Here, we derive the exact mean and variance of the number of weakly protected nodes (the nodes that are not leaves and at least one of their children is not a leaf) in binary search trees grown from random permutations. Furthermore, by using contraction method, we prove normal limit law for a properly normalized version of this tree parameter.
Keywords: Random binary search tree, Weakly protected nodes, Zolotarev metric, Contraction method, limiting distribution
@article{ITA_2022__56_1_A2_0,
author = {Mohammad Nezhad, Ezzat and Javanian, Mehri and Imany Nabiyyi, Ramin},
title = {Weakly {Protected} {Nodes} in {Random} {Binary} {Search} {Trees}},
journal = {RAIRO. Theoretical Informatics and Applications},
year = {2022},
publisher = {EDP-Sciences},
volume = {56},
doi = {10.1051/ita/2022002},
mrnumber = {4376268},
zbl = {1483.05022},
language = {en},
url = {https://www.numdam.org/articles/10.1051/ita/2022002/}
}
TY - JOUR AU - Mohammad Nezhad, Ezzat AU - Javanian, Mehri AU - Imany Nabiyyi, Ramin TI - Weakly Protected Nodes in Random Binary Search Trees JO - RAIRO. Theoretical Informatics and Applications PY - 2022 VL - 56 PB - EDP-Sciences UR - https://www.numdam.org/articles/10.1051/ita/2022002/ DO - 10.1051/ita/2022002 LA - en ID - ITA_2022__56_1_A2_0 ER -
%0 Journal Article %A Mohammad Nezhad, Ezzat %A Javanian, Mehri %A Imany Nabiyyi, Ramin %T Weakly Protected Nodes in Random Binary Search Trees %J RAIRO. Theoretical Informatics and Applications %D 2022 %V 56 %I EDP-Sciences %U https://www.numdam.org/articles/10.1051/ita/2022002/ %R 10.1051/ita/2022002 %G en %F ITA_2022__56_1_A2_0
Mohammad Nezhad, Ezzat; Javanian, Mehri; Imany Nabiyyi, Ramin. Weakly Protected Nodes in Random Binary Search Trees. RAIRO. Theoretical Informatics and Applications, Tome 56 (2022), article no. 2. doi: 10.1051/ita/2022002
[1] , k-protected nodes in binary search trees. Adv. Appl. Math. 53 (2014) 1–11. | MR | Zbl | DOI
[2] and , Protected nodes and fringe subtrees in some random trees. Electr. Commun. Probab. 19 (2014) 1–10. | MR | Zbl
[3] and , Asymptotic distribution of two-protected nodes in ternary search trees. Electr. J. Probab. 20 (2015) 1–20. | MR | Zbl
[4] and , Limit laws for functions of fringe trees for binary search trees and recursive trees. Electr. J. Probab. 20 (2015) 1–51. | MR | Zbl
[5] , Evolution of random search trees. John Wiley & Sons Inc., New York (1992). | MR | Zbl
[6] and , Asymptotic distribution of two-protected nodes in random binary search trees. Appl. Math. Lett. 25 (2012) 2218–2222. | MR | Zbl | DOI
[7] , Refined quicksort asymptotics. Random Struct. Algor. 46 (2015) 346–361. | MR | Zbl | DOI
[8] , Probability Metrics and the Stability of Stochastic Models. New York (1991). | MR | Zbl
[9] , A limit theorem for “Quicksort”. RAIRO: ITA 25 (1991) 85–100. | MR | Zbl | Numdam
[10] and , Weakly protected points in ordered trees. Graphs Combinat. (2021) . | DOI | MR | Zbl
Cité par Sources :





