], that x1 and x3 are conjugates: x1 = rs, x3 = sr and x2 = (rs)kr for
some r, s and k ≥ 0. But x1x2x3 = (rs)k+2r does contain a square even if k = 0.

3. Critical factorisations

We follow the main notations of [5].
An integer p, with 1 ≤ p ≤ |w|, is a period of w if for the prefix u of w of length p, w is a prefix of un for

some n. The minimal period of w is denoted by ∂(w). We have that w is unbordered if and only if ∂(w) = |w|.
An integer p with 1 ≤ p < |w| is called a position or a point in w. It denotes the place after the prefix x of

length p: w = x·y, |x| = p. Thus there are |w| − 1 positions in w. A nonempty word u is a repetition word of w
at p if there are words x′ and y′ (possibly empty) such that u = x′x or x = x′u, and u = yy′ or y = uy′. If here
|u| > |x| (resp. |u| > |y|) then u is said to have left overflow (resp., right overflow) at p; see Figure 1.

The length of a repetition word of w at p is called a local period at p. The minimal local period of w at p is
denoted by

∂(w, p) = min{q | q a local period of w at p}.

Clearly, the (global) period ∂(w) is a local period at every point, and hence ∂(w, p) ≤ ∂(w) for all p. A position
p of w is said to be critical if ∂(w, p) = ∂(w).

The following result follows from the minimality assumption on ∂(w, p).

Lemma 3.1. A repetition word u of w at p of length ∂(w, p) is unique and it is unbordered.

For a word w, we let

η(w) = the number of critical points of w.
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Figure 2. Left and right overflows imply criticality.

The number

η(w)

|w| − 1

is called the density of the critical points in w.

Example 3.2. Let w = 0120201202021021021 be an unbordered word of length 19, i.e., ∂(w) = |w|. It is not
square-free. The minimal local periods of w are in order of the 18 positions

3, 5, 5, 2, 5, 5, 19, 19, 2, 2, 19, 19, 3, 3, 3, 3, 3, 3 .

In this example, η(w) = 4, and the density of critical points is 4/18 = 0.222 . . .

The Critical Factorisation Theorem is due to Césari and Vincent [2]. The present form of the theorem was
developed by Duval [4]; for the proofs, see also [3], [5] and Chapter 8 in [7].

Theorem 3.3 (Critical Factorisation Theorem). Every word w of length |w| ≥ 2 has a critical point. Moreover,
there is a critical point p satisfying p ≤ ∂(w).

Lemma 3.4. Let u be a repetition word of w at p with |w| ≥ 2 of length ∂(w, p). If u has both left and right
overflows at p then p is a critical point.

Proof. Let w = xy where u = x′x = yy′ for nonempty words x′, y′; see Figure 2. By symmetry, we may assume
that |x′| ≤ |y| (otherwise |y′| ≤ |x|). Therefore y = x′z and x = zy′ for some z. Now, w = xy = zy′x′z, and hence
|zy′x′| is a period of w, i.e., ∂(w) ≤ |zy′x′|. But |zy′x′| = |x′zy′| = |u| which shows that ∂(w, p) = |u| = ∂(w)
implying that p is a critical point.

4. Maximum number of critical points

We notice first that if w is a square-free word with |w| ≥ 2, then ∂(w, p) ≥ 2 for all positions p, since
∂(w, p) = 1 would imply a factor of the form aa in w.

The next lemma follows from the observation that if a point p of w has neither left nor right overflow, the
minimal repetition word u at p supplies a square uu in w.

Lemma 4.1. A word w with |w| ≥ 2 is square-free if and only if each repetition word at each position p has
left or right overflow, or both.

Example 4.2. The square-free word w = 01020120210201021 of length 17 is unbordered, i.e., ∂(w) = 17. It
has 9 critical points at the consecutive positions p = 5, 6, . . . , 13. This gives the density number 9/16 ≈ 0.56. For
instance, the position p = 4 has the minimal repetition word u = 012021020102, since u is the shortest factor
after the prefix 0102 that ends with 0102. Thus ∂(w, 4) = 12.

For a word w, let

M(w) =
⌊ |w|+ 1

2

⌋
denote the midpoint of w. For odd length |w|, it is just a choice of the two points nearest to the centre of w.
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Lemma 4.3. For a square-free word w ∈ Σ∗3, the position M(w) is critical.

Proof. For even |w|, the claim is clear from Lemma 4.1.
Suppose then that |w| = 2k + 1, and let u be the minimal local repetition word of w at M(w) = k + 1.

Suppose u has right but not left overflow. Then |u| = k+ 1, and hence w = vav where u = va for a prefix v and
an overflow letter a. But then ∂(w, k + 1) = |u| = ∂(w), and the claim follows.

Theorem 4.4. The minimal local periods form a unimodular sequence for square-free ternary words w ∈ Σ∗3
with |w| ≥ 2, i.e.,

∂(w, p− 1) ≤ ∂(w, p) for 2 ≤ p ≤M(w),

∂(w, p) ≤ ∂(w, p− 1) for p− 1 ≥M(w) .

In particular, the critical points p of w form an interval q0 ≤ p ≤ q1 for some q1 ≤M(w) and q2 ≥M(w).

Proof. Let 2 ≤ p ≤ M(w). The cases for p ≥ M(w) follow by considering the reverse of the word w which is
also square-free. Let the minimal repetition word of w at p be u, i.e., |u| = ∂(w, p). Since w is square-free and
|u| ≥ 2, u has left overflow. If it also has right overflow then p is critical by Lemma 3.4. Let a be the letter such
that u = va. Then |av| is a local period at p− 1 since the position p− 1 has a repetition word av. (It need not
be minimal.) Hence ∂(w, p− 1) ≤ ∂(w, p).

For the second claim, by Lemma 4.3, w has a critical point p with p ≤M(n) and a critical point q ≥M(w).
This proves the claim.

Example 4.5. Consider the prefix w = τ5(0) of the square-free word m, i.e.,

w = 012021012102012021020121.

It is unbordered with |w[= 24. The sequence of the 23 minimal local periods is

3, 6, 6, 12, 12, 12, 12, 24, . . . , 24, 14, 14, 6, 2.

Thus η(w) = 12, i.e., just over one half of the positions are critical.

Theorem 4.6. For each square-free ternary word w of length |w| ≥ 26, we have η(w) ≤ |w| − 5.

Proof. Let w ∈ Σ∗3 be a square-free ternary word of length n ≥ 26. We show that w has at least four non-critical
points among the n− 1 positions. The points 1 and n− 1 are always non-critical, since every letter of Σ3 occurs
in every factor of length four. Let us then assume that w has exactly three non-critical points. Therefore at
least one of the positions 2 or n− 2 is critical. Without restriction, we can say that p = 2 is critical.

Without restriction we may assume that 01 is a prefix of w. It can be checked that there are no such square-
free words of length 15 where 01 occurs only as a prefix. After inspection, we find that the only such word of
length 14 is v = 01210212021020.

Thus since |w| ≥ 15, we have w = 01x01y for some words x and y such that 01 does not occur in x. Now, the
word x01 is a repetition of w at position 2 and hence, by the criticality of p = 2, we have |x01| = ∂(w). Because
w is square-free, y must be a proper prefix of x. The word x does not have any occurrences of 01 and it cannot
end in the letter 0. Thus |01x| ≤ 13. But now n ≤ 25; a contradiction.

Example 4.7. In contrast to Theorem 4.6, the word w = 01210212021020121021202 of length 23 with ∂(w) = 13
has only three non-critical points, p = 1, 2, 22.

The upper bound on the critical points is optimal:

Theorem 4.8. There are arbitrarily long square-free words w ∈ Σ∗3 with η(w) = |w| − 5.
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Table 1. Local periods of non-critical points.

p ∂(w, p) Rep. word

1 2 10
2 4 0201

|w| − 2 4 1202
|w| − 1 2 21

Figure 3. The repetition words u and v for non-critical points p and q.

Proof. We rely on the infinite square-free word m that is a fixed point of the morphism τ . Consider the factors
of m of the form β = 10201α12021. For our purpose, it suffices to choose the words β that start after the
position 9 of m, i.e., just after the prefix 012021012. There are infinitely many words β since the suffix 12021
is a factor of τ2(0).

For fixed middle word α, consider w = 0β2 = 010201α120212 that begins and ends in the ‘forbidden’ words
010 and 212 that do not occur in m. It is, clearly, square-free and unbordered. Each point p with 2 < p < |w| − 2
is critical, since the minimal repetition word at p must have both left and right overflow in order to leap over
a factor 010 or 212; see Lemma 3.4. Table 1 lists the local periods and the minimal repetition words for the
remaining four (non-critical) points.

5. Minimum number of critical points

We now turn to the minimality problem of critical points in square-free words.

Theorem 5.1. For each square-free word w ∈ Σ∗3 with |w| ≥ 2, we have η(w) ≥ |w|/4.

Proof. Let w ∈ Σ∗3 be a square-free word of length |w| = n. We remind that, by Lemma 4.3, the middle point
M(w) is always critical in w. We show that the distance between two non-critical points on the opposite sides
of the middle point is at least n/4. The claim then follows from Theorem 4.4.

Assume, contrary to the claim, that p and q are non-critical points such that

p < n/2 < q and q − p < n/4 . (5.1)

Let u and v be the minimal repetition words at p and q, respectively. Consequently, the word u has left overflow,
and v has right overflow. Observe that p > n/4 and q < 3n/4. From p > n/4 it follows that |u| > n/4. Similarly
|v| > n/4 and q− |v| < n/2. Since q− p < n/4, we have p+ |u| ≥ q, i.e., the second occurrence of u reaches over
the position q. Similarly the first occurrence of v starts before the position p; see Figure 3, where |z| = q − p.

We now rely on the notations of the factors in Figure 3.
The words u3 and v1 are both prefixes of v and suffixes of u. If |v1| > |u3| then, as prefixes of v, we have

v1 = u3x for some nonempty x. But then x is a border of u since u3 cannot overlap with itself at the end of the
first occurrence of u; a contradiction. Similarly, if |u3| > |v1| then, as suffixes of u, we have u3 = xv1 for some
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nonempty x yielding that x is is a border of v; a contradiction. Therefore v1 = u3. In this case z = u1u2 = v2v3,
and

w = u2v1zv1v2 = u2v1u1u2v1v2 .

Since u1u2 = v2v3, one of u1 or v2 is a prefix of the other. To avoid (u2v1u1)2 in w, the word v2 must be a proper
prefix of u1. But now ∂(w) ≤ |u2v1u1| = |u| = ∂(w, p) contradicting the assumption that p was not critical. This
proves the claim.

For the existence part of the next theorem, we take a quick technical analysis of the prefixes of the word m.
An induction argument gives |τn(0)| = 3 · 2n−1, |τn(1)| = 2n and |τn(2)| = 2n−1. For instance,

|τn+1(0)| = |τn(012)| = 3·2n−1 + 2n + 2n−1 = 3·2n .

Define the words mn, for n ≥ 1, as follows

mn = τ2n−1(0)τ2n−3(0) · · · τ3(0)τ(0) . (5.2)

We show that mn0 is a prefix of m of length 4n. First m10 = 0120 = τ(0)0 is a prefix of m. Inductively, we
have

τ2(mn0) = τ2n+1(0)τ2n−1(0) · · · τ3(0)τ2(0) = mn+10·21 .

and hence also mn+10 is a prefix of m.
For the length of mn, we obtain

|mn| =
n∑

i=1

3 · 22(n−i) = 3

n∑
i=1

4n−i = 4n − 1.

As a prefix of m, the word mn is square-free.

Theorem 5.2. For all real numbers δ > 0, there exists a square-free ternary word w = w(δ) the density of
which satisfies

0.25 <
η(w)

|w|
< 0.25 + δ .

Proof. For any square-free word x ∈ Σ∗3, let

wx = 0x02x10x02x0 . (5.3)

Suppose first that wx is square-free, and thus that x does not overlap with itself in wx. The suffix 2x0 of wx

does not occur elsewhere in wx, and hence the point 3|x| + 6 is critical, since it must have both overflows. It
is the rightmost critical point. Indeed, ∂(wx, 3|x|+ 7) = |x|+ 2. For the point 2|x|+ 3, the minimal repetition
word is 10x02x of length 2|x|+ 4 < ∂(w) since ∂(w) > 3|x|+ 7. By Lemma 4.3, the middle point is critical, and
hence the position 2|x|+ 4 is the leftmost critical point. It follows that wx has (3|x|+ 7)− (2|x|+ 4) = |x|+ 3
critical points. Thus

η(w)

|wx|
=
|x|+ 3

4|x|+ 8
= 0.25 +

1

|wx|
,
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which has the limit 0.25 as |x| → ∞.
It remains to show that there are arbitrarily long square-free words x for which wx is square-free. Again, we

lean on the word m. We consider the words wxn where

xn = 120102 mn .

We have

wxn = 0·120102mn · 02·120102mn·10·120102mn · 02·120102mn·0

Since 010 and 212 do not occur in m, both 010 and 212 would have to be aligned in any square uu of wxn
,

which is not possible by the ‘markers’ 02, 1 and 0 dividing the word. Also, since mn has a border τ(0), one
easily checks that there are no short squares uu in wx for |u| ≤ 4. Hence a possible square must be inside one
of the words (a) 102mn021, (b) 102mn101201, or (c) 102mn0. We consider these cases separately. Recall that
m1 = 012 = τ(0). Also, since m is a fixed point of the morphism τ , whenever v is a factor of m, so is τ(v).

(a) Let αn = 102mn021. The word α1 = 102012021 occurs in m after position 9. We prove by induction that
each αn is a factor of m, and thus they are square-free. Suppose, using (5.2), that

αi = 102mi021 = 102τ2i−1(0) · · · τ(0)021

is a factor of m. Then

τ(αi) = 0201·21τ2i(0) · · · τ2(0)012·021

where the indicated factor will be denoted by z = 21τ2i(0) · · · 012. By mapping with τ , we obtain

τ(z) = 102τ2i+1(0) · · · τ3(0)τ(0)021 = 102mi+1021 = αi+1.

Hence αn is a factor of m for all n.
(b) We employ in this case the same techniques as in (a) except that we need to eliminate the last letter 1 of

the word. In order for 102mn101201 to have a square uu, the former occurrence of u in the square must
be a factor of 102m. However, m does not have a factor 01201 since it would have to be part of the square
012012. Therefore we can, and must, choose βn = 102mn101202.
The first occurrence of β1 = 102m1101202 = 102τ(0)101202 in m starts after position 17. We proceed
inductively as in case (a). Suppose that

βi = 102mi101202 = 102τ2i−1(0) · · · τ(0)101202

is a factor of m. Mapping by τ gives

τ(βi) = 0201·21τ2i(0) · · · τ2(0)0201·20210121 ,

where the indicated portion z = 21τ2i(0) · · · τ2(0)0201 gives

τ(z) = 102τ2i+1(0) · · · τ3(0)τ(0)101202 = 102mi+1101202 = βi+1 .

Hence βn is a factor of m, and thus square-free, for all n.
(c) The word 102mn0 is a factor of αn and thus square-free. This proves the claim.
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The chosen words xn = 120102 mn are not the only ones that give a square-free word wx.

Problem 5.3. Does there exist, for all sufficiently large n, a word x of length n such that wx is square-free?

Problem 5.4. Does there exist a word w such that η(w) = |w|/4?

Acknowledgements. The author thanks for the kind referees for their comments that clairifed the proofs of the article.
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[2] Y. Césari and M. Vincent, Une caractérisation des mots périodiques. C. R. Acad. Sci. Paris 286(A) (1978) 1175–1177.
[3] M. Crochemore and D. Perrin, Two-way string-matching. J. Assoc. Comput. Mach. 38 (1991) 651–675.

[4] J.-P. Duval, Périodes et répétitions des mots du monöıde libre. Theoret. Comput. Sci. 9 (1979) 17–26.
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